APPLICATIONS NOTE

Vol. 27 no. 15 2011, pages 2159-2160
doi:10.1093/bioinformatics/btr325

Sequence analysis

Advance Access publication June 22, 2011

SEAL: a distributed short read mapping and duplicate removal

tool

Luca Pireddu*, Simone Leo and Gianluigi Zanetti

CRS4, Polaris, Ed. 1, [-09010 Pula, ltaly
Associate Editor: Alex Bateman

ABSTRACT

Summary: SEAL is a scalable tool for short read pair mapping and
duplicate removal. It computes mappings that are consistent with
those produced by BWA and removes duplicates according to the
same criteria employed by Picard MarkDuplicates. On a 16-node
Hadoop cluster, it is capable of processing about 13 GB per hour in
map-+rmdup mode, while reaching a throughput of 19 GB per hour in
mapping-only mode.
Availability: SEAL is
seal.sourceforge.net/.
Contact: luca.pireddu@crs4.it

available online at http://biodoop-

Received on March 7, 2011; revised on May 9, 2011; accepted on
May 26, 2011

1 INTRODUCTION

Deep sequencing experiments read billions of short fragments of
DNA, and their throughput is steadily increasing (Metzker, 2010).
These reads need to be post-processed after sequencing to prepare
the data for further analysis, which implies that the computational
steps need to scale their throughput to follow the trend in sequencing
technology. Such high data rates imply the need for a distributed
architecture that can scale with the number of computational nodes.

Typical post-processing steps include sequence alignment, which
is a fundamental step in nearly all applications of deep sequencing
technologies, and duplicate read removal, which is a major concern
for Illumina sequencing (Kozarewa et al., 2009). The pressure for
better and faster tools has recently given rise to the development
of new alignment algorithms that outperform traditional ones in
terms of both speed and accuracy (Li and Homer, 2010). Distributed
alignment tools have also been created, with Crossbow (Langmead
et al., 2009a) as one of the most prominent examples. However,
Crossbow is based on Bowtie (Langmead et al., 2009b), and thus
does not currently support gapped alignment, an important feature
for many applications (Li and Homer, 2010).

In this work we describe SEAL, a new distributed alignment
tool that combines BWA (Li and Durbin, 2009) with duplicate read
detection and removal. SEAL harnesses the Hadoop MapReduce
framework (http://hadoop.apache.org) to efficiently distribute I/O
and computation across cluster nodes and to guarantee reliability by
resisting node failures and transient events such as peaks in cluster
load. In its current form, SEAL specializes in the pair-end alignment
of sequences read by Illumina sequencing machines. SEAL uses a
version of the original BWA code base (version 0.5.8c) that has

*To whom correspondence should be addressed.

been refactored to be modular and extended to use shared memory
to significantly improve performance on multicore systems.

2 METHODS

SEAL is currently structured in two applications that work in sequence:
PairReadsQseq and Seqal. PairReadsQseq is a utility that converts the
gseq files (Illumina, Inc., 2009) produced by Illumina sequencing machines
into our prq file format that places entire read pairs on a single line.
Seqal is the core that implements read alignment and optionally also
performs duplicate read removal following the same duplicate criteria used
by Picard MarkDuplicates (http://picard.sourceforge.net). Both applications
implement MapReduce algorithms (Dean and Ghemawat, 2004) which run
on the Hadoop framework.

MapReduce and Hadoop: MapReduce is a programming model
prescribing that an algorithm be formed by two distinct functions: map and
reduce. The map function receives one input record and outputs one or more
key-value pairs; the reduce function receives a single key and a list of all
the values that are associated to that key. Hadoop is the most widespread
implementation of MapReduce.

Fairing reads in PairReadsQseq: PairReadsQseq groups mate pairs from
gseq data files into the same record, producing prq files where each line
consists of five tab-separated fields: id; sequence and ASCII-encoded base
qualities for read 1 and 2.

Read alignment and duplicates removal in Seqal: SEAL’s second
MapReduce application, Seqal, takes input pairs in the prq format and
produces mapped reads in SAM format (Li et al., 2009). The read alignment
is implemented in the map function. Rather than implementing a read aligner
from scratch, we integrated BWA (Li and Durbin, 2009) into our tool. We
refactored its functionality into a new library, libbwa, which allows us to use
much of the functionality of BWA programmatically. Although it is written
in C, it provides a high-level Python interface. To take advantage of this
feature, the Seqal mapper is written in Python, and integrates into the Hadoop
framework using Pydoop (Leo and Zanetti, 2010).

For each pair of reads, the aligner produces a pair of alignment records.
The user can choose to filter these by whether or not the read is mapped and
by mapping quality. Then, the reads may be directly output to SAM files,
or put through a reduce phase where duplicates are removed; the choice is
made through a command line option.

Like Picard MarkDuplicates, Seqal identifies duplicate reads by noting
that they are likely to map to the same reference coordinates. The specific
criteria we use defines two pairs as duplicates if their alignment coordinates
are identical, both for their first and second reads. Likewise, lone reads are
considered duplicates if they are aligned to the same position. When a set of
duplicate pairs is found, only the one with the highest average base quality
is kept; the rest are discarded as duplicates. Moreover, when a lone read is
aligned to the same position as a paired read, the lone one is discarded. If,
on the other hand, only lone reads are found at a specific position then, as
for pairs, only the one with the highest average base quality is kept.

2.1 Evaluation

Correctness: we verified the correctness of SEAL by performing the
alignment of the SM dataset (Table 1) to the UCSC HG18 reference genome

© The Author(s) 2011. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

220z ¥snBny 91, uo 3senb AQ 0¥ L0Y/BS LZ/S |/2Z/2PIHE/SONBULIONUIONG/WOO"dNO-DILSPED.//:SARY WOl PSPEOjUMOQ



L.Pireddu et al.

Table 1. SEAL evaluation: input datasets

Dataset No. of lanes No. of pairs Size (GB) Read length
5M 0 5.0x 100 23 9]
DS1 1 1.2x108 51 100
DS3 3 3.3x108 147 100
DS8 8 9.2x108 406 100

The 5M dataset consists of the first SM pairs from run id ERR020229 of the 1000
Genomes Project (Durbin ez al., 2010). The three DS datasets are from a production
sequencing run on an Illumina HiSeq 2000.

Table 2. Comparison of running time in hours between BWA on a single
node with 8 cores and SEAL running on 32 nodes without duplicates removal

Dataset BWA time (h, 1 node) SEAL time (h, 32 nodes)
M 0.49 0.04
DSI1 11.262 0.63
DS3 32.39* 1.72
DS8 89.35% 478

Note that the SEAL running time includes gseq to prq format conversion. ?*Time is
predicted as a linear extrapolation of the throughput observed on the SM dataset.

(Fujita et al., 2010) with both SEAL and BWA ver. 0.5.8c¢ and then comparing
their output. With BWA, we ran bwa aln and bwa sampe, while with SEAL
we ran the PairReadsQseq and Seqal applications.

The result was identical for 99.5% of the reads. The remaining 0.5% had
slightly different map quality scores (mapq), while the mapping coordinates
were identical for all but two reads. Both of the latter two cases had multiple
best hits but resulted in different alignment choices probably due to insert
size statistics, in turn due to the particular input read batch. Slight differences
in mapq scores are expected because their calculation takes into account the
insert size statistics, which are calculated on sample windows on the input
stream of sequences. Since the sample windows seen by the command line
version of BWA and SEAL are different for each read, a slight change in
the mapq value is expected. To verify this hypothesis, we ran BWA with
varying input datasets while keeping 3000 of those reads that produced mapq
variations in the original experiment. We observed that the mapq values for
those reads varied between runs.

Speed and scalability: we tested SEAL with varying input size (DS
datasets from Table 1) and cluster size (16, 32, 64 and 96 nodes). Each node is
equipped with dual quad-core Intel Xeon CPUs @ 2.83 GHz, 16 GB of RAM,
two 250 GB SATA disks, one of which is used for Hadoop storage. Nodes are
connected via Gigabit Ethernet. For each cluster size, we allocated a Hadoop
cluster (ver. 0.20.2) and copied the input data and a tarball of the indexed
reference sequence onto the Hadoop file system. The SEAL application was
run on all the DS datasets in both alignment-only and alignment plus remove
duplicate modes. The runs were repeated three times, with the exception of
DS8 which was run only once. The runtimes for the different datasets are
reported in Table 2, while the throughput is shown in Figure 1.

Looking at Figure 1, we see that SEAL is generally capable of throughput
levels comparable to single-node operation, meaning that the application and
Hadoop keep the distribution overhead to a minimum. As the cluster size
increases, we would ideally see a constant throughput per node, giving a
linear increase in overall throughput. In practice, when the input is too small
with respect to the computational capacity, nodes are often underutilized.
Therefore, the throughput per node with DS1 at 96 nodes is much lower than
the other configurations. On the other hand, we see that SEAL is capable
of utilizing available resources efficiently when more data are available,
although while scaling up from 64 to 96 nodes, the system achieved better
throughput on the small DS3 dataset as opposed to the larger DS8. We suspect
this is due to network congestion, which can be alleviated by informing
Hadoop about the cluster network topology.

1100

1050

1000

read pairs per second per node
©
=

900
80T DS1
soof| ~~- DS3
DS8
BT 32 64 96

cluster size (n. nodes)

Fig. 1. Throughput per node of the entire SEAL workflow: finding paired
reads in different files; computing the alignment; and removing duplicate
reads. An ideal system would produce a flat line, scaling perfectly as the
cluster size grows. The three datasets used are described in Table 1. By
comparison, a single-node workflow we wrote for testing—performing the
same work as SEAL but using the standard multithreaded BWA and Picard—
reaches a throughput of ~1100 pairs/s on the 5M dataset.

SEAL is able to achieve such scalability rates principally thanks to
libbwa’s efficient use of memory. In fact, libbwa stores the reference in
shared memory, allowing all libbwa instances running on the same system
to share the same memory space. In practical terms, this feature makes it
possible to run in parallel 8 alignments on a system with 8 cores and 16 GB
of memory, fully operating in parallel. While BWA does have a multithreaded
mode of operation, it only applies to the bwa aln step. On the contrary, SEAL
is able to parallelize all steps in the alignment.

ACKNOWLEDGEMENTS

We would like to thank our colleagues R. Berutti, M. Muggiri,
C. Podda and F. Reinier for their feedback and technical support.

Conflict of Interest: none declared.

REFERENCES

Dean,]. and Ghemawat,S. (2004) MapReduce: simplified data processing on large
clusters. In OSDI "04: 6th Symposium on Operating Systems Design and Impl.,
USENIX Association.

Durbin,R.M. et al. (2010) A map of human genome variation from population-scale
sequencing. Nature, 467, 1061-1073.

Fujita,P.A. et al. (2010) The UCSC Genome Browser database: update 2011. Nucleic
Acids Res., 39 (Suppl. 1) D876-D882.

Illumina, Inc. (2009) Sequencing Analysis Software User Guide For Pipeline Version
1.4 and CASAVA Version 1.0. Illumina.

Kozarewa,l. et al. (2009) Amplification-free Illumina sequencing-library preparation
facilitates improved mapping and assembly of (G+C)-biased genomes. Nat.
Methods, 6, 291-295.

Langmead,B. et al. (2009a) Searching for SNPs with cloud computing. Genome Biol.,
10, 134.

Langmead,B. et al. (2009b) Ultrafast and memory-efficient alignment of short DNA
sequences to the human genome. Genome Biol., 10, 25.

Leo,S. and Zanetti,G. (2010) Pydoop: a Python MapReduce and HDFS API for Hadoop.
In Proceedings of the 19th ACM International Symposium on High Performance
Distributed Computing, ACM, New York, NY, USA, pp. 819-825.

Li,H. and Durbin,R. (2009) Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics, 25, 1754-1760.

Li,H. and Homer,N. (2010) A survey of sequence alignment algorithms for next-
generation sequencing. Brief. Bioinformatics, 11, 473-483.

Li,H. et al. (2009) The sequence alignment/map (SAM) format and SAMtools.
Bioinformatics, 25, 2078-2079.

Metzker,M.L. (2010) Sequencing technologies — the next generation. Nat. Rev. Genet.,
11, 31-46.

2160

220z 1snBny 91 U0 1s8nB AQ 0EYLOV/6S L 2/S |/ L2/BI0IE/SONBWIOJUIOIG /WO dNO"DIWSPED.//:SARY WOl PAPEOUMOQ



