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ABSTRACT: Unlike the majority of marine plants, seagrasses are believed to experience little damage 
from the feeding activities of marine herbivores. Based on our previous work, plus a review of the lit- 
erature, we suggest that this paradigm significantly underestimates the importance of seagrass her- 
bivory in nearshore environments. In this review, we provide evidence from over 100 publications, 
showing that grazing on seagrasses is widespread in the world's oceans. Overwhelmingly, reports of 
grazing on seagrasses are based on observations, laboratory measurements, and bioenergetic calcula- 
tions. To date, few field experiments have been conducted to evaluate the importance of seagrass graz- 
ing in the nearshore environment. Of these, even fewer have considered the possibility that herbivores 

may stimulate rates of primary production of the role of belowground nutrient reserves in determining 
the impacts of grazers on seagrasses. We contend that the currently accepted view that herbivory plays 
a minor role in the energetics of seagrass habitats needs to be reexamined by measuring seagrass 
responses to grazer induced tissue losses in controlled field manipulations. Only then will we be able 
to determine the in~portance of the seagrass-grazing pathway in marine food webs. 
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INTRODUCTION 

Herbivores often greatly influence the productivity 

and abundance of plants in aquatic and marine envi- 

ronments (e.g. Porter 1973, 1977, Lynch & Shapiro 

1981, Lewis 1985, Vanni 1987a, Mallin & Paerl 1994). 

For example, in freshwater lakes, zooplankton graz- 

ing can reduce the abundance of small or naked 

phytoplankton species, favoring the survival of larger 

phytoplankton species with gelatinous sheaths or 

other structures that reduce their vulnerability to 

grazing (e.g. Porter 1973, 1977, McCauley & Briand 

1979, Demott & Kerfoot 1982, Vanni 198713). In marine 
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environments, grazing by coral reef fishes and inver- 

tebrates can cause shifts in macroalgal community 

structure from dominance by highly competitive, fast- 

growing, edible algae to competitively inferior, slower 

growing, but chemically defended algae (reviewed by 

Hay & Steinberg 1992). Similarly, gastropod grazing 

can alter macroalgal community structure in temper- 

ate rocky intertidal zones by removing competitively 

dominant, fast-growing, more palatable species, 

which are then replaced by competitively inferior, 

slower growing, less palatable species (reviewed by 

Lubchencho & Gaines 1981, Gaines & Lubchencho 

1982). In one of the most dramatic examples of herbi- 

vore impacts on primary producers, sea urchin graz- 

ing can convert macroalgal kelp forests to grazer 

resistant coralline dominated algal pavements in ten?- 

perate and boreal settings (reviewed by Lawrence 

1975). 
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The seagrass-detritus paradigm 

In contrast, marine vascular plants or seagrasses, 

which are common in coastal waters along every conti- 

nent except Antarctica, are reported to experience 

very low levels of herbivory because their leaves are 

thought to be of poor nutritional value, owing to high 

C/N ratios (e.g. Bjorndal 1980, Duarte 1990, Lalli & 

Parsons 1993, Valiela 1995), and the inability of most 

invertebrate grazers to digest cellulose (Lawrence 

1975). Current levels of seagrass herbivory are also 

thought to be low because of the historical overhar- 

vesting of larger vertebrate herbivores (e.g. green 

turtles, dugongs, manatees, fishes, and waterfowl; 

Randall 1965, Heinsohn & Birch 1972, Lipkin 1975, 

Charman 1979, Bjorndal 1980, Kiorboe 1980, Jacobs et 

al. 1983, Thayer et al. 1984, Dayton et al. 1995). As a 

result, the amount of seagrass production entering 

food webs via grazing is believed to be small, usually 

less than 10 % of annual net aboveground primary pro- 

duction, with most macrophyte production thought to 

enter food webs through the detrital pathway (e.g. 

Fenchel 1970, 1977, Kikuchi & Peres 1977, Nienhaus 

& Van Ierland 1978, Kikuchi 1980, Thayer et  al. 1984, 

Nienhaus & Groenendijk 1986, Zieman & Zieman 

1989). Consequently, investigations of the factors con- 

trolling seagrass growth and biornass have empha- 

sized the primacy of nutrient supply (e.g. Patriquin 

1972, Short 1987, Powell et al. 1989, Fourqurean et  al. 

1992, Short et al. 1993), light availability, and/or 

physical factors (e.g. Patriquin 1975, Backman & Bari- 

lotti 1976, Dennison & Alberte 1985, Thom & Albright 

1990). 

COUNTER EVIDENCE 

There are, however, few actual tests of this para- 

digm, and there is an  existing body of evidence which 

shows that its underlying assumptions need reevalua- 

tion. For example, several investigators have provided 

evidence that nitrogen concentrations in seagrasses 

are similar to those of algae (e.g. Lowe & Lawrence 

1976, Lobe1 & Ogden 1981, reviewed in Thayer et al. 

1984). There is also substantial evidence that detrital 

seagrass leaves are an  even poorer source of nutrition 

(i.e. have higher C/N ratios) for consumers than are 

living leaves (Klumpp & Van der Walk 1984), as sea- 

grass detritus resists decay, requinng long periods of 

conditioning time before detritivores can use it (Harn- 

son & Mann 1975, Zieman 1975, Fenchel 1977, Thayer 

et al. 1977, Rice 1982). 

In addition, many herbivorous fishes are 'extreme' 

generalists that feed on vegetation in proportion to its 

abundance (Ogden 1980, Hay & Steinberg 1992, Hay 

1997). In fact, f~eld palatability testing using both sea- 

grasses and marine macroalgde has found that sea- 

grasses are of intermediate palatability among several 

species of algae offered to marine herbivores through- 

out the Caribbean Sea and Indian Ocean (e.g. Hay 

1981, 1984a, b, Lewis 1985, hlacIntyre et al. 1987). If 

true, seagrasses are likely to contribute to the diets of 

many of marine herbivorous fishes in some significant 

way. 

More importantly, we and others have shown, from 

field observations and short-term experiments, that 

the variegated sea urchin Lytechinus variegatus (La- 

marck) consumes from 50 to 200% of the aboveground 

seagrass biomass produced in some areas of the east- 

ern Gulf of Mexico and Caribbean Sea (Moore et 

al. 1963, Camp et al. 1973, Greenway 1976, 1995, 

Zimmerman & Livingston 1976, Bach 1979, Valentine 

& Heck 1991, Heck & Valentine 1995). At densities of 

10 ind. m-2, L. vanegatus can reduce turtlegrass habi- 

tats to barren unvegetated substrates from fall through 

early spring (Valentine & Heck 1991). If grazing is per- 

sistent throughout the winter and spring, sea urchins 

can reduce these vegetated habitats to permanently 

barren unvegetated substrates (Heck & Valentine 

1995). In summer, turtlegrass persists under severe 

grazing pressure and regrows to levels that either 

equal or exceed the standing crop of nearby ungrazed 

turtlegrass. The apparent mechanism by which turtle- 

grass overcomes the effects of this grazing is to 

increase the production or recruitment of new shoots in 

the grazed area rather than to increase the production 

of existing shoots (Valentine et al. 1997). Similarly, the 

sea urchins Tripneustes ventricosus can, and Diadema 

antillarum did, until recently, consume large quantities 

of seagrass in some Caribbean settings (e.g. Ogden et 

al. 1973, Lilly 1975, Vicente & Rivera 1982, Keller 1983, 

Tertschnig 1984 in Tertschnig 1989). Although it was 

once thought that grazing on seagrasses was predomi- 

nantly a Caribbean phenomenon (Ogden & Zieman 

1977, Ogden 1980, Ogden & Ogden 1982), observa- 

tions elsewhere show that sea urchins also consume 

significant amounts of seagrass in the tropical Pacific 

and Indian Oceans (Bak & Nojima 1980, Kirkman & 

Young 1981, Hulings & IClrkman 1982, Verlaque & 

Nedelec 1983, Jafari & Mahasneh 1984, Larkum & 

West 1990, Klumpp et a1 1993, Jernakoff et al. 1996). 

In tropical settings where fishing pressure is low, 

herbivorous fish, not sea urchins, are the dominant 

herbivores (e.g Ogden 1976, 1980, Hay 1981, 1984a, 

Carpenter 1986, but see Jackson 1997). More than 30 

species of Caribbean fishes, predominantly parrot- 

fishes and surgeonfishes, have been found with sea- 

grasses in their guts (Randall 1967, McAfee & Morgan 

1996, Lewis & Wainwright 1985, but see Hay 1984a). 

It is likely that even more species draw nutrition from 
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these plants, as investigators have typically considered 

the presence of seagrass leaves in the guts of fishes to 

be incidental intake associated with the capture of ani- 

mal prey (e.g.  Thompson 1959, Carr & Adams 1973, 

Bell et al. 1978). When seagrass leaves are isotopically 

labeled or fishes have been presented with seagrass in 

laboratory studies, it has been found that seagrasses 

leaves can contribute to fish growth (e .g .  Conacher et 

al. 1979, Montgomery & Targett 1992). Using stable 

isotopes, Fry et al. (1982) found that seagrasses and 

benthic algae contributed significantly to the diets of 

many fishes in the seagl-ass beds of St. Croix, USVl. Fry 

& Parker (1979) also found that seagrasses and other 

benthic plants contributed significantly to the diets of 

shrimps and fishes in some areas of Texas. 

In some locations, fish grazing on seagrasses is so 

intense that 'halos' are created and maintained within 

seagrass habitats at the base of coral reefs (e.g. Randall 

1965, Ogden & Zieman 1977, Hay 1984a, McAfee & 

Morgan 1996). Not all foraging in and on seagrasses is 

near the base of coral reefs, however (Ogden & Zieman 

1977). While many herbivorous fishes seek shelter on 

coral reefs at night, they commonly forage In nearby 

seagrass habitats throughout the day (Randall 1965, 

Ogden & Zieman 1977, Zieman et al. 1984, McAfee & 

Morgan 1996). For example, the parrotfish Scarus gua- 

camaia and S. coelestinus have been reported to move 

up to 500 m inshore from coral reefs to feed (Winn & 

Bardach 1960, Winn et al. 1964). Juvenile and smaller 

species of parrotfish also feed on seagrasses away from 

the reef (Ogden & Zieman 1977, Handley 1984, MacIn- 

tyre 1987, McGlathery 1995, McAfee & Morgan 1996). 

Once large enough, many juvenile fish abandon struc- 

turally simpler seagrass habitats for more structurally 

complex coral reefs where it has been hypothesized 

that they find increased protection from large piscivo- 

rous fishes (Springer & McErlean 1962, Ogden & Zie- 

man 1977, Dubin & Baker 1982, Handley 1984, Car- 

penter 1986). These observations suggest that the flow 

of energy from seagrass habitats to coral reefs can be 

substantial, but quantitative estimates are constrained 

by the limited amount of information on coral reef food 

webs (cf. Polunin 1996). 

Investigators have used tethering, stable isotope, gut 

content studies, and reconstructive sampling tech- 

niques to show that seagrasses are readily consumed 

by fishes, at times in large quantities, in some areas of 

the Mediterranean Sea, the Indian and Pacific Oceans 

(Kirkman & Reid 1979, Hay 1981, 1984a, b, Klumpp & 

Nichols 1983~1, b, Lewls 1985, Nlchols et  al. 1985, 

Nojima & Mukai 1990, Cebrian et al. 1996a, b,  Pinto & 

Punchihewa 1996, Marguillier et al. 1997). In virtually 

every study seagrass leaves were readily consumed by 

herbivores, thereby demonstrating the susceptibility of 

seagrasses to herbivores across broad geographic 

areas. We have so far emphasized the importance of 

sea urchin and fish grazlng on seagrasses, but several 

species of waterfowl have also been shown to consume 

large quantities of seagrass production (both above- 

and belowground) during their seasonal migrations 

through subtropical, temperate and boreal estuaries 

(e.g.  Charman 1977, Wilkins 1982, Tubbs & Tubbs 

1983, Baldwin & Loworn 1994, Michot & Chadwick 

1994, Mitchell et al. 1994). In addition, green turtles 

Chelonia mydas (Linnaeus) and sirenians (manatees 

and dugongs), which are still abundant in some areas, 

are intense seagrass grazers (Heinsohn & Birch 1972, 

Spain & Heinsohn 1973, Lipkin 1975, Heinsohn et al. 

1976, Anderson & Birtles 1978, Nietschmann & Nietsch- 

mann 1981, Marsh et al. 1982, Ogden et al. 1983, Nishi- 

waki & Marsh 1985, Lanyon et  al. 1989, Nietschinann 

1990, Provancha & Hall 1991, de  Iongh et al. 1995, 

Preen 1995). These large herbivores can have even 

greater impacts on seagrass productivity and abun- 

dance than sea urchins or fishes (Zieman et al. 1984). 

All of the examples cited above show that seagrass 

herbivory, although probably reduced in a historical 

context, continues to represent an  important and 

underestimated trophic pathway in many areas, and 

not a highly localized anomalous event. 

SEAGRASS-HERBIVORE INTERACTIONS 

If this view is correct, how do seagrasses persist in 

the face of such grazing pressure? We believe that part 

of the answer lies in the unrecognized potential of 

seagrasses to compensate for grazing losses, and the 

belowground location of much seagrass biomass. Dur- 

ing the summer months we have shown that turtle- 

grass responds to sea urchln grazing by increasing the 

production of new shoots, which leads to increased 

area1 aboveground primary production (Valentine et  

al. 1997). Because of the increased production of new 

shoots, aboveground biomass in grazed areas does not 

change when compared to nearby ungrazed plots dur- 

ing the growing season. We suggest that this increased 

turnover of leaf material allows seagrasses to compen- 

sate for tissue lost to herbivores and enables seagrass 

to persist during intense grazlng (Valentine et al. 

1997). Since new shoots are produced only at  rhizome 

apices (Tomlinson & Vargo 1966), we hypothesized 

that sea urchin grazing should also lead to increased 

belowground production (Valentine et al. 1997). Our 

data suggest that focussing solely on seagrass biomass 

without accounting for the material produced between 

sampling periods can lead to large underestimates 

of the amount of seagrass consumed by herbivores 

(cf. Jacobsen & Sand-Jensen 1994, Sand-Jensen et al. 

1994). 
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Table 1. Summary of selected studies or reports of herbivory in seagrasses. W: waterfowl; U: urchin; G: gastropod; C: crustacean; F: fish; 
R: reptile; M: mammal 

I Grazer Seagrass, location, study type Description of results Source I 
Branta bemicla bemicla (W), Zostera noltij and Z. marina. Solent. England. Large reductions in seagrass area1 coverage Tubbs & Tubbs 
Anas penelope (W), Anas Field study, percent cover recorded at  5 attributed to brent geese feeding. (1983) 
crecca (W) stations. Exclosures used to monitor seagrass 

change due to grazing. 

B. bemicla (W), A. dcuta (W). 2. noltii and 2. marina. Dutch Wadden Sea. An estimated 1426 kg DW of seagrass (-50% of Jacobs et al. (1981) 
A. penelope (W), A. Field-based bioenergetic study and field ex- all SAV production) consumed, mostly by A. acuta 

platyrhyncha (W) periment where change in submerged aquatic and A. penelope. 
vegetation (SAV) shoot density, blomass, and 
percent cover were monitored. 

B. bemlcla (W). Anas Zostera japonica and Z. marina. Boundary Bird density positively correlated with SAV Baldwin & 
americana (W), A. platy- Bay, British Columbia. Collections and field distnbutlon. Dabbling ducks and geese consumed Loworn (1994) 
rhynchos (W). A. acuta (W) based bioenergetlc study. Above- and below- some 362 t of Z. japonjca leaves and rhizomes 

ground standing stock were monitored. Water- (-50% of aboveground and 43% of belowground 
fowl use days were estimated. Some birds were biomass) at the study site. Lesser amounts of 
collected and esophagus contents recorded. Z. marina consumed. 

I Aythya arnencana (W) Halodule wrightil Lower Laguna Madre, TX. Rhizome biomass was 75% lower in grazed areas Mitchell et al. 
Two years of field collections and 1 experi- than where grazers were excluded. When rhizome (1994) 
ment at 3 sites were used to assess impacts of biomass was grazed below 0.18 g DM" core-' (at 
redhead ducks on SAV biomass. '4 of the sites), grass did not recover. 

R. bernicla ( W ) .  Anas Zostera noltjj and Zostera manna. Dutch Brent geese and widgeon reduced aboveground Madsen (1988) 
penelope (W). A. crecca (W) Wadden Sea. Field surveys plus an exclosure biomass some 30% faster than In areas where 

experiment were used to quantify impacts of grazers were excluded. Belowground biomass in 
wildfowl grazing on seagrass biomass. grazed cages was 48% lower than in ungrazed plots. 

Cygnus olor ( W ) ,  Anas Zostera marina. Lake Grevelingen, SW An est~mated 7.5% of Zostera manna product~on N~enhuis & 
penelope (W), A. platyrhyn- Netherlands. Field-based bioenergetic study consumed by waterfowl and a s~ngle  specles of Groenendijk 
chos (W), A. acuta (W), A. and laboratory experiment. isopod. (1986) 
creeca (W). Aythya ferina (W), 
Branta bernida (W), Fulica 
atra (W), ldotea chelipes (C) 

Branta bernicla hrota (W), 

Anas penelope (W) 

Aythya americana (LVl 

Lytechinus variegatus (U) 

Zostera sp. Strangford Slough. Northern Grazing led to faster rates of seagrass loss than 
Ireland. Field study. The impact of grazers was occuning due to weathering in ungrazed 
was documented by monitoring changes in areas. Belowground biomass was 48% lower in 
seagrass biomass at the study area along with grazed plots than measured in ungrazed plots. 
the use of excluston cages in grassbeds wtth 
uniform coverage. 

Portig et  aL (1994) 

Halodule wrighti~. Chandeleur Sound, LA. Waterfowl grazing was found to reduce above- Michot & Chad- 
Field monitoring of seagrass biornass to ground and belowground biomass by 90 and 49% wick (1994) 
document the impact of waterfowl grazing on respectively. 
seagrass. 

Zhalassia testudinum. Miskito Cays, Sea urchins were estimated to consumed some 0.5 Vadas et  al. (1982) 
Nicaragua. Laboratory measurements, field g DW per urchin d-' of seagrass However, gut 
collections and observations Feeding contents indicated that 40% of this urchin's diet 
preferences determined by turning over was detrital turtlegrass. Less than 5% of the diet 
urchins. Urchin gut contents examined a t  was Live grasses. 
l station. 

L vanegatus (U), Spansoma Thalassia testudinum. Kingston Harbour, 
radians (F). Archosargus Jamaica. Laboratory measurements, field 
rhomboides (F), Monocanthus sampling, stomach content analysis, and field 
setiferus (F), Acanthurus experimentation to estimate herbivory on 
chjrurigus (F). Sphaerojdes grazers on seagrass. 
spenglen (F). Acan- 
thostrac~on quadricor n ~ s  (F) 

L. variegatus (U) 7halassla testudinum. Offshore grass beds of 
west Florida. Field observations and 
measurements 

L. variegatus (U), Tripneustes Thdassia testudinum. Discovery Bay, 
venMcosus (U] Jamaica. Field experiment tested for 

intraspecific and interspecific competition 
between 2 species of urchins. Aboveground 
biomass within cages was used to document 
the effects of urchin manipulations. 

5 species of fish found to feed on both hve and detrital Greenway (1975, 
seagrass along wth algae and cruslaceans. Only the 1995) 
sea urchin Lytechinus and the bucktooth parrotfish S. 
radians were found to feed predominantly on sea- 
grass. Lytechinus was estimated to consume some 
49% of the SAVleai tissue producedeachday. A 
small fraction of t h s  production was consumed by 
fishes. 

Camp et al. (1973) 
An episodic settlement of sea urchins led to 
signif~cant reduct~ons of seagrass coverage 
Crazlng was found to have denuded an estunated 
20 ha area of seagrass habitat. 

KeUer (1983) 
Tripneustes grazing had a hlghly significant effect 
on seagrass biomass in enclosure treatments. 
Lytechinus had a moderate effect on seagrass 
biomass. 
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T a b l e  1 ( c o n t i n u e d )  

Grazer Seagrass, location, study type Descript~on of results Source 

L vanegatus (U) Thalassia testudinum. Biscayne Bay, FL. Urchlns ingested decayed leaves a t  a signif~cantly h4ontague e t  al. 
Laboratoy e s t~ma te  of sea  urchin ingestion hlghcr ratc than whcn f ed  grccn Icavcs. No cvi- (1991) 
rates and preferences when fed live seagrass dence of a s i g n ~ f ~ c a n t  preference for decaycd 

and scagrdss detritus. leaves over green ones was found. 

L. vanegatus (U) Tlialassia testudinuni. Card Sound, FL. A large population of sea urch~ns consumed all ben- Bach (1979) 
Observations. t h ~ c  plants ~n a scvcral hectare area of Card Sound. 

Trlpneustes gratilla (U) ,  Tlialass~a hemprichil. Bolinao, Phillippines. Preferences tests showed TI-jpneustes chose live Klumpp et al.  
Salmacls sphacro~des  (U) Field and laboratory measurements of sea urch~n SAV alternative food choices Salnldcis consumed (1993) 

consumpt~on of seagrass biomass. Food pref- equal quantltles of all plant species. Both urchins 
crcnces for several plant species also examined. efficiently digested and absorbed seagrass 

(>60°L). Est~mates  of total SAV consumption by 
both sea  urchins was 240 to 400 g D\V m -' d ', an  
average of - 1 7 ' ' ~ ~  of SAV produced with a range 
from 3 to 100'';. of SAV production. 

Paracentrolus lividus (U) Posidonia oceanica. Mediterranean Sea. Field Loss of seagrass biomass was  directly proportional Klrkman & Young 
experimentat~on used to determine grazing to grazing intens~ty. (1981) 
impacts on seagrass biomass, shoot density. 
and  production. 

Astropyga rnagnilicd (U) Zostera marina. Tornioka Bay, Amakusa, A seagrass patch was reduced from -71 to <3 m2 Bak & Nojirna 
Japan.  Eelgrass patch size, density and  in 3 mo  by grazing. Urch~n  stomachs were (1980) 
biomass used to document the impact of a completely full of seagrass. No other plants were  

sea  urchin aggregation on seagrass density. observed. The seagrass standing crop decreased 
Urchin gut contents were recorded as  well. from 7789 to 375 g DW. 

Heliocidar~s erythrogramrna Posidonia australis. Botany Bay, A~Strdll<l. Urchins complctcly denuded 20 ha  of seagrass from Larkum & West 

(U) Field observations and mapping from 1930 to 1979 tu 1982 before being dispersed by a storm. (1990) 
1985 were used to documcnt the impact of Urchin aggregatlons reappeared in late l982 and 
urchin grazing on a seagrass meadow. an additional25 ha of Pos~donia\vas lost from 1982 

to 1984 Up to 1987 no regroivth had occurred. 

Tripneustes grat~lla (U)  Halophila stipulacea. Sinai, Northcrn Red Sea Heavy urchln grazing was recorded on seagrasses L~pkin (19791, 
and the Jordanian coast of the Gulf of Aqaba. at depths rdnglng from 5 to 9 m. G r a ~ i n g  on sed- Bouchon (1980), 
Obsenrational. grass was subsequently verified by gut content Huljngs & Kirkman 

analysis. (1982), Jafari & 

hlahasneh (1984) 

Ternnopleur~s mlchaelsenil Cockburn Sound, Warnbro Sound, Australia. In Cockburn Sound, seagrasses were grazed by Cambridge et al. 

(U! F~e ld  sampling and saagrass mapping were locally abundant Temnopleuris m c h a e l s e n ~ ~ .  Most (1986) 
used to document urchin denudation of a heavy damagc was localized Where grazlng was 
seagrass habitat. heavy, plants had not recovered 2 to 4 yr lalc?r. 

Urchins Invaded a second slte, r e d u c ~ n g  rema- 
nents of one healthy seagrass meadow to bare 
sand. Jntensc grdnng was noted In fall of 3 
different years. Outbreaks were  also rcported 
from a third site, where sea urchins removed all of 
the leaves in deeper  portions of a seagrass bed. 

Tectura deplcla (G) Zostera manna. Monterey Bay, CA. Lab experi- Growth rates, carbon reserves, root prol~fcra t~on,  Zmmerman  et al. 
ment.  Zoslrra transplanted into pldstic flower and net photosynthesis of grazed plants were (1996) 
pots, at natural dens~t ics  ot llmprts wr rc  main- 50 to 80%:. lower than on ungrazed plants. The 
tained on 8 plants while 8 othrrs were kept carbon allocated to thc roots of un<]razccl pldnls 
grazer free. Sedgrass growth was determined was 800';. higher for unqrazed plants than for 
wcckly along wlth total lea! length. At thc end grazed plants. L~mpe t  grazlng induced carbon 
of the experiment, plants were harvested and l~mitation In eelgrdss growing in a n  otherwise 
analyzed for biomass (shoot, rhizome, root), I ~ g h t  replete env~ronment .  
rates ol leaf photosynthesis, respiration, and 
sucrose enzymes u'rrc measured in leaves and 
shoots. plus protein and sugar contents. Chloro- 
phyll a was extracted from Leaf segments. 

Littorina sitkana [G), Zoslera marina. l 7~ rnbek  Lagoon, AK. Eelgrass was found to be  incorporated into the McConnaughey & 
Margantes helicjnus (G) ,  Sampling and '-'(::''C analysis. local food chain through herbivoq' by at least 7 McRoy (1979) 
Lacuna varicgata [G). Tel- species. 
messus chieragonus (C), MI- 
crocottus sellaris (F),  Bran ta 
canadensis (M'). Anas CdrO- 
linel~sis ( W ) ,  i lnas  acuta ( W )  

(Table continued overlrafl 
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Grazer 

A n ~ p ~ t h o e  spp.  (C') 

Monocanthus chinensis (F) 

Monacanthus chinensis (F),  
Meuschenia freycineti (F). 
Meuschenia lrach ylepis (F) 

Monacanthus ciliatus (F) 
Stephanolep~s hispjdus (F) 

Hyporharnphus un~fasciatus 

(F) 

Hyporhamphus melanochir 

(F) 

Lagodon rhomboldes (F) 

Table l (continued) 

Seagrass, location, study type Descnption of results 

Syringodlum. F~j i  Laboratory ddctcmiinations Init~ally amphipods f ~ d  at the top of the leaf. 
of ~ngest ion rates of manatee grass. On6' day later the)' madr  nests from frdgments 

of grazed rjrdqs Grd7lnq rates ranged from 1 7 
to 26.4 mg LVW ind. ' d-'. L's~ng a carbon budget 
approach, the authors est~matcvl that the amphi- 
pods graecd of the matrrial produced and 
further asslm~lated ' of it. 

Posidonia occdnicd. Quibray Bay. Botany Bay, Gut analysis showed fish ate SAV, along with 

New South Wales. Stomach analysis dnd I~c*ld 5 spp. of algae, crustacrans, and other inverte- 
sampling. "C labeled seagrass used to assess brates. Seaqrass and  amphipods were most 
seagrass ass~m~lat ion by fishes. abundant in fish guts. b.Iicroscopic examlnatlon of 

Ingested plant matrnill suggested that plants were 
untouched. (i.e no cell wall damage obsenredl.  
However, radioactive labrling showed that -22':,. 
of labclrd SAV was in the liver and gut wdll of the  
fish, 32 to 33'',-, in thc feces. The remaining ldhel 
may have been In other tissues. This is siyn~flcant 
as ~t shows that m~croscopic examination of the 
cell walls does not necessarily provide a complelr 
picture. The actual ";! of SAV production remc~ved 
was low. 

Posldonia australis. Port H a c k ~ n g ,  Neiv South 
Wales. Field sampling and  stomach contents. 
The entire fish community In a 400 m? area 
of P a~lstrdlis was collected twice each in 2 

seasons. Stomachs of all leathe jackets  were 
dissected and the contents  denti if led. The 
relative percentages of food items was deter- 
mined. Rectal items were identified using 
microscope to determine whlch items were 
used as  food. 

Leatherjackets dominated the fish cornrnunlty, 
averaging 26'',0 oi the number and 34% of the 
biomass. Seaorasses Ingested were small pieces 
leaf material which were covered with epibionts 
i\/l freycineli cons~stenlly blt off pieces In neat 
s em~c~rcu la r  bltes Juveniles of all spcries of fed 
pnnc~pal ly  on encrusting animals l~s ted above 
with little seagrass being present. Microscopic 
rectal contents from several ind. of each species 
found that Posldonla was undigesled. 

Thalassla tes lud~num Apalachee Bay. FL These flsh fed on a w ~ d e  vanety of prey, howt~vcr. 
F ~ e l d  sampllng and stomach contents of f ~ l e f ~ s h  seagrass and  ~nvertebrales accounted for 8 0 " ,  of 
collected over a 9 yr period the stomach contents As f ~ s h  grew, the dietary 

Importance of sedgrasses and associated cp~fauna  
lnrreased Approx~mately ' 2  of the drct of larger 
f ~ z h r s  was Thalass~a The pdttern was the same 
for both specles of f~lef~shc>\ The ~ n c ~ d e n c e  of 
SAC' In the d ~ e t s  nf Monocanrhus was greatest 
In late summer and early fall co~ncldrnt  w ~ t h  
peak SAV product~v~ty The ~ n c ~ d r n r r  of S A V  

In St.ephdn~le[~ds Increased b r t u r r n  summer 
and  fdll 

Ruppla rndridrna and Halodule wrighiii Volume of SAV in gut  -501, in large hdlfbcaks. 
Crystal Hlvrr, FL. Shallow water fish collcrted 
w ~ t h  a bay In approximately 1 m of water. 

Zostera muelleri and Hrterozostera tasrnanica. During the day green eelgrass t~s sue  was In the 
Cirb Point, M'r:stern Port nay,  and Duck Point, guts of 93'!!. of thr  fish, making up  almost 70".( of 
Corner Inlet, Australia. Field sampling and the total vol~lrne. Insects, drnphrpods, and shnmp 
stomach contents. larvae made up  most of t h ~  rerna~ning food. 

Amph~pods wcrr far more important p r y  a t  n ~ g h t .  
Eelgrass tissue \%,as consumed by ' I of f ~ s h  and 
was only 18' ., of total volumc at  r ~ ~ g h t .  All celgrdss 
matrrial In the guts wdr macerated by pharyngeal 
t~ .e th .  Eelgrass In the fort>gut was undigcstrd, 
while matcna: 1t1 the hindgut wds colorlrss. 
bllcroscopic eu.lminatron of the matenal found 
most plant cells were empty. 

Zostera manna.  Field sarnpllng and laboratory P ~ n f ~ s h  found to assimililte a substantial portton of 

btoenergetlc and r a d ~ o a c t ~ v e  labeling study, the orgdnic materlal from cclgrass, but \r.~th less 
Pinfish (>65 mm SLI were fed diets of either efficirncy than shrimp. Spcc~t lc  growth rates of 
eelgrass or frozen grdss shrimp. Ass~milation p~nt ich fed grass shrimp partially substitutctl w ~ t h  
efficiency for pldnts (either eelgrass or algae) elthpr eelgrass or di!fesl~ble carbohydrates were 
and shnrnp and labeled seagrass. not significantly tl~ffrrent from growth rates when 

fr-rding solelv on shrimp. P~nfish appeared to 
increase f e e d ~ n g  ralcs when offerwl low calorie 
seagrass 

Source 

Mukai & lijima 
(1 995) 

Conacher e t  a1 
(1979) 

Bell et a l .  (1978) 

Clements & 

Livingston (1983) 

Carr & Adnrns 
(1973) 

Robertson & 
Klumpp (1983) 
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T a b l e  l ( c o n t i n u e d )  

Grazer Seagrass, location, study type Descrlptlon of results Source 

Sparrsonla rubr~prnne, Thalassra testudrnum C a m e  Bow Cay, Brllze. Each study found that herb~vorous f ~ s h e s  readily Hdv 1981, L e w s  

Spdrrsoma chrysoptcrum F~e ld  tethering study uslng clean freshly col- consumed seagrass leaves but the lntenslty varied (1985) 
lected plecrs of T. tcstudlnum blades along according to coral reef h a b ~ t a t  and depth L e w ~ s  
with algal species tound that tethered Thalassra was entlrely 

consumed by 2 p a r r o t f ~ s h S p d r ~ s o m a  rubr~plnne 
and Spansoma cl~rysoplcrum L e w ~ s  also found 

that Thalassla was among the preferred sources 
of food durrng fecdrng t r~als  

Scarus spp (FI. Spal-lsoma Thalassia trstudrnum, Halodule wr~ghtri US Parrotf~sh totally consumed seagrass patches Randall (1965) 
spp (F),  Acanthurus spp (F) Vlrgln Islands. Flfld expenment,  stomach transplanted into a halo zone next to a coral reef 

content and obscrvat~on Three separate trans- Parrotf~sh (Scarus and Spansorna) all hecm to feed 
plantat~ons of mlxed plots 7. testudlnum and to some degree on the grass; Scarus guacamala 
H wrrghtlr were placed into a halo zone next had 95";, of the gut volume f~lled ~11 th  Halodule 
to a coral recl used to assess the lmpact of her- Acanthurus chrurugrs and A. bahamensrs had 40 
blvores on scagrass abundance In addltlon, an and 80% gut volume filled w ~ t h  seagrass. 
a r t~ f~c la l  reef was bullt In a mlxed turtlegrass 
and H wngh111 hab~ ta t  

Scarus guacarnla, Thalassra tesludrnum St Crouc, USVl Leaves collected closest to a reef showed b ~ t e s  Ogden & Zleman 
Spar-rsoma radians (F) Sampling Seagrass leavtls collected and f ~ s h  resul t~ng from a populat~on of large parrotf~shes (19771 

bltes marks i d e n t ~ f ~ e d  dlong a transect runnlng (Scarus guacama)  whereas the statlons 20 and  
from the base of a coral reef lnto an adjacent 60 m from the reef had bites characteristic of 
seagrass h a b ~ t a t  Sparrsoma radians. The statlon 4 m from the reef 

showed mixed feedlng 

Scarus cro~censls (F], Synngod~um filiforme and Thalassia tes- Each specles of seagrass was heavily grazed but Tnbble  (1981) 
Sparrsoma aorofrenatum (F), ludrnum. San Blas Islands, Panama. F~e ld  herblvory on these grasses was vanable spat~ally 
Acanthurus chiurugus (F) ,  tethering study mcasured both feeding 
A bahlanus (F) selectlv~ty and intens~ty 

Scarid and siganld flshes Enhalus, Thalassla hempnchil, Halodule All samples of Thalassla and Cymodocea had blte Ogden & Ogden 

unrnervrs, C'ymodocea rotundata, Syrrngodrurn marks At one slte approx~mately 30 to 40°t3 of (1982) 

isoetlfolium Palau, \Yestern Carolina Islands leaves of all species except Enhalus, had at least 1 
F~eld-based monltonng. bite taken Enhalus had b ~ t e  marks on at least 

75",-, of blades. 

Tr~chechus rnanalus ( M )  Syringodum frhforme. Cape Canaveral. FL. G r a z ~ n g  led to s~gnlficant reduct~ons  in seagrass Provancha & Hall 
F~e ld  exper i~nenta t~on percent cover, and coverage, biomass and leaf length Manatees (1991) 
aboveground blomass used to document were hlghly aggregated but thelr d~s t r~bu t lon  was 
herbwore lmpact on seagrass pos~tlvely correlated with the Syrrngodium and 

Halodule denslty 

Dugong dugong ( M )  Halodule uninenlrs Nang Bay, Moluccas. Dugongh were found to remove some 75% of de  longh et al. 

East Indonesia Observat~on and biomass the belowground b~omass  In the upper 4 to 5 cm (1995) 
monltonng of sediment. Vegetation b~omass  r ~ c o v e r e d  to 

nearby a m b ~ e n t  levels In just 4 to 5 rno following 

grazlng dunng  the wet season, no such recovery 
was noted dunng  the dry season. 

Dugong dugong (M)  Zoslera caprlcorni, Halophlla ovalrs and Dugongs appear to spend most of t h e ~ r  tlme Preen (1995) 

Halophrla unrnervrs. Moreton Ray, east grazlng In one area, shoot dens~ ty ,  aboveyround 
Austral~a. Aerlal dnd boat sun.c>vs, monitoring biomass and belowground b~omass  were reduced 
along w ~ t h  field cxpenments used to docunient by O 5 ,  73 and 3 l U t ,  respecllvely over 3 5 mo 
dugong grdzlng on seagrass habltats Grazlng Impacts wprp variable, in one drea shoot 

dens~ ty  was reduced by 85"- In 12 d ,  95"., In 17"0 
In another area b~ornass wets reduced by 960A8 
(aboveground) and 71'4 bbclowground 

Chelonra rnydas ( R )  Thalassra tesludrnurn. Great Igudna, Bahamas. Turtles grazed grass blades bv b~trng the lower Blorndal (1980) 

held-based o b s ~ r v a t ~ o n s  and bloenerget~c parts of the leaves and alloi;.lng the upper portton 
study A 3 ha area ol turtlegrass was to float away, creatlng a patch ol closely cropped 
~mpounded along wlth 12 turtles and changes patches wlth leaves averaging 2.5 cm In length. 

in seagrass b~oniass were noted The grazed areas were recropped w h ~ l r  adjacent 
stands of tall blades remalned untouched. There 

were no sharp boundanes betwcen grdzed and 
ungrazed areas 

Dladema anlrllarum (U) ,  Thalassra testudlnum. St. Crolx, USVl F~e ld  Turtle grazlng had a signillcant negatlve unpact Zleman et al 
Clielonla mydas (R) experiments whrrc  changes In seagrass growth on seagrass product~on. Urchins were ineffective (1984) 

and blomass were recorded along a grazing In controll~ng the abundance of seagrass. How- 
g rad~en t  ever, urchln grazlng drd Increase the rate at which 

seagrass biornass turned over xv~thin enclosures. 
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Unlike many species marine macroalgae and phyto- 

plankton which are wholly exposed to marine grazers 

and often totally consumed by them (cf. Hay & Stein- 

berg 1992 but see Steneck 1988 and Steneck & Dethier 

1994), the stored reserves and sites of nutrient uptake 

for many seagrasses are located in a belowground 

'refuge' which is not accessible to most grazers. This 

belowground refuge represents a stabilizing influence 

that allows seagrasses to persist where herbivory is 

intense and can, depending on the season, allow sea- 

grasses to recover rapidly to levels that equal or exceed 

those in nearby ungrazed plots. What is unclear is what 

factors control seagrass responses to grazing, how long 

seagrasses can sustain higher levels of production 

post-grazing, and how they affect rates of energy flow 

through nearshore food webs. 

FOOD WEB IMPORTANCE OF 

SEAGRASS HERBIVORY 

We know of only a few attempts to estimate the 

amount of seagrass production directly entering near- 

shore food webs (Greenway 1976, 1995, Nienhaus & 

Groenendijk 1986, Klumpp et al. 1993). From these 

studies it has been estimated that somewhere between 

-3 and 100% of seagrass net primary production en- 

ters food webs via the grazing pathway. All have relied 

on short-term laboratory measurements and anecd.ota1 

field observations to identify the levels of seagrass pro- 

duction entering local food webs. While laboratory- 

based efforts provide us with testable hypotheses, 

relying solely on such approaches allows only a rough 

estimate of the amount of material being consumed 

directly at a particular site. Accurately determining the 

density and the time spent grazing in a location, which 

would be required for such an approach, is likely to be 

limited to the amount of time a diver can spend under- 

water and involves an intensive effort. Moreover, in 

the case of vertebrate grazers, estimates may be low as 

fishes may avoid areas while divers are present. Such 

estimates must also be conducted seasonally as many 

of the vertebrate grazers exhibit seasonal migrations. 

In addition, laboratory approaches do not include the 

possibility that rates of plant regrowth following graz- 

ing can exceed those of ungrazed areas, which could 

lead to large underestimates of the amount of material 

grazed by these herbivores. This has been recognized 

to be significant in many ecosystems (Lehman & Scavia 

1982, Cargill & Jeffries 1984, Bianchi 1988, Williams & 

Carpenter 1988, Littler et al. 1995, McNaughton et al. 

1996), and more recently also shown to be substantial 

in seagrass ecosystems (Valentine & Heck 1991, Sand- 

Jensen et al. 1994, Valentine et al. 1997). To date, there 

have been no attempts to estimate the quantitative im- 

pact of such compensatory responses to herbivory in 

seagrass systems. And while it has been recognized 

that we need to develop a better understanding of the 

role of sediment porewater nutrient concentrations and 

rhizome carbohydrate stores in determining seagrass 

production (cf. Zieman et al. 1984, Valentine et al. 

1997), there have been no sustained experiments that 

have simultaneously considered the roles of each of 

these factors, how they could be influenced by her- 

bivory, or what impact they may have on the transfer of 

energy to nearshore food webs. 

In summary, while grazing on seagrasses is undoubt- 

edly reduced in a historical context, herbivores still 

have significant effects on aboveground seagrass bio- 

mass in many areas (see Table 1 for a list of publica- 

tions documenting grazing on seagrasses). Most im- 

portantly, previous studies of seagrass herbivory have 

not measured seagrass leaf turnover rates, which are 

essential to  accurately estimate the amount of seagrass 

production actually consumed by herbivores (cf. Zie- 

man et al. 1984, Sand-Jensen et al. 1994, Valentine et 

al. 1997). To date, there have been precious few field 

experiments which have simultaneously considered 

the multiple controlling factors that determine just how 

much energy actually flows from seagrasses to herbi- 

vores in nearshore food webs. We contend that the 

currently accepted hypothesis that herbivory plays a 

small role in the energetics of seagrass habitats and 

nearby coastal ecosystems needs to be reexamined 

using controlled field manipulations. Such studies will 

provide estimates of the amount of seagrass production 

directly entering nearshore food webs, and they will 

improve our understanding of the factors that control 

spatial and temporal variability of seagrass herbivory. 
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