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Abstract

Background: While next-generation sequencing technologies have made sequencing genomes faster and more
affordable, deciphering the complete genome sequence of an organism remains a significant bioinformatics challenge,
especially for large genomes. Low sequence coverage, repetitive elements and short read length make de novo
genome assembly difficult, often resulting in sequence and/or fragment “gaps” – uncharacterized nucleotide (N)
stretches of unknown or estimated lengths. Some of these gaps can be closed by re-processing latent information in
the raw reads. Even though there are several tools for closing gaps, they do not easily scale up to processing billion
base pair genomes.

Results: Here we describe Sealer, a tool designed to close gaps within assembly scaffolds by navigating de Bruijn
graphs represented by space-efficient Bloom filter data structures. We demonstrate how it scales to successfully close
50.8 % and 13.8 % of gaps in human (3 Gbp) and white spruce (20 Gbp) draft assemblies in under 30 and 27 h,
respectively – a feat that is not possible with other leading tools with the breadth of data used in our study.

Conclusion: Sealer is an automated finishing application that uses the succinct Bloom filter representation of a de
Bruijn graph to close gaps in draft assemblies, including that of very large genomes. We expect Sealer to have broad
utility for finishing genomes across the tree of life, from bacterial genomes to large plant genomes and beyond. Sealer
is available for download at https://github.com/bcgsc/abyss/tree/sealer-release.
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Background
De novo assembly using next-generation sequencing
short read sequences have been successful in producing
draft genome sequences [1]. However, complete and
fully automated assembly of genomes remains elusive,
especially for prohibitively sized genomes such as hu-
man. Problems generally reside in areas of low-coverage
or highly repetitive sequences. Even in cases where the
overall long-range sequence structure can be disambigu-
ated, on shorter scales there may be ambiguous or un-
determined bases, producing regions of Ns or “gaps” in
assembly scaffolds. The need for gap closure is made
more evident for large (in giga-base pair, Gbp, range)

genomes, such as in H. sapiens, where there are higher
occurrences of complex genomic features. In fact, as the
cost of DNA sequencing decreases faster than the cost
of computer hardware, more raw sequencing data will
be generated while computational resources will remain
mostly the same [2]. Thus it is critical to develop tools
that can scale up to these large datasets while using min-
imal computing resources. Projects such as the 1000
Genomes Project [3], The Cancer Genome Atlas [http://
cancergenome.nih.gov/], and clinical uses of whole-
genome sequencing [4] highlight the trend of processing
Gbp-scale datasets.
Even though these projects are about re-sequencing

human genomes and transcriptomes, it was demon-
strated that de novo assembly of the raw reads provides
valuable information on structural variations [5–8]. Thus
these initiatives would benefit from a gap-closing tool
that can improve the quality of human draft assemblies,
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while having low runtime and memory usage as it would
help reduce the cost of analysis [4].
Obviously, gap-closing algorithms are also valuable in

de novo sequencing projects, with some of the contem-
porary studies using the concept to improve assembly
contiguity [9]. When the closed gaps refine the sequence
content in or near genic or regulatory regions, they pro-
vide information for the downstream annotation work,
and enable biological insights.
Hence, several tools have been designed to close

gapped regions with sequence reads, including BaseClear
GapFiller [10] and SOAPdenovo GapCloser [11]. The
former implements a method that seeks read pairs with
one pair aligning within a contig and its mate partially
located in a region identified as a gap. These partially
aligned reads are used to close the gap through sequence
overlap. With GapCloser, a stand-alone tool in the
SOAPdenovo package, reads are aligned to contig
positions, and a base extension algorithm is performed.
Although both of these tools have been shown to
successfully close gaps in Mega-bp scale datasets such as
in S. cerevisiae (11 Mbp) and human chromosome 14
(95 Mbp) genomes, they have difficulties to process
larger datasets, such as the entire H. sapiens genome.
To address this need, we developed Sealer, a resource-

efficient gap-filling software. Sealer uses an assembly util-
ity within the ABySS package, called Konnector [12] as its
engine to close intra-scaffold gaps. We demonstrate the
scalability of Sealer on the white spruce (P. glauca) draft
genome [13], which it processes under 27 h using 40 GB
RAM – resources that can be found in contemporary
commodity desktop computers. We evaluate Sealer by
running tests on experimental datasets, comparing run-
time, memory usage, and gap-closing success rate against
state-of-the-art gap-filling applications. We expect Sealer
to find a wide application for finishing small and large
genomes alike.

Implementation
Algorithm Overview
Sealer performs three sequential functions (Additional file
1: Figure S1). First, regions with Ns are identified from an
input scaffold file, and nucleotides flanking each gap are
extracted. Then, flanking sequence pairs are used as input
to Konnector along with a set of reads with a high level of
coverage redundancy. Typically, the reads represent the
original dataset from which the draft assembly is gener-
ated, or may be reads from further whole genome shotgun
(WGS) sequencing data generated from the same sample.
The Konnector utility is run with a range of k-mer lengths
to connect the flanking sequences. Finally, successfully
connected sequences are inserted into the gaps of the ori-
ginal scaffolds, and a new gap-filled scaffold file is gener-
ated. Sealer ignores size discrepancies between gaps and

newly introduced sequences, since gap sizes are often esti-
mated from fragment library distributions and assemblers
do not generally provide confidence intervals for every re-
gion of Ns. Despite this, large expansions of the assembly
are unlikely due to decreasing gap-closing yield of Kon-
nector as the gap size increases [12]. Below are further
details on these three steps.

Step 1: Extracting sequences flanking gaps. Sealer
identifies regions of Ns in an input assembly. It then
searches for flanking sequences that do not contain Ns,
and are at least -L nucleotides long (default = 100). The
start position and scaffold ID of each gap are recorded
for downstream processing.
Step 2: Konnector assembly. The underlying engine for
Sealer is Konnector, a tool to generate pseudo long
reads from paired-end sequencing data by filling the
unknown sequence between read pairs using the redun-
dancy in sequence coverage. Given a k-mer length and
a read set, Konnector builds a Bloom filters to repre-
sent all k-mers in the reads, and retains k-mers that are
observed with a certain threshold multiplicity or higher
(default = 2). It uses this data structure as an implicit de
Bruijn graph [14] to perform a depth-limited, bidirec-
tional, breadth-first graph search for a path that
connects the flanking reads. In Sealer, gap-flanking
sequence pairs are used in lieu of read pairs.

Sealer invokes Konnector with a range of k-mer lengths.
The advantage of this “k sweep” strategy is, gaps with low
coverage have an increased chance of being closed by
shorter k-mer lengths, while gaps with highly repetitive
sequences are more likely to be closed by larger k-mer
values. At each k-mer instance, all possible traversals
within the depth limit are identified between each flanking
sequence pairs. Unique traversals, and traversals with path
multiplicity less than or equal to a user-specified threshold
(default = 2) are reported as successful connections. Con-
sensus sequences are produced for multiple paths, report-
ing IUPAC ambiguity codes [15] for mismatched bases.
Sealer records these generated sequences for subsequent
insertion into a given scaffold.
To minimize peak memory usage, Sealer performs

these local assembly runs serially, such that there is only
one Bloom filter loaded at a given time. This implemen-
tation is beneficial for processing large genomes, such as
P. glauca for which each Bloom filter instance requires
40GB RAM. Further, it allows a subtractive procedure,
where we eliminate successfully closed sequence gaps
from the input of subsequent iterations, minimizing
CPU run time.

Step 3: Updating the draft assembly. The scaffold IDs
and gap start positions recorded during Step 1 are used
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to match the new sequences to the corresponding gaps.
However, the size of a gap and the length of a filled
sequence may disagree, potentially shifting gap
coordinates as Sealer closes them. To avoid this issue,
Sealer processes gaps from 3′ to 5′, attempting to close
the right-most gap first, moving left, making its way
gap by gap towards the 5′ end of a scaffold. When a
gap and new sequence are matched correctly, Sealer
removes the N bases and the flanking nucleotides in
the selected window, and replaces them by the newly
assembled sequence. The flanking nucleotides are also
replaced since the assembly process may have modified
portions of these sequences, correcting micro-
misassemblies near the end of the flanking sequence by
adjusting them so that they are concordant with the
underlying read set. This may also occur if there are al-
ternative solutions to the original assembly problem, as
in the case of polyploid genomes with allelic variations.

Experimental Data
We used five datasets representing genomes of varying
size (from 5 Mbp to 20 Gbp) and complexity (bacterial
to conifer) to assess the scalability and performance of
Sealer over a range of conditions (Table 1). All draft as-
semblies were generated using ABySS using optimized
assembly parameters. Specifically, we downloaded E. coli
K-12 substr. DH10B (~5Mbp) Illumina HiSeq 2000
paired-end reads from the Sequence Read Archive
(SRA) (SRA: SRR959238). We used the reference gen-
ome [GenBank: NC_010473.1] from NCBI to assess the
accuracy of the filled gaps. We closed gaps in this draft
assembly with Sealer using seven k-mer lengths (k = 90
to 30 bp, decrementing by 10), and using the Konnector
parameters -B 3000 -F 5000 -P 10. We obtained experi-
mental S. cerevisiae S288c (12Mbp) data from the European
Nucleotide Archive. The corresponding reference was
downloaded from NCBI [GenBank:GCF_000146045.2].
Gaps were closed with Sealer using the same seven k-mer
lengths as for E. coli and the Konnector parameters -B
3000 -F 700 -P 10. Experimental C. elegans (~100 Mbp)
paired-end reads were obtained from the SRA. The latest

version of the reference genome was acquired from Worm-
Base [WormBase:WBcel235]. Sealer closed gaps in the draft
assembly using 64 k-mer lengths (k =100 bp, and k-mer
lengths between 97 and 35 bp) and the Konnector parame-
ters -B 3000 -b 1200 M -F 700 -P 20. Sequence reads for H.
sapiens (3.3 Gbp) individual NA19238 from the 1000 Ge-
nomes Project were obtained from the SRA, and the hu-
man genome reference GRCh38 obtained from Genome
Reference Consortium. Gaps were closed with Sealer using
31 k-mers (250 – 130 bp, decrementing by 10 and 125 –
40 bp, decrementing by 5), and the parameters for Konnec-
tor were -B 1000 -F 700 -P10. P. glauca (white spruce) V3
draft assembly (20.8 Gbp) was downloaded from NCBI
[GenBank:GCA_000411955.3). We ran Sealer on this data-
set using two k-mer lengths (96 and 80 bp) while using the
Konnector parameters -B 300 -F 700 -P 10.

Comparison to other gap-closing tools
Sealer was compared to two similar tools: GapFiller
(v1.10) [10] and GapCloser (v1.12), the latter in the
SOAPdenovo2 package [11]. Default settings were used
for both tools in our tests, maximizing the number of
compute threads, when needed (−t 16 for GapCloser on
the human data set). Smaller datasets (<100 Mbp) were
included in the assessment of Sealer to accommodate
GapCloser and GapFiller, which have high memory and
runtime requirements, respectively.
The two were also tested on the 3-gigabase H. sapiens

draft assembly, but GapFiller was manually stopped
after running for over 350 h (approximately 14 days)
without completion or output. Neither one of the tools
were used on P. glauca, based on their compute re-
source requirements on the high-coverage (71-fold) H.
sapiens data.

Machine specifications
All Sealer runs were benchmarked on a 12-core com-
puter running CentOS 5.4 with two Intel Xeon X5650
CPUs @ 2.67 GHz and 48 GB RAM. All GapFiller and
GapCloser runs were performed on a machine using
CentOS 5.10 with 16 cores @ 2.13GHz, 125 GB RAM

Table 1 Sequence read datasets used

E. coli S. cerevisiae C. elegans H. sapiens P. glauca

Coverage 615x 25x 89x 71x 65x

Read length (bp) 98 100 100 250 150, 300 and 500

Paired-end read count 14,572,674 1,582,417 44,675,422 4.68x108 8.7 x109

Genome size (bp) 4,686,137 12,495,682 100,258,171 3.3x109 20.8x109

Short Read Archive (SRA) accession SRR959238 ERR156523 ERR294494 ERR309932 SRS357050

Gene source GCF_000019425 GCF_000146045 GCA_000002985 Not used Not used

ABySS version and assembly k parameter v1.5.2 v1.5.2 v1.3.6 v1.5.2 v1.3.5

k = 50 k = 30 k = 80 k = 150 k = 109
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with the exception of the GapCloser run on the H. sapi-
ens data. For that we used a machine running CentOS 5.9
with 16 cores @ 2.13 GHz and 236 GB RAM to accom-
modate the high memory requirement of GapCloser.

Assessment of performance
To ensure consistent reporting of gap statistics, a script
was developed that counts the number of regions with
N bases in an assembly. This script was used to calculate
the number of gaps before and after processing a draft
assembly. A gap was defined as having one or a contigu-
ous group of N bases. We used Exonerate (v2.4.0) [16]
to analyze the accuracy of each tool. Sequence align-
ments were used to calculate the average sequence simi-
larities (i.e. percentage of matching bases out of total
bases in the query without penalizing ambiguity codes).
Inserted sequences of closed gaps, rather than entire
assembly scaffolds, were aligned to the corresponding
reference (exonerate –percent 95). With Sealer, this was
a straightforward process because of the comprehensive
output it provides. Along with the new draft assembly
and a log file describing specific results of each k run,
Sealer also outputs a FASTA-formatted file of all the
newly generated sequences (flanking sequences and new
gap-filled sequence), which includes the original scaffold
ID and gap position. In addition, there is an option to
output a fasta file of gap-flanking nucleotide sequence
pairs (Sealer parameter –print-flanks). In contrast, nei-
ther GapCloser nor GapFiller output a file of newly
inserted sequences. Therefore, we had to develop a pipe-
line to identify and extract these novel bases for assess-
ment and benchmarking the performance between all
three tools. The pipeline begins by generating a file of all
gap-flanking sequence pairs (100 bp each) found in the
original assembly. It performs an Exonerate alignment
using these flanking sequence pairs and a gap-filled as-
sembly as query and target, respectively. This returns
the coordinates of flanking sequence pairs within the
gap-filled assembly. Using this information, the assess-
ment pipeline extracts the bases found between each
flanking sequence pair, and aligns them to the reference
genome to determine sequence similarity. This pipeline
was used on all three tools to maintain consistency in
our analyses. We measured the runtime of Sealer using
the UNIX command ‘time’. We used the Python script
Memusg [https://github.com/jhclark/memusg] to bench-
mark peak memory usage. In addition to these analysis
scripts, gap-closed assemblies of E. coli were manually
inspected. Using parts of the sequence assessment pipe-
line described above, newly generated sequences and
their flanking sequences were extracted from gap-closed
assemblies. These sequences were aligned to the reference
using Exonerate (exonerate –model affine:local [new se-
quence] [reference] –percent 95 –ryo Percent Identity: %pi

Percent Similarity %ps). The alignments of sequences pro-
duced by Sealer were compared with the alignments of se-
quences generated by the other two tools. Indels (insertions
and deletions), mismatches and ambiguity codes were
noted. We further analyzed the quality of the new draft as-
semblies using QUAST [17]. Additionally, gene annotations
(sources listed in Table 1), allowed us to determine whether
the gaps closed by each tool spanned genic regions.

Results and discussion
We benchmarked Sealer, GapFiller [10] and GapCloser
[11] on five datasets across a broad spectrum of genome
assembly sizes (~5 Mbp to 20 Gbp). The comparators
were chosen based on overall performance and resource
requirements, as recently evaluated [10, 17]. These stud-
ies considered several other tools that we did not include
in our comparisons. IMAGE [18] was not considered
based on its prohibitively high processing time [10].
Gap-closing capability was similar between GapFiller

and Sealer (Fig. 1), with Sealer outperforming the former
in two out of three small draft genomes (<1 Gbp). Gap-
Closer never achieved a full gap closing success rate
above 50 % in any of the datasets tested. We note that
GapFiller and GapCloser both have the ability to resolve
some of the unambiguous bases within a gap, even when
the gap is not completely closed. In contrast, Sealer pro-
duces an all-or-none gap closing output. A summary of
the comparison results are presented in Table 2.
We took advantage of the small size of E. coli to

manually inspect every sequence produced by Sealer,
GapCloser and GapFiller. We aligned these sequences to
the reference genome to determine percent similarities.
As shown in Additional file 2: Table S1, Sealer closed 17

Fig. 1 Gap-closing success rates. Results of gap closure of the tools
tested on a broad-size genome data spectrum (5 M to 20 Gbp).
Baseclear GapFiller could not complete its run on H. sapiens. Both
GapFiller and GapCloser were not attempted on the P. glauca, due
to their high resources requirements
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of the 18 gaps while GapCloser and GapFiller fully
closed 2 and 15 gaps, respectively. Out of the 17 new se-
quences output by Sealer, 15 had 100 % similarity to the
reference genome. GapCloser also had 100 % similarity,
but only from its two fully closed sequences. GapFiller
performed similarly to Sealer, obtaining 100 % similarity
for all but 2 gaps. The gaps commonly closed by all 3
tools (n = 2) comprised the same base sequence. Further-
more, the sequences of commonly closed gaps between
Sealer and GapFiller were the same, with the exception
of two gaps. Three sequences produced by Sealer con-
tained ambiguity codes, consistent with the ability of
Konnector to report alternate bases when multiple as-
sembly paths are possible.
For S. cerevisiae, of the 52 commonly closed gaps

(out of 213), percent similarities to the reference gen-
ome are 99.94 %, 99.96 % and 99.95 % for Sealer, Gap-
Closer and GapFiller respectively. Sealer successfully
closed 178 of the 213 gaps in this dataset, outperform-
ing the other tools.
For C. elegans, 1646 gaps were detected as commonly

closed. Sequence similarities were reported as 99.71 %,
99.76 % and 99.75 % for Sealer, GapCloser and GapFiller
respectively. These findings (summarized in Table 2 and
Fig. 2) show that the accuracy of the gaps closed by the
three tools are comparable, while the success rate of
Sealer is the highest in all but one experiment.
We note that the peak memory usage of GapCloser is up

to one hundred times higher compared to Sealer (Table 2
and Additional file 3: Figure S2, eg. 101 GB vs 1.35 GB for
C. elegans), and memory requirements are similar between
Sealer and GapFiller. For smaller genomes, GapCloser had

the fastest run times, but consistently closed less gaps com-
pared to the other two tools. GapFiller had the slowest run
time for all the experiments. When closing gaps in the H.
sapiens draft assembly, GapFiller was left running for over
353 h (~2 weeks) before we manually killed the process.
GapCloser was able to complete this dataset in three and a
half days using 178.1 GB RAM, while GapFiller was still
processing 19 % of the paired-end reads at the time of its
termination, with no partial assembly output. Sealer closed
120,676 of the 237,406 human draft assembly gaps, a suc-
cess rate of 50.8 %, in less than 30 h (~1 day, 5 h) compute
time. Compared to GapFiller, Sealer used ~8 times less
memory to close marginally more gaps. Likewise, Sealer
processed the colossal white spruce 20 Gbp draft
assembly in 26.2 h using Bloom filters for two values
of k, and achieved a gap-closing success rate of 13.8 %,
closing 399,476 of the 2,894,274 gaps in the NCBI V3
draft assembly.
The results reported by QUAST (Additional file 4:

Table S2) further supports the ability of Sealer to pro-
duce quality draft assemblies. With the exception of the
C. elegans assemblies, the resulting Sealer gap-filled
assemblies are contiguous, even when factoring mis-
assemblies, as the NGA50 length metric suggests. This
indicates that the mis-assemblies in the Sealer E. coli
and S. cerevisiae assemblies tend to be on shorter scaf-
folds. In all genomes under study, Sealer was marginally
superior in its ability to close gaps located within genes
compared to the other tools. Average additional number
of complete genes recovered by Sealer compared to
other applications for E. coli, S. cerevisiae and C. elegans
is 8.5 +/− 6.4, 10.5 +/− 12.0 and 20.0 +/− 1.4 in that

Table 2 Gap-closing performance of Sealer, SOAPdenovo GapCloser and GapFiller on five draft genome assemblies ranging from ~5
Mbp to 20 Gbp

Draft genome species Total gaps Software Gaps completely closed % Success Wall clock time (hh:mm) Memory (GB)

E. coli 18 Sealer 17 94.4 00:20 0.5

GapCloser 2 11.1 00:05 25.7

GapFiller 15 83.3 00:43 0.4

S. cerevisiae 213 Sealer 178 83.6 00:02 0.5

GapCloser 90 42.3 00:02 3.8

GapFiller 168 78.9 00:20 0.7

C. elegans 4,223 Sealer 2,968 70.3 09:54 1.4

GapCloser 2,062 48.8 01:49 101.0

GapFiller 3,186 75.4 37:42 0.7

H. sapiens 237,406 Sealer 120,676 50.8 29:19 22.2

GapCloser 116,297 48.9 83:15 178.1

GapFiller Incomplete. Terminated after 353 h.

P. glauca 2,894,274 Sealer 399,476 13.8 26:12 45.3

GapCloser
Not attempted

GapFiller
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order. We speculate that, when measuring number of
Ns per 100 kbp, QUAST is counting ambiguity codes as
well, since no N bases exist in the contig files submitted
to the analysis tool.
Leading gap-filling applications, namely GapFiller and

SOAPdenovo’s GapCloser resolve gaps by short read
sequence alignments. Current implementations of this
paradigm have similar gap-filling efficiencies on small
bacterial genomes [10], which is comparable to that of
Sealer. They however, have difficulty scaling to larger
genomes such as the whole human genome and sizes be-
yond. This will become increasingly more important as
the data throughput from sequencing instruments con-
tinues to swell, and researchers undertake more de novo
sequencing projects of large genomes. For such projects,
even though it is possible to process assembly scaffolds
in smaller batches on a compute farm, doing so would
result in an overhead that is often impractical and re-
quires specialized hardware and bioinformatics know-
how. While our manuscript was in review we became
aware of a promising, but not yet scalable, graph-based
gap filling algorithm [19], which was reported at the
time to close 28 % more gaps in bacterial genome
assemblies when compared to GapFiller and GapCloser.
Sealer uses a light-weight Bloom filter de Bruijn graph

assembler as its core assembly algorithm. This gives
Sealer a few advantages over alternative tools. 1) The
entire 1.35 Tbp P. glauca read set [13] easily fits on a
48 GB RAM computer, a system that is now accessible
to most labs. 2) The de novo assembly method Sealer
uses has the advantage of generating multiple paths
through a k-mer graph, which could be used to effect-
ively capture allelic differences and sequence variants,
both key features to genetics and cancer studies. In con-
trast, GapCloser and GapFiller use coverage information
and a threshold score to determine which consensus
base is used in the case of a discrepancy, effectively

stripping that information. 3) The fast bi-directional de
Bruijn graph assembly strategy, specifically allows one to
exhaustively assemble k-mers across gaps using a com-
prehensive range of k values. We applied this strategy to
the C. elegans dataset, testing 64 different k values (thus
iteratively building 64 Bloom filters). Although this im-
pacted its run time, Sealer was still four times faster than
GapFiller while closing above 70 % of the gaps, a yield
comparable to that obtained by the latter. Further,
because the Sealer run time is low and its memory foot-
print is relatively small, one could envision building
Bloom filters with additional data from the same sample,
or even third-party data from same-species, to produce
a mosaic assembly in a manner similar to the human
genome reference.
When running individual Sealer runs at unique values

of k on 250 bp human experimental WGS read data, we
find that k = 80 is more successful at closing gaps. When
considering the entire k spectrum, being more permis-
sive on the maximum number of assembly paths (from
–P 2 to –P 10) increases gap closure by 9.8 % overall
(Additional file 5: Figure S3A). Generally speaking, k-
mers varying in size from 60 to 220 bp were all suited to
close gaps in the human draft assembly, and gaps of
equivalent sizes tend to close in a k-independent man-
ner, with a slight constriction of gap length distribution
with decreasing k (Additional file 5: Figure S3B). This is
not surprising since Konnector achieves maximum effi-
ciency on fragments < 1 kbp [12]. On a practical note we
recommend, whenever possible, exploring a wide range
of k, typically from the read length L to k = 40, which is
the practical lower limit of k for Konnector. For human,
we ran Sealer iteratively by exploring 31 k-mers from
250 to 40 nucleotides, and still completed the run in less
than half the time compared to the next best application
(Table 2). When working with de Bruijn graphs, shorter
k-mers yield more tangled graphs but are useful when

Fig. 2 Identity of closed gaps by Sealer and two leading gap-filling applications. Venn diagrams depict the overlap of gaps closed between each
tool for the a) E. coli, b) S. cerevisiae and c) C. elegans datasets. The sizes of individual circles represent the number of gaps closed relative to the
other tools. Overlapping closed gaps were approximated using the assessment pipeline described in Section 2.5 and depicted using the online
VennDiagram.tk tool [http://www.cmbi.ru.nl/~timhulse/venn/]
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read coverage is inadequately low. On the flip side, the
use of longer k-mers help disambiguate repeats and tan-
gles in the graph when the coverage is sufficient, and are
expected to help resolve gaps that arise due to repeats
[20]. We find that, when used iteratively, both large and
short k-mers close a similar number of gaps in the hu-
man data set (Additional file 6: Table S3). A combination
of k-mers used in iterative cascading runs is thus war-
ranted since, clearly, lower k values close more than half
of the gaps that were not successful at larger values of k.
Also, larger k-mer values tend to close larger gaps and
overlaps. Generally, the first k-mer utilized closes the
most gaps in iterative runs (Additional file 7: Figure
S4A), which is why running Sealer first with large k
values that can more readily resolve repeats is recom-
mended. We profiled the repeat content in gaps [21]
that were uniquely closed at a specific k-value during the
iterative Sealer run on the human assembly. We observe
that gaps with SINEs are preferentially closed at a
shorter k while those comprised of simple repeats,
LINEs and Satellites are preferentially closed with larger
k-mers, which is intuitive. Overall, we do not find many
gaps harboring low complexity regions, small RNA, and
unclassified repeats, suggesting that we may have limited
success in closing gaps comprising these features
(Additional file 7: Figure S4B). We have randomly sam-
pled 350 gaps that we could not close after the Sealer
iterative k runs on the human assembly draft. We ob-
serve that 95.6 % +/− 2.0 % of those are due to repeats
in the hg19 reference human genome, as indicated by
the corresponding regions harboring lower case bases
in the reference genome. The +/− 2.0 % interval refers
to the 95 % confidence interval of this estimated rate.
GapCloser and GapFiller will resolve base ambiguities

as they iterate through a subset of sequences even when
they cannot fully close a gap. Sealer on the other hand
provides an all-or-nothing output, not reporting partially
filled gaps when the number of possible reconstructions
between flanking gap sequences exceed a user-defined
threshold or when assembly paths are obscured. As a re-
sult, GapCloser and GapFiller results may have fewer Ns
per 100 kbp (Additional file 4: Table S2). However, we
note that remaining gaps still require design and execution
of finishing experiments, and arguably fewer gaps would be
desirable over more but slightly shorter gaps. Also, because
GapCloser and GapFiller do not report their partially closed
gaps, we were not able to test their accuracy.

Conclusions
Finishing genomes has been relevant since sequencing
H. influenzae, the first shotgun genome assembly [22]
and, more than ten years after publishing of the first
human genome draft, we still do not have a complete
assembly [23]. There have been few reasons for that,

including difficulty in cloning, sequencing and assem-
bling heterochromatin, as well as the lengthy, tedious
nature of finishing work. But the prohibitive analysis
cost is one of the main reasons why we do not com-
pletely finish genomes today. With DNA sequencing af-
fordability on the rise [4], shotgun assembly of large
genomes (>1 Gbp) is increasingly becoming routine in
research laboratories, and widespread uptake in the
clinic is anticipated. Consequently, obtaining better draft
genomes is a common goal of all de novo sequencing
projects. Further, de novo assembly and sequence finish-
ing is also finding applications in many re-sequencing
projects, especially in oncogenomics projects where
comprehensive sequencing and nucleotide-level reso-
lution informs clinical intervention [24]. Sealer is a scal-
able gap-filling software expected to be an indispensable
addition to the genome finishing toolkit, and with broad
application to on-going finishing efforts.
Whereas obtaining 100 % completion is unlikely with-

out at least some computer-assisted manual finishing
and labour-intensive PCR work, Sealer brings human
genome finishing and finishing of colossal genomes such
as that of the 20 Gbp white spruce one-step closer.

Availability and requirements
Project name: Sealer
Project home page: https://github.com/bcgsc/abyss/tree/
sealer-release
Operating system(s): UNIX
Programming language: C++
Other requirements: Boost C++ library (headers only)
and Google sparsehash library
License: GNU GPL
Any restrictions to use by non-academics: license
needed

Additional files

Additional file 1: Figure S1. Sealer gap-closing pipeline. PDF file depicting
the steps to gap-filling genome draft assemblies with Sealer.

Additional file 2: Table S1. Table of gaps closed in the E. coli K-12
genome. PDF file presenting an in-depth gap sequence analysis in
E. coli.

Additional file 3: Figure S2. Compute resource required. PDF file
showing benchmarking results of Sealer, SOAPdenovo GapCloser and
GapFiller for closing gaps in draft genome assemblies.

Additional file 4: Table S2. Table detailing a quality assessment of
gap-filled assemblies. PDF file reporting a QUAST analysis of gap-closed E.
coli, S. cerevisiae and C. elegans draft genome assemblies.

Additional file 5: Figure S3 Individual Sealer H. sapiens runs at unique
values of -k and –P. (PDF 126 kb)

Additional file 6: Table S3 Closing gaps in a human genome draft
assembly using Sealer with different k value ranges. (PDF 54 kb)

Additional file 7: Figure S4. Closing gaps iteratively in a cascading
fashion at various values of k in the E. coli, S. cerevisiae, C. elegans, H.
sapiens and P. glauca draft genomes.
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