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ABSTRACT

SEAGRASS-MEDIATED CARBONATE DISSOLUTION AND EARLY 
DIAGENESIS IN BAHAMAS BANK SEDIMENTS

Xinping Hu 
Old Dominion University, 2007 
Director: Dr. David J. Burdige

This dissertation presents the results of studies examining the role that seagrasses play

in carbonate dissolution and early diagenesis of Bahamas Bank sediments. Three aspects

of this problem are addressed: (1) stable carbon isotopes as an indicator of early

diagenesis of carbonates, using results of a field study; (2) carbonate dissolution

stoichiometry and carbonate reprecipitation, using the results from closed-system

sediment incubation studies; (3) carbonate dissolution and reprecipitation across the
1 ̂broader Bahamas Bank. In Chapter II, I examined 5 C in the dissolved inorganic carbon 

(DIC) of sediments with various degrees of seagrass densities. In low seagrass density 

and bare oolitic sand sediments, isotope mass balance could be explained by 1:1 mixing 

of DIC from carbonate dissolution and aerobic respiration. In contrast, pore water DIC in 

dense seagrass sediments was more enriched in 13C than predicted by the simple mixing 

model. A carbonate dissolution/reprecipitation model was proposed to explain these 

observations. In Chapter III, a series of closed-system sediment incubation experiments 

was carried out under controlled oxygen input rates (i) to further test the carbonate 

dissolution/ reprecipitation model, (ii) to calculate reprecipitating carbonate phases, and 

(iii) to examine the relationship between the rates of oxygen consumption and carbonate 

dissolution in the these carbonate sediments. The carbonate reprecipitation model 

adequately explained pore water DIC C enrichment when dissolution and 

reprecipitation occur. Furthermore, using pore water data and solid phase analyses and 

assuming a high magnesium calcite (HMC) phase with -12 mole% Mg dissolved in these 

sediments, the reprecipitated carbonates had only a slightly lower Mg content than the 

starting material. Chapter IV presents the investigation of carbonate reprecipitation and 

dissolution mediated by seagrass based on an extensive pore water data set on the
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Bahamas Bank scale. A numerical advection-diffusion-reaction (ADR) model was used 

to calculate depth integrated reaction rates (i.e., fluxes at the sediment-water interface). 

The carbonate dissolution flux was then further examined as a function of seagrass 

density and sediment permeability. Based on the model results, a positive linear 

correlation was found between carbonate dissolution and leaf area index (LAI), while 

carbonate dissolution and sediment permeability showed no significant correlation. 

Carbon dissolution was found to be the likely dominant carbonate removal mechanism 

that accounts for -50% of gross carbonate production.
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1

CHAPTER I 

INTRODUCTION

Dissolution of deep sea carbonate sediments has been recognized as a major buffering 

mechanism in the ocean to compensate for rising atmospheric CO2  over long (103 years) 

time scales (Archer et al., 1998). Similarly, dissolution of tropical shallow water 

carbonate has also been proposed as a potential buffer to regulate atmospheric CO2  on 

decadal time scales (Hailey and Yates, 2004; Yates and Hailey, 2006), although its 

importance remains controversial at present (Andersson and Mackenzie, 2004; Andersson 

et al., 2003; Morse et al., 2006). Carbonate sediments in shallow water tropical 

environments account for 30-40% of global oceanic carbonate production and 

accumulation although they cover only 3% of modem ocean area (Ku et al., 1999). On 

the Bahamas Bank and adjacent Florida Bay, the estimated gross water column carbonate 

production is ~5 mol/m2/yr (Broecker and Takahashi, 1966; Milliman, 1993), of which 

-50% accumulates in the sediments and the remaining -50% may be removed either by 

export to surrounding deeper waters or by dissolution (Milliman, 1993; Walter and 

Burton, 1990). However, these estimates are highly uncertain due to different 

assumptions and techniques used in these studies. Therefore, further constraining the 

carbonate budget in these shallow water carbonate banks is necessary to better understand 

the role of these carbonate environments in regional to global carbon cycle.

Thalassia testudinum Banks ex Konig (turtle grass) is the dominant seagrass species 

and primary producer on the oligotrophic shallow water Bahamas Bank. Its biomass (dry 

weight, DW) can reach up to 1.1 kg DW/m2 and it can have a net productivity of 2.5 kg 

DW/m2/yr, as compared to the average phytoplankton productivity of 128 g DW/m2/yr in 

the global ocean (Duarte and Chiscano, 1999; Tussenboek et al., 2006). Seagrass 

canopies reduce bottom water flow and can enhance the deposition of both particulate 

organic matter as well as fine-grained sediments from the water column to the sediments 

(Koch and Gust, 1999). The accumulation of particulate organic matter in seagrass beds 

promotes sedimentary microbial activity (Marba et al., 2006). Seagrasses also transport

The journal model used in this dissertation is that o f  Geochimica et Cosmochimica Acta.
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photosynthetic O2 produced in the leaves through the root and rhizome to the below 

ground sediments (Bodensteiner, 2006; Borum et al., 2005; Enriquez et al., 2001; Jensen 

et al., 2005; Pedersen et al., 1998). Therefore seagrasses promote aerobic respiration of 

sedimentary organic matter, leading to “metabolic” CO2  production in the sediments.

This then drives down the pore water pH and carbonate ion concentration (Morse et al., 

1987):

C02 + C& - +H20^>  2 H C q  (1)

On the Bahamas Banks, and many other shallow water carbonate platforms, the overlying 

waters are supersaturated with respect to all carbonate phases (Morse, 1985). As a result, 

rxn. (1) drives pore water toward carbonate undersaturation and once the pore waters are 

sufficiently undersaturated with respect to the most soluble carbonate phase, carbonate 

dissolution can occur (Burdige and Zimmerman, 2002; Ku et al., 1999; Morse et al., 1985; 

Walter and Burton, 1990). These reactions can be expressed in the following simplified 

fashion:

CH20 + 0 2 => C02 + H 20  (2)

C02 +CaCOi +H20  => Ca2* +2 H C Q  (3)

CH20  + 0 2 + CaCQ ^ C a 1' + 2H C q  (4)

This dissolution driven by aerobic oxidation of organic carbon is generally referred to 

"metabolic carbonate dissolution" (Emerson and Bender, 1981).

In studies carried out in Florida Bay carbonate sediments, Walter and Burton (1990) 

observed a discrepancy between the amount of carbonate dissolution and the required 

amount of O2 input to produce the necessary acid. These authors and Ku et al. (1999) 

further suggested that seagrass O2 input in the root and rhizome zone might be the source 

of the O2 needed to close the mass imbalance between O2  input and the extent of 

carbonate dissolution. As the first study that quantitatively investigated the role of 

seagrass on addressing such mass imbalance, Burdige and Zimmerman (2002) found that 

diffusive O2 input could only account for -50% or less of the organic carbon 

oxidation/net carbonate dissolution calculated in the dense seagrass vegetated sediments. 

Therefore seagrass O2  input presumably accounts for the "missing" O2  source in the 

dense seagrass sediments. Although not quantitatively addressed in their study, pore
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water advection was proposed as an important mass transport mechanism in these 

permeable sediments.

Based on the reaction stoichiometry in rxns. (2) to (4), one unit of O2  consumption 

leads to one unit of metabolic carbonate dissolution, therefore a study of O2 input 

mechanisms in these carbonate sediments is very important in terms of understanding 

carbonate dissolution. In addition to the seagrass O2 input as discussed above, various 

physical factors may be responsible for O2  delivery into the sediments. They include 

molecular diffusion (Berner, 1980) and pore water advection, which is also affected by 

sediment topography, grain size, and wave pumping (Huettel and Webster, 2001; Malan 

and McLachlan, 1991; Reimers et al., 2004). However, there are relatively few studies of 

pore water O2  dynamics in coarse-grained carbonate sediments (Falter and Sansone, 2000; 

Rasheed et al., 2004) as compared to those in fine-grained continental margin and deep 

sea sediments (e.g., Cai and Sayles, 1996). Given the importance of O2 in organic matter 

oxidation in the top centimeters of these coarse-grained sediments (Rasheed et al., 2004), 

the study of pore water O2  input may provide a way to estimate the overall rate of 

sedimentary organic matter remineralization, as has been indicated in past studies of 

more fine-grained sediments (Cai and Reimers, 1995; Canfield et al., 1993). This can 

then be further linked back to carbonate metabolic dissolution caused by aerobic 

respiration in the sediments (Jahnke et al., 1997; Moulin et al., 1985; Wenzhoger et al., 

2001).

Although metabolic dissolution occurs widely in the shallow water carbonate 

sediments (Burdige and Zimmerman, 2002; Ku et al., 1999; Morse et al., 1985; Walter et 

al., 1993; Walter and Burton, 1990), these carbonates also undergo "reprecipitation" (or 

"recrystallization" as is sometimes reported in the literature) at the same time, due to 

differences in the solubility of various carbonate phases. Carbonate reprecipitation has 

been confirmed both in natural environments (Hover et al., 2001; Macintyre and Reid, 

1995; Macintyre and Reid, 1998; Morse and Mucci, 1984; Reid and Macintyre, 1998;

Reid et al., 1992; Rude and Aller, 1991; Walter et al., 1993) and in laboratory studies 

(Mucci, 1987; Tribble and Mackenzie, 1998). In Bahamas Bank sediments, even though a 

highly soluble carbonate phase (such as high magnesium calcite, HMC) undergoes
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Fig. l .A  schematic illustration of how the pore water saturation state changes with 
depth across different carbonate solubility zones. Note that metabolic CO2 decreases 
carbonate saturation state for all phases, although HMC will be the first phase to undergo 
dissolution (Morse et al., 2006). At the same time, however, the pore water may still 
remain supersaturated with respect to either calcite or aragonite.

dissolution, pore waters can still be supersaturated with respect to calcite and sometimes, 

even aragonite (Morse et al., 1985). Fig. 1 illustrates how the pore water saturation state 

changes as a result of microbial respiration.

Because of the difference in stable carbon isotope signatures (813C) of marine organic 

carbon (approx. -18 to -23%o PDB) and calcium carbonate (approx. 0-4%o PDB, e.g., 

McCorkle et al., 1985; Patterson and Walter, 1994, also see Fig. 1), the occurrence of rxn. 

(4) adds relatively light (i.e., depleted in 13C) dissolved inorganic carbon (DIC) to 

sediment pore waters as compared to values of ~0-2%o in the water just above the
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sediments-interface (Dill, 1991; Patterson and Walter, 1994; Zeebe and Wolf-Gladrow, 

2001).

Carbonate dissolution/reprecipitation could therefore potentially affect the 

isotopic composition of the carbonate minerals, and contaminate the carbonate sediment 

record. However, few studies have examined these processes in detail (e.g., Patterson and 

Walter, 1994; Turner et al., 1986). Furthermore, differences between the 813C of sediment 

organic matter and sediment carbonates implies that the 813C of pore water DIC should 

also provide information on the relative contributions of carbon pool from aerobic 

respiration and carbonate dissolution to the pore water DIC. Such analyses have been 

carried out successfully in both deep sea (e.g. Gehlen et al., 1999; Martin et al., 2000; 

McCorkle et al., 1985; Sayles and Curry, 1988) and continental margin (Presley and 

Kaplan, 1968) sediments. In contrast, in some shallow water marine environments the 

pore water DIC pool was found to be too enriched in 13C and therefore could not be 

explained solely by these processes (Eldridge and Morse, 2000; McNichol et al., 1991).

Further study is clearly necessary to examine whether stable isotope techniques can 

be used in carbonate-rich sediments to differentiate DIC carbon sources to the pore 

waters.

This dissertation presents the results of research that is closely associated with an 

NSF-sponsored project to investigate the role of seagrasses in the dissolution and early 

diagenesis of carbonate sediments on the Bahamas Bank. In the following chapters I will 

address the problems introduced in the discussions here, and further expand our current 

understanding of this complex, yet fascinating, carbonate depositional environment. 

Chapter II presents an initial study of the 813C of pore water DIC, designed to examine 

the sources of DIC to the pore waters. This work also provided evidence for 13C 

enrichment in pore water DIC in sediments underlying dense seagrass beds, and a 

coupled carbonate dissolution/reprecipitation model was proposed to explain this 

enrichment. Chapter III used the results from a series of closed-system incubation 

experiments to test the validity of the dissolution/reprecipitation model; and by 

manipulating the O2  input to the experiments, the relationship between 0 2 consumption 

and carbonate dissolution rates was also examined. Chapter IV examined carbonate 

dissolution/reprecipitation on a much larger geographic scale using pore water data.
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Burdige et al. (submitted) proposed a pore water Advection-Diffusion-Reaction (ADR) 

numerical model based on our previous studies at Lee Stocking Island sediments. This 

model successfully combined O2 input through three different mechanisms (i.e., seagrass 

input, advection and diffusion), and achieved mass balance among the depth-integrated 

fluxes of O2 consumption, organic carbon oxidation, and carbonate dissolution. However, 

to further use this model on the bank scale to better constrain the carbonate dissolution 

budget, a study that covers a great expanse of the Bahamas Bank is therefore necessary. 

This ADR model was applied to the data in this chapter to investigate the reaction rates 

and O2  transport mechanisms in these sediments, and using these results I have re

examined carbonate budget on the Bahamas Bank, as well as the global significance of 

carbonate dissolution on all carbonate banks and bays. Chapter V summarizes the 

conclusions drawn from Chapters II, III, and IV, and proposes further directions for the 

studies in these carbonate sediments-seagrass systems.
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CHAPTER II 

ENRICHED STABLE CARBON ISOTOPES IN THE PORE WATERS 

OF CARBONATE SEDIMENTS DOMINATED BY SEAGRASSES: 

EVIDENCE FOR COUPLED CARBONATE DISSOLUTION AND 

REPRECIPITATION

1. INTRODUCTION

Remineralization of sedimentary organic matter by aerobic respiration produces 

metabolic CO2 , and in undersaturated pore waters this CO2  can react with carbonate 

sediments, causing their dissolution (see, e.g., Burdige and Zimmerman, 2002; Emerson 

and Bender, 1981, for further details). Approximating sediment organic matter as 

“CH2O”, these processes can be expressed as,

CH20 + 0 2 -* C 0 2 +H20  (5)

C02 + C aC Q + H 20 - * C a 1* + 2 HC<J2 (6)

CH20 + 0 2 +CaCQ ->Ca2, +2HC(T2 (7)

and the coupling of aerobic respiration and carbonate dissolution implies that both 

processes can contribute to the pore water DIC pool. Our past studies (Burdige and 

Zimmerman, 2002) have also shown that seagrasses may enhance the dissolution of 

carbonate sediments when photosynthetically-produced O2  is “pumped” into the 

sediments through root and rhizome tissues and therefore promotes aerobic respiration in 

the sediments (i.e., rxn. 5). This O2  input by seagrasses may also help to resolve the mass 

balance problem observed in some carbonate sediments between the extent of sediment 

carbonate dissolution and the amount of oxidant needed to produce the necessary amount 

of acid (Ku et al., 1999; Walter and Burton, 1990).

This chapter is reprinted from Geochimica et Cosmochimica Acta, Vol. 71, X. Hu and D. J. Burdige, 
Enriched Stable carbon isotopes in the pore waters o f  carbonate sediments dominated by seagrasses: 
evidence for coupled carbonate dissolution and reprecipitation, pp. 129-144, Copyright (2007), with 
permission from Elsevier.
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LSI seagrasses 
513C: -6 .3± 1.7%o 

I • ----1

15

Fig. 2. S13C of carbonate sediments and seagrasses. Sedimentary organic matter (OM)

OM from Bahamas Bank 
513C: -10 t o -14%.

-10

513C

-5 10

LSI carbonate sediments 
513C: 4.4±0.5%« 
51'0 :  -0.2±0.2%o

-1 L 
51sO

S13C data are from the literature (Rasmussen et al., 1990; Scalan and Morgan, 1970).

Because of the difference in stable carbon isotope signatures (813C) of marine organic

carbon (approx. -18 to -23%o PDB) and calcium carbonate (approx. 0-4%o PDB, e.g.,

McCorkle et al., 1985; Patterson and Walter, 1994; also see Fig. 2), the occurrence of rxn.

(7) adds relatively light (i.e., depleted in 13C) dissolved inorganic carbon (DIC) to

sediment pore waters as compared to bottom water values of ~0-2%o (Zeebe and Wolf-

Gladrow, 2001); (also see Dill, 1991; Patterson and Walter, 1994). Furthermore,

differences between the 813C of sediment organic matter and carbonates implies that the

813C of pore water DIC should provide information on the relative contributions of

carbon to the pore water DIC pool from aerobic respiration and carbonate dissolution.

Such analyses have been carried out successfully in both deep sea (e.g. Gehlen et al.,

1999; Martin et al., 2000; McCorkle et al., 1985; Sayles and Curry, 1988) and continental

margin (Presley and Kaplan, 1968) sediments. In contrast, in some shallow water marine
11environments the pore water DIC pool was found to be too enriched in C and therefore 

could not be explained solely by these processes (Eldridge and Morse, 2000; McNichol et 

al., 1991).
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In this paper I present results of pore water DIC stable isotope studies in Great 

Bahamas Bank (GBB) sediments, which suggest that both carbonate dissolution and 

reprecipitation are important in shallow water carbonate sediments, and also influence the 

isotopic composition of pore water DIC. The significance of such a dissolution/ 

reprecipitation process is further examined with a simple closed-system model, and all of 

the results are used to re-assess the importance of carbonate reprecipitation in the early 

diagenesis of carbonate sediments.

2. STUDY AREA AND METHODS

2.1. Sampling Locations

Pore water, sediments and seagrass samples were collected at sampling locations 

around Lee Stocking Island (LSI), Exuma Cays, Bahamas (Fig. 3), using the Caribbean 

Marine Research Center (CMRC) as the base of operation. The majority of the results

Atlantic
Ocean76“  08'

Bahamas
Florida

Norman's ' 
Pond Cay Stocking 

l  Island

Bahamas
Bank

N

A o

Fig. 3. A map of the LSI6 and LSI7 sampling sites.
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described here were obtained in May-June 2003 (LSI 7), although some results from the 

May-June 2002 trip (LSI 6) are also described. Additional details about LSI sediments 

are presented in Section 3.1.

2.2. Sample Collection and Processing

Pore water were collected in situ by divers using sippers designed to collect pore 

waters from sandy sediments such as those around LSI (Burdige and Zimmerman, 2002). 

The sippers consist of a set of 10 ml Hamilton Gastight® syringes held in a rigid rack 

mounted on a small plate (6" x 12") with probes of different lengths (1-20 cm) that 

penetrate the sediments. The syringes are attached to metal springs that when released, 

slowly pull back on the plunger and draw the sample into the syringe. In this study, the 

sampling probes consisted of 18-gauge (ID 1.024 mm) Luer-lock needles that were cut to 

the appropriate lengths, silver soldered at the bottom end, and then rounded. Eight sample 

holes (0.38 mm ID) were drilled perpendicularly into the tube 2 mm from the tip (see 

Berg and McGlathery, 2001, for further details). The sampling probes are connected to 

the glass syringes with plastic 3-way stopcocks, which allow the divers to seal the 

syringes in situ immediately after pore water collection. The pore water volume retrieved 

with these samplers was usually 8-10 ml per sample. Additional details about the design 

and use of these sediment sippers can be found in Burdige and Zimmerman (2002).

Pore water samples collected in this fashion were returned to the lab at CMRC for 

processing within 1 hour of collection. First, dissolved O2 was determined on unfiltered 

samples taken directly from the glass syringe (Burdige and Zimmerman, 2002; Hu and 

Burdige, unpubl. data). Samples were next filtered (0.45 pm. dia nylon disc filters) into 

appropriate storage vessels for analysis either at CMRC or back at ODU (Table 1).

2.3. Analytical Procedures

Total alkalinity was determined by Gran titration (Grasshoff et al., 1999) with 

automated end point detection (uncertainty, ±2%) using a Cole-Parmer pH electrode and 

a Metrohm 785 DMP Titrino automatic titrator. The titrant was certified 0.02N HC1, and 

Scripps Reference Seawater for CO2 Measurement (Batch 51,1999) was also used as an 

external reference standard (Dickson et al., 2003). Pore water DIC concentrations were

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Table 1. Sample storage and processing.

Sample type Sample Storage Time of Analysis

DIC
(concentration)

1.8 ml serum vials were 
filled completely and crimp- 
sealed with no headspace

Within 2 months (ODU)

DIC (513C) Same as DIC (concentration) Within 6 months (ODU)

Titration
alkalinity

3 ml plastic syringe were 
partially filled with no 
headspace and sealed with 
3-way stopcocks

Within 2 days (Bahamas)

Sulfide Same as DIC (concentration) Within 2 days (Bahamas)

Major Ions 
(Ca2+, S042-)

2 ml snap-cap vials were 
partially filled and sealed

Within 2-3 months (ODU)

Chlorinity Same as major ions Within 2-3 months (ODU)

Salinity Measured by reffactometer During sample processing

determined coulometrically using a UIC Inc 5011 coulometer (DOE, 1994), with an 

uncertainty of <2%. Pore water chlorinity was determined by potentiometric titration 

using AgN0 3  with automatic end point detection (Grasshoff et al., 1999) using a 

Titrino™ titrator and a Metrohm® Ag-Titrode (Metrohm Ti Application Note No. T-l). 

The AgN0 3  titrant was standardized against IAPSO standard seawater. No significant 

chloride concentration variation (<1% of the average bottom water value of 571 mmol/kg) 

was observed in the upper 20 cm of sediment pore waters. Sulfate was measured by ion 

chromatography with an uncertainty of 4% (Burdige and Zimmerman, 2002), while 

sulfide was determined using the spectrophotometric method described in Cline (1969) 

with an uncertainty of -2%.

The 513C of pore water DIC was determined following the approach described in 

Salata et al. (2000). Briefly, 0.1 ml concentrated H 3 PO 4  (75%) was first pipetted into 1.8 

ml serum vials, and the vials were crimp-sealed with rubber serum stoppers and open top 

aluminum caps. The sealed vials were evacuated using a VacTorr™ 25 vacuum pump 

(Precision Scientific) for 3 minutes, and 0.8 ml of a pore water sample was then 

immediately injected into the vial using a 1 ml Hamilton Gastight® syringe flushed with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



12

ultra pure He. Fast effervescence was observed upon sample injection. After sample 

acidification, the vials were equilibrated to atmospheric pressure with ultrapure He using 

a flow controller equipped with a manometer (see Salata et al. 2000, for details). All 

acidified sample vials were placed on a shaker table and agitated for 5 hours followed by 

headspace CO2 isotopic analysis within 30 hours of acidification. The headspace gas was 

extracted using a lOOpl Hamilton Gastight syringe by first injecting ultra pure He into the 

sample vials to compensate for changes in the headspace pressure caused by sample 

removal. The CO2 in the headspace gas was separated from water vapor by gas 

chromatography and the 813C of the CO2 was measured on a PDZ Europa® GEO 20-20  

isotopic ratio mass spectrometer (IRMS) with a precision of 0.2%o. All samples were 

determined in duplicate by this procedure. The IRMS was calibrated using two different 

laboratory CO2  gas standards.

Pore water DIC S13C values were calculated using the measured 813C of the 

headspace CO2  corrected for the fractionation between the aqueous and gaseous phases. 

At 25°C, the isotopic fractionation (103lna) for this exchange is 1.1 %o with the gaseous 

phase being enriched in 13C (see Salata et al., 2000 and references therein). In preliminary 

studies examining this extraction procedure, I determined the 813C of the headspace CO2  

as a function of the time after acidification; within 5 to 30, the headspace gas reached 

equilibrium with the aqueous phase, and there was no apparent contamination or loss of 

headspace gas. The minimum equilibration time here (5 hours) is significantly shorter 

than the 15 hours in Salata et al. (2000), and indicates that agitation of the vials after 

acidification greatly enhances the rate of isotope exchange between the gaseous and 

aqueous phases.

Seagrass samples collected in situ by divers were separated into leaves and 

rhizome/root tissues, and first soaked for 30 minutes in IN HC1 to remove any attached 

carbonate. This was followed by a distilled water rinse to remove excess acid. After oven 

drying at 60°C, samples were ground into a powder (Craig, 1953; McMillan, 1980). High 

temperature combustion (HTC) in O2  was used to convert organic carbon to CO2 using an 

automated nitrogen/carbon (ANCA) elemental analyzer attached to the IRMS. Analytical 

uncertainty of these 813C measurements is 0.2%o. A subset of these samples were freeze 

dried at -20 °C in vacuo after an acid cleaning and then ground to a powder; no
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significant differences were observed in measured seagrass §13C values between these 

two sample treatments. Both DIC and seagrass 513C values are reported relative to the 

PDB standard.

Isotopic analysis of sediment carbonate was carried out at the UC Davis Stable 

Isotope Lab. Dry sediments were first heated in vacuo at 75°C for 30 minutes and the 

CO2 gas used for analysis was generated by acidification of the treated sediments in a 

heated (90°C) common acid bath (103% phosphoric acid). The resultant gas was then 

purified and introduced into a GVI Optima IRMS. The 813C values were calculated 

relative to V-PDB. Average precision ( la )  is ±0.04%o. Since the difference between V- 

PDB and PDB is negligibly small (Mook and Vries, 2001), the complete isotopic data set 

is internally consistent.

Carbonate mineralogy of the sediments was determined by X-ray diffraction using a 

Philips PW 1729 X-ray diffractometer with CuKa radiation generated at 40kV and 30 

MA following the procedure of Morse et al. (1985). The scanning interval was 25° to 

32°2' 20 at a scanning speed of 0.02° 20 per 2 second scanning step. The calcite and 

aragonite standards used for calibration were both of marine origin. Porites was used for 

the aragonite standard and Crassostrea was used for the calcite standard. The peak area 

method was used to quantify the relative amounts of aragonite and high and low 

magnesium calcite (HMC and LMC) (Milliman and Bomhold, 1973; Morse et al., 1985). 

The mole percent Mg content in HMC was calculated from the shift of the major calcite 

peak (near 29.8° 20) using the lattice parameters in Goldsmith et al. (1961). The precision 

of the XRD analysis of carbonate mineralogy I observed was 1.5%, although the 

accuracy of this method is widely considered to be -3-5% (Andrews, 1991; Milliman et 

al., 1993; Morse et al., 1985). The precision of the analysis of Mg content in HMC by 

XRD was 0.5%, and the XRD-determined Mg content of HMC agrees well with analyses 

using wet chemistry (Walter and Morse, 1984).

3. RESULTS AND DISCUSSION

3.1. Results and General Trends in the Data

Sites around LSI include unvegetated, well-sorted oolitic sands and seagrass 

meadows (mostly Thalassia testudinum or turtlegrass) of densities exceeding 500
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Table 2. Sample site mineralogy (unit: wt% for mineralogy)a.

Station Aragonite HMC LMC mol% Mg in HMC
DG AC 57.0±2.4 39.0±1.7 4.0±0.6 12.3±0.03

CM 63.1±4.8 34.0±4.2 2.9±0.5 12.3±0.07
NC 81.4±2.4 16.6±2.4 2 .0 ±0 . 2 11.8±0.03

IG HW 83.8±2.6 15.1±2.4 1 .1 ±0 . 2 12.4±0.09
TB 84.2±0.2 14.2±0.1 1 .6 ±0 . 1 12.4±0.53

OS OS 84.6±2.6 14.1±2.8 1.3±0.1 13.4±0.20

a At each station, samples from three depths were analyzed (a surface sample in the 
upper 5cm of sediment, a mid-depth sample near 10cm, and a deep sample, generally at 
16-20cm depth). The values reported here for each station are averages and the 
uncertainties are standard deviations based on these three analyses.

shoots/m2 (see below and discussions in Dill, 1991). Water depths range from -2-10 m. 

Sediments in this area have a mean grain size of 200-750 pm (Stephens et al., 2003) and 

are comprised of biogenic calcareous skeletal debris, ooids, peloids and grapestones. The 

dominant minerals are aragonite (70-90 wt%) and high-Mg calcite (10-30 wt%) with a 

small amount of low-Mg calcite (generally <3-4 wt% of the bulk sediments). The Mg 

content of the HMC was consistently -12 mol% (Table 2).

In this study I divided the sampling sites into three groups based on seagrass densities 

(Bodensteiner and Zimmerman, unpubl. data; see Burdige and Zimmerman, 2002, for a 

description of the methods used here). Dense seagrass sites (sites AC, CM and NC) have 

average shoot densities of 561 ±50 shoots/m2 and LAI (leaf area index) values of 1.4±0.1 

(note that LAI is defined as m2-one sided leaf area per m2 -seafloor, e.g. Campbell and 

Norman, 1998). Intermediate density seagrass sites (sites HW and TB) have average 

shoot densities of 274±30 shoots/m2 and average LAI values of 0.5±0.2. Finally, bare 

oolitic sands (site OS) have no seagrass (shoot density and LAI equal to zero).

At all sites examined, DIC concentrations increase with sediment depth in the upper 

20 cm (Fig. 4 and Table 3) and the magnitude of this increase is greatest at dense seagrass
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Fig. 4. Pore water depth profiles of DIC and the 513C of the DIC in dense and 
intermediate density seagrass sediments (DG and IG, respectively) and bare oolitic sand 
(no seagrasses, OS). The profiles shown here for each sediment type are average profiles 
based on individual profiles collected at different sites (n=4, 2, and 2 profiles for DG, IG 
and OS sites; respectively; see Table 3). In the upper DIC concentration profiles, the 
dashed line indicates the bottom water concentration. Uncertainties are standard 
deviations.

(DG) sites and smallest in the bare oolitic sands (OS). Intermediate density seagrass (IG) 

sites fell in-between the DG and OS sites, although they were closer in magnitude to the 

OS sites than the DG sites. These DIC concentration profiles in the seagrass vegetated 

sediments, along with alkalinity, Ca2+, sulfate and O2 profiles from LSI sediments (Hu 

and Burdige, unpubl. data) indicate that sediment carbonate dissolution occurs in the 

upper ~2 0 cm of these sediments largely as a result of aerobic respiration sustained by 

seagrass O2  input (or pumping) into this portion of the sediments (also see similar pore 

water profiles and discussions in Burdige and Zimmerman, 2002). Consistent with this
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interpretation, more recent observations (Hu and Burdige, unpubl. data) indicate that 

>99% of the belowground seagrass biomass was distributed in the upper 20 cm of 

sediments.

At both the OS and IG sites, pore water DIC-513C values decrease with sediment 

depth and reach constant values below -10 cm (Fig. 4). However, the asymptotic 513C 

values at the OS site are slightly lighter than they are at the IG sites (approx. -0.1 %o vs. 

0.7%o). In contrast, while pore water DIC-513C values at the DG sites also initially 

decrease with depth, they then show a mid-depth minimum at -5  cm, and return to near

bottom water values (~l%o) by the sediment depth of 2 0  cm.

3.2. Sources of Pore Water DIC

The isotopic composition of sediment carbonate and organic matter in Bahamas Bank 

sediments is shown in Fig. 2 and Table 4. Note that the 513C of organic matter in these 

sediments is heavier than “typical” marine organic matter (—20%o) most likely due to the 

input of seagrass-derived organic matter (Rasmussen et al., 1990). Seagrass-derived 

organic matter is relatively heavy (e.g., LSI seagrasses are — 6%o) because their 

photosynthetic carbon uptake shows less discrimination against heavy carbon than 

’’typical" marine phytoplankton, despite the fact that seagrasses are also C3 type plants 

(Anderson and Fourqurean, 2003; Hemminga and Duarte, 2000).

Both sediment organic matter remineralization and sediment carbonate dissolution 

may contribute DIC to the pore water pool. Given the distinct differences in the carbon 

isotope composition of these two sources (Fig. 2), the 5l3C of pore water DIC can be used 

to examine the relative contribution of these two sources to the pore water DIC pool. The

Table 4. Isotopic composition of seagrass and sedimentary carbonates (unit: %o PDB).

DG IG OS

Seagrass a -7.8±0.2 -4.5±0.2 -

Sediments 4.0±0.1 4.6±0.2 5.0±0.03

a There is no significant difference among isotopic values of seagrass leaves and 
rhizome/root tissues. Thus average values are reported here.
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approach taken here is based on that presented by Sayles and Curry (1988) and Martin et 

al. (2000) in which they show that plots of (S1 3C-DIC)-[DIC] versus [DIC] are generally 

linear, and that the slope of such plots is the 513C of the DIC being added to the pore 

waters (defined here as 8 1 3Cadded; Fig. 5). Although not explicitly discussed in these 

works, this approach is very similar to that used to examine elemental ratios of the 

organic matter undergoing remineralization in marine sediments using pore water 

property-property plots (Berner, 1977; Burdige, 2006). However in the approach taken 

here, if I assume that total [DIC] is roughly equal to the pore water concentration of 

DI12C and that (8 1 3C-DIC)*[DIC] is a "proxy" for DI1 3C, then the slope of this line will 

yield the carbon isotopic composition of the DIC being added to the pore waters (see 

Appendix A for a more rigorous derivation).

Transport processes such as pore water advection or diffusion generally can impact 

the ability to use such property-property plots to examine these aspects of diagenetic 

processes in marine sediments (also see Hammond et al., 1999, for further details). For 

example, given the estimated permeability of LSI sediments (Burdige and Zimmerman, 

2 0 0 2 ), pore water advection through the sediments, due to near seabed pressure gradients 

caused by surface roughness or biogenic structures, is thought to be a significant transport 

process down to a depth of at least several centimeters (Huettel and Webster, 2001). This 

type of advection clearly affects concentrations of pore water solutes such as DIC and 

alkalinity, along with the ability to estimate rates of sediment processes from such pore 

water data without an accurate estimate of the magnitude of this advection. However, in 

terms of calculations such as those illustrated in Fig. 5, pore water concentrations will 

simply move "along" the mixing lines shown here as a function of pore water advection
1 Tand DIC addition without changing the slope of the line (i.e. 8  Cadded will be largely 

independent of pore water advection).

Diffusion can also affect the interpretation of these property-property plots, although 

in most cases these effects are easily accounted for (Berner, 1980; Burdige, 2006). 

However, in the specific calculations presented here, the effects of diffusion may be 

slightly more complicated than that discussed in these references; nevertheless, this 

should not compromise the interpretation of the plots in Fig. 5.
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Fig. 5. Plot of DIC-8 13C versus DIC for the three sediment types studied here. As 
discussed in the text, the slope of this line is the 8 13C of the DIC added to the pore waters 
(8 1 3 Cadded)- Note the different axis scales on each figure.

Fits to the pore water data using this approach are shown in Fig. 5 and summarized in 

Table 5. Interpretation of these results in terms of eqns. (5) - (7) and possible sources of
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Table 5. Isotopic composition of the DIC added to sediment pore waters.

DG IG OS

513Caddeda(0/oo) 1.4±0.3 -1.7±0.5 -3.1±1.3

513COMb (%o) -1.2±0.5 -8 .0 ± 1 . 0 - 1 1 .1 ±2 . 6

a From Fig. 5. The uncertainties shown here are standard errors of the linear 
regressions in this figure.

b The calculated 8 13C of the sediment organic matter undergoing remineralization (see 
eqn. 9 and associated discussions in the text).

DIC to the pore waters requires that I make several assumptions. The first is that these 

sediments become sufficiently undersaturated below the sediment-water interface such 

that the coupling of eqns. (5)-(7) describes the processes that affect downcore variations 

in alkalinity, DIC and Ca2+ in these sediments. Evidence for this can be seen in Fig. 6  

where I see the tight co-variance between increases in pore water alkalinity and DIC, 

consistent with these equations; similar trends are also seen with increases in pore water 

Ca2+ and DIC increases (Burdige and Zimmerman, 2002).

Another important assumption is that there is no net sulfate reduction in these 

sediments, since this process produces alkalinity and DIC at roughly equi-molar ratios in 

the absence of carbonate dissolution, as shown by the following reaction,

2CH20+ S0l~  -* H 2S + 2 H C q  (8 )

Several lines of evidence are consistent with the lack of net sulfate reduction occurring in 

these sediments. Previous work in LSI sediments (Burdige and Zimmerman, 2002), along 

with observations in this study (Fig. 7), demonstrate that pore water sulfate 

concentrations do not vary with sediment depth down to 20cm. These sulfate profiles also 

show no consistent downcore trends relative to bottom water values, as opposed to depth 

profiles of alkalinity, DIC and Ca that increase "relatively" smoothly (and consistently) 

with depth (Fig. 4; Burdige and Zimmerman, 2002; also see Chapter IV). Finally, a 

property-property plot of ASO4 2' vs. AAlkalinity (not shown here) has a slope that is 

indistinguishable from 0, and not the value of approx. -0.5 predicted by rxn. (8 ).
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Fig. 6 . Measured pore water alkalinity versus DIC in LSI sediments. The linear 
regression shown here was carried out using the data from sediment depths > 2  cm (see 
discussions in Burdige and Zimmerman 2002 for details).

Given these observations, if I assume that contributions of DIC to the pore waters 

come from organic carbon oxidation and carbonate dissolution, then the following mass 

balance should be valid:

^  Cadded =  f OM X ^  + f C X ^  Q; (9)

where f  is the fraction of DIC input from either organic carbon oxidation (subscript OM)

or carbonate dissolution (subscript Q . Furthermore, if the rate of carbonate dissolution is

fast relative to organic matter oxidation, i.e. reactions (5) - (7) are tightly coupled (Martin

and Sayles, 2003), then/ om =fc =0.5. With these assumptions then, I can calculate the

8 13C o f  the organic matter undergoing remineralization (513Com) based on the values o f

5 13Cc from Table 4 and 8 1 3 Cadded from Table 5. These results are also shown in Table 5.

In the bare oolitic sands (OS site), the calculated 51 3Com value (-1 l.l±2.6%o) agrees
11well with the results from past studies of the 8  C of organic matter in Bahamian 

sediments (approx. -10 to -14%o, Rasmussen et al., 1990; Scalan and Morgan, 1970). 

Furthermore, if I assume that water column particulate organic matter and/or benthic
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This approach allows us to differentiate between small changes in sulfate concentration 
due to net sulfate reduction and those associated with change in pore water salinity. The 
dashed lines represent the average ASO 4 2' values in the DG, IG and OS sediments (-
0.46±0.39, 0.23±0.57 and -0.36±0.40 mmol/kg, respectively, versus 0±1.12mmol/kg for 
bottom water samples). Similar results were obtained in these sediments by Burdige and 
Zimmerman (2002), and indicate that minimal net sulfate reduction occurs in these 
sediments.

algal production has 8 13C values that are in the range o f -17 to -22%o (e.g., Craig, 1953; 

Eadie and Jeffrey, 1973), this result suggests that the organic matter being remineralized 

in such bare sands is a mixture of non-seagrass derived organic matter and exported 

seagrass litter (with a presumed 8 13C value between -4 to -10%o; see Fig. 2).

In sediments underlying intermediate density seagrass beds (IG sites), the calculated 

value of 8 1 3Cqm (-8.0±1 .0%o) is consistent with the range of S13C values for LSI
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seagrasses (see Fig. 2). This suggests that seagrass-derived organic matter represents the 

major type of organic matter undergoing remineralization here. However, the 513C of 

seagrasses at the IG sites (-4.5 ±  0.2%o) is heavier than this value of 5 1 3 Com, suggesting 

that some fraction of the organic matter undergoing remineralization in the IG sediments 

could be either more typical detrital marine organic matter (as above), or lighter, exported 

seagrass litter from other nearby seagrass meadows (e.g., the DG sites; see Table 4).

In their studies of tropical seagrass sediments in coastal Thailand, Holmer et al. (2001) 

observed that the sediment bacterial biomass (based on the analysis of bacteria specific 

polar lipid derived fatty acids) has 8 13C values that are very close to that of the seagrass 

found at this site (ca. - 1 2 %), despite the existence of much lighter bulk sedimentary 

organic carbon (ca. -2 2 %o), which is presumably detrital material of algal origin.

Therefore it appears that organic matter remineralization in these sediments is largely 

driven by seagrass-derived organic matter, despite the fact that the presence of seagrasses 

(specifically the overlying leaf canopy) dampens water motion and promotes the 

deposition of inorganic and organic (detrital) particles from the water column to the 

sediments (e.g., Hemminga and Duarte, 2000; Koch and Gust, 1999). The 

remineralization of seagrass-derived materials in sediments such as these (as well as 

those at the DG sites) may occur through the incorporation of reactive seagrass litter into 

the bulk sediment organic matter pool, or through the release of seagrass-produced DOM 

from the roots and rhizomes of actively-growing plants (Holmer et al., 2001).

3.2.1. Sources of DIC in the pore waters of dense seagrass sediments.

At the OS and IG sites, pore water DIC isotopic mass balance appears to be 

satisfactorily explained by rxns. (5) - (7) given the likely sources of organic matter to 

these sediments. In contrast, the calculated 5 1 3 Com in the dense seagrass sediments (DG 

sites) appears to be problematic (8 1 3 Com = -1.2±0.5%o), since no such heavy organic 

carbon existed in marine sediments that may be of biological origin. To the best of my 

knowledge, seagrasses have the heaviest organic carbon that is produced in shallow 

marine environments, with 8 13C values of up to -3%o (Hemminga and Mateo, 1996). 

Seagrasses collected at the DG sites were in fact much lighter (-7.8±0.2%o).
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These observations at the DG sites are not necessarily unique to these sediments, 

since other workers (Eldridge and Morse, 2000; McNichol et al., 1991) have similarly 

observed 1 3C- enriched pore water DIC in coastal sediments that differ greatly from each 

other and from the DG sites (temperate, bioirrigated sediments in Buzzards Bay, MA, and 

highly sulfidic seagrass sediments in the negative estuary Laguna Madre, TX). One 

possible mechanism for this isotopic enrichment may involve the preferential diffusion of 

isotopically-heavy bottom water carbonate ion into the sediments (McNichol et al., 1991). 

This can occur because DIC and alkalinity are composed of several chemical species (e.g. 

carbonate and bicarbonate ions, as well as aqueous CO2  [DIC only]), and changes with 

sediment depth in alkalinity and DIC can then lead to differing changes in dissolved 

carbonate and bicarbonate concentrations, and hence differential fluxes of these dissolved 

constituents across the sediment-water interface.

In particular, bottom waters at LSI are supersaturated with respect to all carbonate 

mineral phases present in the sediments (Burdige and Zimmerman, 2002), and for 

example, my calculations for LSI 6  and 7 indicate that the average bottom water 

saturation state with respect to aragonite (Garagonite), the dominant carbonate mineral in 

these sediments, is -2.2. Therefore metabolic acid produced by aerobic respiration (rxn. 5) 

is first neutralized by reacting with dissolved carbonate producing bicarbonate according 

to:

C02 + H20+  CO2~ -> 2HCOT (10)

The consumption of CO 3 2' by this reaction lowers the saturation state of the pore water, 

and once the pore waters become sufficiently undersaturated, dissolution of the most 

soluble carbonate mineral occurs according to the coupled rxns. (5) - (7). This also results 

in a carbonate ion gradient across the sediment-water interface (Fig. 8 ), and bottom water 

carbonate can diffuse into the sediments despite the fact that there is a net flux of 

alkalinity and DIC (mainly in the form of bicarbonate) out of the sediments (also see 

discussions in Cai et al., 2000). Furthermore, because bottom water DIC is generally 

isotopically heavier than pore water DICjust below the sediment-water interface (e.g., 

see Fig. 4), this process may potentially lead to the enhanced diffusion of 1 3C-enriched 

carbonate ion into the sediments.
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In spite of these general trends, however, I do not feel that this process can 

significantly contribute to the heavy value of 8 1 3Cadded seen in the DG sediments. First, an 

examination of Fig. 8  indicates that depth profiles of carbonate ion are roughly similar at 

all sites. It is thus unlikely that the diffusion of isotopically heavy carbonate ion into LSI 

sediments only occurs at DG sediments (however, I also note that a more rigorous 

examination of this problem requires an isotope-specific, reactive-transport model; e.g., 

Gehlen, et al., 1999). Furthermore, the shape of the pore water 8 1 3 C-DIC profile at the 

DG sites (Fig. 4) also argues against a water column source for this heavy DIC, since the 

apparent input here of heavy DIC into the pore waters does not occur at the sediment- 

water interface but at sediment depths below ~5cm. Finally, I also note that [CO 3 2'] is 

essentially invariant below sediment depths of ~5 cm (Fig. 8 , also see Burdige and 

Zimmerman, 2002). This implies that alkalinity production and DIC production must be 

tightly coupled at these sediment depths, because at the pH values of these sediments 

[CO 3 2'] ~ Alkalinity -  DIC, and if AIGO3 2'] ~ 0 then AAlkalinity ~ ADIC. Again, this can 

only occur if carbonate dissolution is tightly coupled to aerobic respiration through rxns. 

(5) -  (7), and the neutralization of metabolic CO2  by downwardly-diffusing carbonate ion 

is of minor importance.

Another possible explanation of the observation that 1 3C-enriched DIC is added to the 

pore water at the DG sites is that the reaction stoichiometry described above for 

metabolic carbonate dissolution (rxns. 5 - 7) is not valid in the DG sediments, and that in 

fact fc  > foMi1 0.5. This then requires an additional acid source to dissolve sediment
1 ̂carbonate, in addition to the isotopically light metabolic CO2 in order to produce the C 

enriched DIC that is observed in the DG sediments. One possible mechanism by which 

this acid may be generated is through sulfide oxidation, either of dissolved sulfide or 

particulate sulfides such as iron monosulfide (FeS). While this possibility has been 

discussed by other workers (Ku et al., 1999; McNichol et al., 1991), there are several 

reasons why I believe that this is not likely important in LSI sediments.

In these sediments, and the Florida Bay sediments examined by Ku et al. (1999), net 

sulfate reduction appears to be minimal based on the lack of detectable pore water sulfate 

gradients (see Fig. 7 and Burdige and Zimmerman, 2002) and solid state accumulation.

At the same time though, oxygen and sulfur stable isotope measurements in Florida Bay
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Fig. 8 . Calculated carbonate ion concentrations in LSI sediments, determined using 
the program C02SYS (Lewis and Wallace, 1998). The curve represents the average 
depth profile for pore water carbonate concentration in all three sediment types. The three 
arrows at the bottom of the figure represent the saturation carbonate ion concentrations 
for 18mol% HMC, aragonite and calcite. These concentrations were calculated using 
average pore water [Ca2+] (Hu and Burdige, unpubl. data), [Mg2+] calculated from 
chlorinity data, solubility constants for each mineral phase at 25°C (Mucci, 1983; Walter 
and Morse, 1984), and an average pore water salinity of 37.

sediments (Ku et al., 1999) and pore water sulfide measurements in LSI sediments (Fig. 9) 

both indicate that there is some amount of gross sulfate reduction in both of these 

sediments. This then implies that in these sediments there must be a tight coupling 

between sulfate reduction and sulfide oxidation. In LSI sediments, this coupling is largely 

mediated by the fact that seagrass O2 input occurs down to depths of ~ 1 0 -2 0 cm, 

overlapping with depths where pore water sulfide data suggest sulfate reduction occurs. 

Furthermore, as Burdige and Zimmerman (2002) note, a tight coupling between sulfate 

reduction (and its resulting bicarbonate production) and sulfide oxidation (and its 

resulting proton production) simply results in the net production of H 2 CO 3  (aqueous CO 2 ).
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Fig. 9. Pore water depth profiles of total dissolved sulfide (SH2 S) in dense and 
intermediate density seagrass sediments.

Thus from the standpoint of the carbonate system and sediment carbonate dissolution, 

this is identical to that which occurs from aerobic respiration of sediment organic matter 

(rxn. 5).

In some coastal sediments however, there is net sulfate reduction that occurs during 

some portions of the year that involves seasonal storage of sulfide minerals during 

spring/summer. This is then followed by sulfide oxidation during fall/winter. This leads 

to a temporal uncoupling of sulfate reduction and sulfide oxidation, which then results in 

regular seasonal carbonate mineral saturation state (supersaturated during spring/summer 

and undersaturated in fall/winter, Green and Aller, 1998; Green and Aller, 2001; also see 

Sampou and Oviatt, 1991). However, several lines of evidence argue against this being an 

important process in LSI sediments, including the lack of this type of seasonality in 

biogeochemical processes occurring in these sediments versus that observed in temperate 

terrigenous sediments (e.g., Burdige and Zimmerman, 2002). The lack of significant Fe
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in carbonate sediments such as these (e.g., Morse et al., 1985) also minimizes the ability 

to sequester any dissolved sulfide that is produced in these sediments as iron sulfides.

Finally, it is important to recognize that closed system calculations (Boudreau and 

Canfield, 1993; Stoessell, 1992) do indicate that small amounts of net sulfate reduction 

(-0.7 mM sulfate depletion) can lead to undersaturation with respect to either aragonite 

or some forms of high-Mg calcite (Walter and Morse, 1984). This amount of sulfate 

reduction may be within the uncertainty of the sulfate measurements, and it could 

represent another mechanism by which sediment organic matter remineralization 

processes may be coupled to carbonate dissolution. Open-system calculations (which 

allow for transport processes such as diffusion), however, suggest that the occurrence of 

this undersaturation during small amounts of sulfate reduction is unlikely in most marine 

sediments (Boudreau and Canfield, 1993). Furthermore and more importantly, 

recognizing that H2 S is likely to contribute only one proton towards carbonate dissolution 

at the pH values of typical marine sediments, then the coupling of sulfate reduction and 

carbonate dissolution may be approximately expressed as,

S O f  + 2CH20  + CaC03 -> Ca2+ + HS~ + 3HCCf (11)

implying that here foM~ 0.67 and f c  ^ 0.33. Since the resolution of the question of an 

extra acid source in DG sediments requires f c  >  /o m , the occurrence of a reaction such as 

rxn. ( 1 1 ), if it indeed occurs in an open sediment system, does not provide an explanation 

for the heavy value of 5 1 3 Cadded that is seen in the DG sediments.

3.2.2. Heavy values of 8 1 3G,hh.-h in DG sediments as a result of carbonate mineral 

reprecipitation.

Given the difficulties in explaining the 13C enrichment of DIC in dense seagrass 

sediment pore waters by any of the above-discussed mechanisms, it is proposed that a 

coupling of carbonate dissolution and reprecipitation may actually explain these 

observations. A conceptual model for how this might occur is shown in Fig. 10. This 

somewhat over-simplified view of carbonate mineral diagenesis in these sediments 

recognizes that, because of differences in the solubility of carbonate phases in these 

sediments (calcite, aragonite and HMC), pore waters which are undersaturated with 

respect to one or more of the metastable phases (e.g., HMC) are still supersaturated with
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Fig. 10. A schematic illustration of the dissolution/reprecipitation mechanism 
discussed in the text, and its impact on the S13C of pore water DIC.

respect to calcite (or low-Mg calcite; e.g., see Fig. 8 ). Thus in these sediments there may 

be net dissolution of a more soluble carbonate phase along with reprecipitation of a more 

stable phase. Note that a further discussion of the phases that may actually be dissolving 

and reprecipitating in these sediments will be presented at the end of section 3.3.

Evidence for the occurrence of such coupled dissolution/reprecipitation processes has 

indeed been observed in many natural systems. Groundwater studies (Gonifiantini and 

Zuppi, 2003; Plummer and Sprinkle, 2001) have demonstrated that due to small Gibbs 

free energy differences, impure/less stable carbonate phases (analogous to HMC in these 

sediments) tend to dissolve and re-crystallize to form purer calcite phases. Evidence for 

carbonate dissolution/reprecipitation in Florida Bay and Bahamas Bank sediments have 

also been presented, using stable isotope, trace element analyses as well as microscopic 

observations (Hover et al., 2001; Patterson and Walter, 1994; Rude and Aller, 1991; 

Walter et al., 1993). A study carried out by Walter et al. (2006) in these sediments has 

also shown that an apparent isotope exchange enriches the pore water DIC pool with 13C 

through carbonate reprecipitation.

Based on the above discussion, I suggest that net dissolution of a metastable 

carbonate phase such as HMC occurs in DG sediments through metabolic CO2  

production from the remineralization of seagrass-derived organic matter (as in the IG 

sediments); this process is ultimately driven by the fact that sediment pore waters become
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undersaturated with respect to HMC just below the sediment-water interface. However, 

because the pore waters also remain supersaturated with respect to more stable carbonate 

phases, (e.g., calcite, see Fig. 8 ), there is a component of this gross dissolution that is 

balanced by the reprecipitation of one or more of these stable carbonate phases. As I will 

discuss below, this secondary carbonate phase presumably forms under chemical/isotopic 

equilibrium with respect to the pore water DIC.

This model for carbonate diagenesis then implies that the pore water DIC pool is 

more than a simple "reservoir" for the end-products of organic matter remineralization 

and carbonate dissolution. Rather, the pore waters also serve as an intermediate through 

which sedimentary carbonates cycle during dissolution/reprecipitation. As I will see 

below, recycling of the sedimentary carbonate through the pore water DIC pool has a 

dramatic effect on the (now) "apparent" 8 13C of the DIC being added to the pore waters. 

Furthermore, the net addition of light DIC from organic matter oxidation to the pore 

water DIC pool also implies that the secondary carbonate phase that forms will be 

isotopically lighter than the primary sediment carbonate (also see Walter et al., 2006).

To examine these processes more quantitatively, I will use a closed system model 

based on Fig. 10. In this model pore water DIC is affected by three processes: organic 

matter oxidation, carbonate dissolution and secondary carbonate reprecipitation. Changes
p IT

in the concentration DI C and DI C are then given by

C] = rdlss x Fsed + rox x FOM -  rrp xF rp (12)
dt

djDPC]
dt

= F,,s * 0  "  F J )  + rox x (1 -  Fou) -  r x ( 1  -  F ) (13)

where F, is the isotopic abundance of 13C in the original carbonate sediments (subscript 

sed), the sedimentary organic matter (subscript OM) and the secondary carbonate 

(subscript rp); rdiss, rox and rrp are the rates of gross carbonate dissolution, organic matter 

remineralization and secondary carbonate reprecipitation, respectively. Fractionation 

among different dissolved carbonate species is ignored since the majority of the DIC 

exists in the form of bicarbonate.

Because the ultimate driving force for carbonate dissolution is CO2  input from 

organic matter oxidation (metabolic dissolution), the net carbonate dissolution rate, (rdiss -
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rrp), must equal rox (e.g., based on the 1:1 stoichiometry shown in rxn. 7). I will also 

define the re-precipitation ratio Rrx as rr/ r ox. Finally I assume that there is no 

fractionation during organic matter oxidation or carbonate dissolution, and that 

recrystallization of secondary carbonate occurs under equilibrium conditions with pore 

water DIC pool. This then implies that

R r p = a x R p w  ( 1 4 )

1 -> i -j
where Rrp is the isotopic ratio ( C/ C) of the secondary carbonate, subscript pw  

represents pore water, and a  is the fractionation factor between the secondary carbonate 

phase and bicarbonate ion. Isotopic fractionation (103 lna) between calcite and 

bicarbonate is 0.9%o at 25°C (Rubinson, 1969), and I have therefore used an a  value of 

1.0009 in these calculations. Finally, Frp equals Rrp/(1 +Rrp).

Eqns. (12) and (13) were solved using a 4th order Runge-Kutta method in the program 

Stella®. As can be seen in Fig. 11, an increase in the reprecipitation ratio Rrx leads to 

increasingly heavier pore water DIC because of the recycling of primary sediment 

carbonate (with a 513C of 4.0%o) through the DIC pool during dissolution/reprecipitation. 

Furthermore, if I combine the approach described in section 3.2 with these model 

calculations I can estimate the current "apparent" 513C of the DIC being added to the pore 

waters. As shown in Fig. 12, this value is a function of not only Rrx but also of the 

absolute rate of net dissolution rox (particularly for Rrx values greater than ~3).

For the dissolution rates in this figure, the value of 51 3Ca(jded for the DG sediments 

"predicts" a value of Rrx (3.25-3.75) that is roughly consistent with the range of Rrx values 

for Florida Bay sediments. However, some care must be taken in interpreting this 

conclusion since it is not only based on a comparison between closed-system calculations 

and field observations, but it is also a comparison of two very different environments (i.e., 

"oligotrophic" LSI sediments versus more "eutrophic" Florida Bay sediments). 

Nevertheless, these model results do suggest that this dissolution/reprecipitation process 

could explain the 51 3C-DIC results from the DG sediments. More detailed open-system 

modeling of these sediments using reactive-transport models that consider processes such 

as pore water advection or diffusion (e.g., Gehlen et al., 1999; McNichol et al., 1991) will 

be needed to further verify the conclusions reached here regarding carbonate
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Fig. 11. The closed-system evolution of the 8 13C of pore water DIC with and without 

carbonate reprecipitation. All of these calculations start with bottom water values, i.e.,
n  i t

[DIC] = 1.94 mmol/kg and 8  Cdic = 1.1 %o. If no reprecipitation occurs, then the 8  C of
IT IT

DIC added to the pore waters equals ( 8  Com+5 Cc)/2 = -1.9%o. In calculations where 
reprecipitation occurs, the net dissolution rate was fixed at 0.0163 mmol/kg/h, a value 
based on LSI sediment incubations studies (Chapter III). By varying Rn  this then change 
the gross rate of carbonate dissolution in each calculation.

reprecipitation in LSI sediments.

3.3. Why Does Evidence of Carbonate Reprecipitation Exists Only in DG Sediments?

The results from the DG sediments appear to provide evidence for the occurrence of 

carbonate mineral reprecipitation along with dissolution; in contrast no such evidence is 

seen in the OS and IG sediments. There are at least two explanations for these 

observations.

The first stems from an examination of the factors that appear to inhibit the inorganic 

precipitation of calcium carbonate from seawater. The sediment pore waters at these sites, 

along with much of the surface ocean, are supersaturated with respect to mineral phases 

such as calcite, and sometime aragonite (Fig. 8  in this study and Morse et al., 1985).
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Fig. 12. 8 13Cadded as a function of and rox- The two upper horizontal lines represent 
ranges of Rrx from previous studies in Florida Bay sediments (Walter et al., 1993; Ruder 
and Aller, 1991). Values on the right of the plot are rox values, i.e., net carbonate 
dissolution rates that range from 10% to 200% of dissolution rates I have observed in LSI 
sediments (Chapter III). The lower horizontal line represents the range in Rrx for these rox 
values based on the 513Cadded value of 1.4%o observed in the DG sediments.

However, results from a number of studies suggest that homogeneous precipitation 

(of calcite at least) is generally inhibited until seawater is even more supersaturated than 

surface ocean values (e.g., see discussions in Morse et al., 2003). Furthermore, 

heterogeneous carbonate mineral reprecipitation from supersaturated solutions may be 

inhibited because reprecipitation nucleation sites on sediment particles (e.g., carbonate 

grains) are poisoned by substances such as dissolved organic matter, phosphate, or Mg 

that can adsorb to the nuclei surface (e.g., Berner et al., 1978; Morse and Mackenzie, 

1990; Morse and Mucci, 1984; Mucci, 1987). However, in DG sediments with relatively 

high rates of net carbonate dissolution, the dissolution process may "cleanse" particle 

surfaces of these inhibitory substances and/or create new nucleation sites. As a result, this 

may act to overcome the inhibition of carbonate precipitation commonly seen in many 

laboratory and field studies.
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Secondly, studies of carbonate dissolution and reprecipitation by Hover et al. (2001) 

suggest that the process may occur through what is termed "Ostwald ripening", in which 

smaller crystals dissolve and reprecipitate as larger crystals (also see Zullig and Morse, 

1988). The driving force for this appears to be the decrease in surface free energy with 

increasing particle size. Expressed another way, smaller crystals have higher surface free 

energies and, in a given solution, are therefore more soluble than larger crystals (Walter 

and Morse, 1985). As a result, during Ostwald ripening crystals larger than a certain 

critical radius (representing particles in equilibrium with the solution saturation state) 

grow at the expense of the dissolution of crystals smaller than this critical radius. The 

relevance of this to results here may stem from the fact that the overlying seagrass 

canopy at the DG sites dampens water motion and may then enhance the deposition of 

fine-grained particles relative to that which occurs at the IG and OS sites. The presence of 

the seagrass canopy may also hinder resuspension and winnowing of fine-grained 

particles in these sediments. Consistent with these suggestions, Morse et al. (1987) 

observed that there was up to 3 times more fine-grained material (<52pm) in seagrass 

sediments relative to unvegetated sands in sites they studied in the Bahamas. The 

preferential dissolution of this fine-grained material may promote the overall Ostwald 

ripening of this material in the DG sediments.

Although evidence-to-date suggests that HMC preferentially undergoes net 

dissolution in LSI sediments (Burdige and Zimmerman, 2002; Chapter III), the results 

presented here provide no evidence regarding the composition of the carbonate phase(s) 

that reprecipitates. Interestingly, the two mechanisms discussed above have the potential 

to lead to the reprecipitation of different phases. In the first case (cleansing of nucleation 

sites), the dissolution of HMC might be expected to result in the reprecipitation of calcite 

(Rude and Aller, 1991). In contrast, Ostwald ripening might be expected to lead to the 

reprecipitation of HMC with a very similar (although perhaps slightly lower) Mg content 

to the original starting material (Cole and Chakraborty, 2001; Hover et al., 2001). More 

detailed studies of LSI sediments will be needed to further examine these possibilities.
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3.4. Significance of These Results

Based on the discussion above, it is likely that carbonate dissolution/reprecipitation 

may also be responsible for the 13C enrichment seen in the DIC of pore waters from other 

coastal sediments (Eldridge and Morse, 2000; McNichol et al., 1991). Similarly, 

carbonate dissolution and reprecipitation may occur in supralysoclinal carbonate-rich 

deep sea sediments (Broecker and Clark, 2003; Jahnke and Jahnke, 2004). Thus it 

appears that carbonate mineral reprecipitation may be more important than previously 

thought in the early diagenesis of a wide range of marine sediments.

Returning to shallow water carbonate sediments, these results demonstrate the impact 

that carbonate dissolution/reprecipitation may have on the isotopic composition of the 

sediment pore waters. Similar effects are also to be expected for trace elements such as Sr 

or F, which show differing degrees of incorporation into different carbonate mineral 

phases (e.g., Rude and Aller, 1991). Furthermore, if reprecipitation is extensive, then the 

composition of the solids should also evolve with depth (time of burial) from that of the 

original sediment material (e.g., Patterson and Walter, 1994; Walter et al., 1993). These 

processes therefore have the potential to significantly impact the paleo-records contained 

in stable isotope or trace element profiles in carbonate sediments (see discussions in 

Hover et al. 2001, and references therein). The role of these processes in the overall 

evolution of carbonate platforms (e.g., Melim et al., 2002) also remains to be further 

examined.
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CHAPTER III 

SHALLOW MARINE CARBONATE DISSOLUTION AND EARLY 

DIAGENESIS - IMPLICATIONS FROM AN INCUBATION STUDY

1. INTRODUCTION

Carbonate dissolution has been extensively studied in deep sea and continental 

slope/rise sediments. As a major process in the global carbon cycle, carbonate dissolution 

represents a negative feedback mechanism that may potentially compensate for rising 

atmospheric CO2  by supplying excess alkalinity to the water column (Adler et al., 2001; 

Archer et al., 1989; Archer et al., 1998; Berelson et al., 1994; Caldeira and Rau, 2000; 

Emerson and Bender, 1981; Hales and Emerson, 1997; Jahnke et al., 1994; Jahnke et al., 

1997; Jahnke and Jahnke, 2004; Martin and Sayles, 1996).

Shallow water carbonates (carbonate banks/bays, and continental shelves) represent 

the second largest carbonate pool on earth (-40% of global oceanic carbonate production 

and accumulation) although they cover only 8 % of the area of the modem ocean 

(Milliman, 1993). Historically, only few studies in shallow water carbonate sediments 

have reported elevated pore water Ca concentrations as a result of sediment carbonate 

dissolution (e.g., Bemer, 1966). Later, Aller (1982) observed carbonate shell dissolution 

caused by enhanced organic matter remineralization through biological irrigation and 

sediment reworking in Long Island Sound sediments. Similarly, sediments from 

carbonate banks (Florida-Bahamas Banks) that are traditionally considered to be net 

carbonate depositional environments (e.g., Broecker and Takahashi, 1966) have also been 

shown to undergo significant dissolution in association with both aerobic and anaerobic 

microbial respiration processes (Ku et al., 1999; Morse et al., 1985; Walter and Burton, 

1990). It was estimated that as much as 20-50% of the gross carbonate production may be 

dissolved before the sediments are permanently buried (Ku et al., 1999; Sanders, 2003; 

Walter and Burton, 1990). In these sediments, microbial respiration of organic matter is 

the driving force for the occurrence of carbonate dissolution, despite the fact that the 

overlying waters are supersaturated with respect to the common carbonate minerals found 

in these sediments (e.g., Aller, 1982; Burdige and Zimmerman, 2002; Green and Aller,
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1998; Green and Aller, 2001; Morse et al., 1985; Walter and Burton, 1990). Furthermore, 

seagrass vegetation in these sediments enhances benthic aerobic respiration through both 

seagrass O2 pumping and increased organic matter input. Aerobic respiration in the 

sediments generates metabolic CO2  and drives down the pore water saturation state; once 

the pore waters are sufficiently undersaturated, carbonate dissolution can occur (Chapter 

II; Burdige and Zimmerman, 2002; Ku et al., 1999; Morse et al., 1985; Walter and 

Burton, 1990). Here O2  delivery eventually is an important controlling factor in sediment 

carbonate dissolution. The reactions can be written in the following simplified fashion:

CH20  + 0 2 —>C02 + H 20  (15)

C02 +CtfCQ +H20^> C a2+ + 2 H C q  (16)

CH20 + 0 2 +CaCO} —̂ Ca1* + 2HCO^ (17)

The pore waters in the Bahamas Bank sediments are generally supersaturated with

respect to the dominant mineral - aragonite (see Fig. 6  in Morse et al., 1985), and high

magnesium calcite (HMC) controls the pore water saturation state and is responsible for 

the observed dissolution (Morse et al., 2006). However, the composition of the dissolving

carbonate phase(s) (i.e., mole% Mg in HMC) still remains unclear. Understanding the 

composition of the dissolving carbonate is important in terms of interpreting the 

diagenesis and preservation potential of modem carbonate sediments (Andrews, 1991).

In the previous work in Bahamas Bank sediments (Chapter II), I were able to achieve

a stable carbon isotope mass balance with reasonable assumptions about the organic

matter being remineralized in both intermediate seagrass and bare oolitic sand sediments.

However, for the dense seagrass sediments, I observed that the pore water DIC pool was
11enriched in C that could not be explained by the 1:1 mixing of DIC derived from 

sediment carbonate dissolution and organic matter oxidation as shown in eqn. (17). 

Several other studies have reported similar observations in other shallow water estuarine 

and coastal sediments (Eldridge and Morse, 2000; McNichol et al., 1991; Walter et al., 

2006). In my work, a closed-system model was proposed to explain the pore water DIC
13 * •C enrichment based on the coupling between carbonate dissolution and reprecipitation 

(Chapter II). Qualitatively the model results agreed with the observations in the pore

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



40

water data. However it is desirable to carry out a closed-system study to more 

quantitatively verify this model.

In this paper, I will describe a series of closed-system incubation experiments using 

surface sediments from sites that have different seagrass densities. In these experiments, 

sediments were incubated under both oxic and anoxic conditions, and changes in pore 

water solute concentrations (e.g., O2 , alkalinity, DIC, calcium, sulfide) as well as the 513C 

of DIC were monitored, to examine dynamics of carbonate dissolution and reprecipitation 

and to gain a further understanding of the composition of dissolving carbonate phase(s). 

These data were also further used to verify the validity of the carbonate dissolution/ 

reprecipitation model in a closed-system setting.

2. MATERIALS AND METHODS

2.1. Site Descriptions

The experiments described here were carried out during a 2003 field expedition to 

Lee Stocking Island (LSI), Exuma Cays, Bahamas and on a cruise in 2004 on the R/V F. 

G. Walton Smith across the greater expanse of the Bahamas Bank (WS, see map in Fig. 

13). In 2003, three sampling sites around LSI were studied -  Channel Marker (CM), 

Halfway (HW) and Ooids Shoals (OS). Information about these sites can be found in 

Table 6  (also see Chapter II and Burdige et al. submitted). On the WS cruise studies were 

carried out at two sites - WS-3, located northwest of Andros Island (25°51.050'N, 

78°43.899'W) and WS-13, located west of the Exuma Cays near Pipe Cay, (24°14.033N, 

76°30.200'W) (Table 6 ).

The porosity of these sediments ranged from 45-65% (Table 6 ) with grain size of 

200-800 pm (Burdige and Zimmerman, 2002 and Chapter IV). X-ray diffraction results 

showed that these sediments were predominantly aragonite (70-90%), with lesser amount 

of high magnesium calcite (HMC) (10-30%) and low magnesium calcite (LMC) (<3%). 

The Mg content in the HMC was fairly homogeneous among these sites, between 12-13.6 

mol% (Table 7). Details about the X-ray diffraction procedures can be found in section 

2.5 and Chapter II.
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Fig. 13. A map of the sampling sites. Site names and abbreviations are as follows: 
Channel Marker (CM), Half Way (HW), Ooid Shoals (OS), Walton Smith Site 3 (WS-3), 
Walton Smith Site 13 (WS-13).
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Table 6 . Characterization of the sampling sites.

Station ID Water Depth 
(m) Seagrass vegetation Leaf area indexa Porosity

(<p)
CM 3.9 Thalassia testudinum 1.7±0.6 0.65±0.03
HW 3.0 Thalassia testudinum 0 .6 ± . 2 0.57±0.01
OS 2 . 8 None 0 0.47±0.01

WS-3

WS-13

10.5

4.2

Thalassia testudinum 
Syringodium filiforme 
Thalassia testudinum

1.3

0.54±0.04

0.57±0.02

0.53±0.03

a Unit of leaf area index (LAI) is m2 -leaf/m2 -sediments, and the values of LAI are 
from Burdige et al. (submitted) and Bodensteiner (2006).

Table 7. Mineralogy of the incubated surface sedimentsa.

Station ID Aragonite (wt%) HMC (wt%) LMC (wt%) Mg in HMC (mole%)
CM 64.3±1.4 32.4±1.9 3.3±2.0 1 2 .2 ±0 . 1

HW 89.2 9.7 1 . 1 12.7
OS 87.3 1 1 . 2 1.4 13.6
WS-3 81.4±0.4 17.2±0.4 1.3±0.0 1 2 .0 ±0 . 1

WS-13 91.2±0.1 7.8±0.1 1 .0 ±0 . 2 12.3±0.1

a Errors are standard deviations (n=3) based on triplicate measurements of the same 
samples (WS-3 and WS-3) or three different samples (CM). WS-3 and WS-13 sediment 
samples were also used for isotope analysis as shown in Table 11.

2.2. Sediment Incubation Studies

Surface sediments (0-2 cm) from all sampling locations were collected by SCUBA 

divers with care taken to not mix surface sediments with deeper sediments. Seagrass and 

large mollusk debris were sieved out immediately after sampling using a plastic sieve 

(0 = 1  mm), and the sediments were then washed with surface seawater collected at the 

sampling sites. During processing the sediments were stirred continuously to ensure they 

were well oxygenated and homogenized.

The technique used in these incubation studies was modified from the approach 

described in Hulthe et al. (1998), and a schematic illustration is shown in Fig. 14. As will 

be discussed below, this approach allowed us to incubate the sediments at different O2 

delivery rates. Briefly, either Teflon tubing (I.D. 0.38mm, O.D. 0.8mm; all CM, HW, OS
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Fig. 14. A schematic illustration of the experimental set up.

incubations, and the 3-N, 13-N, and 13-L incubations) or Cole-Parmer® C-Flex™ tubing 

(I.D. 0.79mm, O.D. 2.38mm; the 3-L, 3-H, and 13-H incubations, Table 8 ) was passed 

through 10 Teflon- lined silicone septa and open-face caps to form a series of loops 

(exactly 20 cm in length), and the loops were inserted into 42 ml glass vials. Surface 

seawater (5.0 ml) was next added to each vial, and the vials were then filled with the 

well-mixed sediments. Finally the vials were sealed and the caps were wrapped with 

Parafilm® to further prevent contamination from atmospheric O2 . Aliquots of the 

sediment were sampled before, during the middle, and after the filling process, to 

determine the average porosity in the experimental sediments. Blank experiments using 

vials filled with N2 -purged seawater showed a net O2  gain of ~1 pmo 1/kg/d. Therefore 

during a 4.5-5-day incubation there would have been a maximum net O2  input of <5 

pmol/kg, as compared with mmol/kg concentration changes of pore water solutes such as 

alkalinity or Ca2+. Therefore this small amount of oxygen "leakage" into the vials is thus 

negligible.

After the vials were filled, the gas diffusion tube for each set of incubation vials was 

connected to a compressed N2 , O2  or air tank through a Norgren® gas pressure regulator. 

The tubing was flushed with gas before the end of the tube was heat-sealed. The gas 

regulator was then set at the desired pressure. The vials were incubated in the dark at
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constant temperature in a flowing seawater bath (Table 8 ). All incubations were 

maintained at constant gas pressures except 13-H, in which the O2  pressure was first set 

at 20 psi, and then pressure was decreased to 10 psi after 56 hrs. Immediately after an 

experiment was set up, the first time point was collected by cutting the tubing between 

the last two vials and then sealing the open end of the shortened piece of tubing attached

Table 8 . Experimental settings for sediment incubations and general trends in the data.

Station
ID

Tube
type

Gas
Pressure
(psi)/Gas
Type

O2 Input 
Rates 
(pmol/h)a

Incubation 
Designationb

Temperature
(°C) Case c

CM Teflon 2 O/N2 0 CM-G 28±1 1

6 /air 0.07 CM-P 2

1 2 /air 0.16 CM-R 2

2 0 /air 0.28 CM-B 2

2 0 / 0 2 0.48 CM-W 2

HW Teflon 2 O/N2 0 HW-G 28±1 1

2.5/air 0.03 HW-P 2

5/air 0.06 HW-R 2

1 0 /air 0.14 HW-B 2

OS Teflon 2 O/N2 0 OS-G 28±1 1

5/air 0.05 OS-P 2

1 0 /air 0.13 OS-R 2

2 0 /air 0.28 OS-B 2

WS-3 Teflon 2 O/N2 0 3-N 2 2 ± 2 1

C-Flex 15/02 4.01 3-L 3
C-Flex 25/02 6.71 3-H 3

WS-13 Teflon 2 O/N2 0 13-N 23±1 1

C-Flex 30/O2 0.69 13-L 3
C-Flex d 2 0 / 1 0 /O2 4.56/2.36 13-H 3

a O2 input rates were calculated as discussed in section 2.3.
b G, P, R, B, and W were color coded and represented increasing O2  delivery rates, N, 

L, and H stand for N2 , low O2  and high O2 input rates, respectively.
c Denotes the type of reaction in the incubation as discussed in section 3.1. 
d In the 13-H incubation, the O2  gas pressure was first set at 20 psi O2 for the first 56 

hours, and it was then changed to 1 0  psi for the rest of incubation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



45

to last of the remaining vials. Subsequent time points were then collected every ~12 

hours for the next 4.5-5 days using the same procedure. Before pore water was collected 

from each vial, the vial was weighed to determine the total amount of sediment slurry in 

the vial. Dry sediment weight in each vial was then calculated using the porosity data 

described above.

For each time point, the sediments in the vials were first re-homogenized by manually 

agitating the vials, and the O2  concentrations were determined by inserting an 18-gause 

stainless steel sleeved fluorescence optical oxygen sensor (Ocean Optics®) through the 

septa. The O2  sensor was calibrated using two O2 concentrations -  N2  purged oxygen-free 

seawater and air-saturated seawater at a known salinity and temperature. The O2  

concentration of the latter was calculated using the O2 solubility equation in Pilson 

(1998). Detailed procedure in O2 measurement can be found in Chapter IV.

The vials were next centrifuged at room temperature for 5 minutes in a clinical 

centrifuge at 3000 rpm to separate the pore water from the sediments. This water was 

drawn into a clean nylon syringe and filtered through 0.45 pm Gelman® Nylon Acrodisc 

filters. Samples for titration alkalinity (AlkT), pH and total dissolved sulfide (TDS) were 

store in air-tight vessels (Chapter II) and analyzed within 2 hours of sampling. The 

remaining pore water was distributed into two crimp-sealed 2 ml serum vials (for DIC 

concentration and stable isotope analyses) with no headspace, and 2  ml plastic snap-cap 

vials (for major ion analyses). These samples were stored in the dark in a refrigerator and 

analyzed within 3 months of collection. Finally the residual sediments were removed 

from the vial and stored frozen at -20°C.

2.3. Calibration of the O2 Diffusion Tubes

The O2 delivery rate from the diffusion tube as a function of O2 partial pressure was 

determined in the lab for each type of tubing using the same experimental set-up used in 

the field studies, with the exception that a vial that contained a 2 0  cm tubing loop was 

filled with N2 -purged seawater rather than sediments. After the tubing was flushed, sealed 

and the gas pressure set on the regulator, 0 2 concentration in the vial was monitored with 

the optical oxygen sensor described above. The rate of O2  concentration increase in the 

vial as a function of tubing gas (pure O2  and air) pressure was determined and used to
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construct calibration curves (O2  delivery rate vs. regulator pressure) for both O2  and air. 

For each type of tubing, O2  delivery rate was a linear function of gas pressure for both 

pure O2 and air (Hu and Burdige, unpubl. data).

2.4. Chemical and Isotopic Analyses

Total alkalinity (Alkj) was determined by Gran Titration using a Metrohm automatic 

titrator combined with a Cole-Parmer pH electrode calibrated using pH 4.00, 7.00 and 

10.00 NBS standards (Grasshoff et al., 1999). Total dissolved sulfide was determined 

using the spectrophotometric method described in Cline (1969). A Coulometer was used 

to determine dissolved inorganic carbon (DIC) for all samples (DOE, 1994). Dissolved 

calcium was determined on 0.1 ml pore water samples by automated EGTA titration with 

end point detection using a Thermo Orion Ca2+ ion-selective electrode (Kanamori and 

Ikegami, 1980). Chlorinity (chloride concentration) was also determined by automated 

titration with end-point detection by a Brinkman Ag Titrode™ (Metrohm Ti Application 

Note No. T-l). Both titrants (EGTA and AgNOs) were standardized using IAPSO 

standard seawater (Grasshoff et al., 1999). Samples from the WS-3 and WS-13
1 3incubations were analyzed for the 8  C of the pore water DIC on a PDZ Europa 20-20

isotopic ratio mass spectrometer (IRMS), using a modification of the procedure of Salata

et al. (2000) as described in Chapter II.

Oven dried (60 °C) sediment samples were analyzed for 8 13C of the sediment

carbonate by acidification in a "Kiel" device using pure phosphoric acid at 90°C, with the

resultant CO2 gas then introduced into a PDZ Europa® GEO 20-20 isotopic ratio mass
11spectrometer (IRMS). Seagrass samples were also analyzed for the 6  C of the organic 

carbon with a Carlo Erba NA1500 elemental analyzer (EA) interfaced with the IRMS. 

Before analysis, samples were acid cleaned and oven-dried at 60°C followed by grinding 

to fine powder with a mortar and pestle (Grice et al., 1996). All isotopic values are 

reported relative to the PDB standard. The seagrass C/N ratio was calculated based on 

EA peak intensity calibrated with an asparagine standard (Joy Davis, pers. comm.).

Uncertainties of these analyses are: alkalinity (±2%), DIC (±2%), Ca2+ (±1%), 

chlorinity (±0.2%), 513C (±0.2%o), TDS (±2%), 0 2 (±3%).
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2.5. Mineralogy

Crushed oyster shells (Crassostrea, calcite) and coral (Porites, aragonite) were used 

as carbonate standards in the analyses of sediment mineralogy. This approach is based on 

suggestions by Milliman (1974) that biogenic carbonates should be used in quantitative 

XRD analyses of marine carbonates due to the close resemblance of peak intensities 

among these materials relative to reagent grade carbonates, which often exhibit stronger 

XRD peaks at the same concentration level. A series of mixtures of these two carbonates 

(grain size <63 pm) were prepared at different weight ratios, and 5 wt% NaCl was added 

to each mixture as an internal standard. XRD scans were carried out on a Philips PW 

1729 X-ray generator with Cu-Ka nickel filtered radiation at 40 kV and 30 mA. Scans 

were run from 25° to 32° 20 with a scanning speed of 0.02° 20 and a measuring time of 2s 

per step. Additional details of these mineralogical studies can be found in Morse et al. 

(1985) and in Chapter II.

The uncertainty in these mineralogical measurements (i.e., %HMC, %LMC and 

%aragonite) was <1.5% (la , n=3), although the accuracy of this method is generally 

considered to be ±3-5% (Andrews, 1991; Milliman et al., 1993; Morse et al., 1985).

The Mg content of the HMC was also determined by XRD (Goldsmith et al., 1961) 

and the uncertainty of this measurement was <0.5%. Past studies have shown that the 

XRD-determined Mg content of HMC agrees well with bulk chemical analyses of HMC 

in natural carbonates (Walter and Morse, 1984).

3. RESULTS

3.1. Pore Water Chemistry

3.1.1. Overview of the Results

Closed-system incubations of carbonate sediments under different O2 input rates 

essentially exhibit three types of behaviors: ( 1 ) anoxic remineralization, when the O2 

input rate is zero, (2 ) the apparent co-occurrence of oxic and anoxic remineralization, 

when O2  input is low compared to O2 consumption, and (3) oxic remineralization, when 

O2  input is greater than or equal to O2 consumption.

When the O2 input rate is zero (see case 1 above, i.e., the diffusion tube was 

pressurized with N2  gas), the incubated sediments become O2 free shortly after the
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experiments were set up and the first time points were taken (<1 hr). For example, 

although the initial sediment slurry was well-mixed and oxygenated during experimental 

setup, by the time the experiments were initiated and the first time points were collected, 

sediment O2  levels were zero except in some of the incubations with high O2  delivery 

rates. Sulfate then becomes the next major electron acceptor in organic matter 

remineralization, because nitrate, Mn oxides, and Fe oxides are all found at very low 

levels in these carbonate sediments (Burdige, 2006; Morse et al., 1985).

In the anoxic incubations, pore water alkalinity and DIC levels increase as a result of 

sulfate reduction. Pore water saturation states may initially decrease when there are low 

amounts of sulfate reduction (-0.7 mmol/kg loss of sulfate) and lead to slight amount of 

carbonate dissolution. However, as sulfate reduction progresses, the buildup of pore 

water alkalinity may lead to the precipitation of authigenic carbonate, as reflected by a 

Ca2+ depletion over time (Boudreau and Canfield, 1993; Burdige, 2006; Stoessell, 1992; 

Walter and Burton, 1990).

When O2  consumption is rapid as compared to O2  input through the diffusion tube 

(case 2 ), pore waters of the incubated sediments will have no dissolved O2 , and aerobic 

respiration and sulfate reduction can co-occur in microenvironments within the vials (i.e., 

aerobic respiration in regions close to the diffusion tube and sulfate reduction farther 

away). Some of the O2 consumption is also likely involved in re-oxidation of sulfide to 

sulfate. The combination of sulfate reduction and sulfide oxidation is functionally 

equivalent to aerobic respiration according to:

2CH2O +SO]' -> 2 H C q  +H 2S  (18)

20 2 +H2S  -> 2 /T  +SO]'  (19)

CH20+  0 2 ->C02 +H20  (20)

This implies that in these experiments O2 input can simply be considered to solely 

drive aerobic respiration, which can then presumably mediate carbonate dissolution (rxn. 

17). Due to the co-occurrence here of sulfate reduction and aerobic respiration, pore 

water alkalinity and DIC come from two sources, i.e., metabolic carbonate dissolution 

and sulfate reduction.
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When the O2  input rate is greater than or equal to the rate of sediment O2  

consumption (case 3), dissolved oxygen will be observed in the pore waters. Aerobic 

oxidation of organic matter and metabolic carbonate dissolution are the two dominant 

reactions that occur. Alkalinity, DIC, and Ca2+ concentrations are expected to increase, 

with the alkalinity increase essentially coming solely from carbonate dissolution.

3.1.2. O? Concentration Changes

All sediments used in these studies were initially well-mixed and oxygenated, and in 

all studies except those using N2 as the diffusion gas, oxygen was continuously added to 

the sediments during the course of incubations. However, in many of the studies O2 could 

not be detected in the sediments once the experiments were initiated (cases 1 and 2  

above). These included all the CM, HW, OS incubations, both of the 3-N and 13-N 

incubations and the 13-L incubation. The oxic incubations that used C-Flex tubing (3-L, 

3-H, and 13-H) all showed dissolved O2 (case 3), which suggests that here aerobic 

respiration was the sole carbon oxidation mechanism. The O2 concentration changes in 

the WS-3 and WS-13 incubations are shown in Fig. 15.

3.1.3. Titration Alkalinity. Total DIC. Calcium and Sulfide Concentration Changes 

Changes in Alkx, DIC, [Ca2+] and TDS during each set of incubations are shown in

Figs. 16-19. These concentrations are expressed relative to starting concentrations, hence 

the A concentration notation is used in the following figures. Since these incubations 

were carried out under closed-system conditions, chlorinity (salinity) did not change 

significantly (Table 9).

Table 9. Changes in salinity for the incubationsa.

CM HW OS WS-3 WS-13
[CF] (mmol/kg) 584.6±2.6 592.6±3.9 589.0±3.0 571.0±1.5 581.1±3.9
Salinity 37.5±0.2 38.0±0.3 37.8±0.2 36.6±0.1 37.8±0.2
CV (%) 0.4 0.7 0.5 0.3 0.7

a For each site these are averages of all vials from all experiments, uncertainties are 
standard deviations of the analysis (n=9 for CM incubations and n=10 for all other 
incubations, uncertainties are standard deviations).
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In such closed-system incubations, nonlinear concentration changes can occur (e.g., 

Rude and Aller, 1991), and in many of the incubations pore water solute concentrations 

initially increased and then leveled off with time. To describe the reaction rates and 

stoichiometry in these studies, linear regressions were calculated between A
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Fig. 15. Changes in pore water oxygen concentration in the WS-3 and WS-13 
incubations. The dashed lines represent O2  saturation at the experimental conditions (220 
pmol/kg). Note the 13-L incubation used Teflon tubing as opposed to the much more 
permeable C-Flex tubing used in all other oxygenated incubations.
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concentration and time for the linear portion of these times courses. The choice of the 

range of data points used here was based on the maximum range over which there was a 

statistically significant linear slope and a best-fit y-intercept equal to 0 (±lo) (Table 10). 

All incubations showed a slight decrease in pH (Appendix B). This observation agrees 

with the results of a closed-system organic carbon remineralization model for carbonate 

sediments (Boudreau and Canfield, 1993), in which both aerobic respiration (when O2  is 

present) and sulfate reduction (when O2 is depleted) lead to a decrease in pore water pH 

as the reactions progress.

In the CM experiments, TDS was observed even in some pore waters at the first time 

point, and all incubated CM sediments with or without O2  input produced significant 

amount of TDS (0.9 - 2.1 mmol/kg at the end of each incubation; Fig. 19). Low levels of 

TDS were detected in HW experiments (10' 2  mmol/kg). No TDS was detected in the OS 

incubations. A slight increase in TDS was observed in the 3-N incubation and no TDS 

was present in either the 3-L or 3-H incubation, consistent with the occurrence here of 

dissolved O2  in the pore waters. In WS-13 incubations, significant TDS production was 

observed in the 13-N incubation, the 13-L incubation showed low level of TDS and the 

13-H incubation showed no TDS.

According to rxns. (17) and (18), pore water alkalinity and DIC production rates 

should equal each other, regardless of the organic matter remineralization pathway (i.e., 

aerobic vs. anaerobic). Except for the CM incubations, this is indeed the case (Fig. 20). 

The reason for high alkalinity production rates in the CM incubations is unclear, although 

other production rates (i.e., DIC, Ca ) are consistent with the O2  delivery rates (e.g., see 

discussion in section 4.5). These measured alkalinities are also consistent with calculated 

values of alkalinity (section 4.1).
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experimental incubations. Concentrations are expressed relative to starting pore water 
concentration (i.e., AAlkT).
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waters of all experimental incubations. Concentrations are expressed relative to starting 
pore water concentration (i.e., ADIC).
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Table 10. Reaction rates in the sediment incubation experiments a.

Experiment Time range 
(h) raik (fieq/kg/h) Time range (h) tdic

(pmol/kg/h) Time range (h) rCa (pmol/kg/h)

CM CM-G 0-33 97±5 0-45 61±2 0-57.5 [4±2]
CM-P 0-33 1 0 2 ± 6 0-45 54±4 0-57.5 4±1
CM-R 0 - 2 1 116±4 0-33 54±1 0-69 5±1
CM-B 0-33 100±9 0-33 64±1 0-69 6 ± 1

CM-W 0-33 63±1 0-33 60±2 0-81 13±2

HW HW-G 0-128.5 26±4 0-104.5 2 0 ± 2 0-60.3 [Oil]
HW-P 0-80 35±7 0-68.3 33±3 0-84.5 2 i l
HW-R 0-92.5 42±6 0-80 31±1 0-72 4 i2
HW-B 0-104.5 29±3 0-45.3 26±4 0-72 5 i l

OS OS-G 0-58 17±1 0-46 19±3 0-70 [2 i l ]
OS-P 0-58 16±1 0-94 13±1 0-58 3 i l
OS-R 0-70 2 0 ± 1 0-58 16±2 0-58 [3 il]
OS-W 0-46 17±2 0-58 15±3 0-58 [3±2]

WS-3 3-N 0-109 14±2 0-109 14±2 0-109 [-2 ± 1 ]
3-L 0-109 28±2 0-109 33±1 0-109 1 2 i 0

3-H 0-109 34±2 0-109 35±3 0-109 15il

WS-13 13-N 0-69 33±3 0-56 25±7 0-69 [8±4]
13-L 0-56 42±2 0-69 47±2 0-69 14±5
13-H 0-56 51 ±21 0-56 62±2 / 0-56 30i2/

56-116 44±7 56-116 44±7 56-116 10i3

a Rate values in brackets denote that a significant linear regression (P<0.05) was not obtained from the available data; uncertainties 
in this table are standard errors derived from the linear regressions.
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Fig. 20. Production rates of alkalinity and DIC in all incubations (taken from Table 
10). The solid line is the 1:1 line. The data points that deviate from 1:1 relationship are 
from CM-G, CM-P, CM-R, and CM-B incubations. Uncertainties are standard errors of 
the linear regressions.

3.1.4. Pore Water Saturation State

The ion concentration product (ICP) for experimental time points was calculated 

using [Ca2+] and [CO 3 2'], with the latter being determined with pH and DIC concentration 

data using the Excel® version of the program C02SYS (Millero, pers. comm., Lewis and 

Wallace, 1998). The calculated ICP values were then divided by the stoichiometric 

solubility constant of aragonite (K'sp.arag) calculated using the constants in Mucci (1983) 

at experimental temperatures and salinity. This results in the saturation index (jQarag) of 

the pore waters, or

sp-arag

(21)

From Fig. 21, it appears that all pore waters in these experiments were either 

supersaturated or close to saturation with respect to aragonite.
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Fig. 21. The pore water aragonite saturation index (Qarag) in all incubations. Qarag was 
calculated as the calcium carbonate ion concentration product (ICP) in the pore waters 
divided by the stoichiometric solubility constant (K'sp.arag) at incubation salinity and 
temperature.

3.2. Stable carbon isotopes

Isotopic values of both carbonate sediments and seagrass are shown in Table 11.

Table 11. Isotopic composition (%o) of seagrass and carbonate sediments.
c 13/'-! a 
O ĉarbonate $ C Thalassia 5 Csyringodium

WS-3 4.20±0.04 -9.7±0.7 -6.0±0.7
W S-13 3.93±0.01 -4.9±0.5 -

a See Table 7 for information on the mineralogy of these sediments, uncertainties are 
standard deviations of the measurements (n=3).
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Fig. 22. Co-evolution of pore water DIC 8 13C and DIC concentration in (a) WS-3, and 
(b) WS-13 incubations.

Pore water DIC S13C changes with time in WS-3 and WS-13 experiments are shown in 

Fig. 22 and listed in Appendix B. DIC 8 13C values in WS-3 pore waters first showed a 

drop from the initial value and then gradually increased as DIC concentration increased. 

DIC 8 13C values in WS-13 pore waters (0-56 hrs) increased slightly in both the 13-L and 

13-H incubations, with no obvious trend observed in the 13-N incubation.

4. DISCUSSIONS

4.1. Reaction Stoichiometry

In the tropical coastal sediments of Ban Pak Klok, Thailand, that are inhabited by 

seagrasses, Holmer et al. (2001) observed that microbial respiration is closely coupled

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



60

with organic matter production by the dominant seagrasses Cymodocea rotundata and 

Thalassia hemprichii; a similar observation was also made in Lower Laguna Madre 

(LLM) sediments vegetated by T. testudinum (Jones et al., 2003). Analogous to the LLM 

environment, the water column in the Bahamas is also largely oligotrophic and seagrasses 

are the dominant primary producers (Hemminga and Duarte, 2000). In the previous study 

(Chapter II), organic matter that is being remineralized in both bare oolitic sand and 

intermediate seagrass sediments could be attributed to either seagrass/detrital carbon 

mixture or seagrass carbon. Furthermore in the carbonate dissolution/reprecipitation 

model proposed to explain the unusual enrichment of 13C in pore water DIC pool of the 

dense seagrass sediments, seagrass carbon was assumed to be the sole type of organic 

carbon undergoing remineralization (see detailed discussions in Chapter II). In these 

closed-system incubations, I also assume that seagrass is the only organic carbon source 

that contributes to the pore water DIC pool. Based on this assumption, seagrass elemental 

ratios (C/N/P) and stable carbon isotopic composition will be used in the calculations in 

this section and in section 4.2.

The C/N ratios determined in this study (Table 12) were generally higher than 

previously reported values for T. testudinum in Florida Bay (average elemental ratio 

C:N:P= 106:5.8:0.1 and C:N = 18.3, Fourqurean et al., 1992). These carbonate sediments 

are P-limited and the C/P ratio may be up to 1000 or higher (Hemminga and Duarte, 

2000), therefore P is a negligible source that contributes to pore water alkalinity during 

organic matter remineralization. A C/P ratio of 106:0.1 was adopted here and the average 

value of the seagrass C/N ratio at each site was used to calculate x  in the ratio 106/x 

(Table 12) in seagrass organic matter remineralization reaction equations. For anaerobic 

respiration, the reaction is:

Table 12. C/N ratio of seagrasses at the sampling sites.
Station ID T. testudinum S. fdiforme

Leaf Root Leaf Root
CM 16 30 - -

HW 40 58 - -

WS-3 30 45 33 89
WS-13 36 69 - -
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— (CH2O)m ( N H , U H , P 0 AX l + S 0 ,t - + - H t ->
J (22)

2 h c o ;  + h 2s + - ^ i n h ; ] + — h , p o ,

where the alkalinity increase here is caused by sulfate reduction only. Since [Ca ] 

increases were small in the anoxic incubations, net carbonate dissolution appeared to be 

minimal, and pore water alkalinity increases were predominantly derived from sulfate 

reduction. From eqn (22), one unit of sulfate reduction produces slightly more than two 

units of alkalinity:

AAlkT = AAlks = 2 x  &TDS + A[ A //4+ ] = (2 + ̂ ) & TDS (23)

During aerobic respiration, one unit of organic carbon oxidation also yields slightly 

more than two units of carbonate alkalinity if the strong acids (HNO3 and H3PO4 ) 

produced in this process also react with carbonate. However the strong acids produced 

here are negligible given the high C/N/P ratio of seagrass (Table 12). Aerobic respiration 

is written here as:

-±-(CH20 \ k ( N H , ) A H , P O ' ) u03 03 (24)

-> 2H 7CO, + —  HNO, + —  H.PO, + —  H 20  
2 3 53 3 53 3 4 53 2

H 2CO3 + M C03 -> M 2+ + 2HCO~ (25)

where M is the divalent ions (Ca2+, Mg2+) in the carbonate phases.

Pore water alkalinity composition can be expressed in the following equation (e.g., 

Dickson, 1981):

Aik = [HCO; ] + 2 [HC02i  ] + [B(OH)-\ + [HS~ ] + 2[52" ] + [NH4+ ] -  [H+ ] +

[OH- ] + [HSO; ] + [H2PO; ] + 2 [HPO]- ] (26)

In experiments where anaerobic respirations occur in the sediments with or without 

aerobic respiration, pore water alkalinity is dominated by carbonate alkalinity (HCO3 ' and 

CO32’), sulfide alkalinity (HS' and S2‘), ammonium alkalinity (N H /), and borate 

alkalinity (B(OH)4'). This assumption was tested by independently estimating the total 

alkalinity concentrations using this equation using eqn. (26) and comparing these 

estimates with measured values. As shown in Fig. 23, calculated alkalinity values are in
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good agreement with the measured values for all incubations except HW, which showed 

a lower regression slope (0.66) than that for the rest of the data (1.07) using ANCOVA 

(MS = 16.8, MS err = 0.1, F = 165.24, df = 1, 179, PO.OOOl). Thus except the data from 

HW incubations, there was good internal consistency within rest of the data set. The low 

calculated alkalinity values for HW incubations could be due to inaccurate sulfide 

measurements.
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Fig. 23. Calculated alkalinity versus measured titration alkalinity for all incubations. 
Calculated alkalinity was determined using the following equation 
Aik = [HCOl ] + 2\HCO]- ] + [B(OH); ] + [HS~ ] + 2 [S2~] + [NH4+ ] -  [H+] + [OH'  ] +
[HSOt] + [H2PO^] + 2[HPOl~ ] (e.g., Dickson, 1981). In this calculation, alkalinity 
contributions from H+, OH', phosphates, and HSOT were assumed to be negligible and 
were not included in the calculations. Carbonate and bicarbonate concentrations were 
calculated with measured values of DIC and pH using the program C02SYS (Lewis and 
Wallace, 1998); borate alkalinity was calculated using salinity corrected total borate 
concentration and pH; sulfide alkalinity was calculated from total dissolved sulfide 
concentration and pH; ammonium alkalinity was calculated using sulfide concentrations 
and the reaction stoichiometry in rxn (22). All dissociation constants used in these 
calculations are from Millero (2001). The solid and the dashed lines are linear regression 
of calculated alkalinity vs. titration alkalinity for all incubations except the HW 
incubations, and the HW incubations, respectively.
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To differentiate alkalinity sources in CM experiments (carbonate dissolution versus 

sulfate reduction) when both types of respirations (aerobic and anaerobic) occur, the 

following equation was used (cf. Berner et al., 1970):

AAlkT = AAlkc + AAlks (27)

where AAlkc is the alkalinity produced through aerobic metabolic carbonate dissolution 

(rxns 15-17), and AAlks is the alkalinity produced through sulfate reduction. Since borate 

alkalinity changes were small (data not shown), their contribution to the changes in total 

alkalinity was neglected. Therefore the total alkalinity production minus the alkalinity 

produced by sulfate reduction (AAlks) yields alkalinity produced by carbonate 

dissolution (AAlkc).

Using ATDS and eqn. (23), AAlks can be calculated, and then with eqn. (27) AAlkc
I

can be calculated. Finally, AAlkc versus A[Ca ] can then be used to calculate the Ca 

content of the apparent carbonate phase dissolving in each incubation, where this Ca 

content equals to 2x(A[Ca2 +]/AAlkc), and A[Ca2+]/AAlkc is the slope of the regression 

line through the data. As discussed in section 3.1.1 (case 3), when there is no sulfate 

reduction AAlks=0 and AAlkc= AAlkT.

In all HW, OS, and CM incubations except the CM-W incubation, Ca concentration 

changes were relatively low and regressions of A[Ca2+] versus AAlkc yielded slopes with 

large errors and high P values (>0.05). Therefore these results are not included in the 

discussion here. In the CM-W incubation, the regression of A[Ca2+] versus AAlkc yielded 

a value of 0.37±0.01 (Fig. 24), thus the apparent dissolving carbonate phase has the 

composition of Cao.7 4 Mgo.2 6 C0 3 . In the 3-L and 3-H incubations, the regression slopes of 

A[Ca2+] versus AAlkc for each incubation were not significantly different from each other 

(Student's t-test, P>0.05), therefore the pooled data were used to calculate a combined 

A[Ca2+]/AAlkc ratio (Fig. 24). This value is 0.39±0.01, and the apparent dissolving phase 

thus has the composition of Cao.7 9 Mgo.2 iC0 3 . In the WS-13 incubations, the first 6  data 

points (0-56 hrs) for both oxic incubations showed a good linear relationship between 

A[Ca2+] and AAlkc and were used in these regressions (note that this approach is 

consistent with the isotope mass balance calculations in the next section, and 56 hrs also 

represents the time at which the O2 gas pressure was reduced from 20 psi to 10 psi). The 

calculated A[Ca2+]/AAlkc values are 0.32±0.05 (r2=0.91, p<0.005) for 13-L, and
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0.47±0.02 (r2 =0.99, p<0.0001) for 13-H. The plots of these regressions are shown in Fig. 

24 and the A[Ca2+]/AAlkc ratio values are listed Table 13. Neither the 3-N nor the 13-N 

incubation yielded significant Ca2+ production (dA[Ca2+]/dt~0, Table 10), which is 

indicative of no net dissolution. Thus these incubations were not used in these 

calculations. However, additional information about carbon cycling in these sediments is 

discussed in the next section where isotope mass balance calculations using the results 

from these anoxic incubations are carried out.

From another prospective, all pore waters of these incubated sediments were either 

supersaturated or close to saturation with respect to aragonite (see Fig. 21). It is therefore 

likely that a soluble carbonate phase(s) (most likely HMC) with greater or similar 

solubility as aragonite was dissolving in response to metabolic CO2  production. These 

results agree with previous studies that HMC is preferentially dissolved in carbonate 

sediments such as these (Burdige and Zimmerman, 2002; Morse et al., 2006; Morse and 

Mackenzie, 1990; also see Walter and Morse, 1984).

On the other hand, the Mg content of the HMC in the sediments measured using XRD 

techniques was much lower than that calculated from the pore water results (i.e., 1 0 0 % 

minus the mole% Ca) from the CM and WS-3 sediments (12.6 and 12.0 mole% vs. 26 

and 21 mole% Mg). In contrast this same comparison in the WS-13 sediments was rather 

equivocal (Table 7 and 13), since the 13-L and 13-H incubations yielded a Mg content in 

HMC phase that was between 36% and 7% (versus 12.3 mole% Mg based on the XRD 

results).

Two possible reasons may contribute to the discrepancy between the Mg content of 

the HMC that is dissolving (based on the pore water data) and the Mg content of the 

HMC in the sediments (based on XRD results). The first is that a more soluble HMC with 

a higher Mg contents (21-26 mole% Mg) was actually dissolving, since HMC solubility 

increases with increasing Mg concentration in the natural carbonate minerals (Bischoff et 

al., 1993; Bischoff et al., 1987; Plummer and Mackenzie, 1974). Furthermore, because 

the XRD spectra of these carbonate sediments usually showed a broadened 104 peak as 

compared to that obtained with pure biogenic calcite standards, the HMC in these 

sediments was possibly a mixture of carbonates with a range of Mg contents such that the 

average value was -12 mole% (Berner, 1966). However, when comparing these results
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with tabulated results in the literature of the Mg content of HMC in Bahamian sediments 

(e.g., Morse et al., 1985), the Mg contents based on the pore water data are at the high
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Fig. 24. The regression of A[Ca2+] vs. AAlkc for the CM, WS-3 and WS-13 
incubations. Since the y-intercepts of these linear regressions are not significantly 
different from zero, the regression lines were all forced through the origin. Note that in 
the CM incubation, only the data from CM-W incubation was used to generate the 
regression. See the text and Table 13 for details.
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Table 13. Composition of the apparent dissolving phase in the CM, WS-3 and WS-13 
incubationsa.

CM 3-L & 3-H 13-L 13-H
A[Ca2 +]/AAlkc 0.37±0.01 0.39±0.01 0.32±0.05 0.47±0.02

r2 0.97 0.97 0.76 0.98
P <0 . 0 0 0 1 <0 . 0 0 0 1 <0 . 0 0 1 <0 . 0 0 0 1

a Uncertainties were standard errors obtained from the linear regressions (Fig. 24).

end of this range, especially for the CM sediments (26 mole% Mg).

Alternatively, if HMC with ~12 mole% Mg was indeed dissolving, then a secondary 

carbonate phase with a lower Mg content may be reprecipitating (for example, Rude and 

Aller, 1991). Such a scenario could then sustain the disproportional increase in 

production of [Ca2+] relative to the Ca/Mg ratio in the sediment HMC. These two 

possible explanations will be revisited in section 4.3 after discussing the stable isotope 

mass balance in section 4.2.

4.2. Stable Carbon Isotope Mass Balance

Due to distinct difference between the carbon isotopic composition (S1 3C) of 

sedimentary organic matter and carbonate sediments, carbon isotopes have been used 

extensively in marine geochemical studies to differentiate between carbon sources that 

contribute to the pore water DIC pool (Chapter II; Gehlen et al., 1999; Martin et al., 

2000; McCorkle et al., 1985; McNichol et al., 1991; Sayles and Curry, 1988). However, 

in some coastal sediments (Eldridge and Morse, 2000; McNichol and Druffel, 1992), 

discrepancies are observed between the observed 8 13C values and those derived from the 

1 : 1  stoichiometric mixing of organic and inorganic carbon (rxn. 17) as discussed in 

Chapter II.

Following the procedure in Chapter II, the 513C of the DIC being added to the pore
13waters of these incubations (5 Cadded) was calculated through a linear regression of 

SI3C DIC v s . DIC (see Appendix A for a detailed derivation).

In the WS-3 incubations, the calculated 51 3Cadded values in both the 3-L and the 3-H 

incubations were not significantly different from each other (Student's t-test, P>0.05),
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therefore the data of these incubations were pooled together and a single 5 13C a d d e d  value

was calculated for the pooled data set. However, the regression of the data from the
11anoxic incubation yielded a higher 5 C a d d e d  value (Fig. 25). For the WS-13 incubations,

1 ̂because 5 C-DIC vs. DIC showed a good linear relationship over the first half of the oxic 

incubations (0-56 hr, see section 4.1), only these data points were included in the linear 

regression. The regression in the 13-N incubation was not significant (P>0.05), although 

the calculated 8 1 3Cadded is still used in the following discussion for comparison with the 

results from the oxic incubations (Fig. 26). All 8 1 3Cadded values derived from these linear 

regressions are shown in Table 14.

813Cadded= 1.25±0.18%o 
r2=0.83, p<0.001Initial conditions

o

o
2

CO
CO

S^Cadtoi = 2.73±0.47%o 
r2=0.77, p<0.001

-12
61 2 3 4 5 7

DIC (m m o l /k g )

Fig. 25. Regression of S1 3C-DIC vs. DIC in the WS-3 incubations. Note that the 
regression lines did not include the initial set of data points, to account for the 
equilibration of the sediment-water mixture after the initial setup of the experiment. The 
data from the 3-L and 3-H incubations were pooled together since regression slopes 
( 8 13C a d d e d )  of each individual incubation were not statistically different from each other 
but both were lower than that of the anoxic incubation (ANCOVA test, P<0.05, and 
8  C a d d e d -3 -L — 8  C a d d e d -3 -H < '  8  C ad d c d -3 -N ) -
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Fig. 26. Regression of 8 13C DIC vs. DIC in the WS-13 incubations. In the 13-N 
incubation, the regression slope was not significant (see Table 14).

One unit of CO2  production should yield approximately the same amount of 

carbonate dissolution under aerobic conditions (ignoring the minor dissolution caused by 

nitric and phosphoric acid productions, see rxns. 24-25). Therefore 51 3Cadded can be
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Table 14. Values of S1 3Cadded for the WS-3 and WS-13 incubations.

3-N 3-L & 3-H 13-N 13-L 13-H
2 a 
0  âdded

r2

P
c b
0  Com

2.73±0.47
0.83

<0 . 0 0 1

-1.70±0.36
(a)

1.25±0.18
0.77

<0 . 0 0 0 1

-2.00±0.71
(0 )

-0.3±1.2
0 . 0 2

>0.05
-2.42±1.80

(a)

1.20±0.32
0.78

<0.05
-1.53±0.64

(0 )

0.74±0.17
0.82

<0.05
-2.45±0.34

(0 )

a Uncertainties were standard errors obtained from the linear regressions (Figs. 25-
26).

b 8 1 3Com values were calculated using the 1 : 1  (oxic incubation, (o)) and 2 : 1  (anoxic 
incubations (a)) mixing ratios between organic carbonate and carbonate carbon, assuming 
no other processes contribute to the DIC 8 13C changes.

described using the following equation:

S UCadded = f cS " C c + f ou8 "C ou (28)

where the/ values are DIC contributions from carbonate dissolution and organic matter 

oxidation, and fc  =foM~ 50%. In the case of the anoxic incubation, if assume that H2 S 

produced by sulfate reduction can contribute 1 proton towards carbonate dissolution, 

therefore foM~ 0.67 and fc  ^  0.33 (eqn. 29)

S O f + 2CH20  + CaC03 -> Ca2+ + HS~ + 3H C (f (29)

If I assume no other processes affect the DIC isotopic composition, using the calculated 

8 1 3Cadded values (Table 14) and the measured values of 8 13Cc in WS-3 and WS-13 

sediments (Table 11)1 can then use eqns. (28) and (29) to back-calculate 813Com- These 

results are also shown in Table 14. It is clear that the simple mixing model is inadequate 

to explain pore water DIC 13C enrichment since the calculated 813Com values were all 

greater than the 8 13C values of seagrasses at the respective sites, and any other types of 

natural organic carbon in these environments or the adjacent ocean (Hofmann et al., 2000; 

Rasmussen et al., 1990).

To explain similar enrichments of 13C in the pore water DIC of LSI sediments, I must 

invoke a closed-system model based on a carbonate dissolution and reprecipitation 

mechanism (Fig. 27, and Chapter II). In the following discussion, this model is applied to 

the data from these incubations.
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Dissolution
OM

Oxidation

ox
Reprecipitation

S13Com
(-7.80%o)

813Cc
(+4.20%o)

Fig. 27. Carbonate dissolution/reprecipitation model. The dissolution rate ( r ^ )  
shown here represents the "gross" dissolution rate equal to the sum of the metabolic 
dissolution rate (driven by CO2  release) and the reprecipitation rate (rox + rrp), see 
Chapter II for details.

In the dissolution/reprecipitation model, several assumptions are explicitly made: (1) 

no isotope fractionation occurs during carbonate dissolution (Martin et al., 2000), since 

carbonate dissolution involves either partial or complete destruction of the dissolving 

carbonate phase; (2 ) reprecipitation of the secondary carbonate occurs under equilibrium 

conditions (Patterson and Walter, 1994), and the isotopic fractionation during 

reprecipitation is taken to be ecaicite-HC0 3 ’ = 0.9%o (Rubinson, 1969); (3) diffusion 

processes that causes isotope gradients on the mineral surface are negligible, i.e., the pore 

waters are isotopically homogeneous so that the secondary carbonate produced at any 

given time has the same isotopic composition throughout the incubations vial.

No TDS was observed in incubations 3-L, 3-H, and 13-H, therefore aerobic 

respiration was the only remineralization process. Although the 13-L incubation had low 

level of TDS (<0.05 mmol/kg), when compared to the magnitude of DIC production in 

this incubation (up to 4 mmol/kg), sulfate reduction is thus negligible. Therefore in the 

following discussion, I will also treat 13-L as an aerobic incubation. Carbonate 

dissolution and reprecipitation in the model equations can be expressed as:

= rdlss x Fc + rox x Fou -  rrp x Frp (30)

^ 1  = rdlssx ( l - F c ) + roxx ( \ - F OM) - r rpx ( \ - F rp) (31)

Rrp=a x R pW (32)
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where r is the rate of a reaction; subscripts diss, ox, and rp represent gross dissolution, 

organic matter oxidation and reprecipitation; and F  is the isotopic abundance of the 

reactants - carbonate (Q , organic carbon (OM) and the secondary carbonate (rp). Based 

on the discussion in Chapter II, the “net” dissolution rate ( r ^ ')  equals rox (Table 15), and 

therefore

rox = rdiss -  rrp (33)

Based on rxn. (25), rox can be calculated through the regression of DIC versus 

incubation time:

,= ld[D IC ]
ox d,ss 2 dt

Note that carbonate dissolution rates calculated using alkalinity production rates agreed 

well with DIC-derived rates (Table 10).
2 +

In the two anoxic incubations, the linear regression of A[Ca ] vs. time yielded a 

slope of -2±1 pmol/kg/h (P>0.0.5) in the 3-N incubation, and 8±4 pmol/kg/h (P>0.05) in 

the 13-N incubation (Table 10). This suggests that net carbonate dissolution was 

negligible in these anoxic incubations. Thus, when compared with the model used for the 

oxic incubations, here net dissolution (rtj,ssr) is equal to 0  and any carbonate dissolution 

must be exactly balanced by reprecipitation ( r ^  = rrp). Eqns. (30)-(31) become:

Table 15. Reaction rates and secondary carbonate compositions in WS-3 and WS-13 
experiments a.

Rate
(pmol/kg/h) 3-N 3-L & 3-H 13-N 13-L 13-H

rox 14±2 16±1 25±5 24±1 31±1
r  d iss 0 16±1 0 24±1 31±1
rrp 32±5 33±6 39±47 32±23 28±14
Rrx - 2.1±0.5 - 1.4±0.6 0.9±0.5
x c 0.93±0.31 0.92±0.42 0.61±1.94 1.06±1.02 0.82±0.99

a Uncertainties are standard errors from either linear regressions (rox) or model 
calculations (rrp, Rrx, and x).

b x is the calculated Ca content in the secondary carbonate phase. 
c Rrx is the rate ratio of carbonate reprecipitation and net dissolution (rrp/rdiSs )•
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r? ZT— = r rP * Fc + /•„ x Fom -  r^ x Frp (35)

^  C ] = ^ x ( l - F c ) + r(Kx ( l - F OM) - r  x ( l - F  ) (36)^  rp \  L s ox v UM y rp \  rp >

and rox is:

d[DIC\
(37)

dt

Both the oxic model (eqns. 30-34) and the anoxic model (eqns. 35-37) were solved using 

the 4th order Runge-Kutta method in the program Stella®.

The data for each incubation were fit to the model by taking rox and values in 

Table 15 and adjusting the rrp value to obtain the calculated 8 13C a d d e d  values for that 

incubation. The resulting rrp values are also shown in Table 15. The co-evolution of pore
1 3water DIC concentration and its 8  C in all incubations is shown in Figs. 28 and 29.

In Figs. 28 and 29, it can be seen that the carbonate dissolution/reprecipitation model 

generally reproduces the co-evolution of the pore water DIC 8 13C and concentration in 

these incubations, and this modeling exercise further indicates that such model can be 

used in the interpretation of 13C enrichment in the carbonate sediment pore waters.

The average composition of the HMC in WS-3 and WS-13 sediments determined 

through XRD was Cao.ssMgo.nCCb (Table 7). If I assume this HMC is the dissolving 

phase, the model results for the incubations with these sediments are further examined in 

the following discussion.

4.3. The Composition of the Secondary Carbonate Phase

4.3.1. Oxic Incubation

Here, the gross dissolution rate (rdlss) can be calculated with eqn. (33) based on the 

calculated value of rrp and rox in Table 15. If I assume that the reprecipitated carbonate 

has the composition of CaxMg(i.x)C0 3 , then the dissolution and reprecipitation processes 

can be written as follows:

CaQUMg0UCO2 + C 02 + H 2o X ( ) M C a 2+ + 0.12Mg2+ + 2 HCO; (38) 

xCa2+ + (1 -  x)M g2+ + 2HCO; - 4 CaxMg(x_x)C 02 + H 20  + C 0 2 (39)
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Fig. 28. Results of the carbonate dissolution/reprecipitation model applied to the WS- 
3 incubations. The solid lines represent model results obtained with an rrp value that 
predicts the regressed values of 5 13C a d d e d  from Fig. 25. The dashed lines are model results
based on the upper and lower uncertainties (95% confidence interval) of 51 3Cadded-
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Fig. 29. Results of the carbonate dissolution/reprecipitation model applied to the WS- 
13 incubations. The solid lines represent model results obtained with an rrp value that 
predicts the regressed value of 51 Cadded from Fig. 26. The dashed lines are the model 
results based on the upper and lower uncertainties (95% confidence interval) of 51 3Cadded-
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7 +Furthermore the concentration changes for Ca and alkalinity are given by:

d[Ca2+ ] = rdiss x 0.88 -  r x x (40)

dAlk = 2rdiss -  2rrp

and the linear regression of A[Ca ] versus AAlk will have slope equal to:

dA[Ca1+\ rdlss x 0.88 - r rpx x

75

(41)

(42)
dAAlk 2 (rdlss- r rp)

From eqn. (42), I can then solve for x, the Ca content of the secondary carbonate phase, 

since all other parameters are known in this equation (Table 15).

4.3.2. Anoxic Incubation

As has been discussed in section 4.1, there was minimal net carbonate dissolution in
^ I

the incubations; therefore any changes in Ca presumably came from carbonate 

dissolution/reprecipitation. If I again assume that Cao ssMgo nCOs is the dissolving phase,
-ji

then from the rate of [Ca ] change, I can calculate the composition of the reprecipitated 

carbonate (CaxMg(i.X)C0 3 ) in these experiments in conjunction with eqns. (38)-(39):

~~j~~ =  r dtsi xO.8 8 -/"^, x x  (42)

Again re-arranging this equation allows me to solve for x. However, the linear 

regressions of [Ca2+] vs. time were not significant for both the 3-N or 13-N incubations. 

Therefore some caution must be taken in interpreting the values of x calculated here.

4.3.3. The Reprecipitating Carbonate Composition - Results

For the WS-3 incubations, these calculations imply that the carbonate phase which 

reprecipitates has the composition Cao^Mgo.osCOa (Table 15). This agrees with the 

composition of HMC overgrowths ( ~ 8  mole% Mg) which formed on the surface of 

Iceland spar (crystallized calcite mineral) buried in Bahamian sediments (Morse and 

Mucci, 1984; Mucci and Morse, 1983). However, the propagated errors through my 

calculations were on the order of ~30-40% for the calculated Ca content. Therefore the 

apparent agreement between the calculated composition of the secondary carbonate phase 

in the WS-3 sediments and these literature results may be fortuitous. Similarly, for the
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WS-13 incubations, the calculated Ca contents of the reprecipitating phase have even 

large errors, particularly for 13-N, but an average x value for the 13-L and 13-H 

incubations is 0.94±0.72. Again these results qualitatively agree with the literature results 

despite of their large errors.

Although some caution must be taken in the interpretation of these calculations, when 

these results are looked in the context of the discussion in section 4.1, it appears likely 

that reprecipitation in these sediments produces a new carbonate phase with only a 

slightly lower Mg content than the starting materials. Therefore these results agree with 

the studies by Bischoff et al. (1987) and Hover et al. (2001) that HMC diagenesis may 

lead to reprecipitation of a carbonate phase with similar or slightly lower Mg content, as a 

result of "Ostwald ripening", in which smaller carbonate grains dissolve at the expense of 

secondary carbonates that form on the surface of larger grains. Furthermore, little 

elemental and isotopic composition changes are expected for the solid phase in these 

incubated sediments, given the short experimental duration and large solid/aqueous ratios. 

Therefore to observe such changes in the solid phase, incubation times that Eire relatively 

longer than those used in this study are necessary (such as the long term burial study by 

Patterson and Walter, 1994).

4.4. Reaction Rates - Further Considerations

Seagrass materials appeared to be the dominant organic carbon source for microbial 

respiration in these oligotrophic sediments, and fresh seagrass litter is generally 

considered to be "labile" (Boschker et al., 2000; Holmer et al., 2001; Jones et al., 2003), 

Therefore it appears that there was no difference in the rates of aerobic versus anaerobic 

organic matter remineralization during these short term incubations (Table 15). This 

observation is consistent with previous findings in the literature regarding organic carbon 

remineralization rates under different redox conditions (see Burdige, 2006, for a review).

When examining the ratio of carbonate reprecipitation and net carbonate dissolution 

rates (Rrx) in WS-3 and WS-13 incubations, I observed that the values ranged from 0.9-

2.1. Given all the assumptions made here and in Chapter II, this range appears to be very 

similar to other values in the literature (e.g., 1.1-2.0 in Walter et al., 1993; 3.1-6.6 in 

Rude and Aller, 1990), even though both of these earlier studies used distinctively
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different approaches than I used (45Ca and trace elemental [F, Sr] combined numerical 

modeling approaches). It is noted, however, that care needs to be taken when comparing 

the results from incubation and field studies. Nonetheless, the agreement among all of 

these studies appears encouraging, and a combination of both methods therefore may be 

potentially useful in the future to address the dissolving and reprecipitating carbonate 

phase problems.

From this study I have further confirmed the validity of the carbonate dissolution/ 

reprecipitation model developed in Chapter II to help interpret pore water data from Lee 

Stocking Island sediments. These observations further reinforce the fact that carbonate 

dissolution/reprecipitation may be an important process in carbonate diagenesis. It is 

likely that carbonate reprecipitation may have also caused the pore water DIC 513C 

enrichment in other shallow water sediments (for example, Eldridge and Morse, 2000;
I o

McNichol et al., 1991). Furthermore, I predict that pore water DIC 5 C should also 

exhibit enrichment in deep sea sediments where carbonate reprecipitation may occur 

(Broecker and Clark, 2003; Jahnke and Jahnke, 2004).

4.5. Role of O2 Input on Carbonate Dissolution

One goal of this study was to use these results to examine the stoichiometric 

relationship between the rates of O2  consumption and net carbonate dissolution. Both 

alkalinity and Ca2+ production rates can be used to calculate the net carbonate dissolution 

rate. Here pore water calcium production rates for all incubations were used in this 

analysis. To convert these rates to carbonate dissolution rates, two end member 

approaches were taken, based on assumptions regarding the Ca content of the phase 

undergoing dissolution: (1) a minimum Ca value was obtained by assuming that the Ca
1

content of the HMC could be obtained from pore water A[Ca ]/A[Alkc] (Table 13, see 

section 4.1), (2) a maximum value was obtained by assuming that the HMC undergoing 

dissolution has a Ca content based on XRD results (100% minus mole% Mg in HMC, 

Table 7). Carbonate dissolution rates were then calculated using [Ca2+] production rates 

and corrected using these two conversion factors. Average values of the dissolution rate 

for each incubation are plotted versus O2 consumption rate (Fig. 30). For the incubations
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Fig. 30. Carbonate dissolution rate vs. oxygen consumption rate. The carbonate 
dissolution rates are average values based on two end-members for the Ca concentration 
of the dissolving carbonate phase (see section 4.5 for details). The solid line represents 
the 1:1 line between the carbonate dissolution and oxygen consumption rates. In all 
incubations except 3-L, 3-H, and 13-H, O2  consumption rates equaled O2 delivery rates 
from the gas diffusion tube (see Table 8  and Fig. 20). In these three incubations O2 

consumption was estimated as discussed in the text. Uncertainties were standard errors.

with no dissolved O2 observed in the pore waters, O2  consumption rates equaled the O2  

delivery rates through the diffusion tubes.

In all incubations except for the 3-L, 3-H, and 13-H incubations (Fig. 30), there was a 

1:1 relationship between O2  consumption and carbonate dissolution rates. In these three 

incubations, O2 consumption rates based on the O2  delivery rates from the diffusion tubes 

(4.0, 6.7, 4.6 pmol/h) initially appeared to be much greater than the carbonate dissolution 

rates (0.4, 0.4, 0.9 pmol/h). Taken at face value, this apparent high O2 consumption 

would seem to suggest an uncoupling of aerobic respiration and carbonate dissolution 

(rxn. 15-17), i.e., when aerobic respiration is sufficiently fast, carbonate dissolution 

becomes the rate-limiting step. However, if this were the case, I would expect to see the
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uncoupling of alkalinity and DIC production, with DIC production greatly exceeding that 

of alkalinity. In contrast though the results in Fig. 20 show that this uncoupling was not 

observed, and the production rates of alkalinity and DIC in the 3-L, 3-H, and 13-H 

incubations were equal to one other. Therefore the O2 input rates for these three 

incubations probably were likely overestimated based on the calibration curve determined 

in section 2.3. The soft nature of the C-Flex tubing (as opposed to the rigid Teflon tubing 

used in all other incubations) may have contributed to this overestimation, since the 

tubing may have been pinched during experimental setup. Therefore the gas pressure on 

the regulator may not have represented the true gas pressure in the sealed tubing. Thus for 

these incubations O2  consumption rates were calculated as one half of the DIC production 

rate (eqn. 34). Furthermore, it also appears that the O2 input in these three incubations 

"saturated" the sedimentary microbial respiration in these incubations where dissolved 

oxygen was detected (Fig. 15). Metabolic CO2 production thus is the actual rate-limiting 

step in the dissolution process, consistent with other results from the literature where it 

has been observed that carbonate dissolution rates are faster than organic carbon 

oxidation rates in marine sediments (Martin et al., 2000; Martin and Sayles, 2003).

In coastal sediments, O2 penetration depth is controlled by the organic matter input 

rate as well as microbial activity, and the value is usually on the order of several 

millimeters, if bioturbation is absent (Cai and Sayles, 1996). The root and rhizome of the 

seagrasses in Bahamian sediments, however, penetrate up to -20 cm into the sediments, 

and therefore O2 supply from the plant tissues will be much deeper than that from 

physical processes alone (diffusion and advection). Bodensteiner (2006) suggested that 

below ground O2 flux for T. testudinum under light-saturated condition is 1.2 mmol/m - 

leaf/h in this environment. If I assume that the daily average photosynthetic time is 9
9 9hours (Burdige et al., submitted) and the leaf area index (LAI) is 1 m -leaf/m -sediments, 

then the total O2 input would be -10.8 mmol/m2 /d. This O2  input rate is significantly 

higher than the diffusion controlled O2  input rates in the sediments I have studied 

(Chapter IV; Burdige et al., submitted; Burdige and Zimmerman, 2002). Besides, it is 

likely that production of metabolic acid (CO2) at depth may have more reaction time with 

the carbonate sediments and therefore is much less affected by bottom water-pore water 

exchange that commonly affects metabolic dissolution efficiency (MDE) in carbonate
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sediments (note MDE is defined by the ratio of dissolving carbonate flux and the 

metabolic acid production flux across the sediments-water interface; Jahnke and Jahnke, 

2004). Further study of mass transport mechanisms at the sediment-water interface of 

these carbonate sediments is necessary to quantitatively examine the dissolution rates.

5. CONCLUSIONS

Using closed-system incubations, I have further confirmed that HMC with a solubility 

similar to or higher than that of aragonite is preferentially dissolved in carbonate 

sediments on the Bahamas Bank as a result of sedimentary microbial respiration.

The carbonate dissolution/reprecipitation model proposed in Chapter II was applied to 

the results from these closed-system incubations to explain the apparent enrichment of 

13C in the pore water DIC pool, and the results from this modeling exercise suggest that 

carbonate reprecipitation occurs over the relatively short time scales of these 

experiments. Thus pore waters represent a sensitive sedimentary diagenetic indicator that 

can be used in addition to other geochemical techniques (such as XRD) to study 

carbonate diagenesis in recently deposited sediments. The ratio of carbonate 

reprecipitation/dissolution (i.e., Rrx, 0.9-2.1 ) calculated here agrees well with literature 

reported values (Chapter II; Walter et al., 1993; Rude and Aller, 1990), despite the fact 

that this study employed a different approach than used previously.

The composition of the reprecipitated carbonate in WS-3 and WS-13 sediments was 

calculated using a combination of the pore water data and the results from the carbonate 

dissolution/reprecipitation model. Although the results were equivocal, they suggest that 

the reprecipitated carbonate in these experiments may have a Mg content that is similar to 

or slightly lower than that of the dissolving carbonate phase, which resembles "Ostwald 

ripening" that widely occurs in the carbonate sediments.

Finally, carbonate dissolution and O2 consumption showed a robust 1:1 linear 

relationship over a wide range of reaction rates. This observation suggests that microbial 

metabolic activity that produces CO2 controls the rate of carbonate dissolution, consistent 

with literature reported results that organic carbon oxidation is the rate limiting step in 

metabolic carbonate dissolution.
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CHAPTER IV 

CARBONATE SEDIMENT DISSOLUTION AND 

REPRECIPITATION IN BAHAMAS BANK SEDIMENTS - A BANK

SCALE SYNOPSIS

1. INTRODUCTION

Shallow marine environments, including coral reefs, carbonate banks/bays, and 

continental shelves that are largely located in tropical and subtropical areas, cover only 

8 % of the area of the modem ocean, yet they account for -40% of the global oceanic 

carbonate production and accumulation (Milliman, 1993). Because these environments 

are located well above the lysoclines of the common carbonate minerals formed in the 

oceanic environment, little attention has historically been paid to the dissolution of these 

carbonate sediments (e.g., Berner, 1966).

Recent studies have, however, shown that carbonate dissolution may occur in 

carbonate banks sediments as a result of microbial respiration, despite the occurrence of 

net carbonate accumulation in these environments (Chapter II; Broecker and Takahashi, 

1966; Burdige et al., submitted; Burdige and Zimmerman, 2002; Hailey and Yates, 2004; 

Ku et al., 1999; Morse et al., 2006; Morse et al., 1985; Sabine and Mackenzie, 1995; 

Walter et al., 1993; Walter and Burton, 1990; Yates and Hailey, 2006). This dissolution is 

caused by production of metabolic CO2  through aerobic respiration, which first drives 

down the pore water saturation state, and once the pore waters are sufficiently 

undersaturated with respect to the most soluble carbonate phase, carbonate dissolution 

can occur (Chapter II; Burdige and Zimmerman, 2002; Ku et al., 1999; Morse et al.,

1985; Walter and Burton, 1990). Assuming that the organic carbon being remineralized 

can be expressed as CH2 O, then the reactions can be written as:

CH2  O + O2  —̂ CO2  + H  2 O

C02 JrCciC(Xt H 2 O —»Ca2+ + 2H CQ

(44)

(45)

CH20+  0 2 + CaC03 -> Ca2+ + 2H C q (46)
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Interest in shallow water carbonate sediment dissolution stems from the suggestion 

that this dissolution may be able to compensate for the anthropogenic CO2  increase in the 

atmosphere by neutralizing this CO2 (Andersson and Mackenzie, 2004; Andersson et al., 

2003; Droxler et al., 1986; Hailey and Yates, 2004; Morse et al., 2006; Sabine and 

Mackenzie, 1995; Yates and Hailey, 2006). Therefore a thorough knowledge of carbonate 

dissolution in shallow water carbonate depositional environments enhances our 

understanding of the role that this process may play in the global carbon cycle.

At the same time, carbonate budgets for such shallow water environments are poorly 

constrained. According to the landmark review by Milliman (1993), -50% total 

carbonate production is lost through export to surrounding environments or dissolution, 

although this estimate is poorly constrained (also see Walter and Burton, 1990). 

Furthermore, recent studies in both Bahamas Bank and Florida Bays sediments suggested 

that carbonate dissolution alone may be sufficient to account for the magnitude of 

carbonate loss from the banks and bays (Burdige et al., submitted; Yates and Hailey, 

2006). These studies, however, were focused on relatively restricted environments. 

Therefore, a study that covers a greater expanse of the Bahamas Bank is desirable to 

further examine this problem.

Seagrasses, a group of aquatic angiosperms, are widely distributed in many shallow 

marine environments. Current estimates indicate that seagrasses cover up to -10% of the 

coastal ocean (0.15% of the ocean as a whole) with very high net productivity (average 

-10 3 g DW /m2 /yr), as compared to the average phytoplankton productivity of 128 g DW 

/m2/yr in the global ocean (Duarte and Chiscano, 1999). Overall then, seagrasses account 

for -1%  of total marine net primary production (Hemminga and Duarte, 2000). The 

dominant seagrass on the Bahamas Bank, Thalassia testudinum, can have biomass and 

net productivity of 1.1 kg DW/m and 2.5 kg DW/m /yr. Seagrass-derived organic carbon 

stored in the sediments is estimated to be -15% of the total carbon stored in the marine 

environment (Hemminga and Duarte, 2000). Moreover, seagrasses enhance organic 

carbon input into the sediments of many otherwise oligotrophic areas through their own 

production. At the same time, the "baffling effect" of the seagrass canopy slows water 

motion and thereby enhances the deposition of fine-grained materials including

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



83

particulate organic matter (POM) from the water column to the sediments (Koch and 

Gust, 1999; Koch et al., 2006).

In many temperate sediments, seagrasses transport photosynthetic O2 below ground to 

maintain low sulfide levels (Pedersen et al., 1998). In more oligotrophic sediments 

settings this below-ground 0 2 transport by seagrasses can potentially enhance 

remineralization of sedimentary organic matter. Although an earlier study by Morse et al. 

(1987) suggested that there was no linkage between sediment chemistry and the presence 

of seagrass in coarse grained Bahamian sediments, later studies (Burdige and 

Zimmerman, 2002; Ku et al., 1999; Walter and Burton, 1990) suggested that seagrasses 

not only enhance carbonate dissolution but may close sediment carbonate dissolution 

budget (see Chapter I for details).

More detailed studies have followed up this work (Chapters II and III; and Burdige et 

al., submitted), and this chapter discusses this problem on a much larger geographic 

scale, based on a 2004 cruise to the Great Bahamas Bank on board the R/V F. G. Walton 

Smith (WS). The sites examined on this cruise had a range of seagrass densities as well as 

different sediment types (i.e., fine-grained aragonite muds or coarse-grained carbonate 

sands or grapestones).

In Chapters II and III, pore water DIC was found to be enriched in 13C in densely 

seagrass vegetated sediments both in field studies and in incubation experiments, and the 

1:1 mixing between DIC derived from organic carbon oxidation and carbonate 

dissolution could not solely explain this enrichment. Rather, a carbonate dissolution/ 

reprecipitation model was invoked to explain both the field observations (Chapter II) and 

the results of closed-system incubation studies (Chapter III). In this chapter I will first use 

pore water DIC 513C data to further examine the occurrence of carbonate dissolution and 

reprecipitation across the greater expanse of the Bahamas Bank.

Next, this approach will be coupled with an inverse advection-diffusion-reaction 

model (Burdige et al., submitted) applied to the complete data set, to calculate the rates of 

carbonate dissolution and reprecipitation, as well as sediment 0 2 input. Together, these 

results will be used to explore the factors that control carbonate reprecipitation in these 

sediments.
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2. MATERIALS AND METHODS

2.1. Study Sites

The study was carried out in March, 2004 using R/V F. G. Walton Smith as the 

sampling platform. A number of sites (Fig. 31) with various seagrasses densities and 

sediment types were sampled across the Bahamas Bank. The dominant seagrass species 

were Thalassia testudinum and Syringodium flliforme, with the latter observed to be 

significant only at sites WS-1 (WS-25) and WS-3 (Bodensteiner, 2006). Water depths at 

these sites ranged from 4 to 10 m with the average depth of ~ 6  m. Visual inspection of 

the sediments showed that the sediment types ranged from very fine-grained carbonate 

muds on the west side of Andros Island, to coarse-grained oolitic carbonate sand and 

grapestone in the northern part of the Bank and on the eastern arm of the Bank along the 

Exuma Cays (Neuweiler, per. comm., Table 16).

2.2. Sample Collection and Analytical Methods

Pore water samples were collected in situ using sediment sippers, and sampling 

techniques and sample processing are described in detail elsewhere (Chapters II and III; 

Burdige and Zimmerman, 2002). A bottom water sample and three sets of pore water 

profiles were collected at each site, the latter from sediment depths of 1, 2, 4, 5, 8 , 10, 15, 

and 20 cm. After pore waters were collected and returned to the ship, the water samples 

were equilibrated at lab temperature for 30 min, and O2 concentrations were measured 

using an optode (FOXY-18G, Ocean Optics®) connected to a SF2000 spectrophotometer 

(Ocean Optics). For this analysis, a pore water sample was overfilled into aN 2 flushed 

1 . 8  ml serum vial containing a stir bar, and the vial was sealed using an open-faced cap 

and a Teflon-lined silicone septum. The septum was then pierced by the optode, and the 

O2 concentration was determined after 1 minute (Ocean Optics Tech Notes). The optode 

was calibrated every 0.5 hr at lab temperature in both N2 -bubbled and air-saturated 

surface seawater with known salinity using a standard, linear (Stem-Volmer) two-point 

calibration (Wang et al., 1999). The remaining samples were filtered using 0.45 pm nylon 

disc filters and then preserved in appropriate storage vessels at 4°C for further analyses 

(Chapter II).
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Fig. 31. Map of the sampling sites on the Bahamas Bank (Bathurst, 1971). Numbers 
in the figure are site designations as shown in Table 16.
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Table 16. Sampling sites and their descriptions.

86

Site ID Location Water Depth 
(m) Description Seagrass LAI 

(m2/m2)
WS-1 25°48.236'N, 79°6.776'W 5.2 Ooid sand 3.73±0.40
WS-2 25°47.536’N, 78°55.595’W 6.0 Ooid sand 0.96±0.04
WS-3 25°51.050'N, 78°43.899'W 10.5 Pellet mud 1.37±0.08
WS-4 25°58.650'N, 79°4.391'W 9.5 Coarse ooids 1,72±0.06
WS-5 24°48.680'N, 76°50.016'W 5.6 Grapestone/ooid 0.03±0.02
WS-6 24°21.440'N, 76°46.304'W 7.9 Grapestone/ ooid 0
WS-7* 24°14.083rN, 76°43.953'W 5.3 - 0

WS-8 24°13.875'N, 76°31.233'W 5.0 Grapestone/cryptocrystal- 
line mud 0.19±0.03

WS-9 24°7.293' N, 76°32.341'W 5.2 Pellet grapestone sand 0
WS-10 23°5.340’ N, 76°32.724’W 5.7 Pellet grapestone sand 0.02±0.00

WS-11 23°56.239'N, 76°23.829’W 5.6 Pellet grapestone/fine 
grain sand 0.07±0.01

WS-12 23°56.366'N, 76°23.756'W 5.3 Pellet mud 1.40±0.05
WS-13 24°14.033'N, 76°30.200'W 4.2 Ooid sand 0.53±0.04
WS-14 24°34.909'N, 76°49.812'W 5.5 Ooid sand 0.41±0.02

WS-15 24°35.077'N, 76°48.982’W 3.7 Pellet
sand/ooid/grapestone 0.86±0.04

WS-16 24°59.298'N, 77°29.928’W 5.6 Coarse sand 0
WS-17 25°4.336' N, 77°4.335' W 7.5 Ooid sand 0.33±0.01
WS-18 25°7.033' N, 78°28.423'W 4.9 Pellet mud 0.17±0.01
WS-19* 25°3.090' N, 78°42.324'W 5.6 Pellet mud 0
WS-20 24°55.923'N, 79°4.462' W 6.7 Ooid/grapestone 0.77±0.04
WS-21 24°56.624'N, 78°30.540'W 5.4 Pellet mud 0.07±0.01
WS-22 25°21.340'N, 78°30.003'W 4.8 No sediments collected 0.64±0.07
WS-24 25°36.030'N, 78°36.956'W 6.2 Ooid/grapestone 0.25±0.02
WS-25# 25°48.410'N, 79°6.814' W 5.4 Ooid sand 3.73±0.40

* No pore water samples were collected at sites WS-7 and WS-19.
# WS-25 is the same “site” as WS-1; differences in the coordinates simply indicate differences in 

where the ship was anchored at the time o f sampling.

Titration alkalinity (Alkr) was determined on board the ship by automated Gran 

titration using Scripps Reference Seawater as an external standard (Dickson et al., 2003). 

pH (NBS) and sulfide (Cline, 1969) were also analyzed on board the ship. Alkr and pH 

were also analyzed in all three sets of pore water samples from each site, while sulfide 

was measured in one set. DIC was analyzed with a UIC 5011 coulometer (DOE, 1994) 

back at ODU using Scripps Reference Seawater as the reference material. 8 13C of the 

pore water DIC was also determined back at ODU following the procedure described in 

Chapter II, using a PDZ Europa® GEO 20-20 isotopic ratio mass spectrometer (IRMS).

Pore water samples (0.1 ml) were analyzed for Ca2+concentration by automated 

titration using EGTA as the titrant and a Thermo-Orion Calcium ion selective electrode 

(ISE) to detect the end-point. Chlorinity (pore water chloride concentration) was
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determined by automated titration using AgNC> 3 as the titrant and a Brinkman Ag 

Titrode™ to detect the end-point. All titrations were performed using a Metrohm® 

automatic titrator. Sulfate was analyzed on a Dionex ion chromatography (IC). IAPSO 

standard seawater (salinity 34.996) was used to standardize both titrants (EGTA and 

AgNC>3) as well as to construct the sulfate standard curve (Grasshoff et al., 1999).

Seagrasses, benthic macro algae, and sediment samples were collected by divers at 

selected sites. Epiphytes were first removed from seagrass and algae samples, which were 

then soaked in IN HC1 for 30 minutes to remove attached or skeletal carbonate. The 

residual plant materials were rinsed with distilled water to remove excess acid, oven dried 

at 60°C overnight, and then ground into powders using mortar and pestle (Chapter II; 

Craig, 1953; McMillan, 1980). High temperature combustion (HTC) in O2  was used to 

convert organic carbon to CO2 using an automated nitrogen carbon (ANCA) elemental 

analyzer attached to the IRMS. A subset of the acid-treated and washed seagrass samples 

were freeze dried at -20°C in vacuo and then ground to powder; no significant differences 

in measured seagrass 8 13C values were observed among these two treatment methods 

(data not shown).

Sediment samples were oven dried at 60°C overnight, and then were ground to 

powder using mortal and pestle. Isotopic analyses of the sediment carbonate were carried 

out at the UC Davis Stable Isotope Lab. The CO2  gas used for analysis was generated by 

acidification of the treated sediments in a heated (90°C) common acid bath (103% 

phosphoric acid). The resultant gas was purified and introduced into a GVI Optima IRMS. 

These 513C values were calculated relative to V-PDB. Since the difference between V- 

PDB and PDB is negligibly small (Mook and Vries, 2001), the complete isotope data set 

is then internally consistent.

Alkaline earth elemental ratios (Sr2 +/Ca2+ and Mg2 +/Ca2+) were determined in both 

pore waters and carbonate sediments at selected sites. In past studies of shallow water 

carbonate sediments no obvious diagenetic alteration of sediment mineralogy has been 

observed in the top 20-30 cm of sediment (e.g., Bemer, 1966; Morse et al., 1985). Thus 

here a single sediment sample (8 - 1 0  cm sediment depth) was analyzed and assumed to be 

representative of the composition of the upper 2 0  cm of surface sediments at each site.

The sediments were first dried at 50°C over night, then 0.500 g of sediment was dissolved
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in 30 ml of IN HC1 followed by dilution to 100 ml with deionized water (Robinson, 

1980). Pore water samples and sediment acid extracts were analyzed on an inductively 

coupled plasma optical emission spectrometer (ICP-OES) at Rutgers University. Briefly, 

two different standard solutions were prepared from three new single element standards - 

High Purity® Ca (1000 ± 3 ppm), Mg (1000 ± 3 ppm), and Sr (1000 ± 3 ppm). The mixed 

standard solutions were prepared by spiking the appropriate volumes (determined 

gravimetrically) of the Mg, Ca and Sr standards directly into 3% HNO3 . Multi-element 

standards at target concentrations between 5 and 10 times greater than elements in the 

sample solutions were made, and then a matrix-matched standard curve using three-point 

internal standardization was constructed, i.e., three-point standard additions were 

prepared by adding varying amounts of the multi-element standard to the sample matrix. 

To control for instrument sensitivity drift during the run, Indium (In) was used during 

these analyses as an internal standard to which signal intensities for each element (i.e., 

Mg, Sr and Ca) were normalized. An internal standard of 10 ppb In was prepared in 10% 

HNO3 (v/v) and 100 uL were added to each sample, blank and standard, yielding a final 

concentration of 1 ppb In. Sensitivity and stability of the instrument were adjusted to 

optimum conditions before sample analysis, and monitored using lppb In.

All surface sediments were wet-sieved for grain size analysis. The sieve sizes used 

here were 2mm, 600 pm, 125 pm, and 63 pm. The <63pm fraction was defined as the 

fine fraction (Bennett et al., 1990). Mean grain size was calculated using the equation 

d=Zf„dn, w here/is the weight percent of a size fraction, and d  is the median grain size in 

that fraction. For the >2 mm and <63 pm size fractions, median grain sizes of 2.25 mm 

and 31.5 pm were assumed (D. Swift, pers. comm.). Porosity was calculated using an 

empirical relationship between percent fine fraction (<0.063 mm) and measured porosity 

reported in Bennett et al. (1990). Sediment permeability was calculated using the 

Carman-Kozeny equation (Boudreau, 1997). Permeability values calculated with this 

equation agree well with measured permeabilities (Burdige, 2006).

The uncertainties of all analyses were: alkalinity (±2%); DIC (±2%); pH (±0.02 pH 

units); Ca2+ (±1%); Cl' (±0.2%), 8 13C (DIC, organic carbon, and carbonate carbon) 

±0.2%o, ±0.1 %o, and ±0.04%o; 5 180  (±0.06%o), sulfate (±3%); sulfide (2%).
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3. RESULTS

The complete set of pore water data from this cruise is listed in Appendix D. Depth 

profile of pore water O2 , alkalinity, DIC, calcium, aragonite saturation index (Daragomte), 

pH, sulfate, total dissolved sulfide (TDS), and 8 13C of the DIC from six representative 

sites across the Bank are shown in Figs. 32-34. In general, O2 concentration and pH 

decrease with depth in these sediments, accompanied by increases in alkalinity, DIC, and 

Ca2+. Such profiles are consistent with the occurrence of metabolic carbonate dissolution 

in the sediments (Chapter II; Burdige and Zimmerman, 2002). At the same time, the lack 

of net sulfate reduction and sulfide accumulation are also consistent with these previous 

studies, indicating no net sulfate reduction or sulfide accumulation in these sediments.

3.1. Pore Water Chemistry

3.1.1. Oxygen

In the upper 1-2 cm, O2 profiles showed relatively flat gradients (i.e., no significant 

concentration decrease). Between these depths and 5 cm, O2  concentration decreased 

with depth at all site studied. Below ~5 cm, O2  concentrations either gradually 

approached zero or remained relatively constant at 50±20 pmol/kg.

3.1.2. Alkr. DIC. Ca2+

Pore water Alkj, DIC, and Ca2+ concentrations were generally elevated relative to 

bottom water concentrations. Similar to the O2  profiles, profiles of these solutes had 

relatively flat gradients in the upper 1-2 cm as well. The profiles also showed 

considerable variations at each individual site, indicating spatial heterogeneity of these 

sediments at small (within site) scales ( < 1 0 0  m radius).

Fig. 35 shows that there is an tight linear relationship between AAlkT and ADIC at 

these sites with a small negative y-intercept (r2  = 0.94). A similar property-property plot 

of ACa vs. ADIC shows greater scatter, although the correlation is still significant (r = 

0.56, Fig. 36). A plot of ACa2+ vs. AAlkx also showed a significant correlation with a 

slope similar to that observed in the plot of ACa2+ vs. ADIC (results not shown). All of 

these observations are consistent with the results from previous LSI studies (Chapter II; 

Burdige and Zimmerman, 2002).
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Fig. 32. Pore water profiles of O2 , alkalinity, DIC, and Ca2+ at six representative 
sampling sites on the Bahamas Bank (WS-3, WS-10, WS-15, WS-16, WS-18, and WS- 
20).
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Fig. 33. Pore water saturation state, pH, A[S0 4 2‘], and total dissolved sulfide (TDS) at 
six representative sampling sites on the Bahamas Bank (WS-3, WS-10, WS-15, WS-16, 
WS-18, and WS-20). A concentrations are pore water solute concentrations relative to

bottom water values and are calculated as A[5] = [S]/w -  [S}BW x  ^ pw ? in which [£] is
SalBW

the measured solute concentration, Sal is the salinity (calculated from titration chlorinity), 
and the subscripts PW  and B W indicate pore water and bottom water concentrations at the 
sampling sites.
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Fig. 34. 8 13C of pore water DIC at six representative sampling sites on the Bahamas 
Bank (WS-3, WS-10, WS-15, WS-16, WS-18, and WS-20)

3.1.3. pH and Pore Water Saturation States

Pore water pH generally decreased below the sediment-water interface with the 

steepest gradients in the upper 5 cm (Fig. 33). With depth the pH values were relatively 

constant at (-7.3-7.7).

Similar to the approach taken in Morse et al. (1985), calculated equilibrium lines for 

calcite, aragonite and 18 mole% Mg HMC are plotted on a pH-DIC diagram (Fig. 37). 

These lines represent the saturation CO32' concentrations for these three minerals at 

different pH and DIC values. For calcite and aragonite, they were calculated using the 

following equations:

= - j ^ P y  (47)

(48)
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Fig. 35. Changes in pore water titration alkalinity (AAlkj) and DIC (ADIC) relative to 
bottom waters in Bahamas Bank sediments. The linear regression (solid line) produces a 
best fit at the P<0.0001 level.
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Fig. 36. Relationship between pore water Ca2+ and DIC concentration changes in the 
Bahamas Bank sediments. The linear regression (solid line) produces a best fit at 
pO.OOOl level.
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Fig. 37. Plot of pore water pH and DIC concentration. Open circle represent samples 
from <5cm and filled circles represent the deeper samples (from 8  cm and below). 
Bottom water values are shown in filled squares. The three saturation lines are described 
in the text. The upper panel includes all data and the lower panel illustrates data in the 
DIC range 2-3 mmol/kg.

where [Ca2+] was assumed to be 10.9 mmol/kg (extrapolated to salinity 37 based on a 

[Ca2+] = 10.3 mmol/kg in standard seawater of salinity 35). Ka' and Kc’ are the 

stoichiometric dissolution constants of aragonite and calcite that were calculated with the 

equations in Mucci (1983); at 25°C and salinity 37 these values are 6.95xlO"7 and
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4.59x1 O'7, respectively. For HMC (18 mol% Mg), an equilibrium constant (1.15x1 O'8) 

from Walter and Morse (1984a) was used, and the saturation [CO32'] was calculated using 

the equation

K  1  Mg^Ca^CO, w 1 /'/in'i

IC° ! w  W

where the y values are activity coefficients calculated using the program C02BRINE (F.

J. Millero, pers. comm.); the resulting values were yMg2+ = 0.2193, yC(j2+ = 0.2152 and

Yco2- ~ 0.0381. [Ca ] at salinity 37 was determined as discussed above, while [Mg ] at

salinity 37 was extrapolated from its concentrations in standard seawater (52.8 mmol/kg 

at salinity 35); the resulting value for [Mg ] was 55.9 mmol/kg. Note that the 

stoichiometric dissolution constants of both aragonite (Ka') and calcite (Kc') were 

determined in seawater media, while that for HMC ( ^Mg018cOci82cr;3) was determined in

solutions at lower ionic strength (1=0.18 instead of 0.7, which is the ionic strength of 

salinity 35 seawater, see Walter and Morse, 1984a). Due to enhanced ionic interactions 

when higher concentrations of salt are present, the solubility of HMC in these sediments 

may be greater than the literature reported values (Millero, 2001; Mucci, 1983), moving 

the HMC saturation line in Fig. 37 upward. Therefore the HMC saturation line in Fig. 37 

represents a lower limit of the actual solubility of 18 mol% HMC in these sediment pore 

waters.

After the equilibrium carbonate ion concentrations for each of the three carbonate 

phases were calculated with eqns (47)-(49), equilibrium concentrations of bicarbonate 

and carbonic acid were calculated as a function of pH using the following equations

lHC0J]jjn^n  (50)
2

[HiCOi]JJ£M££Il (51)

where K j’ and K2  are the stoichiometric dissociation constants of carbonic acid (Millero, 

2001). Equilibrium DIC concentrations were then determined as the sum of these three 

concentrations,

DIC = [H2C 03 ] + [HCO; ] + \CO]- ] (52)
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The resulting saturation lines along with values of pH and DIC for the pore water and 

bottom water samples are shown in Fig. 37. Similar to observations in Morse et al. 

(1985), the majority of the data points fall above the aragonite saturation line. In the 

deeper samples (closed circle), when DIC concentrations were greater than ~4 mmol/kg, 

the pore waters appeared to be saturated or perhaps supersaturated with respect to HMC, 

although based on the discussion above, this interpretation is highly dependent on the 

extent to which the HMC solubility line moves upward at the higher ionic strength of 

these pore waters.

3.1.4. Sulfate and Sulfide

Pore water sulfate profiles did not show any downcore trend (Fig. 33). Pore water 

sulfide levels were generally low, ranging from 10' 3 to ~1 mmol/kg and at only 4 sites 

(WS-13, WS-14, WS-15, and WS-18) did sulfide levels increase with depth (1.1-1. 6  

mmol/kg). Thus, little or no net sulfate reduction occurred in the upper 20 cm of these 

sediments. These observations were similar to previous findings in LSI sediments 

(Chapter II; Burdige et al., submitted; Burdige and Zimmerman, 2002) and those from 

sediments in analogous environments such as Florida Bay (Ku et al., 1999; Walter and 

Burton, 1990).

3.2. Stable Carbon Isotopes

3.2.1. 513C of the Organic Matter and Carbonate Sediments

Stable isotope ratios in seagrasses, benthic algae, and sediment carbonate are listed in 

Tables 17 and 18. In this study Thalassia had 513C values that ranged from -4.9 to -9.7%o, 

and these values agreed with values reported in the literature for Thalassia in similar 

environments (Fourqurean et al., 2005; Hemminga and Mateo, 1996; Lin et al., 1991; 

McMillan, 1980). Syringodium had 8 13C values that ranged from -6.0 to -7.7%o and the 

values agreed well with the values reported in the literature (Hemminga and Mateo, 

1996). Organic matter from benthic algae had 513C values that were in general agreement 

with values for calcareous algae in this region as reported by Craig (1953). However,
i-j

they were relatively enriched in C as compared to phytoplankton carbon in the 

surrounding Atlantic Ocean, which have 8 13C values of ~-21 %o (Hofmann et al., 2000).
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Table 17. Stable isotope compositions of seagrasses and some benthic macroalgaea.

Species Sampling sites 5 13C o m (% o)

Seagrasses
Thalassia testudinum WS-1, WS-25 -9.31±0.02

WS-2 -6.32±0.12
WS-3 -9.66±2.22
WS-4 -8.92±0.19
WS-11 -7.11±0.12
WS-12 -5.63i0.09
WS-13 -4.86±0.17
WS-20 -6.29i0.06

Syringodium filiforme WS-1, WS-25 -7.67±0.16
WS-3 -5.95i0.26

Benthic Algae
Penicillus sp. WS-2 -15.77i0.03
Rhipocephalus sp. WS-2 -12.76i0.08
Penicillus sp. WS-4 -15.15i0.05
Rhipocephalus sp. WS-4 -16.31i0.12
Udotea sp. WS-4 -13.71i0.05

a The 513C values of the seagrasses are average values of the leaf and rhizome/root 
tissues. All results were based on triplicate analyses of pooled.

Sediment carbonate had 513C and 6180  values that showed a close resemblance with 

literature values (Bathurst, 1971; Swart and Eberli, 2005). At some sites 513C values 

showed slight down core variability (up to l%o) but did not show any consistent trend 

with depth.

3.2.2. Thalassia 8 13C and Water Depth Relationship

Values of S13C for Thalassia were negatively correlated with water depth at the study 

sites on the Bahamas Bank and at the LSI sites (Hu and Burdige, unpubl. data). At only 

one site (WS-1) did the data significantly fall outside the 95% confidence interval of the 

regression (Fig. 38). In contrast, no similar correlation was observed between the values 

of bottom water DIC 8 13C and water depth (Fig. 38).
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Table 18. Stable isotope compositions of the Bahamas Bank carbonate sediments.

Sampling Sites Depth (cm) 8 13C Avg. 8 lsO Avg

WS-1 1 4.92 4.57±0.33 _

7 4.28 -

15 4.52 -

WS-2 1 4.05 4.17±0.18 -0.58 -0.54±0.05
9 4.09 -0.55
16 4.38 -0.48

WS-3 1 4.20 4.18±0.07 _

7 4.20 -
16 4.14 -

WS-4 1 4.66 4.11±0.48 -0.54 -0.68±0.13
6 3.89 -0.78

1 2 3.79 -0.74

WS-5 1 4.09 4.58±0.45 -0.59 -0.39±0.18
6 4.69 -0.32
15 4.96 -0.25

WS- 6 1 3.81 4.48±0.58 -0.38 -0.11±0.23
9 4.73 0 . 0 2

15 4.88 0 . 0 2

WS- 8 1 4.19 4.19±0.19
7 4.00 -

15 4.37 -

WS-9 1 4.42 4.68±0.24 -0 . 2 2  -0.15±0.06
7 4.75 -0 . 1 2

1 2 4.88 -0 . 1 1

WS-10 1 4.36 4.34±0.02 _

6 4.34 -

1 2 4.32 -

WS-11 1 4.48 4.68±0.21 -0.13 -0.04±0.08
3 4.66 -0 . 0 1

5 4.89 0.03
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Table 18. Continued.

Sampling Sites Depth (cm) 513C Avg. 5180 Avg

WS-12 1 4.32 4.28±0.29 _ .

6 3.98 -
1 0 4.55 -

WS-13 1 3.91 3.93±0.01 _ _

5 3.94 -
1 0 3.93 -

WS-14 1 4.28 4.35±0.35 -0.30 -0.22±0.16
5 4.73 -0.04

1 0 4.04 -0.32

WS-15 1 4.47 4.40±0.06 _

5 4.35 -
1 0 4.38 -

WS-16 1 3.89 3.89 - -

WS-17 1 4.91 4.71±0.19 . .

5 4.69 -
1 0 4.52 -

WS-18 1 4.52 4.62±0.15 0 . 1 2 0.16±0.07
7 4.56 0 . 1 2

1 0 4.80 0.25

WS-20 1 4.48 4.49±0.15 _

5 4.35 -
1 0 4.65 -

WS-21 1 4.51 4.64±0.14 0.28 0.25±0.03
6 4.64 0 . 2 1

1 0 4.78 0.25

WS-24 1 5.09 4.70±0.35 -0.14 -0.28±0.12
4 4.45 -0.37

1 0 4.54 -0.33
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3.2.3. 8 13C of Pore Water DIC and Calculation of 8 1 3C.hh..h

Pore water DIC 8 13C values were generally lower than bottom waters values (Fig. 34). 

At some of the sites, 513C first decreased and then increased with sediment depth, thus 

showing a mid-depth minimum. The profiles observed here are similar to previous 

observations in LSI sediments (Chapter II).

DIC in the pore waters is altered by reprecipitation and metabolic carbonate 

dissolution. Following the approach in Chapter II, the isotopic composition of the DIC 

added to the pore waters (513Cadded) was calculated using the linear regression of (813C- 

DIC)x[DIC] versus [DIC]. The results of these regressions are shown in Table 19. Fig. 39 

shows three plots of such regression at sites that represent different seagrass densities 

(i.e., WS-2, WS-10, and WS-25). In the literature, there is an alternative approach used to 

calculate 813Cadded by regressing 5 13C d ic  versus the reciprocal of the DIC concentration, 

based on the following equation (see Ogrinc and Faganeli, 2003, for details):

S nCa c = S nCM i + &1̂  (53)

Here the y-intercept is 813Cadded- Values of 5I3Cadded values obtained using eqn. (53) were 

not significantly different from those calculated using the regression of (S13C- 

DIC)x[DIC] vs. [DIC] (Paired t-test, P>0.05, data not shown), and the RMS error
1 3between these two sets of 8  Cadded values was - 0 .1 4%o, less than the analytical 

uncertainty of isotope measurements pore water DIC (0.2%o). Therefore the following 

discussion of 8 1 3Cadded will be based on values calculated from the regressions of (8 1 3C- 

DIC)xDIC vs. DIC, to maintain consistency with Chapter II.

Among the 20 sites with available pore water DIC 8 13C data, linear regressions for 

eight sites yielded statistically significant values (P<0.05). The 8 1 3 Cadded values for these 

regressions ranged from -5.41±1.66%o (W S-10) to 1.63±0.31%o (W S-15). For most
1 3regressions that were not statistically significant (P>0.05), 8  Cadded values were 

essentially indistinguishable from 0 %o.
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Table 19. Pore water DIC stable carbon isotope regression3.

Site 8 l j C added P b Cal’d 8 u C0m 8  C Seagrass (m) 8  C seagrass ( c )

WS-2 1.63±0.22 0.00 -0.92i0.25 -6.32i0.12
WS-3 -3.83±1.50 0.02 -11.83±2.96 -7.80i2.22c
WS-4 0.61±1.64 0.72 -2.89±2.80 -8.92i0.19
WS-5 -4.50±1.24 0.01 -13.58±2.03 -6.67il.64
WS- 6 -0.18±1.05 0.87 -4.83±1.52 -7.94il.95
WS- 8 0.53±0.85 0.56 -3.12±1.52 -6.34il.55
WS-9 1.34±2.60 0.63 -1.99±4.97 -6.45il.58

WS-10 -5.41il.66 0.01 -15.15±3.31 -6.73il.65
WS-11 1.43±0.28 0.00 -1.81±0.34 -7.11i0.12
WS-12 3.93il.98 0.09 3.57±3.67 -5.63i0.09
WS-13 1.10±0.27 0.00 -1.73±0.52 -4.86i0.52
WS-14 -0.09±0.57 0.88 -4.52±0.79 -6.62il.62
WS-15 1.63i0.31 0.00 -1.13±0.55 -5.63il.38
WS-16 -1.07±1.62 0.52 -6.04±3.14 -6.67il.64
WS-17 -0.30±27.11 0.99 -5.30±54.04 -7.72il.89
WS-18 0.56±0.44 0.23 -3.51i0.75 -6.29il.54
WS-20 -1.77±0.77 0.10 -8.03il.38 -6.29i0.06
WS-24 -0.92±1.34 0.52 -6.54i2.33 -7.01il.72
WS-25 -2.54±0.57 0.00 -9.66i0.82 -8 .49il.38b

3 8 13C seagrass (m) values were measured (Table 17), and 8 13C seagrass (c) values were calculated using the linear relationship 
between water depth and seagrass 8 13C  (Fig. 38) at sites with no seagrass samples collected. See section 4.3.1 for details. 

b P values were power of the linear regressions used to calculated 8 l3 C added at each site.
c WS-3 and WS-25 seagrass 8 13C  values were calculated from both Thalassia and Syringodium 8 13C  values at these sites, at 

all other sites Thalassia was the dominant seagrass species.

o
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Fig. 38. Compilations of the S13C values of (a) Thalassia and (b) bottom water DIC 
versus water depth. The filled circles are values obtain in this study, and the open circles 
are LSI seagrass 51 3C. The dashed lines represent the 95% confidence interval of the 
linear regression.
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11Fig. 39. Plots of linear regression of 8  C-DIC versus DIC in three representative sites 

in Bahamas Bank sediments (WS-2, WS-5, and WS-25).

3.3. Sr/Ca and Sr/Mg ratios

Similar to observations in other shallow water carbonate sediments (e.g., Berner, 

1966), pore water cation ratios (Sr/Ca, Sr/Mg) did not show any significant downcore 

trends in the upper 2 0 cm of sediments when compared to their respective water column 

values (Table 20). The pooled Sr/Ca values in all pore waters and bottom waters
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((8.97±0.18)xl0~3) was slightly higher than the Atlantic Ocean water value of 8.55><10' 3 

(Villiers, 1999) but similar to the IAPSO standard seawater value of 8.81 xlO' 3 (Pilson, 

1998)}. The Sr/Mg ratio was (1.71±0.06) xlO' 3 and also agreed with the IPASO value of 

1.72x1 O'3.

The solid phase Sr/Ca ratio (Table 21) showed a much higher Sr concentration than 

that expected from equilibrium inorganic precipitation of either aragonite or calcite under 

sea water conditions, consistent with the observations by Berner (1966). The partitioning 

coefficients of Sr (eqn. 54) for aragonite and calcite are 1.12±0.04 and 0.14±0.02, 

respectively (Bathurst, 1981),

O n S p n j C p ^

while the average molar concentration ratio between solid and aqueous phases in these 

sediments was 1.40±0.14. The sediment Sr/Ca ratios (11-13 mmol/mol) are similar to 

those of Long Island Sound (LIS) and Florida Bay sediments (e.g., -10 in Green and 

Aller, 2001; 9-12 mmol/mol in Rude and Aller, 1991), despite differences in the 

carbonate content of these sediments, e.g., carbonate content is 2 wt% in LIS sediments 

vs. >95 wt% in Florida Bay-Bahamas Bank sediments.

3.4. Sediment Grain Size, Porosity and Permeability

In the majority of these sediments grain sizes ranged from 200 to 800 pm, although 

sediments at WS-5, 10 and 16 were much coarser (2-6 times) than those at all other sites. 

The corresponding permeability values in these sediments were therefore 4-8 times larger 

than those at the other sites (16-39xlO'10 m2 vs. 2.2-8.5xl0 ' 1 0 m2). The calculated 

permeability values for the WS sediments were greater than in situ permeabilities 

measured at sites on the Bahamas Bank near WS-21 in this study (0.03-0.8x10-10 m2, 

Bennett et al., 1990). However, they were similar to those calculated for LSI sediments 

(>2 xlO' 1 0 m2; Burdige and Zimmerman, 2002). The calculated sediment porosities at the 

WS sites were not significantly different among the sites (45% to 56%, Table 22) and 

were similar to the in situ porosities reported in Bennett et al. (1990; 36-61%).
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Table 20. Pore water cation ratios (unit mol/mol).

Site Depth (cm) Sr/Ca (xlO3) Sr/Mg (xlO3) Mg/Ca
WS-3 0 8.936 1.690 5.288

1 9.109 1.734 5.253
4 9.164 1.685 5.438

1 0 8.900 1 . 6 6 6 5.341
15 8.988 1.735 5.180
2 0 8.925 1.660 5.378

WS-13 0 9.122 1.716 5.315
1 8.796 1 . 6 8 8 5.212
2 8.952 1.735 5.159
5 8.812 1.719 5.127
8 9.030 1.743 5.180

1 0 9.146 1.826 5.010
15 9.121 1.796 5.078
2 0 9.226 1.871 4.930

WS-21 0 8.975 1.618 5.546
1 9.028 1.663 5.430
2 8.962 1.694 5.292
4 8.801 1.674 5.257
5 8.594 1.659 5.181
8 8.975 1.720 5.218

1 0 9.046 1.696 5.335
15 8.306 1.709 4.860
2 0 8.954 1.780 5.030

WS-25 0 9.051 1.709 5.296
1 8.915 1.714 5.200
2 9.090 1.705 5.331
5 9.220 1.642 5.614
8 8.996 1.671 5.383

1 0 8.984 1.727 5.204
2 0 8 . 8 8 8 1.620 5.486

L7 CM 0 8.806 1.664 5.291
2 8.650 1.635 5.291
5 8.878 1.737 5.111

1 0 8.756 1.689 5.185
15 8.799 1.824 4.824
2 0 8.757 1.781 4.916
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Table 21. Solid phase cation concentrations (unit: ppm )a.

Sediment # Ca Mg Sr Sr/Ca
(mmol/mol)

WS-3-1 339387 8671 9306 13
WS-3-2 363026 6580 9780 1 2

WS-3-3 357727 6146 9758 1 2

WS-3 364821 7024 9729 1 2

WS-13 374944 3058 11448 14
WS-21 367464 4705 10559 13
WS-25 358916 4377 10428 13

L7 AC 351700 11533 8188 1 1

L7 CM 354409 9465 8857 1 1

L6  OS 374249 5000 10986 13

aNote that WS-3-1, WS-3-2, and WS-3-3 are replicate surface (l-2cm) sediments 
collected before, during the middle, and after filling process from the WS-3 incubation 
experiment in Chapter III. All other samples are from 8-10 cm depth at the different sites 
(see section 2 .2 ).

4. DISCUSSION

In previous studies of LSI sediments, the sediments were categorized into three broad 

classes based on seagrass density (Chapter II; Burdige and Zimmerman, 2002). However, 

this study included sampling sites across a much wider range of geographical locations 

and sediment types, as opposed to a relatively restricted study area around LSI. Therefore, 

that approach was not used here.

Previous studies of LSI sediments (Chapter II; Burdige et al., submitted; Burdige and 

Zimmerman, 2002) suggested that seagrasses can significantly enhance metabolic 

carbonate dissolution through below-ground O2 input and organic carbon deposition. 

However, the extent to which these findings are significant over the larger area of the 

Bahamas Bank is unknown. Thus it is necessary to examine relationships between 

seagrass density and carbonate dissolution or carbonate reprecipitation across a much 

broader geographical setting on the Bahamas Bank, to better understand the role of 

seagrasses in these sediment biogeochemical processes.
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Table 22. Sediment grain size distribution in the Bahamas Bank sediments a.

Site ID %wt size fractionb Mean Grain size 
(pm)

Porosity Permeability 
(xlO 1 0  m2)

> 2 0 .6 - 2 0.125-0.6 0.063 -0.125 <0.063

WS-2 0 9 78 8 5 409 49 4.4
WS-3 0 3 45 40 1 2 238 56 2 . 8

WS-4 3 19 74 3 1 587 46 6.3
WS-5 19 55 15 9 2 1 2 0 1 46 28.1
WS- 6 1 34 63 2 1 691 45 8 . 2

WS- 8 0 2 0 71 6 3 521 48 6.4
WS-9 3 28 67 1 1 678 45 7.8
WS-10 16 72 8 2 3 1319 48 39.0
WS-11 0 3 92 5 0 374 45 2.3
WS-12 1 2 51 40 6 272 51 2 . 2

WS-13 0 9 76 1 1 4 406 49 4.1
WS-14 0 23 72 4 1 558 46 5.9
WS-15 0 4 76 1 2 8 340 53 4.1
WS-16 6 50 42 0 1 940 46 16.0
WS-17 0 8 80 1 0 1 406 46 3.0
WS-18 6 8 57 2 0 9 458 54 8.5
WS-20 0 1 0 78 9 3 423 48 3.9
WS-21 0 4 63 17 16 306 58 6 . 0

WS-24 0 17 79 4 1 503 46 4.6
WS-25 (1) 0 1 1 71 13 5 425 50 4.8

a Porosity and permeability calculations are described in section 3.3. 
b size fractionation have units of mm.

o■o
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4.1. Pore Water Chemistry

As shown in section 3.1, carbonate dissolution end-products (alkalinity, DIC, and 

Ca2+) concentrations all increased with depth, whereas O2 concentration, pH, pore water 

saturation states decreased with depth. The linear relationship (1:1) between pore water 

alkalinity and DIC (Fig. 35), in conjunction with the lack of sulfate reduction and sulfide 

accumulation (Fig. 33), suggests that carbonate dissolution in these sediments was driven 

primarily by aerobic respiration, and that sulfate reduction, if it occurred, was tightly 

coupled with sulfide re-oxidation. As discussed previously the overall effect of these two 

processes is equivalent to aerobic respiration (e.g., Chapter II; Burdige and Zimmerman, 

2002; Ku et al., 1999). In general, the pore water chemistry observed across the Bank was 

consistent with the results from previous studies (Chapter II; Burdige et al., submitted; 

Burdige and Zimmerman, 2002).

Burdige et al. (submitted) observed a strong positive correlation at the LSI sites 

between pore water solute (alkalinity, DIC and Ca ) accumulation and seagrass density 

(e.g., LAI), indicating that seagrasses enhance carbonate dissolution. In contrast, no 

significant correlation between pore water solute accumulation and LAI (Fig. 40) or 

permeability (data not shown) was observed across these sites on the Bank. Instead, 

relatively low concentrations of the solutes were present at some sites with high seagrass 

densities; for example, WS-1, WS-3, WS-4, WS-12, and WS-25 all had alkalinity 

concentrations increases at depth that were less than ~1 mmol/kg despite LAI values that 

were greater than 1. Similarly, high solute concentration at depth were observed in some 

sediment with intermediate or even low LAI values, for example, WS-2, WS-13, WS-14, 

and WS-15 that had LAI of 0.4-1; or WS-8 , WS-11, WS-18, WS-21 that had LAI of 

0.07-0.19, all these sites had maximum alkalinity concentration increase greater than 1 

mmol/kg.

Calculated sediment permeability values (Table 22) suggest that pore water advection 

probably played an important role in sediment-water mass exchange processes at these 

WS sites (Burdige et al., submitted; Burdige and Zimmerman, 2002; Huettel and Webster, 

2001; Jahnke et al., 2005; Rasheed et al., 2004; Reimers et al., 2004; Rusch et al., 2006). 

Flat pore water gradients in the upper ~l-4 cm of the sediments are also consistent with 

this type of advection (Figs. 32 and 33). Because rapid pore water advection can remove
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Fig. 40. Pore water solute accumulation (AAlkt) versus LAI. AAlkT is defined as the 
difference between the average alkalinity between 1 0  and 2 0  cm and bottom water value.

respiration and metabolic dissolution end-products from the pore waters of the sediments, 

pore water gradients near the sediment-water interface do not accurately reflect reaction 

rates in these advection-controlled systems (Burdige et al., submitted). Therefore to use 

these pore water profiles to estimate rates of sediment processes and sediment-water mass 

exchange, a modeling approach is required; this will be presented in detail in section 4.4.

4.2. Dissolving Carbonate Phase

4.2.1. Implications from Pore Water Q araPnnitP

The dominant carbonate minerals in Bahamas Bank sediments are aragonite and high- 

magnesium calcite (HMC) (e.g., Chapters II and III; Morse and Mackenzie, 1990; Walter 

and Burton, 1990). In contrast, low magnesium calcite (LMC, typically less than 4 mol% 

or 1 wt% of MgCC>3 content, Milliman, 1974) does not represent a major phase in these
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sediments (<5%, Chapter III) and also has a lower solubility than either HMC and 

aragonite. Therefore, its dissolution is of less concern here.

Solubility and dissolution kinetics of different carbonate materials have been 

extensively studied (e.g., Hales and Emerson, 1997; Keir, 1980; Mucci, 1983; Plummer 

and Mackenzie, 1974; Walter and Morse, 1984a; Walter and Morse, 1984b; Walter and 

Morse, 1985). Studies carried out by Walter and coworkers examined the factors 

controlling the solubility of many biogenic carbonate phases (including grain size, 

microstructures etc), and concluded that the general solubility order is 18 mol% HMC > 

12 mol% Mg HMC ~ aragonite > calcite. Droxler (1986), however, suggested that 12 

mol% Mg HMC is more soluble than aragonite, based on carbonate mineral distribution 

in deep waters around the Bahamas Bank.

Based on these studies, the factors controlling carbonate dissolution rates are 

solubility (thermodynamic) and microstructure (kinetic). In particular, solubility control 

determines which mineralogical phase is dissolved; microstructure represented by 

"reactive surface area" controls how fast the carbonates dissolve when the saturation 

condition is met. In low latitude shallow marine environments, both water column and 

pore waters are generally close to, or supersaturated, with respect to aragonite (Bernstein 

and Morse, 1985; Morse et al., 1985; Sabine and Mackenzie, 1995; Walter and Burton, 

1990). Since little or no net sulfate reduction occurred in the pore waters at all sampling 

sites (Table 17 and Fig. 33), regressions of AAlkj and ADIC as well as ACa2+ vs. ADIC 

(Fig. 35 and 36) clearly indicate net carbonate dissolution in these sediments following 

rxns. (44)-(46).

The positive x-intercept (107±3 p. mo 1/kg ADIC) of the regression line in Fig. 35 can 

be thought of as the titration of the existing C O 3 2 '  in the pore waters by metabolic C O 2 to 

a carbonate ion concentration such that the carbonate saturation state is low enough for 

dissolution to occur (Burdige and Zimmerman, 2002; Moulin et al., 1985). To examine 

this problem I used the program C02SYS (Lewis and Wallace, 1998) to first estimate an 

average bottom water [ C O 3 2 ' ]  value (185 pmmol/kg) assuming an average bottom water 

DIC concentration (2.07 mmol/kg) and pH (8.04). If I then add 107 pmmol/kg of C O 2 to 

this water, the resulting [ C O 3 2 ' ]  will decrease to 120 pmmol/kg, a value close to the
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equilibrium [CO3 '] for 18 mol% Mg HMC (96 pmmol/kg) and similar to the asymptotic 

pore water [CO3 2'] calculated for the WS sediments (80-140 pmmol/kg).

Pore water profiles (Figs. 32 and 33) and pore water property-property plots (Figs. 35 

and 36) both suggest that metabolic carbonate dissolution is occurring in these sediments. 

At the same time, these sediment pore waters are supersaturated with respect to aragonite, 

although as the discussion in section 3.1.3 indicates, the saturation state with respect to 

HMC is equivocal. Therefore carbonate phases more soluble than aragonite (and are most 

likely HMC) are dissolving in these sediments, consistent with observations in the 

literature (e.g., Morse, 1985; Walter and Burton, 1990). Discussion in the following 

sections will more quantitatively support this suggestion.

4.2.2. Implications from Pore Water ACa2+/ADIC Stoichiometry

In muddy, diffusion-controlled sediments, i.e., where advection can be neglected, 

pore water property-property plots are often used to calculate reaction stoichiometry 

(Bemer, 1977). However, as noted above (section 4.1), mass transport near the sediment- 

water interface of the Bahamas sediments was advection-controlled due to the high 

sediment permeability at these sites. In sites where biological advection occurs (i.e., bio

irrigation), Hammond et al. (1999) have shown that this same approach can be used to 

calculate reaction stoichiometry with pore water property-property plots (also see related 

discussion in Chapter II). Therefore, it appears that these property-property plots can be 

used to examine reaction stoichiometry in permeable sediments. Thus the pore water 

ACa2+/ADIC ratio in the sediments presumably represents the production ratio of these 

two solutes, and can be used to estimate the composition of the dissolving carbonate

phase. Based on Fig. 36, apparently 1 unit of DIC production was associated with 0.31
2 +

units of Ca production. According to rxn (44)-(46), assuming dissolution was 

homogeneous (Turner et al., 1986), then the apparent dissolving carbonate should have a 

composition of Cao.6 2 Mgo.3 8 C0 3 .

However, the Mg content of HMC phases in carbonate sediments range from 8  

mole% in abiotic carbonate precipitates , to - 2 0  mole% in some calcareous organisms, 

although in some red algae the Mg content of the skeletal carbonate can reach up to -25 

mole% due to the presence of brucite (Mg(OH)2 ; Milliman, 1974; Morse and Mackenzie,
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1990; Walter and Morse, 1984a). In Chapters II and III, XRD results showed that the Mg 

content of the HMC in LSI and WS sediments (WS-3 and WS-13) was -12 to 13 mole%; 

similar Mg concentrations were also observed for sediment HMC in other sediments both 

on the Bahamas Bank and in nearby Florida Bay (Berner, 1966; Morse et al., 1985). 

Taken together, it seems that the dissolving carbonate phase in the WS sediments had a 

higher Mg content than that in the actual solid phase.

The apparent discrepancy between the pore water calcium and DIC production ratio 

and the sediment Ca content calls upon a possible incongruent dissolution mechanism, in 

which HMC dissolves at the same time that reprecipitation generates a secondary low-Mg 

carbonate (Macintyre and Reid, 1998; Morse and Mucci, 1984; Mucci, 1986; Mucci,

1987; Mucci and Morse, 1983; Reid and Macintyre, 1998; Tribble and Mackenzie, 1998; 

Walter et al., 1993). In Chapter III, I showed that if the dissolving carbonate phase was 

12 mole% Mg, then the secondary carbonate was estimated to be 8  mole% HMC, 

consistent with observations from Bahamas Bank sediments (Morse and Mucci, 1984; 

Mucci, 1987). In the following discussion I will try to estimate the rates of reprecipitation 

using the production rates of DIC and calcium and a mass balance calculation (section 

4.4).

4.3. Stable Carbon Isotope Mass Balance

4.3.1. The Relationship between Seagrass 8 13C and Water Depth

On the Bahamas Bank I have observed that Thalassia organic matter becomes more 

1 3C-depleted (i.e., S13C values become more negative) with increasing water depth (Fig. 

38). Given a narrow temperature range (22-24 °C) among these sites, and the fact that 

8 13C values of bottom water DIC did not co-vary with water depth (Fig. 38), it seems 

unlikely that such factor could explain these observations. However, a similar 

relationship between seagrass S13C and light intensity has been observed for other 

seagrass species (Cooper and DeNiro, 1989; Grice et al., 1996), and here, light intensity 

controlled by water depth could explain these observations. Because the growth of the 

seagrasses is C0 2 -limited, decreasing rates of photosynthesis with increasing water depth 

lead to greater isotopic fractionation, therefore seagrass organic carbon was more 

depleted in 13C at deeper depths (Durako and Hall, 1992; Durako and Sackett, 1993;
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Hemminga and Mateo, 1996; Zimmerman et al., 1997). In contrast though, seagrass 

growth rates at the study sites on the Bahamas Bank were likely not light-limited, 

because in situ values of photosynthetically active radiation (PAR) were above the 

saturation values for these seagrasses (Zimmerman, pers. comm.). This therefore seems 

contradictory to the irradiance control on seagrass carbon isotopic fractionation described 

above. Further study is clearly needed to determine the actual controls on seagrass carbon 

isotopic fractionation on the Bahamas Bank. Nevertheless, for the modeling exercise in 

the next section it appears reasonable to use the empirical relationship in Fig. 38 to 

estimate seagrass 8 13C values for sites at which no seagrass samples were collected.

These values are also listed in Table 19.

4.3.2. Stable Carbon Isotope Evidence for Carbonate Reprecipitation

If carbonate dissolution and organic carbon oxidation are the sole processes

contributing DIC to the pore waters, then the following mass balance equation can be

written (also see Chapters II and III):

# ,C ^ = f o u x # sCOM+f c xt?,Cc (55)

where foM =fc = 0.5 based on metabolic carbonate dissolution (i.e., rxn 44-46). Based on

the values of 5 13C added determined in section 3.2.3 (Table 19) and the measured values of

5 13Cc (Table 18), 5 13C om values can then be back-calculated using eqn (55). These are

also shown in Table 19.

Seagrass detritus is generally considered to be the dominant carbon source for

microbial respiration in seagrass vegetated sediments in oligotrophic tropical

environments, where other types of carbon sources (for example, algal detritus) are

limited (Boschker et al., 2000; Holmer et al., 2001; Jones et al., 2003). Therefore if I

compare the calculated values of 5 13C om with either the measured or estimated values of

8 13C seagrass I see that these sediments can be roughly divided into 3 groups: ( 1 ) S13C om >

S13C seagrass, at sites WS-2 , 4, 6 , 8 , 9, 1 1 , 1 2 , 13, 14, 15, and 18; (2 ) 8 13C 0m ~ S13C seagrass, at

sites WS-3, 16, 17, 20, 24, and 25; (3). 8 13C om < 51 3Cseagrass, at sites WS-5 and WS-10. If

I define 8 Cseagrass ~ 6 C om as A Cseagrass-o m and then plot A8 Cseagrass-OM versus LAI, no
11clear trend was observed. However A8 C seagrass-OM showed a weak, but significant
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positive correlation with sediment grain size (Fig. 41). This will be further discussed in 

section 4.4.

Based on Chapters II and III, if the calculated 813Com is greater than the 8 13C seagrass as 

in Group (1) sediments, then presumably there is coupled dissolution/ reprecipitation 

occurring in the sediment. This process enriches the pore water DIC pool with C as a 

results of “heavy” carbonate carbon ( 8 13C  approx. 4-5%o) passing through the DIC pool 

during this coupled process. An alternate explanation of these results is that there is an 

organic carbon source to these sediments that is heavier than the seagrasses on the 

Bahamas Bank. This seems particularly unlikely since both benthic algae and 

phytoplankton produce organic carbon that is isotopically lighter than seagrasses (Table 

17; also see Hofmann et al., 2000). Therefore even if lighter carbon were contributing to 

the organic carbon pool, this would only increase the difference between the calculated 

value of 813Com and the mixed 813C value of the materials being remineralized.

For the two Group (3) sediments, the calculated 8 13C om  values were similar to those 

of benthic algal materials, although LAI values were not zero at either site and seagrass 

material could likely contribute to the pool of organic matter being remineralized. On the 

other hand, the sediments at these sites were the coarsest among all studied sites (Table 

22), and soft-bodied green macro-algae were clearly visible at WS-10 (F. Neuweiler, 

pers. comm.). Thus it appears that either benthic algal carbon or a mixture of 

seagrass/algal carbon may be remineralized at these two sites. A detailed mechanism for 

the transport of algal materials into these sediments is discussed in section 4.4.

In Group (2) sediments, the calculated values of 813Com seemed to suggest that 1:1 

mixing of the two carbon sources (seagrass vs. carbonate) could adequately explain the 

pore water 8 13C results. However, with some uncertainty of the exact organic carbon 

source (algae vs. seagrass, for example in the Group (3) sediments), it is difficult to 

unequivocally ascertain whether carbonate dissolution alone was occurring in these 

sediments. Furthermore, Group (2) sediments included sites WS-3 and WS-25, where 

very high seagrass densities were observed. This observation appeared to contradict our 

previous findings in LSI sediments where carbonate reprecipitation occurred solely in 

densely-vegetated sediments (Chapter II). To further examine this discrepancy, a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



115

diagenetic modeling approach is needed in addition to these stable isotope isotopic mass 

balance calculations. This will be presented in the next section 4.4.

4.4. Coupled O2 input and Carbonate Dissolution Model

In fine-grained sediments, diagenetic models that consider diffusion, bioturbation and

O.0
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Fig. 41. The relationships between A 13C Seagrass-oM  and (a) seagrass L A I ,  (b) mean 
grain size. The solid line in (b) is the linear regression that produces the best fit at the 
P<0.005 level, and the dashed line defines where the calculated 51 3Cqm using the mass
eqn. (55) equals 8 13Cseagrass*
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bioirrigation are well developed and have been widely used (e.g., Boudreau, 1997; 

Burdige, 2006). However, in the coarse grained sediments such as theses at the WS sites, 

both seagrass O2  input at sediment depth and high sediment permeability (Table 22, 

Huettel and Webster, 2001) makes it difficult to apply such commonly-used models, 

because transport processes associated with permeability are not well-understood or 

quantified. Nevertheless, empirical models describing non-diffusive solute transport in 

permeable sediments have been recently reported in the literature and provided 

reasonable fits to field data (e.g. Jahnke et al., 2005).

To address the apparent mass imbalance between the extent of carbonate dissolution 

and O2 input (Burdige and Zimmerman, 2002; Ku et al., 1999; Walter and Burton, 1990), 

Burdige et al. (submitted) developed an advection-diffusion-reaction (ADR) model and 

applied it to LSI sediments to estimate carbonate dissolution rates. Here this model will 

be further used to study the reaction rates across a broader expanse of the Bahamas Bank.

4.4.1. Model Description

The ADR model is discussed in detail in Burdige et al. (submitted) and will be briefly 

presented here. The ADR equations for O2 and other solutes (alkalinity, DIC, Ca2+) are 

written as follows

0 = Ds ^  + P ( z ) - A ( z ) - R ( z )  (56)
oz

0 = D , ^ r - A ( z )  + R(z) (57)
OZ

Eqn. (56) is the O2  ADR equation, and eqn. (57) is the ADR equation for alkalinity, 

DIC and Ca2+. In these equations Ds is the molecular diffusion coefficient corrected for 

tortuosity (Burdige, 2006), C is pore water concentration, z is sediment depth starting at 

the sediment-water interface, P(z) is below-ground seagrass O2  input, R(z) is O2  

consumption (eqn. 56) or solute production (alkalinity, DIC, and Ca2+, eqn. 57), and A(z) 

is the term describing the non-local advective transport defined as:

A(z) = a z( C - C 0) (58)

In this equation Co is the bottom water concentration, and az is the non-local exchange 

coefficient defined as:
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a 2 = cc0e - f l z (59)

where ao and P are constants that define the depth attenuation of az (e.g., Reimers et al., 

2004). Note that in a few studies (e.g., McNichol et al., 1988; Ogrinc and Faganeli, 2003) 

az is assumed to be a constant over some fixed sediment interval, hence P then equals to 

0 .

Below-ground O2  flux (P(z)) is obtained from the seagrass LAI and below-ground 

biomass distribution (Fig. 42), assuming a 9-hr average daily solar irradiance at light- 

saturated level and a “per plant” below ground seagrass O2  input rate of 1 . 2  mmol/m2 ieaf/h 

(Bodensteiner, 2006). Note that although both Thalassia and Syringodium were observed 

in WS-3 and WS-25 sediments, to a first order approximation, only the below-ground 

biomass distribution of Thalassia was used to calculate depth-dependent O2 input by 

seagrasses. However at these sites O2 input was calculated using the combined LAI of 

Thalassia and Syringodium.
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Fig. 42. Thalassia plant underground biomass distribution.
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This model can be used to calculate depth-dependent reaction rates (i.e., O2  

consumption, alkalinity, DIC, and Ca2+ production). Then from the integration of the 

reaction rates to studied depth (i.e., 20 cm), I can obtain the depth-integrated rates. Given 

the way that the model is formulated, the only variables in this model are ao and /?. 

Therefore the “best-fit” values of ao and p  should predict depth-integrated rates that 

satisfy the following mass balance constraints:

2 • DIRO = DIRD = DIRA (60)

in which DIRO, DIRA, DIRD, and DIRC are the depth-integrated rates for O2 

consumption, alkalinity, DIC, and Ca2+ productions, respectively, ao and /? values were 

arbitrarily constrained to the ranges of 0 - 2 0  d' 1 and 0 - 1  cm' 1 based on discussions in the 

literature (Burdige et al., submitted; Jahnke et al., 2005), and then the model was solved 

by varying ao and /? values at 0 . 0 1  d' 1 and 0 . 0 1  cm' 1 step sizes, to achieve the minimum 

error {err) value as defined below

1 \2DIRO-DIRA\ \i d i r o  ~d ir d \ \DIRD-DIRA\
err = - { — ------------------- — + —   — + — ----------------- -— } (61)

3 0.5(2DIRO + DIRA) 0.5(2DIRO + DIRD) 0.5(DIRD + DIRA)

where each term inside the bracket represents the “error” of each of the three mass

balance constraints (eqn. 60). A MatLab® script (Appendix E) was used in the model

calculations following the approach in Burdige et al. (submitted). Note that depth

integrated reaction rate is equivalent to the flux at sediment water interface (Burdige,

2006). As shown in rxn. (46), 1 unit of metabolic carbonate dissolution produces 2 units

of alkalinity and DIC and consumes 1 unit of O2 . Therefore, carbonate dissolution flux

(CD) was calculated as

CD = 0.5 DIRA = 0.5DIRD = DIRO (62)

The error in CD is defined as the standard deviation of the three CD values calculated

using the different approaches in eqn. (62).

Depth integrated calcium production {DIRC) was not used in the fitting process, since

based on Chapters II and III and studies by others (Rude and Aller, 1991; Walter et al.,

1993; Walter et al., 2006) the occurrence of carbonate dissolution/ reprecipitation leads to

unproportional pore water [Ca2+] changes compared to the solid phase composition.

Furthermore, the ability to incorporate this observation into mass balance constraints such

as those in eqn. 60 requires accurate knowledge of the compositions of both the
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dissolving phase as well as the secondary carbonate that reprecipitates. However, DIRC 

may be used to help better constrain the compositions of these phases as discussed in 

section 4.4.3.

4.4.2. Results of the Model Calculations - O? Consumption and Metabolic Dissolution

Metabolic O2  consumption in the sediments (DIRO) is driven by three processes that 

deliver O2 to the sediments - diffusion across the sediment-water interface, below-ground 

O2  input from seagrasses, and permeability-related advection. The results are listed in 

Table 23.

The relationships between DIRO and LAI for LSI and WS sediments were found to 

be not significantly different by ANCOVA (MS = 171, MS err = 41, F = 4.17, df = 1, 25, 

P = 0.052). Similarly, relationships between CD and LAI for these two sets of sediments 

were not significantly different either by ANCOVA (MS = 163, MS err = 41, F = 4, d f= 

1, 25, P = 0.057). Therefore combing the WS results with previous LSI results (Burdige 

et al., submitted), DIRO and CD were both found to be positively correlated with 

seagrass density (Fig. 43a and Fig. 44). The slopes of the linear regression lines were 

significant (P<0.0001) and the y-intercepts were not significantly different from zero 

(P>0.05). While advective O2 input in WS sediments was positively correlated with LAI 

(Fig. 43b), a negative slope exists for the LSI sediments. These relationships were found 

to be significantly different by ANCOVA (MS = 174, MS err = 41, F = 4.27, df = 1, 25, P 

= 0.049). Diffusive O2  input is a minor contributor to DIRO (6 % or less, at most) and was 

not correlated with LAI (Fig. 43c). This observation further confirmed earlier discussion 

that O2 diffusion played a negligible role in the total O2 input to these sediments (vs. 

advection and seagrass pumping, Table 24). Due to the approach with which seagrass O2 

input was defined, this input is a linear function of seagrass LAI (Fig. 43c).

In the LSI study, Burdige et al. (submitted) observed a negative correlation between 

advective O2  input and seagrass LAI in vegetated sediments, while Fig. 43(b) shows that 

such a relationship was positive in the WS sediments. Burdige et al. (submitted) 

attributed this inverse relationship to a decreased pressure gradient at the sediment water 

interface with increasing LAI, caused by a reduction in horizontal flow through the
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Table 23. O2  input through diffusion, advection and seagrass pumping (unit: mmol/m2/d )a.

Site LAI DIRO Advection Diffusion Plant

WS-2 0.96±0.04 12.5 2.2(18%) 0 . 0  (0 %) 10.3 (82%)
WS-3 1.37±0.08 41.8 27.0 (65%) 0 . 0  (0 %) 14.8 (35%)
WS-4 1.72±0.06 57.1 38.5 (67%) 0 . 0  (0 %) 18.6 (33%)
WS-5 0.03±0.02 3.2 2.9 (90%) 0 . 0  (0 %) 0.3 (10%)
WS- 6 0 nc nc nc nc
WS- 8 0.19±0.03 2.7 0 . 6  (2 2 %) 0.08 (3%) 2.0 (75%)
WS-9 0 6.5 6.4 (98%) 0 . 1 1  (2 %) 0 . 0  (0 %)

WS-10 0 .0 2 ±0 . 0 0 1.4 1.2 (84%) 0 . 0 1  ( 1 %) 0.2(15%)
WS-11 0.07±0.01 1.4 0.7 (45%) 0.07 (5%) 0.7 (50%)
WS-12 1.40±0.05 20.9 5.7 (27%) 0.07 (0%) 15.1 (72%)
WS-13 0.53±0.04 7.1 1.3 (19%) 0 . 0  (0 %) 5.8(81%)
WS-14 0.41±0.02 5.3 0.9(16%) 0 . 0 1  (0 %) 4.4 (83%)
WS-15 0.86±0.04 10.5 1.3(12%) 0 . 0 0  (0 %) 9.2 (8 8 %)
WS-16 0 nc nc nc nc
WS-17 0.33±0.01 nc nc nc nc
WS-18 0.17±0.01 2 . 6 0.7 (26%) 0.08 (3%) 1.9 (71%)
WS-20 0.77±0.04 nc nc nc nc
WS-21 0.07±0.01 1 . 2 0.4(31%) 0.08 (6 %) 0 . 8  (62%)
WS-24 0.25±0.02 15.7 12.9 (82%) 0 . 1 2 ( 1 %) 2.7 (17%)
WS-25 3.73±0.40 80.1 39.8 (50%) 0 . 0  (0 %) 40.2 (50%)

nc=no convergence.
The ADR model did not converge for the data from WS-6 , WS-16, WS-17, and WS-20 sites using 

the ranges of ao and /? values described in the text (see section 4.4.1 for details).
a The data in parentheses are percentage of O2  input by each of the transport mechanisms (see eqn. 

56 and section 4.4.1 for details).
too
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Table 24. Reaction rates calculated using the ADR model (units: mmol/m2 /d) a.

Site LAI DIRO DIRA DIRD err CD DIRC Jrp
( 1 .0 )

Jrp
(0.92)

WS-2 0.96±0.04 12.5 26.3 24.0 3% 12.6±0.3 6.9 34.9 104.8
WS-3 1.37±0.08 41.8 81.0 86.4 2 % 41.8±0.8 31.9 40.8 122.4
WS-4 1.72±0.06 57.1 113.9 114.2 0 % 57.0±0.1 63.4 hm hm
WS-5 0.03±0.02 3.2 3.5 6.4 39% 2.7±0.5 2.7 hm hm
WS- 6 0 nc nc nc nc nc nc nc nc
WS- 8 0.19±0.03 2.7 5.3 5.6 2 % 2.7±0.0 1.4 7.9 23.64
WS-9 0 6.5 13.0 13.2 1 % 6.5±0.1 nn nn nn

WS-10 0 .0 2 ±0 . 0 0 1.4 2 . 8 2.9 0 % 1.4±0.0 0 . 1 9.3 27.9
WS-11 0.07±0.01 1.4 2.9 2.9 1 % 1.5±0.0 28.9 hm hm
WS-12 1.40±0.05 20.9 41.7 41.8 0 % 20.9±0.0 51.9 hm hm
WS-13 0.53±0.04 7.1 14.1 14.3 0 % 7.1±0.0 5.0 1 0 . 6 31.7
WS-14 0.41±0.02 5.3 10.5 10.7 1 % 5.3±0.0 4.5 1 . 0 3.1
WS-15 0.86±0.04 10.5 20.9 2 1 . 8 3% 10.6±0.3 7.3 16.8 50.4
WS-16 0 nc nc nc nc nc nc nc nc
WS-17 0.33±0.01 nc nc nc nc nc nc nc nc
WS-18 0.17±0.01 2 . 6 5.1 5.4 1 % 2 .6 ± 0 . 0 1.5 6.4 19.3
WS-20 0.77±0.04 nc nc nc nc nc nc nc nc
WS-21 0.07±0.01 1 . 2 2 . 6 2.4 2 % 1 .2 ±0 . 0 0.7 3.4 1 0 . 2

WS-24 0.25±0.02 15.7 31.4 31.4 0 % 15.7±0.0 7.8 50.0 149.8
WS-25 3.73±0.40 80.1 159.8 161.0 0 % 80.2±0.4 56.7 115.5 346.6

nc=the model did not converge for the data from these sites (WS-6 , WS-16, WS-17, and WS-20, i.e., see Table 23); 
nn=a negative value of DIRC was obtained (WS-9);
hm=using the calculated DIRC, a secondary carbonate phases with a lower Ca content than the starting phase was 

predicted. This is not supported by experimental evidences (see section 4.4.3 for details).
* The two sets of Jrp values were calculated assuming two different secondary carbonate, i.e., CaC0 3 (1.0) and 

Cao.92Mg0.o8C03 (0.92).
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Bank sediments) and the open circles are from Burdige et al. (submitted) from LSI 
sediments. All fluxes on y-axes are mmol/m2/d. Note the inverse relationship between 
advective O2  input and LAI for LSI sediments.
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canopy as seagrass density increases. This can be seen in Darcy’s Law, which shows that 

advective pore water flow is a linear function of the near seabed pressure gradient, 

k dPq = — —  (63)cpr/ oz

where q is pore water flow rate, k is permeability factor, (p is sediment porosity, r\ is pore 

water viscosity, and dP/dz is the near-seabed pressure gradient (Boudreau, 1997). This 

explanation therefore resembles a scenario in Koch and Gust (1999), in which a tide- 

dominated system (unidirectional flows) leads to "skimming flows" over the seagrass 

canopy, thus decreasing the mixing between the water above and within the meadow. 

Similar effect may also impact the exchange of pore waters and bottom waters within the 

meadow since the deflection of the bottom water motion by the seagrass canopy renders 

this portion of the water column in the meadow relatively static. Therefore the pressure 

gradients are expected to decrease as the density of the seagrasses increases. Consistent 

with this explanation is the fact that water flow around the LSI sites is strongly 

dominated by diurnal tidal flow, due to the location of these sites near cuts between the 

Exuma Cays and Exuma Sound.

On the other hand, the WS sites are farther away from land masses (Fig. 31; for a 

comparison of site locations see Fig. 2 in Chapter II) and tidal motion presumably is 

much less important in terms of generating pressure gradients that facilitate advective 

pore water flow. However, a different hydrodynamic situation, namely wave-dominated 

motion (oscillatory flow), may occur at these sites. This motion actually increases the 

exchange between the water above and within the meadow by "opening" and "closing" 

the canopy during this oscillatory flow (Koch and Gust, 1999), and may subsequently 

enhance the pore water-bottom water exchange. The strong prevailing winds on the 

Bahamas Bank that persisted throughout our WS cruise may have also further contributed 

to bottom water motion at these studied sites (Dierssen et al., ms. in prep.). In shallow 

waters, such strong winds are known to generate Langmuir "supercells", as the wind 

strength increases, eventually leading to oscillatory water motion that reaches the full 

depth of the water column and may even cause resuspension of fine grained sediments 

(Gargett et al., 2004).

The model results showed that total, advective, diffusive O2  input, and carbonate
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Fig. 44. The relationship between carbonate dissolution and seagrass LAI. Linear 
regressions (solid lines) produce the best fit at PO.OOOl level. The upper panel shows a 
linear regression between CD and LAI (a); and the lower panel shows a linear regression 
between the log-transformed CD and LAI (b). In (b) the data satisfy normality and 
constant variance tests.

dissolution rate do not show any correlation with sediment permeability, and the high 

permeability sediments at WS-5 and WS-10 (28xlO'10 m2 and 39xlO'10 m2) show low 

overall O2  input rates and rates of carbonate dissolution (Fig. 45). Although Darcy's Law 

indicates that the pore water advective flow is a linear function of sediment permeability 

(eqn. 63), this flow is also controlled by hydrodynamic activity, benthic topography, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



125

seagrass vegetation that may all potentially affect the near seabed pressure gradient (i.e., 

the term dP/dz in eqn. 63; Falter and Sansone, 2000; Huettel and Webster, 2001; Jahnke 

et al., 2005; Koch and Gust, 1999; Rasheed et al., 2004; Walter and Burton, 1990). 

Therefore the lack of observed correlation between the modeled rates and sediment 

permeability is not necessarily surprising.

Based on above discussion, it is clear that more field studies are needed. In particular, 

the application of a recently developed eddy correlation technique (Berg et al., 2003) can 

be used to measure sediment O2 uptake in a non-invasive way in these coarse grained 

sandy sediments. These results can then be compared with the model-derived estimates of 

sediment O2  uptake to further constrain results from the ADR model.

4.4.3. Results of the Model Calculations - Carbonate Reprecipitation

Pore water A[Ca2+]/ADIC plots (Fig. 36) suggest that the apparent dissolving 

carbonate phase(s) has a much lower Ca content (62 mole%) than that of the HMC in 

these sediments (88 mole% Ca, see section 4.2.2), and the lower net Ca2+ production rates 

in the pore waters may be explained by incongruent carbonate dissolution (section 4.2.2). 

Therefore from the depth integrated Ca2+ production and carbonate dissolution rates 

(DIRC and CD), the following equation can be written based on the discussion in Chapter 

III (eqn. 40):

DIRC = a x {CD + J rp) - b x  J  rp (64)

where Jrp is depth integrated reprecipitation rate, and a and b are the calcium content in 

the original and reprecipitated carbonates, respectively. In solving this equation for Jrp, I 

assume that the dissolving carbonate had a Ca content based on our XRD results in 

Chapter II and III (i.e., a=0.88). Jrp was then calculated using eqn. (64) assuming two 

possible compositions for the reprecipitated carbonate phase - Cao.9 2 Mgo.o8C0 3  (i.e., 

b=0.92) and CaCC>3 (i.e., b=l). The former phase corresponds to the composition of the 

HMC overgrowth formed in Bahamian sediments (Morse and Mucci, 1984; Mucci, 1987) 

and is also consistent with the composition of the secondary carbonate phase predicated 

by the results of the incubation studies in Chapter III. The latter is a carbonate phase with 

no Mg (i.e., calcite). It is noted, however, that for some sites (e.g., WS-4, WS-5, WS-11, 

and WS-12) the calculated DIRC/CD ratios were greater than 0.88 (the Ca content in the
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dissolving materials). Although eqn. (64) is still mathematically valid, it requires the 

reprecipitated carbonate to have a lower Ca content than the dissolving phase. Since this 

is not supported by experimental evidences (Morse and Mucci, 1984; Mucci, 1987; 

Tribble and Mackenzie, 1998), Jrp was not calculated for these sites.
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Fig. 45. The relationships between sediment permeability and (a) DIRO, (b) advective 
O2  input, and (c) carbonate dissolution. All fluxes on the y-axes are mmol/m2/d.
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The calculated carbonate reprecipitation fluxes (Jrp) ranged from 1.0-3.1 mmol/m2/d 

at site WS-14 to 116-347 mmol/m2/d at site WS-25. In studies of Florida Bay sediments, 

Rude and Aller (1991) calculated that the calcite reprecipitation flux was 17.4 mmol/m2/d 

when there was no fluorapatite formation, and a much higher Jrp was also calculated at 

the same time for a scenario with fluorapatite formation (46 mmol/m2/d). Similarly, 

Walter et al. (1993) estimated a carbonate reprecipitation flux of 400 pmol/cm2/yr 

(equivalent to 11.0 mmol/m2/d) through 45Ca isotope exchange experiments in both 

Florida Bay and Bahamas Bank sediments.

At any site the estimates of Jrp depend on the choice of the secondary carbonate phase 

that is assumed to reprecipitate (i.e., CaCC>3 or Cao^Mgo.osCOs). These reprecipitation 

calculations are also very sensitive to the assumed composition of the dissolving 

carbonate. For example, if the dissolving HMC phase is assumed to be 15 mole% Mg 

(e.g. Bischoff et al., 1993), then the range in Jrp becomes 0 to 76 mmol/m2/d for CaCC>3 

and 0 to 164 mmol/m2/d for Cao^MgoosCCb. Therefore the reprecipitation rates here are 

taken at a relative sense and their relationship with seagrass densities and sediment 

properties can only be used in a qualitative fashion. For the simplicity of the following 

discussion, the Jrp values based on Cao^Mgo.osCCb reprecipitation were used.

Jrp increased with increasing seagrass density (i.e., LAI, Fig. 46), consistent with our 

previous field study in LSI sediments; and the rate did not show any significant 

correlation with sediment permeability (Table 24). When plotting Jrp and CD together, a 

positive correlation clearly exists (Fig. 47). Note the LSI sites with significant amounts of 

reprecipitation were all densely vegetated sites (AC, CM, and NC, see Burdige et al., 

submitted, for details). The correlation between carbonate dissolution and reprecipitation 

supports the suggestion in Chapter II that enhanced metabolic activity (i.e., metabolic 

carbonate dissolution) may cleanse the carbonate grain surfaces that are coated with 

dissolved organic matter that can inhibit precipitation (e.g., Berner et al., 1978; Mucci, 

1987, Morse, 1984); this will then facilitate the reprecipitation process.

More importantly, the results in Fig. 47 indicates that Jrp /CD is roughly constant (= 

4.4) in both the WS and LSI sediments. This ratio is also the same as Rrx (the 

reprecipitation ratio) discussed in Chapters II and III, and Table 25 clearly indicates that
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Fig. 46. The relationship between the carbonate reprecipitation flux and seagrass LAI. 
The solid line is the best-fit straight line through all data points. Assume Cao.92Mgo.o8C03 
is the secondary carbonate. The closed circles are from this study, and the open circles 
are from Burdige et al. (submitted).

Table 25. Reprecipitation ratio (Rrx) in carbonate sediments.

Location Rrx (Or Jrp/CD) Method Source
LSIa 3.3-3.8 Carbon isotope model Chapter II
W Sb 0.9-2.1 Carbon isotope model Chapter III
WS and L SIc 4.4±0.9 ADR model This study
Florida
Bay/Bahamas 1.1-2.0 Calcium isotope model (Walter et al., 1993)
Bank d
Florida B aye 3.1-6.6 Trace element (F) (Rude and Aller, 1990)

a. Derived from the application of a closed-system model to pore water profiles.
b. Derived from closed-system incubations.
c. Calculated using the pore water ADR model and Ca mass balance.
d. Derived from a closed-system incubation.
e. Derived from a trace element (F) study.
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Fig. 47. Carbonate reprecipitation versus dissolution. The solid line is the best-fit 
straight line through all data point. The solid line is the best-fit straight line through all 
data points. Assume Cao ̂ Mgo.osCOa is the secondary carbonate. The closed circles are 
from this study, and the open circles are from Burdige et al. (submitted).

the values are roughly consistent no only with each other, but with literature reported 

values (Walter et al., 1993; Rude and Aller, 1990). Despite the distinctively different 

approaches used in all of these studies, this agreement suggests that carbonate 

reprecipitation has a common feature in carbonate diagenesis in these tropical shallow 

water carbonate sediments, i.e., the rate of reprecipitation is rather constant relative to the 

rates of net dissolution, as well as gross dissolution.

4.4.4. The Controlling Factors of Carbonate Dissolution/Reprecipitation

Seagrass vegetation appears to be the dominant controlling factor in metabolic 

carbonate dissolution (Fig. 43a and Fig. 44), further confirming previous suggestions that 

seagrasses play an important role in resolving the mass balance problem between the O2  

input and amount of carbonate dissolution (Ku et al., 1999; Walter et al., 1993; Walter 

and Burton, 1990). The results of this study were also consistent with our previous work
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in LSI sediments (Burdige et al., submitted). Seagrass not only enhances O2 input, but 

they also directly or indirectly enhance organic matter deposition in the sediments, which 

also enhance carbonate dissolution.

According to the carbonate dissolution/reprecipitation model, when reprecipitation 

occurs pore water DIC becomes more enriched in 13C, and the apparent 813C of the 

organic carbon undergoing remineralization (813Com in eqn. 55) is greater than that of the 

seagrass organic matter. Based on the calculations using the ADR model, Group (1) 

sediments all showed moderate to high carbonate reprecipitation fluxes (3.1-104.8 

mmol/m2/d, Table 26), and these results agreed well with prediction using the pore water 

DIC 13C data that carbonate reprecipitation occurs in these sediments. Due to the small 

and irregular [Ca2+] changes (A[Ca2+] -0.2 mmol/kg) in the Group (3) sediments, the 

DIRC calculation was imprecise, making the calculation of reprecipitation flux ( Jrp) 

unreliable and its occurrence in these sediments unreliable.
11

In the Group (2) sediments, mass balance calculation with the 8 C of pore water DIC 

showed no evidence of carbonate reprecipitation, assuming that only seagrass organic 

matter undergoes remineralization in these sediments (section 4.2). However, for two 

densely vegetated sites (WS-3 and WS-25) and a moderately vegetated site (WS-24, the 

ADR model yielded high carbonate reprecipitation fluxes at these sites (122-347 

mmol/m2/d). A possible explanation for this observation is that if seagrass organic matter 

is remineralized and reprecipitation also occurs, then a lighter carbon source (e.g., algal 

carbon) must also be remineralized, to counter the heavy carbon being added to the pore 

waters by carbonate dissolution and reprecipitation. When examining the locations of the 

Group (2) sites, it can be seen that all are located along the Bank margin to the northwest 

of Andros Island. Abundant nutrient supply from the adjacent oceanic waters in this 

region may support relatively higher algal production as compared to the generally 

oligotrophic Bahamas Bank waters, and consistent with this, the highest seagrass LAI 

values observed were on this portion of the Bank (Table 16). Therefore remineralization 

of a mixture of organic matter (algal and seagrass carbon) will contribute DIC to the pore 

water DIC pool that is lighter than that resulting solely from the remineralization of 

seagrass material. The supply of 13C-depleted organic carbon to the sediments may 

originate from the wind-driven Langmuir supercell as discussed above. It is noted,
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Table 26. A comparison between the predictions of carbonate reprecipitation in the Bahamas Bank sediments using the stable 
isotope technique and the ADR model.

Group Site LAI 8 13Com ( % o)  a 8 13C Seasrass (%°) 8 CD b Jro(0.92)b
( 1 ) WS-2 0.96±0.04 -0.92±0.25 -6.32±0.12 12.6±0.3 104.8

WS-4 1.72±0.06 -2.89±2.80 -8.92±0.19 57.0±0.1 hm
WS-6 0 -4.83±1.52 -7.94±1.95 nc nc
WS-8 0.19±0.03 -3.12±1.52 -6.34±1.55 2.7±0.0 23.64
WS-9 0 -1.99±4.97 -6.45±1.58 6.5±0.1 nn

WS-11 0.07±0.01 -1.81±0.34 -7.11±0.12 1.5±0.0 hm
WS-12 1.40±0.05 3.57±3.67 -5.63±0.09 20.9±0.0 hm
WS-13 0.53±0.04 -1.73±0.52 -4.86±0.52 7.U0.0 31.7
WS-14 0.4U0.02 -4.52±0.79 -6.62±1.62 5.3±0.0 3.1
WS-15 0.86±0.04 -1.13±0.55 -5.63±1.38 10.6±0.3 50.4
WS-18 0.17±0.01 -3.51 ±0.75 -6.29±1.54 2.6±0.0 19.3

(2) WS-3 1.37±0.08 -11.83±2.96 -7.80±2.22 41.8±0.8 122.4
WS-16 0 -6.04±3.14 -6.67±1.64 nc nc
WS-17 0.33±0.01 -5.30±54.04 -7.72±1.89 nc nc
WS-20 0.77±0.04 -8.03±1.38 -6.29±0.06 nc nc
WS-24 0.25±0.02 -6.54±2.33 -7.0U1.72 15.7±0.0 149.8
WS-25 3.73±0.40 -9.66±0.82 -8.49±1.38 80.2±0.4 346.6

(3) WS-5 0.03±0.02 -13.58±2.03 -6.67±1.64 2.7±0.5 hm
WS-10 0.02±0.00 -15.15±3.31 -6.73±1.65 1.4±0.0 27.9

Note nc, nn, and hm are defined in Table 24.
a 513C values of the organic matter apparently undergoing remineralization (8 13C om) and seagrasses (5 13C seagrass) are from Table 19. 
b Carbonate dissolution and reprecipitation rates are from Table 24.
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however, that if the input of algal materials indeed plays a role in sedimentary organic 

carbon remineralization, then the mixing of seagrass carbon and algal carbon should 

demonstrate a seasonal pattern, since the wind speeds on the Bahamas Bank vary over a 

annual cycle (strongest in the Spring and Fall, see Dierssen et al., ms. in prep.).

In the context of the discussion above, when Fig. 41 is re-examined, it shows that the 

apparent 5 13Com becomes more enriched in 13C as sediment grain size decreases. 

Expressed another way, it appears that reprecipitation that contribute heavy DIC to the 

pore waters becomes more evident in the finer-grained sediments. This observation is 

consistent with Ostwald ripening process, in which smaller grains dissolve and secondary 

carbonate forms on larger grains, thereby reducing carbonate surface energy (Hover et 

al., 2001; Walter etal., 1993).

Nevertheless, on a much broader expanse of the Bahamas Bank, it seems that it is not

always appropriate to assume that seagrass carbon is the sole carbon source being
11

remineralized in the sediments. Therefore to gain the knowledge of the exact 8 C value 

of the remineralizing carbon, compound-specific isotope studies on bacterial biomass 

such as those in Holmer et al. (2001) may help to better constrain the actual organic 

carbon being remineralized in the sediments and help to improve the application of stable 

carbon isotopes in such mass balance studies.

4.5. Carbonate Dissolution on the Bahamas Bank - the Regional Significance

Our previous study of LSI sediments (Burdige et al., submitted) used a relationship 

between LAI and carbonate dissolution rate (CD) such as that in Fig. 44a to predict the 

carbonate dissolution flux for the entire Bahamas Bank. The result agreed reasonably 

well with literature reported values (Ku et al., 1999; Milliman, 1993; Rude and Aller, 

1991; Walter and Burton, 1990; Yates and Hailey, 2006). Here the data set from the 

larger geographic expanse of the Bahamas Bank will be used to re-evaluate the 

dissolution flux.

Using the same approach as in Burdige et al. (submitted), if I assume that the average 

LAI in the seagrass sediments on the Bahamas Bank is 0.7, and that the areas of 

vegetated vs. unvegetated sediments are equal to each other, then the regression line in 

Fig. 44 predicts that the average carbonate dissolution flux for the Bahamas Bank is 2.7
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mol/m2/yr, as compared to the values of 3-5 mol/m2/yr calculated in Burdige et al. 

(submitted).

The carbonate dissolution flux calculated here suggests that in situ carbonate 

dissolution is an important removal process in the carbonate budget on the Bahamas 

Bank. In particular, if I assume that the bank wide gross carbonate production rate is 5 

mol/m2/yr (Broecker and Takahashi, 1966; Milliman, 1993), then dissolution may equal 

or exceed carbonate export flux to deeper waters (Burdige et al., submitted; also see, 

Yates and Hailey, 2006). Furthermore, the rough estimate by Milliman (1993) that 50% 

of the gross carbonate production is exported to the surrounding waters may be an 

overestimate; alternatively, if this export flux is as large as Milliman (1993) assumes, 

then the gross carbonate production rate may be higher than the presently accepted values 

under steady-state conditions. The possibility also exists that the system is not in steady- 

state and is currently losing carbonate (Sanders, 2003).

Integrating this carbonate dissolution flux over the area of the Bahamas Bank 

(-210,000 km2, Bathurst, 1971), and assuming that the system is at steady-state, then the 

total alkalinity production in these sediments due to carbonate dissolution is ~1.1 x 1012 

mol/yr. This value is similar to the alkalinity export from the Mississippi River due to 

continental weathering (Raymond and Cole, 2003). If this carbonate dissolution flux is 

further scaled up to include all carbonate banks around the globe (assuming 800,000 km2 

of shallow water carbonate banks and bays), then this alkalinity production is 4.1 x 1012 

mmol/yr. Compared with the global oceanic alkalinity production rate of 50-72><1012 

mmol/yr (Chen, 2002), carbonate banks and bays contribute 6-8% of the global oceanic 

alkalinity production, although they only account for -0.2% of the modem ocean surface 

area (Milliman, 1993). Therefore they represent a potentially significant alkalinity source 

to the oceanic environment.

At the same time though, calcium carbonate formation in the water column both 

consumes carbonate alkalinity and generates CO2 according to:

Co1* + 2HCC% —>CoCO$ +CO, +H 20  (b5)

Therefore while the deposition of carbonate sediments in the shallow water carbonate 

banks act as a source of CO2 to the atmosphere (Zeebe and Wolf-Gladrow, 2001), any
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subsequent carbonate dissolution in shallow water areas thus mitigates the role of these 

areas as CO2  sources.

Based on discussions here (also see rxn. 46), -50% of the inorganic carbon associated 

with alkalinity production from metabolic carbonate dissolution comes from the 

oxidation of organic matter that is largely derived from seagrass photosynthesis (Chapter 

II; Holmer et al., 2001). Furthermore, -70% of the inorganic carbon for seagrass 

photosynthesis comes from CO2  (e.g., Zimmerman et al., 1997). As a result, the coupling 

between seagrass production and metabolic carbonate dissolution acts as a "carbon 

shuttle" that transfers atmospheric CO2  into marine DIC pool.

Given these observations, an additional situation may arise, because the growth of 

seagrasses in tropical carbonate sediments is generally P-limited (Fourqurean and 

Zieman, 2002; Fourqurean et al., 1992; Jensen et al., 1998). With increasing atmospheric 

CO2 due to anthropogenic activities, seagrass production may increase and subsequently 

enhance carbonate dissolution, which further liberates carbonate-bound phosphate. In 

return, the release of this phosphate may promote further seagrass production that takes 

up more CO2 and then enhances carbonate dissolution. Overall then, this series of 

reactions may exert a negative feedback on rising atmospheric CO2  (see Burdige et al., 

submitted, for a more detailed discussion).

5. CONCLUSIONS

Pore water saturation state calculations indicate that a carbonate phase more soluble 

than aragonite, presumably HMC, is undergoing dissolution in Bahamas Bank sediments.

Seagrass vegetation enhances both carbonate dissolution and pore water carbonate 

reprecipitation. At three sites with moderate to dense seagrass vegetation, an inverse pore 

water model suggests that carbonate reprecipitation was occurring, although the 

calculated 813C values of the organic matter apparently undergoing remineralization 

appeared to be similar to that of the seagrass carbon at these sites. Input of light carbon 

such as that from algae might contribute to the pore water DIC pool, which then counters 

the 13C enrichment of pore water DIC caused by carbonate dissolution/reprecipitation. 

Furthermore, carbonate reprecipitation versus net dissolution ratio appears constant
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across the Bank, suggesting that carbonate reprecipitation has a common feature in 

carbonate diagenesis in these tropical shallow water carbonate sediments

Sediment permeability did not show any obvious correlation with the reaction rates 

(O2 consumption and metabolic carbonate dissolution). This is expected since solute 

transport rates not only depend on sediment permeability, but also near seabed pressure 

gradients.

Different relationship between pore water advection and LAI were found in LSI and 

WS sediments. Such difference may be caused by different types of bottom water flow at 

the two sets of sampling sites, i.e., wave-dominated oscillatory flow at the WS sites, and 

tidal-dominated skimming flow at the LSI sites.

Integration of carbonate dissolution rate across the Bahamas Bank suggests that 

dissolution, rather than export, may dominate carbonate removal after deposition in these 

shallow water environments. Alkalinity production through metabolic carbonate 

dissolution in the tropical carbonate bank and bays contributes significantly to global 

oceanic alkalinity production, despite their small area in the modem ocean. At the same 

time, syndepositional carbonate dissolution mitigates the role of the shallow water 

carbonate banks and bays as a CO2 source to the atmosphere. The mechanism by which 

seagrasses enhance carbonate dissolution potentially exerts a negative feedback on rising 

atmospheric CO2 , by enhancing CO2  uptake during the carbonate dissolution process.
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CHAPTER V 

SUMMARY

This dissertation presented three independent, yet closely related, studies focusing on 

the role that the seagrasses play in carbonate dissolution and early diagenesis of shallow 

water carbonate sediments. This chapter summarizes the major conclusions drawn from 

these studies.

First, in Chapter II, in a relatively restricted environment (LSI), 13C enrichment in the

pore water DIC pool was found to be associated with high seagrass densities, while
1sediments with no or low seagrass densities did not show such enrichment. This C 

enrichment was successfully explained by a carbonate dissolution/reprecipitation 

mechanism, during which a more soluble metastable carbonate phase dissolves at the 

same time that a less soluble and more stable phase precipitates.

In the closed-system incubation study described in Chapter III, this carbonate 

dissolution/reprecipitation process was more quantitatively examined using a model 

developed in the previous chapter, and was found to adequately explain the experimental
1 3results (i.e., the model could adequately explain the occurrence of C enrichment in pore 

water DIC as a result of dissolution/reprecipitation). These results further indicated that 

the reprecipitated secondary carbonate phase was only slightly depleted in Mg relative to 

the original HMC that dissolved. The results of this study also confirmed the 1:1 reaction 

stoichiometry between O2  consumption and carbonate dissolution. Organic carbon 

remineralization was therefore found to be the rate limiting step in metabolic carbonate 

dissolution.

Finally, to study the extent to which carbonate dissolution/reprecipitation occurs 

across a much broader area of the Bahamas Bank, an inverse pore water model was 

applied to set of pore water profiles to examine rates of sediment biogeochemical 

processes at sites with a range of seagrass densities and sediment types (Chapter IV). The 

results of this study showed that the rates of both carbonate dissolution and 

reprecipitation correlate significantly with seagrass density (LAI). These findings support 

the conclusion derived from the LSI study that seagrass vegetation has a significant
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impact on the geochemistry of shallow water carbonate platforms. However, the 

assumption that seagrass carbon is the sole carbon source for sediment remineralization 

may not be appropriate over the larger geographical settings of the Bahamas Bank. There 

is probably significant input of algal detritus to the sediments in some of the sampling 

sites. Relationships between LAI and pore water advection showed distinctively different 

patterns for the Bank sites and the LSI sites. This appeared to be related to difference in 

the types of bottom water flow at the two sets of sampling sites. Based on the results from 

this chapter, I also determined a better constrained carbonate loss term for a shallow 

water carbonate budget, i.e., -50% of gross carbonate production is being dissolved in 

the shallow water sediments. At the same time, when the carbonate dissolution flux was 

integrated over all shallow water banks and bays on a global scale, significant alkalinity 

production (6-8% of global production) was observed. This dissolution also has the 

potential to mitigate the CO2  input from carbonate depositional environments to the 

atmosphere that occurs as a result of carbonate precipitation.

In light of these observations, further investigations of the following problems are 

necessary, to better understand the biogeochemistry of carbonate sediments and the 

associated sediment-seagrasses interactions, as well as the impacts of these sedimentary 

processes on the regional and global carbon cycle:

1. Studies of mass transport mechanisms. Since sediments on the Bahamas Bank are 

highly permeable, advection is the dominant mass transport processes near the sediment- 

water interface. In Bahamas Bank and LSI sediments, two distinctively different 

relationships between seagrass density and pore water advection were observed. To better 

understand pore water advection in these coarse-grained sediments, physical processes 

such as wave action, tidal forcing, and Langmuir circulation need to be better quantified 

and further examined in the context of pore-bottom water exchange. A detailed 

understanding of this exchange will help us to better define the alkalinity flux from 

carbonate dissolution. This information can be used in models of carbon and carbonate 

cycle in these types of environments.

2. Studies of the isotopic composition of the organic carbon consumed in sedimentary 

respiration processes, preferably using bacteria specific polar lipid derived fatty acids 

(PLFA). Across the broader Bahamas Bank, I have found that the simple assumption that
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seagrasses dominate the organic carbon supply to seagrass vegetated sediments was not 

always appropriate. Instead, remineralization of other lighter carbon sources (e.g., algal 

carbon) may also contribute to the pore water DIC pool in these sediments. Therefore to 

address the problem about what “types” of carbon are being remineralized in the 

sediments, a direct approach is to study the microbes that consume this organic carbon as 

well as produce the metabolic CO2 .

3. Dissolution kinetics and solubility of HMC. Because questions about the solubility 

of HMC in seawater remain unresolved, the dissolution kinetics of HMC, which is a 

function of the degree of pore water undersaturation, is unclear. A more quantitative 

understanding of solubility and dissolution rate of HMC in seawater may help further 

constrain the calculated carbonate dissolution rate used in future pore water models.
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DERIVATION OF THE EXPRESSION FOR THE 813C OF THE DIC 

ADDED TO SEDIMENT PORE WATERS (513Cadded)
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I start with a solution of DIC whose concentration is [DI12C]0 + [DI13C]0 and add a  moles of 

DI12C and (3 moles of DI13C to this solution. I can then define 513Cadded as,

(A-l)
R q

where Ro is the 13C/12C ratio of the PDB standard. After this carbon addition, [DIC] is given by,

{DIC] = [DInC \  + [D /JC]„ + ̂  * [ZVJC]0 + 1  (A-2)

since [D I12C]0»  [D Il3C]o and a  »  [3 (note that V is the volume of this solution). Similarly, the 

initial value of [DIC]-813C is given by

R0 Rn
{[DIC] ^ 3C)0 « [DIUC]0 • 103[([D / C\,I[DP C \  = 1q3|-([DP C]0 J t 0[DI C]Q̂

(A -3)

while its value after this carbon addition is,

[PIl3C]0 + p !V  

[DIC] -tf3C » ([DInC]0 + - )  • 1 0 3 ^ D I  C ^  +  a / V

\

- R 012/ . j

R0 ] (A-4)l o
_ 1Q3 A [P P C \  + ( f t /V ) -R 0[DInC]0 - R0(a /V )

*0

Taking the differentials of eqns. (A-2) and (A-4) yields

d[DIC] = y  (A-5)

d{[DIC] -^3C) = 103 [(P IV^ ~ R^ a lV )] (A.6)
Ro

This then implies that if we plot [DIC]-813C versus [DIC], the slope of the best fit line through the
d([DIC]-A3C)data (------------------- ) will be given by

d[DIC]

lQ3<j]/V)-R0(a/V)  
d{[PIC]-$3C) Rn J 1q3 Q g/a)-i?0

d[DIC] a /V  R0
(A-7)

which based on eqn. (A-l) equals 813Cadded-
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Table B-l. Channel Marker incubation pore water data.
Incubation
ID Time (h)

Titration
Salinity

AlkT
(meq/kg)

DIC
(mmol/kg) pH (NBS) 513C (%o)

[Ca2+]
(mmol/kg)

TDS
(mmol/kg)

[so42-]
(mmol/kg)

CM-G 0 37.75 3.19 3.09 7.64 - 11.35 0.000 30.2
10 37.86 4.38 3.64 7.63 - 11.52 0.512 30.0
21 37.77 5.39 4.47 7.51 - 11.35 1.116 30.5
33 37.46 6.42 5.10 7.58 - 11.61 1.590 28.9
45 37.68 6.80 5.81 7.47 - 11.51 1.786 29.6
58 37.54 7.98 5.79 7.52 - 11.61 2.002 28.8
69 37.55 8.66 6.05 7.57 - 11.49 2.105 28.9
81 37.60 8.91 7.10 7.42 - 11.76 1.798 28.3
93 37.61 6.94 5.63 7.46 - 11.63 - 29.3

CM-P 0 37.43 3.21 3.20 7.64 _ 11.28 0.074 30.2
10 37.36 4.46 3.80 7.59 - 11.38 0.631 30.6
21 37.37 5.60 4.51 7.46 - 11.37 1.433 29.3
33 37.39 6.59 4.85 7.60 - 11.55 1.843 28.7
45 37.48 7.16 5.75 7.45 - 11.44 2.024 28.8
58 37.46 7.35 5.56 7.62 - 11.48 1.862 28.7
69 37.40 8.12 6.50 7.64 - 11.47 2.129 28.8
81 37.37 8.76 6.84 7.58 - 11.71 1.294 28.3
93 37.34 7.15 5.87 7.59 - 11.58 - 28.9

CM-R 0 37.82 3.19 3.21 7.64 _ 11.28 0.067 29.8
10 37.57 4.46 3.73 7.59 - 11.40 0.554 29.3
21 37.34 5.63 4.33 7.50 - 11.45 1.179 29.5
33 37.55 6.42 4.98 7.62 - 11.64 1.614 29.2
45 37.50 7.33 5.65 7.56 - 11.52 1.888 28.5
58 37.54 7.14 5.58 7.59 - 11.64 1.639 29.7
69 37.49 7.86 6.44 7.61 - 11.60 1.998 28.6
81 37.60 8.27 6.68 7.52 - 11.65 1.655 28.4
93 37.52 6.84 5.95 7.60 - 11.68 - 28.9
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Table B-3. Ooids Shoals incubation pore water data.
Incubation
ID Time (h)

Titration
Salinity

AlkT
(meq/kg)

DIC
(mmol/kg) pH (NBS) S13C (°/oo)

[Ca2+]
(mmol/kg)

TDS
(mmol/kg)

[SO42-]
(mmol/kg)

OS-G 0 37.65 2.46 2.24 7.76 - 11.10 0.013 30.8
12 37.79 2.67 2.34 7.79 - 11.08 0 30.8
21 37.78 2.85 2.79 7.66 - 11.06 0 30.6
34 37.77 3.01 2.85 7.77 - 11.05 0 30.5
46 37.95 3.33 3.07 7.57 - 11.28 0 27.5
58 37.65 3.44 2.96 7.59 - 11.21 0 29.9
70 37.82 4.51 3.21 7.61 - 11.20 0 30.0
82 37.81 3.45 3.09 7.63 - 11.16 0 32.4
94 37.87 3.64 3.44 7.53 - 10.99 0 31.5
106 37.99 3.90 3.48 7.58 - 11.14 0 30.9

OS-P 0 37.60 2.47 2.27 7.81 - 11.02 0 27.4
12 37.54 2.68 2.49 7.79 - 10.96 0 30.2
21 37.61 2.81 2.60 7.70 - 11.05 0 28.4
34 37.64 3.11 2.49 7.77 - 11.10 0 29.7
46 37.69 3.27 2.97 7.52 - 11.13 0 28.8
58 37.59 3.36 2.97 7.64 - 11.16 0 30.0
70 38.24 3.43 3.23 7.57 - 11.03 0 30.0
82 37.65 3.76 3.37 7.48 - 11.13 0 31.5
94 37.76 3.69 3.48 7.55 - 11.05 0 29.9
106 38.26 3.90 3.29 7.69 - 11.24 0 30.4

OS-R 0 38.03 2.39 2.22 7.77 _ 11.04 0 29.7
12 37.71 2.70 2.67 7.86 - 10.96 0 30.6
21 37.57 2.88 2.70 7.74 - 10.95 0 30.2
34 37.46 2.99 2.79 7.78 - 11.05 0 30.0
46 37.56 3.27 3.06 7.55 - 11.12 0 29.3
58 37.49 3.51 3.25 7.62 - 11.16 0 29.9
70 37.52 3.94 3.25 7.58 - 11.06 0 30.7
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Table B-5. WS-13 incubation pore water data.
Incubation Titration AlkT DIC [Ca2+] TDS [S O 42']
ID_____________ Time (h)_______Salinity______ (meg/kg) (mmol/kg) pH (NBS)_____ §13C (%o) (mmol/kg) (mmol/kg) (mmol/kg)

0 37.20 2.62 2.57 7.55 0.25 11.10 0.000 -
8 37.07 3.12 3.22 7.44 -0.46 11.50 0.000 -

22 36.91 3.27 3.53 7.34 -0.53 11.24 0.009 -
33 37.17 3.69 3.39 7.37 0.37 11.51 0.008 -
43 36.96 4.12 3.93 7.36 -0.35 11.41 0.011 -
56 37.74 4.58 4.19 7.39 0.18 11.75 0.393 -
69 37.33 4.69 4.51 7.28 -0.09 11.58 0.818 -
81 37.37 4.34 4.25 7.23 -0.43 11.72 0.470 -
93 37.59 7.16 6.15 7.43 0.22 12.01 2.338 -
105 37.21 6.87 6.28 7.50 0.40 11.74 2.591 -
116 37.20 5.74 5.68 7.40 -0.59 11.73 0.819 -

0 37.20 2.62 2.57 7.55 0.25 11.10 0.000 .

8 37.07 3.05 3.20 7.42 -0.07 11.46 0.000 -
22 36.91 3.68 3.76 7.47 0.23 11.36 0.017 -
33 37.17 4.03 4.22 7.41 0.61 11.40 0.005 -
43 36.96 4.43 4.61 7.35 0.49 11.50 0.005 -
56 37.74 5.31 5.36 7.35 0.62 12.15 0.006 -
69 37.33 4.65 4.84 7.17 0.05 12.19 0.006 -
81 37.37 4.98 5.25 7.25 0.18 11.94 0.010 -
93 37.59 6.21 6.33 7.33 0.38 12.02 0.045 -
105 37.21 6.60 6.77 7.37 0.29 12.35 0.029 -
116 37.20 6.29 6.55 7.34 0.26 11.43 0.005 -

0 37.20 2.62 2.57 7.55 0.25 11.10 0.000 _

8 37.07 3.29 3.23 7.58 0.56 11.41 0.000 -
22 36.91 3.98 4.07 7.39 0.57 11.72 0.006 -
33 37.17 4.54 4.63 7.46 0.64 12.11 0.005 -
43 36.96 5.15 5.33 7.28 0.43 12.35 0.004 -
56 37.74 5.92 6.06 7.30 0.63 12.53 0.005 -
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APPENDIX C 

ACTIVATION ENERGY OF AEROBIC RESPIRATION IN LSI 

SEDIMENTS
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Newly collected CM sediments were incubated with seawater in sealed 42 ml vials, 

and O2  concentration in the vials was monitored using an optical O2  sensor. 

Concentration changes were linear with time, and the slope of this line was used to 

estimate the rate of O2 consumption. O2  consumption rates were measured at 10,17, 23, 

25, 30°C and the measured rates were normalized against the wet volume of the 

sediments.

E  1 1  T
From the Arrhenius law , - ( --------- ) = ln(—) (Mackin and Swider, 1989), in

R Tx T2 r2

which Ea is apparent activation energy, R is the gas constant (8.314 J/mol/K), T is 

absolute temperature (K), and r is reaction rate (pmol/h/g sediment), the Ea value of the 

O2  consumption reaction is 74.9±8.2 kJ/mol (see Fig. C-l below). This result agrees well 

with that of anaerobic respiration reactions (71-109 kJ/mol) in other coastal sediments 

(Mackin and Swider, 1989), but is greater than the value of 33-53 kJ/mol in coastal 

environments based on temperature-dependent DIC and O2  fluxes (Forja et al., 2004).

Slope 9.01±0.98 
E„ = 74.9±8.2 kJ/mol

T (K) r (mmol/h/L-sed) 
283 0.012±0.005

5

c
290
296
298
303

0.021±0.004
0.051±0.000
0.065±0.010
0.077±0.001

0
3.2 3.3 3.4 3.5 3.6

1/TX1000 (1/K)

Fig. C-l. Activation energy of O2  consumption reaction in LSI sediments
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APPENDIX D 

2004 BAHAMAS BANK SEDIMENT PORE WATER DATA
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230
234
230

232
149
108

59
50
45

237
230
113

42
63
46
91

58
72
44
73
82
52
67

Table D-4. WS-3 2nd cast pore water data.

imple Salinity Alkalinity
(meq/kg)

DIC
(mmol/kg) PHnbs 813C (%o)

TDS
(mmol/kg)

Sulfate
(mmol/kg)

[Ca ] 
(mmol/kg)

0 36.4 2.32 2.06 8.05 0.00 0.00 29.4 10.75
0 36.4 2.30 2.06 8.07 1.84 0.00 29.3 10.60
0 36.4 2.29 2.05 8.11 1.85 0.00 29.8 10.58

1 36.5 2.35 2.04 8.20 _ 0.00 29.0 10.57
2 36.4 2.29 2.15 7.93 - 0.00 28.0 10.64
4 36.4 2.34 2.24 7.84 - 0.00 28.9 10.70
5 36.3 2.29 2.06 8.27 - 10.55
8 36.3 2.44 2.42 7.75 - 0.01 28.6 10.74
10 36.4 2.61 2.34 7.74 - 0.01 29.9 10.61
15 36.4 2.53 2.49 7.76 - 0.01 29.0 10.68
20 36.5 2.34 2.08 8.28 - 0.01 28.4 10.64

1 36.5 2.30 2.05 8.32 1.89 _ 28.8 10.55
2 36.4 2.30 2.03 8.33 2.16 - 10.68
4 36.4 2.37 2.30 7.93 0.95 - 10.54
5 36.3 2.48 2.43 7.78 1.15 - 29.7 10.54
8 36.3 2.44 2.34 7.81 1.38 - 28.8 10.53
10 36.4 2.59 2.49 7.85 1.59 - 29.1 10.69
15 36.4 2.50 2.44 7.87 1.52 - 28.8 10.60
20 36.5 2.49 2.40 7.85 1.64 - 29.2 10.64

1 36.5 2.28 2.06 8.31 _ _ _ 10.60
2 36.4 2.27 2.08 8.32 - - 29.3 10.72
4 36.4 2.26 2.16 7.92 - - 28.7 10.49
5 36.3 2.51 2.43 7.79 - - 29.7 10.56
8 36.3 2.41 2.37 7.83 - - 29.3 10.81
10 36.4 2.49 2.39 7.71 - - 29.5 10.75
15 36.4 2.57 2.49 7.86 - - 28.9 10.60
20 36.5 2.51 2.46 7.75 - - 29.3 10.64
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Table D-6. WS-5 pore water data.

Sample Salinity
Alkalinity
(meq/kg)

DIC
(mmol/kg) PHnbs S13C (%o) TDS

(mmol/kg)
Sulfate

(mmol/kg)
[Ca2+]

(mmol/kg)
[o 2]

(pmmol/kg)
0 36.9 2.37 2.02 8.13 0.00 0.00 29.3 10.69 218
0 36.9 2.31 2.06 8.12 2.64 0.00 29.8 10.86 209
0 36.9 2.31 2.06 8.11 2.47 0.00 30.4 10.78 206

1 36.6 2.29 2.02 8.14 _ 0.00 29.5 10.74 226
2 36.7 2.32 2.08 8.05 - 0.00 29.7 10.68 220
4 37.6 2.60 2.49 7.65 - 0.02 29.1 12.38 51
5 36.6 2.51 2.37 7.69 - 0.02 32.8 10.68 69
8 36.7 2.80 2.63 7.62 - 0.08 28.9 10.80 39
10 37.6 2.46 2.36 7.68 - 0.02 30.4 10.72 45
15 36.8 2.43 2.35 7.65 - 0.01 28.7 10.75 77
20 37.3 2.40 2.28 7.61 - 0.01 31.8 11.75 64

1 36.6 2.29 2.01 8.13 _ _ 28.7 10.64 214
2 36.7 2.30 2.05 8.12 - - 26.4 10.71 192
4 37.6 2.36 2.47 7.94 - - - 11.58 -

5 36.6 2.43 2.31 7.76 - - 29.4 10.71 82
8 36.7 2.60 2.46 7.72 - - 28.7 10.99 59
10 37.6 2.48 2.32 7.87 - - 28.1 11.41 24
15 36.8 2.40 2.31 7.7 - - - 10.52 33
20 37.3 2.64 2.60 7.65 - - 31.4 11.72 58

1 36.6 2.28 2.05 8.14 2.60 _ 29.3 10.89 212
2 36.7 2.51 2.38 7.77 1.48 - 27.5 10.75 72
4 37.6 2.63 2.45 7.86 1.04 - 30.1 10.78 35
5 36.6 2.59 2.43 7.79 1.24 - 29.0 10.75 -

8 36.7 2.46 2.35 7.78 1.41 - 30.3 10.70 51
10 37.6 2.67 2.53 7.69 1.09 - 29.1 10.77 26
15 36.8 2.35 2.24 7.63 1.61 - 28.7 11.14 62
20 37.3 2.26 2.20 7.70 1.39 - 29.0 11.78 42

{Si



207
205
209

215
166
0
15
27
59
9
2

215
135
58
6
8

40
17
0

173
206
20
31
0

28
1
2

Table D-7. WS-6 pore water data.

imple Salinity Alkalinity
(meq/kg)

DIC
(mmol/kg) PHnbs 8 nC (%o) TDS

(mmol/kg)
Sulfate

(mmol/kg)
[Ca2+]

(mmol/kg)
0 36.7 2.34 2.06 8.05 0 . 0 0 0 . 0 0 30.9 10.75
0 36.7 2.33 2.06 8.06 2.60 0 . 0 0 30.1 10.64
0 36.7 2.31 2.05 8.06 2.60 0 . 0 0 28.0 10.79

1 36.8 2.33 2.06 8.04 _ 0 . 0 0 29.3 1 0 . 8 6

2 36.7 2.42 2.16 7.89 - 0 . 0 0 29.0 10.85
4 37.0 3.71 3.18 7.64 - 0.74 29.1 11.09
5 37.4 2.93 2.59 7.75 - 0.31 29.9 11.35
8 37.5 2.98 2.85 7.59 - 0.07 24.8 1 1 .1 1

1 0 37.0 2 . 8 8 2.53 7.63 - 0.47 24.7 10.96
15 37.6 4.04 3.81 7.48 - 0.34 28.7 11.27
2 0 37.1 3.04 2 . 6 6 7.65 - 0.63 29.3 1 1 .0 1

1 36.8 2.28 2 . 1 0 8.06 2.62 _ 29.5 1 0 . 6 6

2 36.7 2.42 2.30 7.89 2 . 1 1 - 30.2 10.58
4 37.0 2.51 2.33 7.82 2.04 - 29.7 10.74
5 37.4 2.65 2.35 7.7 1.48 - 30.1 11.56
8 37.5 3.08 2.70 7.67 1.38 - 36.7 11.15

1 0 37.0 2.80 2.61 7.62 1.64 - 28.2 10.85
15 37.6 3.16 2.72 7.66 1.45 - 28.3 12.49
2 0 37.1 3.37 3.04 7.65 1.81 - 30.0 11.05

1 36.8 2.45 2.24 7.96 _ _ 31.2 11.64
2 36.7 2.32 2.06 8.07 - - 29.8 11.41
4 37.0 2 . 8 6 2 . 6 6 7.77 - - 28.9 11.04
5 37.4 2.57 2.34 7.67 - - 29.1 1 1 . 2 0

8 37.5 2.75 2.58 7.68 - - 29.3 11.13
1 0 37.0 2.69 2.40 7.65 - - 29.6 10.80
15 37.6 2.87 2.69 7.63 - - 30.2 1 1 . 8 8

2 0 37.1 3.18 2.74 7.66 - - 30.1 11.19



22
11
17
57
38
5
0

159
68
151
72
34
32
11
8

190
31
2
19
46
6
9
16

Table D-8. WS-8 pore water data.

imple Salinity Alkalinity
(meq/kg)

DIC
(mmol/kg) pHnbs 513C ( % o)

TDS
(mmol/kg)

Sulfate
(mmol/kg)

[Ca ] 
(mmol/kg)

0 36.9 2.33 2.09 8.04 - 0 . 0 0 30.0 10.78
0 36.9 2.34 2.07 8.04 1.56 - 30.0 11.06
0 36.9 2.35 2.06 8.07 1 . 1 0 - 30.7 11.04

1 36.7 2.50 2.35 7.80 _ 0.03 29.1 10.78
2 37.3 4.19 3.99 7.44 - 0 . 0 1 31.4 11.69
4 37.0 3.16 2.92 7.43 - 0.39 30.0 11.08
5 36.9 3.42 3.20 7.46 - 0.37 29.1 10.82
8 36.9 3.01 2.83 7.55 - 0.31 28.7 10.95
1 0 36.8 4.46 4.24 7.43 - 0.61 26.4 11.37
15 37.6 4.15 3.86 7.54 - 0.78 29.1 11.28
2 0 37.0 4.60 4.41 7.44 - 0.77 28.6 11.18

1 36.7 2.34 2.06 8.08 1.28 _ 29.0 10.82
2 37.3 2.99 2.82 7.58 -0.30 - 30.9 1 1 . 1 0

4 37.0 3.14 2.93 7.57 - - 11.59
5 36.9 3.28 3.04 7.56 0.70 - 28.9 1 1 . 1 0

8 36.9 4.34 3.98 7.55 0.45 - 28.8 11.42
1 0 36.8 3.35 3.13 7.57 1 . 0 2 - 28.6 11.05
15 37.6 4.05 3.76 7.55 0.76 - 29.3 12.56
2 0 37.0 4.43 4.09 7.46 0.82 - 29.0 11.70

1 36.7 2.41 2.18 7.98 _ _ 29.7 11.07
2 37.3 2.92 2 . 6 6 7.56 - - 29.5 11.23
4 37.0 3.67 3.50 7.57 - - 29.3 12.09
5 36.9 3.16 2.97 7.47 - - 30.9 11.09
8 36.9 3.45 3.24 7.66 - - 26.9 1 1 .1 1

1 0 36.8 3.14 2.92 7.59 - - 28.7 1 1 .2 1

15 37.6 3.24 3.12 7.55 - - 28.5 11.33
2 0 37.0 3.22 3.07 7.55 - - 30.1 1 1 . 1 0



191
64
2
33
53
7
3
1

159
136
16
15
16
44
28
32

188
148
63
15
18
8

21
10

Table D-9. WS-9 pore water data.

imple Salinity Alkalinity
(meq/kg)

DIC
(mmol/kg) pHnbs 513C (%>) TDS

(mmol/kg)
Sulfate

(mmol/kg)
[Ca ] 

(mmol/kg)
0 38.2 2.23 2.07 7.94 - 0 . 0 0 30.5 11.08
0 38.2 2.26 2.05 7.90 1.54 - 31.6 1 1 . 1 0

0 38.2 2.26 2.03 8 . 0 2 1.40 - 32.2 11.19

1 38.0 2.30 2.05 7.99 _ 0 . 0 0 31.8 11.03
2 37.8 2.38 2.26 7.72 - 0 . 0 1 30.9 1 1 . 6 8

4 37.8 3.19 2.85 7.74 - 0.53 29.9 11.14
5 37.6 2.28 2.15 7.71 - 0 . 0 2 31.1 10.89
8 37.5 2 . 6 6 2.53 7.61 - 0.06 30.0 1 1 . 0 0

1 0 37.6 3.10 2.89 7.55 - 0.24 31.1 10.80
15 37.4 3.36 2.99 7.61 - 0.67 29.8 11.09
2 0 37.3 3.65 3.36 7.58 - 31.0 11.09

1 38.0 2.70 2 . 1 1 7.88 1.30 _ 30.6 11.05
2 37.8 2.38 2.14 7.96 1.44 - 31.9 11.05
4 37.8 2.67 2 . 2 0 7.690 0.32 - 30.7 11.09
5 37.6 2.38 2.26 7.7 0 . 8 6 - 30.8 11.19
8 37.5 2.64 2.48 7.67 0.60 - 29.8 11.05

1 0 37.6 2.24 2 . 1 1 7.65 0.51 - 30.3 10.92
15 37.4 2.52 2.34 7.67 0.83 - 30.5 11.09
2 0 37.3 2.70 2.49 7.59 1.47 - 30.7 1 1 .1 1

1 38.0 2.56 2.05 7.97 _ _ 31.1 1 1 .0 1

2 37.8 2.29 2.16 7.94 - - 30.6 11.36
4 37.8 2.31 2.15 7.83 - - 30.5 11.05
5 37.6 2.53 2.35 7.74 - - 27.3 1 1 . 0 0

8 37.5 2.47 2.28 7.70 - - 28.9 11.03
1 0 37.6 2 . 6 6 2.42 7.64 - - 31.1 11.05
15 37.4 2.69 2.39 7.61 - - 27.8 11.09
2 0 37.3 2 . 6 6 2.48 7.54 - - 30.4 11.14
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218
207
210

212

41
23
36
45
0
2

198
33
40
21
8
4
74
4

107
80
21
21
35
12
55
8

Table D-l 1. WS-11 pore water data.

imple Salinity
Alkalinity
(meq/kg)

DIC
(mmol/kg) PHnbs 513C (%>) TDS

(mmol/kg)
Sulfate

(mmol/kg)
[Ca2+]

(mmol/kg)
0 37.0 2.34 2.07 8.05 - 0 . 0 0 29.9 10.55
0 37.0 2.37 2 . 1 1 8 . 0 2 2 . 0 1 - 29.6 10.50
0 37.0 2.32 2.07 8 . 0 2 2.07 - 29.3 10.56

1 37.0 2.19 2.06 8.03 _ 0 . 0 0 29.2 _

2 37.0 2.33 2 . 1 0 8.03 - 0 . 0 0 29.8 10.71
4 37.3 2.98 2.77 7.55 - 0 . 1 1 30.1 -

5 37.3 2.90 3.20 7.51 - 0.26 29.9 10.89
8 37.3 3.83 3.62 7.49 - 0.35 30.0 -

1 0 37.5 3.81 3.30 7.39 - 0.34 29.3 11.65
15 36.9 4.25 3.98 7.51 - 0.69 29.8 11.44
2 0 37.5 4.20 3.94 7.57 - 0.55 33.4 -

1 37.0 2.33 2.08 8.03 2.34 _ 29.0
2 37.0 2.79 2.63 7.58 1.38 - 29.2 10.76
4 37.3 2.59 2.59 7.52 1.40 - 29.8 -

5 37.3 3.66 3.49 7.47 1.29 - 30.2 11.56
8 37.3 4.17 3.96 7.51 1.27 - 29.1 -

1 0 37.5 4.02 3.82 7.54 1.38 - 29.4 11.32
15 36.9 4.16 3.85 7.52 1 . 6 6 - 30.2 11.15
2 0 37.5 5.03 4.87 7.46 1.40 - 29.0

1 37.0 2.06 2.04 7.46 _ _ 30.1 11.38
2 37.0 2.38 2.30 7.71 - - 29.9 10.59
4 37.3 2.42 2.38 7.60 - - 37.9 -

5 37.3 3.07 2.91 7.56 - - - 11.60
8 37.3 2.92 2.69 7.54 - - 29.6 10.90

1 0 37.5 2.93 2.78 7.56 - - 29.6 11.48
15 36.9 2.76 2.62 7.48 - - 29.3 1 0 . 8 6

2 0 37.5 4.07 3.78 7.48 - - 29.8 1 1 . 8 6
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211
210
219

222
121

13
18
14
16
7

217
91
21
68
29
7

42
6

227
96
20
18
19
22
6
8

Table D-13. WS-13 pore water data.

imple Salinity Alkalinity
(meq/kg)

DIC
(mmol/kg) PHnbs 513C (%») TDS

(mmol/kg)
Sulfate

(mmol/kg)
[Ca2+]

(mmol/kg)
0 36.7 2.35 2.09 7.96 - 0 . 0 0 29.7 10.955
0 36.7 2.31 2.08 8 . 0 2 1 . 1 0 - 29.9 10.801
0 36.7 2.33 2 . 1 0 7.93 0.85 - 30.1 10.771

1 36.8 2.32 2 . 0 2 8 . 0 2 _ 0 . 0 0 31.8 1 0 . 8 8

2 36.7 2.64 2.50 7.72 - 0 . 0 1 30.5 1 1 .0 1

4 36.8 2.78 2 . 6 8 7.59 - - - 11.08
5 36.7 2.92 2 . 8 6 7.45 - 0 . 0 2 29.6 11.13
8 36.9 3.23 3.14 7.44 - 0 . 0 2 29.1 11.78
1 0 36.7 4.66 4.42 7.36 - - 29.7 11.48
15 36.8 3.33 3.29 7.39 - 0 . 0 2 29.5 11.19
2 0 36.7 6.98 6 . 6 8 7.26 - 1.31 28.5 12.43

1 36.8 2.34 2.08 8.05 1.61 _ 30.1 10.87
2 36.7 2 . 6 6 2.57 7.68 1.07 - 30.5 11.36
4 36.8 3.10 2.99 7.48 - - 29.9 11.13
5 36.7 2.45 2.36 7.61 0.93 - 30.1 10.74
8 36.9 2 . 8 6 2.79 7.52 1.32 - 27.3 11.47

1 0 36.7 5.80 5.29 7.39 1.43 - 29.2 11.60
15 36.8 3.49 3.38 7.41 - - 30.8 11.23
2 0 36.7 6.23 5.90 7.33 1.05 - 30.1 12.43

1 36.8 2.31 2.16 8.08 0.25 _ 29.6 10.85
2 36.7 2.79 2.58 7.70 0.73 - 29.6 11.18
4 36.8 2.67 2.57 7.55 0.96 - 29.3 11.03
5 36.7 4.15 4.01 7.46 1 . 1 0 - 29.4 10.93
8 36.9 3.38 3.19 7.53 0 . 8 6 - 29.5 11.17

1 0 36.7 3.82 3.60 7.45 1 .0 0 - 28.3 11.46
15 36.8 4.72 4.39 7.42 0.41 - 29.8 1 1 .2 1

2 0 36.7 5.35 5.26 7.38 0 . 8 8 - 29.5 12.43



tmoL
220
214
220

210
46
6
10
11
6
1
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Table 14. WS-14 pore water data.

ample Salinity Alkalinity
(meq/kg)

DIC
(mmol/kg) pHnbs 8 13C ( % o )

TDS
(mmol/kg)

Sulfate
(mmol/kg)

[Ca2+]
(mmol/k]

0 36.7 2.35 2.07 8.03 - 0 . 0 0 30.4 10.80
0 36.7 2.33 2.05 7.99 2.14 - 30.7 10.80
0 36.7 2.31 2.08 8 . 0 0 2 . 0 0 - 30.1 10.84

1 36.9 2.30 2.08 8 . 0 1 _ 0 . 0 1 29.3 1 0 . 8 8

2 36.9 3.61 3.43 7.48 - 0.27 27.2 11.73
4 36.7 5.16 4.85 7.37 - 0.85 28.8 11.63
5 37.0 5.49 5.19 7.37 - 0.85 28.9 11.91
8 36.6 5.70 5.52 7.36 - 0 . 6 6 30.0 12.14

1 0 37.0 5.37 5.13 7.44 - 0.81 - 11.98
15 37.4 6.39 6.14 7.38 - 1 .1 0 29.9 1 2 .1 1

2 0 36.8 5.34 5.09 7.46 - 0.82 29.3 11.93

1 36.9 2.38 2.17 8 . 0 2 0.98 _ 30.5 1 0 . 8 8

2 36.9 3.34 3.22 7.65 0.64 - 29.8 11.26
4 36.7 5.94 5.26 7.35 -0.18 - 29.9 11.63
5 37.0 5.20 4.94 7.54 0.48 - 30.2 11.77
8 36.6 3.40 3.29 7.52 0.75 - 31.2 11.50

1 0 37.0 4.48 4.40 7.49 0.89 - 30.1 11.80
15 37.4 7.08 7.11 7.42 0.33 - 29.5 1 2 . 1 0

2 0 36.8 4.02 3.95 7.65 0.90 - 29.1 1 1 . 8 6

1 36.9 2.32 2 . 1 0 8 . 0 2 _ _ 29.7 10.89
2 36.9 2.80 2.62 7.88 -0.148 - 30.3 1 1 . 1 0

4 36.7 4.92 4.68 7.58 -0.758 - 30.6 11.63
5 37.0 4.12 3.88 7.49 0.805 - 32.0 11.97
8 36.6 5.80 5.47 7.42 -0.291 - 29.1 11.82

1 0 37.0 4.28 4.23 7.45 0.927 - 29.5 11.62
15 37.4 5.41 5.13 7.51 - - 28.3 12.09
2 0 36.8 5.33 5.25 7.53 1.106 - 28.7 11.78
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Table D-16. WS-16 pore water data.

imple Salinity Alkalinity
(meq/kg)

DIC
(mmol/kg) P H n b s 513C ( % o)

TDS
(mmol/kg)

Sulfate
(mmol/kg)

[Ca2+]
(mmol/kg)

0 36.9 2.34 2.09 8.04 - 0 . 0 0 30.1 10.93
0 36.9 2.32 2.08 8 . 0 1 1 . 6 6 - 30.5 10.89
0 36.9 2.30 2.07 8 . 0 1 1.70 - 29.6 1 0 . 8 8

1 37.0 2.33 2.09 8 . 0 2 _ 0 . 0 0 29.9 10.83
2 37.1 2.23 2.07 7.89 - 0 . 0 0 27.0 11.06
4 37.1 2.39 2.34 7.71 - 0 . 0 0 28.4 10.80
5 37.0 2.55 2.46 7.54 - 0 . 0 1 30.1 10.72
8 36.9 2.51 2.38 7.60 - 0 .0 1 30.3 10.76

1 0 36.9 2.44 2.33 7.67 - 0 . 0 0 29.7 1 0 . 8 6

15 36.8 2.36 2.26 7.64 - 0 . 0 0 29.4 10.87
2 0 36.9 2.49 2.38 7.64 - 0 .0 1 28.8 11.03

1 37.0 2.31 2.06 8 1.79 _ 29.5 1 0 . 8 6

2 37.1 2.30 2.07 8.05 1.60 - 30.1 10.79
4 37.1 2.40 2.26 7.7 1.46 - 30.2 10.80
5 37.0 2.38 2.28 7.68 1.31 - - 10.77
8 36.9 2.36 2.27 7.56 0.91 - 30.7 10.74

1 0 36.9 2.31 2.23 7.67 0 . 8 8 - 29.5 10.84
15 36.8 2.30 2.23 7.65 0.52 - - 10.87
2 0 36.9 2.30 2.23 7.65 0.43 - 31.1 10.77

1 37.0 2.30 2.08 8.03 1 . 6 6 _ 30.2 10.80
2 37.1 2.32 2 . 1 0 7.98 1.38 - 30.0 10.89
4 37.1 2.38 2.35 7.61 1 . 0 0 - 29.1 10.80
5 37.0 2.26 2.16 7.71 - - 29.0 10.83
8 36.9 2.67 2.57 7.65 1.40 - 29.5 10.78
1 0 36.9 2.40 2.33 7.63 0.82 - 31.6 10.85
15 36.8 2.55 2.47 7.64 0.83 - 29.8 10.87
2 0 36.9 2.307 2.256 7.64 1.26 - 30.7 10.75
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Table D-18. WS-18 pore water data.

Sample Salinity Alkalinity
(meq/kg)

DIC
(mmol/kg) pHnbs 8 13C (%o) TDS

(mmol/kg)
Sulfate

(mmol/kg)
[Ca2+]

(mmol/kg)
[o2]

(pmmol/kg)
0 37.4 2.35 2 . 1 2 8 . 0 2 - 0 . 0 0 28.6 11.03 218
0 37.4 2.35 2 . 1 1 8 . 0 0 0.75 - 29.5 11.04 217
0 37.4 2.35 2 . 1 1 8 .0 1 1 .2 2 - 29.7 10.91 216

1 37.4 2.32 2 . 1 2 8 .0 1 0 . 0 0 29.2 10.94 209
2 37.6 2.70 2.62 7.56 - 0 . 0 1 30.1 11.19 67
4 37.8 3.13 2.96 7.39 - 0.19 11.15 19
5 37.4 3.48 3.25 7.42 - 0.31 29.2 1 1 . 2 0 29
8 37.6 4.62 4.35 7.33 - 0.85 28.8 11.70 26

1 0 37.1 4.53 4.55 7.30 - 0.42 29.2 11.84 3
15 37.4 6.75 6.75 7.19 - 0.99 28.3 1 2 .0 1 0

2 0 37.5 5.40 5.25 7.30 - 0 . 6 6 29.7 11.97 2

1 37.4 2.34 2 . 1 1 8 .0 1 1 .2 1 0 . 0 0 31.9 10.97 217
2 37.6 2.50 2.38 7.61 - 0 . 0 1 30.4 10.73 133
4 37.8 3.05 2.93 7.54 0.19 30.2 11.19 31
5 37.4 2.73 2.69 7.46 0.77 0.31 30.2 11.14 1 2

8 37.6 3.67 3.33 7.43 0 . 6 8 0.85 30.0 11.24 43
1 0 37.1 4.55 4.46 7.33 1.29 0.42 28.9 11.84 54
15 37.4 3.50 3.44 7.43 - 0.99 30.4 11.34 1 0

2 0 37.5 5.63 5.61 7.34 0.95 0 . 6 6 28.0 12.29 0

1 37.4 2.36 2 . 1 2 7.82 1.05 31.6 10.91 176
2 37.6 2.31 2.15 7.93 1.41 - 30.1 11.65 195
4 37.8 2.96 2.89 7.47 0.14 - 28.6 11.17 42
5 37.4 3.39 3.18 7.51 0.14 - 31.6 11.26 1 2

8 37.6 3.12 3.00 7.46 0.27 - 29.0 1 2 . 1 0 24
1 0 37.1 3.39 3.18 7.50 0.28 - 29.1 11.84 13
15 37.4 4.23 4.21 7.50 0 . 6 6 - 33.0 11.67 6

2 0 37.5 5.12 5.06 7.51 0.04 - 28.8 12.09 0

oo



Ta
bl

e 
D

-1
9.

W
S-

20
 

po
re 

wa
ter

 d
at

a.

188

6£

a l  
I

NO p r - i n O n c o  so 00 00 ON On (N CN Os 00 <N ’'f r CN 00 CO © p
o o* o’ 1 On oo’ • o o’ © On o’ ON On ON On oo’ ON r—H ,—’ (N ON r-M

co co c o <N (N <N c o  co c o (N CO <N (N <N <N <N (N c o CO CO (N CO CO CO

u

Q 2 H Ss

U

*tb

a
Cl

U

•■S' 0£

■ s  = 1

£
E

13
c/3

"S-

cn

On ON 
<N (N (N  
<N <N <N

- h On 
o  co

oo

o o

T f  IT l OO
On O n On

(N  m  ^  
p o o  
<N <N (N

O  (N tn n  n  
<N (N r i

oo  oo  o©
K

c o  co  co

o o o

co
<N CN

t— Is  1/1 O  ^  OO
no (N  o o  'O  d -  m

—« oo *-h r-»
On Os O  O

co  co  r o  
(N *—1 O  O

<N ^  
(N co  
(N CS

(N i—
Os O

On 00 CN i n  r '  NO in cn ^  io ^  *n
^  OsCO (N 
(N  (N

co
m

c o  c o  co  On
(N  - h O  00
^ ^ : o

no  cn  i n  c o  co  c o  Os
O n O  O n M  h  o  o e
o  o  ^  o J

o o o o 
o o

O o O <N o p o o 
o o o o

O N O N o n ^ O ” ^
p O N n n N o n i n ^ ;

— (Nt N00' t nt N i-
o  O  (N r n  ( S  c n  q  t
C N < N ( N ( N < N C N ( N C N

oo o  ^  o  ^  T j - o o r ^  
< N < n c o T r c o c o c o ^  
r i ( N r i r i c i r i f N ( N

d - ‘n ' O i n T t r i M M

c o c o c o c o c o c o c o c o

c o
i »n

Os c o  r s* oo  
^  ^  O  O  ^

d1 m 00  fS d* M
p  p  no ^  i n  i n  i noo oo h  K h

h  00 o  oo 
o  o  <N c o

^  OO ' O  O n 
Tf  c o  c o  c o

( N ( NM( NM( N( Nf N

< n i n N O O O o o r ^ < N< n c o c N ^ ^ f c o ( N c o
CN(N(N(NCN(N<N(N

T f i n N o m T f n M n

c o c o c o c o c o c o c o c o

—  (N t t  i n  oo o in o
—  -M <s

m m O N i n r - o o
p p p p ^ ^ f T r i no b o d t ^ t ^ KKKK

M M d - d - a ^ O O N O  
^  ^  <N c o  Tf  c o  c o  
<N(N(NCN(NCN(N(N

n o o m d - O N C N N o o  
(N <N c o  c o  (N c o  c o  c o  
(N<NfN(N(N(Nrsi (N

t m ' O m ' t n M M
c o c o c o c o c o c o c o c o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced 
with 

perm
ission 

of the 
copyright owner. 

Further reproduction 
prohibited 

without perm
ission.

Table D-20. WS-21 pore water data.

Sample Salinity
Alkalinity
(meq/kg)

DIC
(mmol/kg) pHnbs S13C (%o)

TDS
(mmol/kg)

Sulfate
(mmol/kg)

[Ca2+]
(mmol/kg)

[o 2]
(gmmol/kg)

0 37.3 2.25 2.04 8 . 0 1 - 0 . 0 0 30.1 10.76 213
0 37.3 2.25 2.05 7.97 - - 30.0 10.75 224
0 37.3 2.28 2.04 8 . 0 0 - - 30.1 10.83 -

1 37.5 2.28 2.07 7.97 _ _ 30.3 1 0 . 6 8 207
2 37.2 2.30 2.15 7.85 - 0 . 0 0 29.7 10.89 162
4 37.3 2 . 6 8 2.52 7.69 - - 29.4 10.64
5 37.6 3.05 2.89 7.53 - - 30.0 11.07 1 1

8 37.5 4.33 4.09 7.35 - 0.24 - 11.19 5
1 0 37.6 2.28 2.24 7.55 - - 30.1 1 0 . 6 8 60
15 37.8 5.20 4.94 7.37 - 0.65 29.2 11.80 0

2 0 37.6 3.25 3.02 7.45 - 0.08 29.6 11.31 32

1 37.5 2.28 2.07 7.99 _ _ 30.1 11.23 213
2 37.2 2.29 2.16 7.835 - - 29.8 10.57 -

4 37.3 2.81 2.52 7.605 - - - 10.92 44
5 37.6 3.07 2.89 7.455 - - - 11.37 5
8 37.5 3.22 2.91 7.5 - - 28.6 10.99 -

1 0 37.6 4.48 4.01 7.48 - - 29.2 11.41 6

15 37.8 5.70 5.19 7.47 - - 29.7 11.64 8

2 0 37.6 3.79 3.67 7.55 - - 29.9 11.35 0

1 37.5 2.28 2.07 7.98 . _ _ 10.90 143
2 37.2 2.28 2.16 7.82 - - 29.9 11.08 142
4 37.3 2.95 2.52 7.52 - - - 11.26 43
5 37.6 3.08 2.89 7.38 - - 29.9 10.78 34
8 37.5 3.06 2 . 8 6 7.48 - - 29.5 11.39 58

1 0 37.6 2.48 2.37 7.45 - - 31.6 10.96 16
15 37.8 3.68 5.13 7.58 - - 30.5 11.96 0

2 0 37.6 5.60 3.69 7.46 - - 30.1 11.30 -

oo
VO
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Table D-22. WS-24 pore water data.

Sample Salinity Alkalinity
(meq/kg)

DIC
(mmol/kg) pHnbs 8 13C (%>) TDS

(mmol/kg)
Sulfate

(mmol/kg)
[Ca2+]

(mmol/kg)
[o2]

(gmmol/kg)
0 36.4 2.28 2.04 8.08 - 0 . 0 0 32.9 10.70 219
0 36.4 2.08 2.05 8.08 1.74 - 29.1 10.75 2 2 2

0 36.4 2.30 2 . 0 2 8.07 1.76 - 28.9 10.65 218

1 36.4 2.31 2.19 7.92 0 . 0 0 27.9 11.07 164
2 36.4 2.50 2.54 7.77 - 0 . 0 1 29.1 1 0 . 6 6 8 8

4 36.5 2.63 2.54 7.61 - 0 . 0 0 28.8 1 1 .0 1 42
5 36.6 2 . 2 1 2.13 7.67 - 0 . 0 0 32.4 10.67 90
8 36.6 2.95 2.81 7.61 - 0.03 29.0 11.52 34

1 0 36.7 2.72 2.57 7.61 - 0.05 33.9 11.31 19
15 36.7 2.61 2.56 7.63 - 0 . 0 1 30.0 10.98 56
2 0 36.5 2.29 2.23 7.65 - 0 . 0 0 30.4 10.67 44

1 36.4 2.42 2 . 2 2 7.96 _ _ 31.4 10.69 162
2 36.4 2.59 2.24 7.76 - - 30.1 10.72 50
4 36.5 2.38 2.30 7.57 - - - 10.71 52
5 36.6 2.67 2.53 7.74 - - 27.4 10.89 1 2

8 36.6 2.71 2.59 7.66 - - 29.4 10.72 36
1 0 36.7 2.59 2.53 7.67 - - 26.4 10.75 36
15 36.7 2.78 2 . 6 6 7.63 - - 28.9 10.98 26
2 0 36.5 2.52 2.47 7.63 - - 10.87 40

1 36.4 2.29 2.08 8.07 1.70 _ 28.7 11.43 225
2 36.4 2.24 2.14 7.82 1.31 - 37.5 10.44 159
4 36.5 2.33 2.53 7.63 0.77 - 28.3 10.72 31
5 36.6 2.90 2.52 7.69 0.74 - 28.6 10.76 2 2

8 36.6 2.53 2.69 7.64 1.09 - 32.2 10.84 31
1 0 36.7 2.43 2.44 7.64 1.38 - 28.2 11.31 13
15 36.7 2.69 2.62 7.62 1.32 - 27.8 10.98 46
2 0 36.5 2.52 2.48 7.70 0.73 - 29.2 10.56 8
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Table D-23. WS-25 pore water data.

ample Salinity Alkalinity
(meq/kg)

DIC
(mmol/kg) PHnbs S13C (°/oo)

TDS
(mmol/kg)

Sulfate
(mmol/kg)

[Ca2+]
(mmol/kg)

[ o 2]
(pmtnol/

0 36.6 2.38 2.03 8 . 0 2 - 0 . 0 0 29.8 10.70 231
0 36.6 2.31 2.03 8.05 1.60 - 29.9 1 0 . 6 6 225
0 36.6 2.28 2.03 8.05 1 . 6 8 - 30.7 10.65 227

1 36.9 2.26 2 . 1 0 8.08 _ _ 30.0 10.65 227
2 36.8 2.47 2.36 7.83 - - 29.6 10.75 131
4 36.6 3.15 3.07 7.56 - 0 . 2 0 28.9 1 1 .2 1 51
5 36.6 2.62 2.58 7.75 - 0 . 0 0 29.6 10.93 35
8 36.8 3.17 3.16 7.53 - 0 . 0 0 30.2 11.27 6

1 0 36.7 3.30 3.30 7.50 - - 30.6 11.13 2 0

15 36.8 3.11 3.06 7.49 - 0 . 0 0 29.7 10.96 31
2 0 37.0 2.76 2.77 7.59 - 0.07 30.1 11.19 43

1 36.9 2.36 2.14 8.05 1 . 8 6 _ _ 10.78 219
2 36.8 2.34 2.29 7.79 1.46 - 30.2 10.79 131
4 36.6 2.57 2.47 7.66 1.41 - 29.8 10.71 47
5 36.6 2.30 2.37 7.66 1.39 - 31.3 10.69 53
8 36.8 2 . 6 8 2.64 7.56 0.96 - 30.5 1 1 . 0 0 25

1 0 36.7 2.49 2.44 7.65 1.43 - 30.7 10.81 55
15 36.8 2.41 2.47 7.52 1 . 2 2 - 31.2 10.99 55
2 0 37.0 2.36 2.33 7.62 1.49 - 29.4 10.77 39

1 36.9 2.31 2.06 8.14 _ _ 29.1 1 1 .0 1 2 2 0

2 36.8 2.35 2.27 7.76 - - 33.0 10.77 77
4 36.6 2.70 2 . 6 6 7.60 - - 29.9 10.90 30
5 36.6 2.52 2.54 7.58 - - 29.8 10.79 41
8 36.8 2.93 3.11 7.61 - - 27.3 1 0 . 8 8 44

1 0 36.7 2.94 2.61 7.64 - - 29.4 10.92 38
15 36.8 2.83 2.85 7.58 - - - 10.98 47
2 0 37.0 2.37 2.46 7.58 - - 30.5 10.96 51
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c l e a r  a l l ;  

t i c
d = x l s r e a d ( ' w s _ d a t a _ f i t t i n g . x l s 1) ;  %Load d a t a  f i l e  

f o r  j =  1 : 9 : 1 8 1
X = d ( j : j + 8 , 1 ) ;  %Def ine  d e p t h  v a r i a b l e

% ----- C r e a t e  f i t  f o r  a l k a l i n i t y  p r o f i l e
Y l = d (j : j + 8 , 2 ) ;  
f o l  =
f i t o p t i o n s ( ' m e t h o d ' , ' N o n l i n e a r L e a s t S q u a r e s ' , ' A l g o r i t h m ' , ' L e v e n b e r g -  
M a r q u a r d t ' , . . .

'M a x F u n E v a l s ' , 1 0 0 0 0 0 0 , ' M a x l t e r ' , 1 0 0 0 0 , ' T o l F u n ' , l e - 0 1 2 , ' T o l X ' , l e -  
012)  ;
o k l  = ~ ( i s n a n ( X )  | i s n a n ( Y l ) ) ;
s t l  = [ 1 1 1 - 1 ] ;
s e t ( f o l , ' S t a r t p o i n t ' , s t l ) ;
f t l  = f i t t y p e ( ' a l + b l / ( l + c l * e x p ( d l * x ) ) '  , . . .

' d e p e n d e n t ' , { ' y ' } , ' i n d e p e n d e n t ' , { ' x ' } , . . .
' c o e f f i c i e n t s ' , { ' a l ' ,  ' b l ' ,  ' c l ' ,  ' d l ' } ) ;

% F i t  t h i s  m o d e l  u s i n g  new d a t a  
c f l  = f i t ( X ( o k l ) , Y 1 ( o k l ) , f t l  , f o l ) ;

%Plot t h i s  f i t  
f i g u r e (1) 
s u b p l o t ( 2 2 1 ) ;
p l o t ( X , Y 1 , ' o b ' ) ,  t i t l e ( ' A l k a l i n i t y ' ) , a x i s  ( [ 0  25 0 6 ] ) ;  %plot  o r i g i n a l  
d a t a  p o i n t s  
h o l d  on;
h i  = p l o t ( c f l ,  ' f i t ' , 0  . 9 5 ) ;  %plot  f i t t e d
c u r v e
s e t ( h i ( 1 ) ,  ' C o l o r ' , [1 0 0 ] ,  . . .

' L i n e S t y l e ' L i n e Wi d t h ' , 2 , . . .
' M a r k e r ' , ' n o n e ' ,  'M a r k e r S i z e ' , 6 ) ;

x l a b e l  ( ' D e p t h  ( c m ) ' ) ;  
y l a b e l  ( ' A l k a l i n i t y  ( m e q / L ) ' ) ;  
h o l d  o f f ;

% ----- C r e a t e  f i t  f o r  DIC p r o f i l e
Y 2 = d (j : j + 8 , 3 ) ;  
f o 2  =
f i t o p t i o n s ( ' m e t h o d ' , ' N o n l i n e a r L e a s t S q u a r e s ' , ' A l g o r i t h m ' , ' L e v e n b e r g -  
M a r q u a r d t ' , . . .

' M a x F u n E v a l s ' , 1 0 0 0 0 0 0 , ' M a x l t e r ' , 1 0 0 0 0 , ' T o l F u n ' , l e - 0 1 2 , ' T o l X ' , l e -  
012)  ;
ok2 = ~ ( i s n a n ( X )  | i s n a n ( Y 2 ) ) ;
s t 2  = [ 1 1 1 - 1 ] ;
s e t (f o 2 , ' S t a r t p o i n t ' , s t 2 ) ;
f t 2  = f i t t y p e ( ' a 2 + b 2 / ( l + c 2 * e x p ( d 2 * x ) ) '  , . . .

' d e p e n d e n t ' , { ' y 1} , ' i n d e p e n d e n t ' , { ' x ' } , . . .
' c o e f f i c i e n t s ' , { ' a 2 ' , ' b 2 ' ,  ' c2  ' , ' d 2 ' } ) ;

% F i t  t h i s  m o d e l  u s i n g  new d a t a  
c f 2 = f i t ( X ( o k 2 ) , Y 2 ( o k 2 ) , f t 2  , f o 2 ) ;
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%Plot t h i s  f i t  
s u b p l o t ( 2 2 2 ) ;
p l o t ( X , Y 2 , 1s g ' ) ,  t i t l e ( 1D I C 1) , a x i s  ( [ 0  25 0 6 ] ) ;  
h o l d  on;
h2 = p l o t ( c f 2 , ' f i t ' , 0 . 9 5 ) ;  
s e t ( h 2 ( 1 ) ,  ' C o l o r 1 , [0 0 1 ] ,  . . .

' L i n e S t y l e ' L i n e Wi d t h 1 , 2 , . . .
' M a r k e r ' , ' n o n e ' ,  1M a r k e r S i z e ' , 6) ;

x l a b e l  ( ' D e p t h  ( c m ) ' ) ;  
y l a b e l  ( 'DI C (mM)' ) ;  
h o l d  o f f ;

% ----- C r e a t e  f i t  f o r  Ca2+ p r o f i l e
Y 3 = d ( j : j + 8 , 4)  ; 
f o 3  =
f i t o p t i o n s ( ' m e t h o d ' , ' N o n l i n e a r L e a s t S q u a r e s ' , ' A l g o r i t h m ' , ' L e v e n b e r g -  
M a r q u a r d t ' , . . .

' M a x F u n E v a l s ' , 1 0 0 0 0 0 0 , ' M a x l t e r ' , 1 0 0 0 0 , ' T o l F u n ' , l e - 0 1 2 , ' T o l X ' , l e  
012)  ;
ok3 = ~ ( i s n a n ( X )  | i s n a n ( Y 3 ) ) ;
s t 3  = [ 1 1 1 0 ] ;
s e t (f o 3 , ' S t a r t p o i n t ' , s t 3 ) ;
f t 3  = f i t t y p e ( ' a 3 + b 3 / ( l + c 3 * e x p ( d 3 * x ) ) '

' d e p e n d e n t ' , { ' y ' } , ' i n d e p e n d e n t ' , { ' x ' } , . . .
' c o e f f i c i e n t s ' , { ' a 3 ' ,  ' b 3 ' ,  ' c 3 ' ,  ' d 3 ' } ) ;

% F i t  t h i s  m o d e l  u s i n g  new d a t a  
c f  3 = f i t  (X (ok3)  , Y3 ( o k 3 ) , f  t 3  , f o 3 )  ;

%Plot t h i s  f i t  
s u b p l o t ( 2 2 3 ) ;
p l o t ( X , Y 3 , ' d k ' ) ,  t i t l e ( ' C a 2 + ' ) , a x i s  ( [ 0  25 10 1 5 ] ) ;  
h o l d  on ;
h3 = p l o t ( c f 3 , ' f i t ' , 0  . 95) ; 
s e t ( h 3 ( 1 ) ,  ' C o l o r ' ,  [0 0 0 ] ,  . . .

' L i n e S t y l e ' L i n e Wi d t h ' , 2 , . . .
'M a r k e r ' , ' n o n e ' ,  ' M a r k e r S i z e ' , 6 ) ;

x l a b e l  ( ' D e p t h  ( c m ) ' ) ;  
y l a b e l  ( 'C a 2 +  ( mM)' ) ;  
h o l d  o f f ;

%legend ( ' a l k a l i n i t y ' , ' ' , ' D I C C a 2 + ' , ' ' ) ;  % Add l e g e n d  t o  t h e
p r o f i l e  p l o t s ,  ' '  r e p r e s e n t  t h e  d a t a  p o i n t

%% ----- C r e a t e  f i t  f o r  02 p r o f i l e
Y 4 = d ( j : j + 8 , 5 ) ;  
f o 4  =
f i t o p t i o n s ( ' m e t h o d ' , ' N o n l i n e a r L e a s t S q u a r e s ' , ' A l g o r i t h m ' , ' L e v e n b e r g -  
M a r q u a r d t ' , . . .

' M a x F u n E v a l s ' , 1 0 0 0 0 0 0 , ' M a x l t e r ' , 1 0 0 0 0 , ' T o l F u n ' , l e - 0 1 2 , ' T o l X ' , l e  
012)  ;
ok4 = ~ ( i s n a n ( X )  | i s n a n ( Y 4 ) ) ;
s t 4  = [1 200  0 0 . 1  ] ;
s e t (f o 4 , ' S t a r t p o i n t ' , s t 4 ) ;
f t 4  = f i t t y p e ( ' a 4 + b 4 / ( l + c 4 * e x p ( d 4 * x ) ) '
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1 d e p e n d e n t ' , { 1y 1} , 1 i n d e p e n d e n t ' , { ' x 1} , . . .
' c o e f f i c i e n t s a 4 1, ' b 4 ' ,  ' c 4 ' ,  1d 4 1} ) ;

% F i t  t h i s  m o d e l  u s i n g  new d a t a  
c f 4  = f i t ( X ( o k 4 ) , Y 4 ( o k 4 ) , f t 4  , f o 4 ) ;

%Plot t h i s  f i t  
s u b p l o t ( 2 2 4 ) ;
p l o t ( X , Y 4 , ' v m ' ) ,  t i t l e ( ' 0 2 ' ) , a x i s  ( [ 0  25 0 2 5 0 ] ) ;  
h o l d  on;
h4 = p l o t ( c f 4 , ' f i t ' , 0  . 95)  ; 
s e t ( h 4 ( 1 ) , ' C o l o r 1, [ 0  1 1 ] , . . .

' L i n e S t y l e ' L i n e Wi d t h ' , 2 .
' M a r k e r ' ,  ' n o n e ' ,  ' M a r k e r S i z e 1 , 6) ;

x l a b e l  ( ' D e p t h  ( c m ) ' ) ;  
y l a b e l  ( ' 0 2  ( m i c r o - M ) ' ) ;  
h o l d  o f f ;

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

% S pl in e  f i t t i n g  o f  s e a g r a s s  02 i n p u t  
s g = x l s r e a d ( ' s e a g r a s s _ b i o m a s s . x l s ' ) ;  
s g _ d e p t h = s g ( : , 1 ) ;  % s e a g r a s s  d e p t h
s g _ b i o m a s s = s g ( : , 2 ) ;  % s e a g r a s s  b i o m a s s

% C a l c u l a t e  s e c o n d  o r d e r  d e r i v a t i v e s  o f  a l l  s o l u t e s ,  t h e i r  d i f f u s i v e  
f l u x e s
%and f i t t e d  c o n c e n t r a t i o n  p r o f i l e s
v = 0 : 0 . 1 : 2 0 ;  % d e f in e  a a r r a y  o f  2 0 1  e l e m e n t s  f o r  0 . 1  s t e p  s i z e
N = l e n g t h ( v ) ;
D A l k = d ( j , 9 ) ;  %cm2/day
D D I C = d ( j , 1 0 ) ;  %cm2/ d a y
D C a = d ( j , l l ) ;  %cm2/day
D 0 x y = d (j , 1 2 ) ;  %cm2/day
x = z e r o s ( N , 1 ) ;
A l k 2 = z e r o s ( N , 1 ) ;
A l k _ d i f f = z e r o s ( N , 1 ) ;
A l k _ c o n c = z e r o s ( N , 1 ) ;
D I C 2 = z e r o s ( N , 1 ) ;
D I C _ d i f f = z e r o s ( N , 1 ) ;
D I C _ c o n c = z e r o s ( N , 1 ) ;
C a 2 = z e r o s ( N , 1 ) ;
C a _ d i f f = z e r o s ( N , 1 ) ;
C a _ c o n c = z e r o s ( N , 1 ) ;
0 x y 2 = z e r o s ( N , 1 ) ;
O x y _ d i f f = z e r o s ( N , 1 ) ;
O x y _ c o n c = z e r o s ( N ,  1) ; 
s e a g r a s s _ b i o m a s s _ c a l = z e r o s ( N ,  1) ; 
s e a g r a s s _ i n p u t = z e r o s ( N ,  1) ;

f o r  i = l : 1 : N
x  ( i )  = ( i - 1 ) * l d - l ;

A l k 2 ( i ) = 2 * ( c f l . b l ) / ( 1 + c f 1 . c l * e x p ( c f 1 . d l * x ( i ) ) ) * 3 * ( c f l . c l ) A2 * ( c f l . d l ) A2*  
e x p ( c f l . d l * x ( i ) ) ^ 2 - . . . .
c f 1 . b l / ( 1 + c f 1 . c l * e x p ( c f 1 . d l * x ( i ) ) ) * 2 * ( c f l . c l ) * ( c f 1 . d l ) A2 * e x p ( c f 1 . d l * x ( i
) ) ;
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A l k _ d i f f ( i ) = D A l k * A l k 2 ( i ) ;
A l k _ c o n c ( i ) = c f 1 . a l + c f 1 . b l / ( 1 + c f 1 . c l * e x p ( c f 1 . d l * x ( i ) ) ) ;

DIC2 ( i )  =2* ( c f 2 . b2)  /  ( 1 + c f  2 . c 2 * e x p  ( c f 2 . d 2 * x  ( i )  ) ) A3* ( c f 2  . c 2 )  * 2*  ( c f 2 . d 2 ) *2*  
e x p ( c f 2 . d 2 * x ( i ) ) * 2 . . . .

c f  2 , b 2 /  ( 1 + c f 2 . c 2 * e x p  ( c f  2 . d 2 * x  ( i )  ) ) ^2* ( c f  2 . c 2 ) * ( c f 2  . d 2 )  >“2 * e x p  ( c f  2 . d 2 * x  ( i  
) ) ;
D I C _ d i f f ( i ) = D D I C * D I C 2 ( i ) ;
D I C _ c o n c ( i ) = c f 2 . a 2 + c f 2 . b 2 / ( l + c f 2 . c 2 * e x p ( c f 2 . d 2 * x ( i ) ) ) ;

C a 2 ( i ) = 2 * ( c f 3 . b 3 ) / ( 1 + c f 3 . c 3 * e x p ( c f 3 , d 3 * x ( i ) ) ) A3 * ( c f 3 . c 3 ) * 2 * ( c f 3 . d 3 ) A2 * e  
x p ( c f 3 . d 3 * x ( i ) ) A2 . . . .

c f 3 . b 3 / ( 1 + c f 3 . c 3 * e x p ( c f 3 . d 3 * x ( i ) ) ) * 2 * ( c f 3 . c 3 ) * ( c f 3 . d 3 ) ^ 2 * e x p ( c f 3 . d 3 * x ( i  
) )  ;
C a _ d i f f ( i ) = D C a * C a 2 ( i ) ;
C a _ c o n c ( i ) = c f 3 . a 3 + c f 3 , b 3 / ( 1 + c f 3 . c 3 * e x p ( c f 3 . d 3 * x ( i ) ) ) ;

O x y 2 ( i ) = 2 * ( c f 4 . b 4 ) / ( 1 + c f 4 . c 4 * e x p ( c f 4 . d 4 * x ( i ) ) ) * 3 * ( c f 4 . c 4 ) A2 * ( c f 4 . d 4 ) A2*  
e x p  ( c f 4  . d 4 * x  ( i )  ) '“2 . . . .

c f 4 . b 4 / ( l + c f 4 . c 4 * e x p ( c f 4 . d 4 * x ( i ) ) ) * 2 * ( c f 4 . c 4 ) * ( c f 4 . d 4 ) A2 * e x p ( c f 4 . d 4 * x ( i  
) ) ;
O x y _ d i f f ( i ) = D 0 x y * 0 x y 2 ( i ) ;
O x y _ c o n c ( i ) = c f 4 , a 4 + c f 4 . b 4 / ( l + c f 4 . c 4 * e x p ( c f 4 . d 4 * x ( i ) ) ) ;

% Se agras s  b i o m a s s
s e a g r a s s _ b i o m a s s _ c a l ( i ) = i n t e r p l ( s g _ d e p t h , s g _ b i o m a s s , x ( i ) , 1 s p l i n e ' ) ;

% Se agras s  u n d e r g r o u n d  b i o m a s s  i n t e r p o l a t i o n  a t  0 . 1  cm d e p t h  i n t e r v a l  
s e a g r a s s _ i n p u t ( i ) = d ( j , 8 ) * s e a g r a s s _ b i o m a s s _ c a l ( i ) / 1 0 0 ;

en d

b i o m a s s = t r a p z ( x , s e a g r a s s _ b i o m a s s _ c a l ) ; % Se ag ras s  b i o m a s s  
i n t e g r a t i o n

s e a g r a s s _ i n p u t _ c o r r = s e a g r a s s _ i n p u t / b i o m a s s * 1 0 0 ;

b i o m a s s = t r a p z ( x , s e a g r a s s _ b i o m a s s _ c a l ) ; % t r a p z o i d a l  a p p r o x i m a t i o n  o f  
t o t a l  b i o m a s s  i n  % v a l u e ,  number i s  102%
o x y _ i n p u t _ n o n _ i r r = O x y _ d i f f + s e a g r a s s _ b i o m a s s _ c a l * d ( j , 8 ) / 1 0 0 / b i o m a s s * 1 0 0 ; 
%02 i n p u t  t h r o u g h  s e a g r a s s  p l a n t  an d d i f f u s i o n  o n l y ,  p l a n t  i n p u t  i s  
c o r r e c t e d  b y  c a l c u l a t e d  s e a g r a s s  b i o m a s s  i n t e g r a t e d  v a l u e  a b o v e

% f i g u r e (2)
p l o t ( x , o x y _ i n p u t _ n o n _ i r r , x , O x y _ d i f f ) ,  t i t l e ( ' 0 2  i n p u t  t h r o u g h  d i f f u s i o n  
an d s e a g r a s s  p u m p i n g ' )

A l k _ i r r = z e r o s ( N , 1 ) ;
D I C _ i r r = z e r o s ( N , 1 ) ;
C a _ i r r = z e r o s ( N , 1 ) ;
O x y _ i r r = z e r o s ( N ,  1) ;
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f v a l = z e r o s ( 2 0 0 1 , 1 0 1 ) ;  
f o r  k = l : 1 : 2 0 0 1

f o r  m m = l : l : 1 0 1
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %  

T r i a l  o f  r e s u l t  s e a r c h i n g ,  l i n e a r  g r a d i e n t  w i t h i n  t h e  l i t e r a t u r e  
r e p o r t e d  v a lu e s %
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %  

a l p h a 0 = [ ( k - 1 ) * 0 . 0 1 , (mm-1)* 0 . 0 1 ] ;

f o r  i = l : l : N
x ( i )  = ( i - 1 ) * l d - 1;
A l k _ i r r ( i ) = a l p h a 0 ( 1 ) * e x p ( - a l p h a O ( 2 ) * x ( i ) ) * ( A l k _ c o n c ( i ) - A l k _ c o n c ( 1 ) ) ;  
D I C _ i r r ( i ) = a l p h a 0 ( 1 ) * e x p ( - a l p h a O ( 2 ) * x ( i ) ) * ( D I C _ c o n c ( i ) - D I C _ c o n c (1) ) ; 
C a _ i r r ( i ) = a l p h a 0 ( 1 ) * e x p ( - a l p h a O ( 2 ) * x ( i ) ) * ( C a _ c o n c ( i ) - C a _ c o n c ( 1 ) ) ;  
O x y _ i r r ( i ) = a l p h a 0 ( 1 ) * e x p ( - a l p h a O ( 2 ) * x ( i ) ) * ( O x y _ c o n c ( i ) - O x y _ c o n c ( 1 ) ) ;

en d

A l k _ j ? r o d = t r a p z ( x , ( - A l k _ d i f f + A l k _ i r r ) ) * d ( j , 7 ) * 1 0 0 0 0 / 1 0 0 0 ;  
D I C _ p r o d = t r a p z ( x , ( - D I C _ d i f f + D I C _ i r r ) ) * d ( j , 7 ) * 1 0 0 0 0 / 1 0 0 0 ;  
C a _ p r o d = t r a p z ( x , ( - C a _ d i f f + C a _ i r r )  ) * d ( j , 7 ) * 1 0 0 0 0 / 1 0 0 0 ;
O x y _ c o n s = t r a p z ( x , ( O x y _ d i f f - O x y _ i r r + s e a g r a s s _ i n p u t _ c o r r ) ) * d ( j , 7 ) / 1 0 0 ;

F = z e r o s ( 3 , 1 ) ;
F ( 1 ) = a b s ( ( 2 * O x y _ c o n s - A l k _ j ? r o d ) / ( 2 * O x y _ c o n s + A l k _ p r o d ) * 2 ) ;
F ( 2 ) = a b s ( ( 2 * O x y _ c o n s - D I C _ j ? r o d ) / ( 2 * O x y _ c o n s + D I C _ p r o d ) * 2 ) ;
F ( 3 ) = a b s ( ( A l k _ p r o d - D I C _ p r o d ) / ( A l k _ p r o d + D I C _ p r o d ) * 2 ) ;  
f v a l ( k , m m ) = m e a n ( F ) ;

end
en d

%Get minimum v a l u e  fr om  t h e  m a t r i x  
S i z e D a t a  = s i z e ( f v a l ) ;
Vec  = r e s h a p e ( f v a l ,  [ p r o d ( S i z e D a t a ) , 1 ] ) ;
[Min, M in ln d ]  = m i n ( V e c ) ;

ND = l e n g t h ( S i z e D a t a ) ;

StrCom = ' [ I I  ' ;  
f o r  I d i m = 2 : l : N D ,

StrTemp = s p r i n t f ( ' I%d ' , I d i m ) ;
StrCom = [ S t r C o m , 1, ' , S t r T e m p ] ;

en d
S t r l n d  = [ S t r C o m , ' ] 1] ;
StrCom = [ S t r l n d , 1= i n d 2 s u b ( S i z e D a t a , M i n l n d ) ; ' ] ;  
e v a l ( S t r C o m ) ;
M i n I n d V e c = e v a l ( S t r l n d ) ; 
f v a l ( I I , 12)

% C a l c u l a t e  p r o d u c t i o n  an d c o n s u m p t i o n  r a t e  o f  e a c h  s p e c i e s  u s i n g  t h e  
o b t a i n e d  p a r a m e t e r s

a l p h a l = [ ( 1 1 - 1 ) * 0 . 0 1 , ( 1 2 - 1 ) * 0 . 0 1 ] ;
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f o r  i  = l  : 1 : N
x ( i ) = ( i - 1 ) * l d - l ;
A l k _ i r r ( i ) = a l p h a l ( 1 ) * e x p ( - a l p h a l ( 2 ) * x ( i ) ) * ( A l k _ c o n c ( i ) - A l k _ c o n c ( 1 ) ) ;  
D I C _ i r r ( i ) = a l p h a l ( 1 ) * e x p ( - a l p h a l ( 2 ) * x ( i ) ) * ( D I C _ c o n c ( i ) - D I C _ c o n c ( 1 ) ) ;  
C a _ i r r ( i ) = a l p h a l ( 1 ) * e x p ( - a l p h a l ( 2 ) * x ( i ) ) * ( C a _ c o n c ( i ) - C a _ c o n c ( 1 ) ) ;  
O x y _ i r r ( i ) = a l p h a l ( 1 ) * e x p ( - a l p h a l ( 2 ) * x ( i ) ) * ( O x y _ c o n c ( i ) - O x y _ c o n c ( 1 ) ) ;

e n d

A l k _ j ? r o d = t r a p z ( x , ( - A l k _ d i f f + A l k _ i r r ) ) * d (j , 7 ) * 1 0 0 0 0 / 1 0 0 0 ;  
D I C _ p r o d = t r a p z ( x , ( - D I C _ d i f f + D I C _ i r r ) ) * d ( j , 7 ) * 1 0 0 0 0 / 1 0 0 0 ;  
C a _ p r o d = t r a p z ( x , ( - C a _ d i f f + C a _ i r r ) ) * d ( j , 7 ) * 1 0 0 0 0 / 1 0 0 0 ;
O x y _ c o n s = t r a p z ( x , ( O x y _ d i f f - O x y _ i r r + s e a g r a s s _ i n p u t _ c o r r ) ) * d ( j , 7 ) / 1 0 0 ;  
O x y _ c o n s _ d i f f = t r a p z ( x , ( O x y _ d i f f ) ) * d (j , 7 ) / 1 0 0 ;
O x y _ c o n s _ i r r = t r a p z ( x , ( - O x y _ i r r ) ) * d (j , 7 ) / 1 0 0 ;

%Model ing r e s u l t  o u t p u t

%Curve f i t t i n g  c o e f f i c i e n t
F i t t i n g _ c o e f s = { 1A _ a l k ' , ' B _ a l k ' , ' C _ a l k ' , ' D _ a l k ' ; c f l . a l , c f l . b l , c f l . c l , c f l  
. d l ; . . .

1A_DIC' , ' B_ DI C1, ' C_DIC' , ' D _ D I C ' ; c f 2 . a 2 , c f 2 . b 2 , c f 2 . c 2 , c f 2  . d2 ; . . .
1A _ C a ' , ' B _ C a 1, ' C _ C a ' , ' D _ C a ' ; c f 3 . a 3 , c f 3 . b 3 , c f 3 . c 3 , c f 3 . d 3 ; . . .
'A _O xy ' , ' B _O xy 1, ' C_Oxy ' , ' D_Oxy' ; c f 4 . a 4 , c f 4 . b 4 , c f 4 . c 4 , c f 4 . d 4 };

% P r o d u c t i o n  o r  c o n s u m p t i o n  r a t e s  o f  e a c h  s p e c i e s  
P r o d _ C o n s = { ' A l k a l i n i t y  p r o d u c t i o n 1, A l k _ p r o d ; ' D I C  
p r o d u c t i o n ' , D I C _ p r o d ; ' Ca p r o d u c t i o n ' , C a _ p r o d ; . . .

' O xygen  c o n s u m p t i o n ' , O x y _ c o n s ; ' e r r ' , f v a l ( 1 1 , 1 2 ) } ;

%Oxygen i n p u t  b y  a l l  t h r e e  m e c h a n i s m s  
O x y _ i n p u t s = { ' T o t a l
c o n s u m p t i o n ' , O x y _ c o n s ; ' I r r i g a t i o n ' , O x y _ c o n s _ i r r ; ' D i f f u s i o n ' , O x y _ c o n s _ d i  
f f ; ' P l a n t  I n p u t ' ,  d (j , 8 ) * d ( j , 7 ) / 1 0 0 } ;

% A d ve ct io n  c o e f f i c i e n t
I r r _ c o e f = { ' a l p h a ' , ( I l - l ) * 0 . 0 1 ; ' b e t a ' , ( 1 2 - 1 ) * 0 . 0 1 } ;

%Resul t  o u p u t
x l s w r i t e ( ' w s _ d a t a _ f i t t i n g . x l s ' , F i t t i n g _ c o e f s ' , ( j + 8 ) / 9 + 1 , ' B 2 ') 
x l s w r i t e ( ' w s _ d a t a _ f i t t i n g . x l s ' , P r o d _ C o n s , ( j + 8 ) / 9 + 1 , ' G 1 2 ') 
x l s w r i t e ( ' w s _ d a t a _ f i t t i n g . x l s ' , O x y _ i n p u t s , ( j + 8 ) / 9 + l , ' G 1 8 ' )  
x l s w r i t e ( ' w s _ d a t a _ f i t t i n g . x l s ' , I r r _ c o e f , ( j + 8 ) / 9 + l , ' K 1 8 ' )  
e n d
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