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Seamless Dynamic Adaptive Streaming
in LTE/Wi-Fi Integrated Network under
Smartphone Resource Constraints

Jonghoe Koo, Juheon Yi, Joongheon Kim , Senior Member, IEEE,

Mohammad Ashraful Hoque , and Sunghyun Choi , Fellow, IEEE

Abstract—Exploiting both LTE andWi-Fi links simultaneously enhances the performance of video streaming services in a smartphone.

However, it is challenging to achieve seamless and high quality video while saving battery energy and LTE data usage to prolong the

usage time of a smartphone. In this paper, we propose REQUEST, a video chunk request policy for Dynamic Adaptive Streaming over

HTTP (DASH) in a smartphone, which can utilize both LTE and Wi-Fi. REQUESTenables seamless DASH video streaming with near

optimal video quality under given budgets of battery energy and LTE data usage. Through extensive simulation and measurement in a

real environment, we demonstrate that REQUESTsignificantly outperforms other existing schemes in terms of average video bitrate,

rebuffering, and resource waste.

Index Terms—DASH, adaptive video streaming, lyapunov optimization, smartphone, LTE/Wi-Fi networks

Ç

1 INTRODUCTION

NOWADAYS, smartphones utilize both LTE and Wi-Fi
interfaces to enhance the performance of various

applications. In particular, the performances of mobile
applications in terms of Quality of Experience (QoE) have
been modeled and actively discussed to be optimized [2].
Meanwhile, Cisco Visual Networking Index [3] suggests
that video traffic will be 82 percent of all consumer Internet
traffic by 2021, which is 73 percent higher and a threefold
increment of video traffic from 2016 to 2021. Accordingly,
video streaming is definitely one of the good candidates
that can take advantage of utilizing both LTE and Wi-Fi
wireless links towards better QoE provisioning [4], [5].
Among various video streaming standards and protocols,
Dynamic Adaptive Streaming over HTTP (DASH) is one of
the video streaming technologies which delivers video
chunks containing video data with a specific playback time.

Mobile users can enjoy high-quality video streaming serv-
ices over Wi-Fi wireless networks in high-bandwidth Wi-Fi
hotspots, and watch video contents over LTE whenever LTE
base stations can support reliable data communication even

though there are no available Wi-Fi access points (APs). In a
place where both LTE andWi-Fi are available, higher quality
videos can be supported ormore resource efficient streaming
is realized by judicially using both LTE and Wi-Fi wireless
links, simultaneously.

Let us consider a video streaming scenario, where a user
wants to enjoy content with long playback duration, e.g., a
live soccer game or video on demand (VoD) contents from
YouTube or Netflix. Since the content duration is quite long,
Wi-Fimay be the desirable access network for the user. How-
ever, the user might be on move or take public transport
while experiencing the content. Such mobility results in
extremely fluctuating wireless link throughput or frequently
disconnected Wi-Fi links from the nearby hotspots [6], [7].
This introduces significant video quality degradation and
also causes frequent rebuffering (also called video stall or
freezing), and hence, it is not desirable to watch the video
overWi-Fi link in this environment.

To tackle this problem, an intelligent video chunk
requesting mechanism is desired which can utilize the
unstable Wi-Fi links intelligently while guaranteeing the
video quality requirements and uninterrupted playback
without rebuffering in mobile environments. At the same
time, battery energy and LTE data quota are important
issues which are desired to be conserved as much as possi-
ble while ensuring satisfying video quality.

Accordingly, a chunk request technique should consider
both enhancing video performances, i.e., video quality and
rebuffering, and saving smartphone resources, i.e., battery
energy and LTEdata quota, to optimizeQoE of video stream-
ing. Besides, the problem is more complex in amulti-homing
environment compared with a single link scenario [8], thus
making it challenging to develop a well-designed DASH
streaming client, and a solution is still due.
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To provide an optimal video performance while satisfy-
ing resource usage constraints for battery energy and LTE
data quota, we propose REQUEST, a bitRate, Energy, LTE
data Quota, and bUffEr-aware video STreaming, for DASH
video over multi-homed smartphones. By utilizing Wi-Fi
link as a supplementary link, REQUEST realizes a seamless
DASH video streaming even in the environments where
Wi-Fi link performance is not guaranteed. Also, REQUEST
optimizes time-average video quality while satisfying time-
average resource constraints by adopting Lyapunov optimi-
zation framework, and it is easily implemented in commer-
cial smartphones as an application.

In addition, a control parameter V , which provides a
tradeoff between a time-average video quality and time-
average resource usages, is a critical factor to determine the
performance of REQUEST. Since it is difficult to determine
an optimal value of V , we adapt V in a heuristic manner for
a better performance of REQUEST.

We claim the following major contributions:

� We propose a chunk request policy that achieves
seamless playback of video using both Wi-Fi and
LTE simultaneously even in situations where Wi-Fi
is unstable.

� We formulate a Lyapunov optimization framework-
based stochastic optimization problem to maximize
time-average video quality under time-average
energy and LTE data usage constraints and mini-
mize rebuffering.

� We design REQUEST, an online video chunk request
algorithm by using both LTE and Wi-Fi links, which
provides a near-optimal solution of the Lyapunov
optimization problem.

� We implement REQUEST by modifying ExoPlayer,
Google’s open-source DASH player for Android [9],
and validate its performance in real-world scenarios.

� We propose a run time V (a control parameter for
Lyapunov optimization) adaptation algorithm to pro-
vide a better performance of REQUEST and verify the
enhancement through a trace-driven simulation.

Even though DASH has been studied for LTE data and
energy optimization using both LTE and WiFi networks [5],
[10], our work has the novelty as follows. We utilize the
WiFi network as a supplementary network to enhance video
quality and efficiently utilize the resources, i.e., battery
energy and LTE data quota, while avoiding video rebuffer-
ing even when the WiFi link becomes unstable. We propose
a new chunk request policy and formulate a stochastic opti-
mization problem to maximize the time-average video qual-
ity under energy and LTE data quota constraints as
mentioned earlier. Our solution is easy to implement on
commercial smartphones and can be directly applied with
already deployed network infrastructure.

The rest of the paper is organized as follows. In Section 2,
we discuss issues arising when utilizing both LTE and
Wi-Fi for DASH video streaming and related work. Section 3
describes the motivation of our work, and our proposed
chunk request policy is presented in Section 4. We formu-
late the optimization problem in Section 5 and REQUEST
algorithm is introduced in Section 6. We evaluate the perfor-
mance of REQUEST in Section 7. In Section 8, we discuss the

method to enhance the performance of REQUEST and con-
clude the paper in Section 9.

2 BACKGROUND AND RELATED WORK

2.1 Background

2.1.1 Multi-Homing for DASH

DASH is a bitrate-adaptive streaming technique, which deliv-
ers video content over HTTP. Video content is encoded at a
variety of bitrates in the video server. A DASH-enabled video
streaming player downloads video chunks of a particular
bitrate based on the experienced bandwidth for downloading
earlier chunks. Initially, the player begins with lower or mod-
erate quality to avoid longer start-up delay. Thanks to the
development of techniques for simultaneous utilization of
multiple network interfaces at mobile devices, especially, as
application-level solutions [11], [12], both Wi-Fi and LTE
interfaces can be utilized simultaneously to enhance video
quality while saving battery energy and LTE data quota. By
downloading video chunks with both LTE and Wi-Fi, the
video player can maintain sufficient chunks in its buffer, thus
avoiding rebuffering. However, chunks remaining in the
buffer may cause possible data waste when the user stops
watching the video in themiddle of playback [8], [13].

Bandwidth Aggregation for Enhancing Video Quality. Tradi-
tional bandwidth aggregation in heterogeneous wireless
network environment aims to support higher bitrates of
video that cannot be sufficiently delivered by only one of
the available networks [14], [15], [16], [17], [18], [19], [20].

Wi-Fi Offloading to Reduce LTE Data Usage. User may not
fully utilize LTE link due to her/his remaining monthly
LTE data quota or data plan. In this case, it is fairly useful to
download video data with Wi-Fi as much as possible to
save LTE data quota [7], [21].

Energy Consumption. The higher the video quality, the
higher the energy consumption of smartphones, because
the amount of data to be decoded and downloaded via
Wi-Fi or LTE increases [5], [22]. The energy is also spent by
the CPU for processing more packets [22].

Fast Prefetching. Prefetching video data, i.e., requesting
more video chunks in advance, provides several advantages
to a video client. The more video chunks to be consecutively
requested, the less energy is spent for networking activities as
network interfaces are able to stay in idle state for longer peri-
ods [8], [13], [23]. In addition, prefetching prevents rebuffer-
ing events because video buffer is filled with sufficiently
many video chunks. However, a large amount of prefetching
may waste as much energy and LTE data as the number of
chunks remaining in the video buffer when the user stops
watching before the video clip ends. Therefore, it is necessary
to determine an optimal prefetching strategy considering the
advantages of prefetching (prevention of rebuffering and
energy efficiency) and disadvantages (waste of energy and
LTE data due to user’s leaving) to enhance QoE of video
consumers.

2.1.2 Lyapunov Optimization Framework

Stochastic optimization aims at minimizing a time-average
objective function subject to queue stability when the utility
function and queue stability conditions are in tradeoff rela-
tionship. In addition, the stochastic optimization framework
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is able to utilize the concept of virtual queues for time-
average constraint representation. In stochastic optimiza-
tion formulation, Lyapunov function LðtÞ is defined as the
sum of squares of backlogs in actual and virtual queues on
a slot (in a slotted system). Lyapunov drift DðtÞ is defined as
the difference in the Lyapunov function per slot time. While
pursuing the minimization of a time-average objective func-
tion, taking the minimum of the Lyapunov drift leads to the
queue stability (i.e., main constraint), which is referred to as
drift-plus-penaltyminimization. By taking an action to greed-
ily minimize the drift-plus-penalty every slot time, we can
achieve a time-average utility deviating by at most Oð1=V Þ
from optimality while satisfying time-average constraints
and a time-average queue backlog bound of OðV Þ, where V
is defined as a tradeoff factor between utility and queue sta-
bility. For further details about the theory of Lyapunov opti-
mization, the book [24] can be referred to.

2.2 Related Work

Energy/Cellular Data Quota-Aware Video Streaming. Previous
efforts [8], [25] control a video segment size to be prefetched
in an HTTP-based video streaming service to improve the
energy efficiency. GreenTube [25] aims to minimize an unnec-
essary active period of 3G/4G radios by scheduling each
video segment downloading. eSchedule [8] utilizes crowd-
sourced video viewing statistics and powermodels for energy
efficient scheduling of video streaming. QAVA [10] manages
the tradeoff between cellular data usage and video quality by
predicting video client’s usage behavior.QAVA automatically
selects optimal video quality to enable users to keep under
their data quota while maximizing video quality. Lee
et al. [13] and Hu et al. [26] consider wastage of energy and
LTE data quota incurring when users stop video streaming
sessions early in their smartphones.

GreenBag [4] utilizes both LTE and Wi-Fi links to achieve
a better quality of service (QoS) and energy efficiency.
Go et al. [5] propose an energy-efficient HTTP adaptive
streaming algorithm under a cellular data usage constraint.
It considers the simultaneous usage of LTE and Wi-Fi for
DASH video streaming on smartphones. It selects video
bitrate and the number of chunks to request via each net-
work in order to minimize a weighted sum of video distor-
tion and energy consumption per video chunk.

Energy-quaLity aware Bandwidth Aggregation (ELBA)
[19] and energy-distortion-aware MPTCP (EDAM) [20] have
been proposed to provide energy-efficient and quality-
guaranteed video streaming over heterogeneous wireless net-
works. ELBAmodels delay-constrained energy-quality trade-
off for multipath video transmission over heterogeneous
wireless networks and enables energy-minimized quality-
guaranteed streaming within an imposed delay by energy-
minimized video rate adaptation, delay-constrained unequal
protection, and quality-aware packet distribution. EDAM
depends on utility maximization theory to minimize the
energy consumption while achieving target quality for video
streaming usingMultipath TCP (MPTCP) over heterogeneous
wireless networks.

Optimal Bitrate Selection of DASH Video. Video client
selects a video chunk with an appropriate bitrate according
to current network status [27], [28] or video player’s buffer
status [29]. Due to severe fluctuations of link throughput in

a mobile environment, it is difficult for a link throughput-
based bitrate adaptation to practically function, and for this
reason, a buffer-based bitrate adaptation has been studied
and practically used by real implementations [29], [30]. Kim
et al. [31] designed a quality-aware device-to-device video
scheduling and streaming technique for achieving time-
average peak-signal-to-noise-ratio (PSNR) maximization
subject to transmitter queue stability by selecting optimal
chunk bitrates [32]. Since the baseline network architecture
considered in this paper is completely different from the
network in [31], a direct comparison is not possible.

3 MOTIVATION

3.1 Wi-Fi Throughput Fluctuation Consideration

While a mobile device can utilize both Wi-Fi and LTE net-
works simultaneously, the Wi-Fi link may become unstable
and its quality may fluctuate severely especially in a mobile
or dense environment. For example, when a user moves
around and goes out of the coverage of a Wi-Fi AP con-
nected to the user’s mobile device, the device cannot utilize
Wi-Fi link until it finds an available Wi-Fi AP nearby and
handover to a new Wi-Fi AP is successfully completed. It is
also well known that Wi-Fi throughput degradation occurs
in mobile environments due to poor performance of hand-
over operations in commercial Wi-Fi devices [33], [34], [35].
In addition, if a Wi-Fi AP operates at 2.4 GHz, the Wi-Fi link
quality may severely suffer from interference caused by
other wireless devices operating in 2.4 GHz ISM band, such
as Bluetooth, ZigBee, microwave ovens, and cordless
phones [36], [37]. Furthermore, Wi-Fi at 5 GHz suffers from
higher path loss than Wi-Fi at 2.4 GHz, thus increasing the
possibility that mobile user experiences worse Wi-Fi link
quality and goes out of Wi-Fi coverage. In contrast to Wi-Fi,
a device may retain a seamless connection via the LTE net-
work even though user moves fast, thanks to seamless
handover between LTE base stations.1 Likewise, in mobile
and dense environments, Wi-Fi link may have more unsta-
ble quality and sometimes may be unavailable.

However, Wi-Fi can be still utilized for offloading pur-
pose even in mobile environments [6], [7], and its offloading
capability may increase in static environments or when a
device associates to an IEEE 802.11ac-compliant Wi-Fi AP
that can provide very high throughput. From this perspec-
tive, when a DASH client requests video chunks via both
Wi-Fi and LTE in parallel in a multi-homed device, Wi-Fi
link availability is like a double-edged sword. In other
words, although the Wi-Fi link may enhance the video qual-
ity at low energy cost and reduce LTE data consumption, it
can also increase the possibility of rebuffering events, as we
cannot predict the exact bandwidth and availability of Wi-
Fi in mobile and dense environments.

Therefore, it is challenging to design a chunk request pol-
icy for DASH by judicially utilizing Wi-Fi connectivity in
addition to LTE to maximize the merit of utilizing Wi-Fi link
while minimizing its side effects. In this work, we accept the
challenge. We opportunistically request video chunks over
Wi-Fi, thus reducing the side effects of unstableWi-Fi links.

1. In this paper, it is assumed that seamless handover of LTE links is
ensured. Other cellular links, e.g., 3G/HSDPA, may be applied instead
of LTE.
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3.2 Resource Utilization Optimization

Mobile devices consume resources, i.e., battery energy and
LTE data quota, during DASH video streaming over Wi-Fi
and LTE networks. Since battery energy and remaining
LTE data quota are usually limited, users will like to mini-
mize the resource usage for DASH video streaming as
much as possible so as to watch videos much longer or use
the remaining resources for other applications. Assuming
that a DASH client intelligently requests proper bitrate
video chunks to balance the quality of video and resource
usage. In this case, the video quality might be either
increased in exchange for using more resources or
decreased to conserve the resources. From this perspec-
tive, a problem can be formulated as optimizing video
quality for DASH streaming given the constrained amount
of resources in smartphones, i.e., requesting high quality
video chunks with a given amount of battery energy and
LTE data quota.

Unfortunately, the traditional optimization frameworks
that have been used in the past studies do not support flex-
ible resource utilization, e.g., sometimes allowing resource
overuse to enhance video quality. For instance, a popular
method to formulate optimization problem is to formulate
a multi-attribute cost function with proper constraints
based on a simple additive weighting (SAW) method. This
approach is widely used for multi-attribute decision mak-
ing (MADM) algorithms [5], [38], [39]. A challenge to opti-
mize MADM-based cost function is to select appropriate
weights for the attributes in the cost function to quantita-
tively balance them. In addition, even though the weights
of the attributes determine the relative priority to provide
a trade-off between attributes in a cost function, it is diffi-
cult to force an attribute to have a value within a certain
range.

To overcome the limitation of MADM-based optimiza-
tion, we adopt Lyapunov optimization framework to opti-
mize time-average video quality while satisfying time-
average resource constraints at the same time. By adopting
time-average concepts, we occasionally allow resource over-
use but eventually satisfy constraints.

4 PROPOSED CHUNK REQUEST POLICY

Generally, before a DASH client sends a request for a
video chunk, it determines an appropriate bitrate for the
chunk according to the estimated link bandwidth [5] or the
playback buffer status [29], [30]. In a multi-homed environ-
ment, a DASH client can further download a single chunk
in parallel via multiple wireless interfaces by sending mul-
tiple HTTP range requests [40]. A number of proposed
approaches follow this technique [4], [5]. However, consid-
ering a possible situation where Wi-Fi link is disconnected
or extremely unstable during a chunk download, it is not
efficient to divide one video chunk into two parts and
receive them by both LTE and Wi-Fi separately. Accord-
ingly, in this work, we use a single network to request and
receive a single video chunk. This eliminates decoding fail-
ures due to partially received chunks, thus avoiding re-
buffering and data wastage.

Therefore, we design our chunk request policy as illus-
trated in Fig. 1, where the notations in Fig. 1 are summa-
rized in Table 1. We call an event of requesting a batch of
video chunks a request event. A request interval T ½r� is defined
as the time interval between the start time and the end time

Fig. 1. An example of the proposed chunk request policy.

TABLE 1
Important Notations

Symbol Description

tp A fixed chunk playback time (sec)

Tb Initial buffer-time (sec)
r The index of request event
t½r� Start time of the rth request event

T ½r� The rth request interval (t½rþ 1� � t½r�)

b½r� Bitrate of chunks to be requested in the rth request
event

Nl½r� Number of chunks to request over LTE in the rth
request event

Nw½r� Number of chunks to request over Wi-Fi in the rth
request event

N̂w½r� Number of chunks received over Wi-Fi in the rth
request event
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of a request event. At the start time t½r� of the rth request event,
client determines the bitrate b½r� of chunks,2 request interval
T ½r�, and the numbers of chunks to request over LTE (Nl½r�)
and Wi-Fi (Nw½r�) during T ½r�. Ideally, all the chunks
requested during T ½r�, i.e., Nl½r� þNw½r� chunks, are
expected to be successfully downloaded within T ½r�. In this
case, t½rþ 1� ¼ t½r� þ T ½r�, i.e., the end time of the rth request
event is equal to the start time of the ðrþ 1Þth request event.

Moreover, it is important to determine T ½r� judiciously to
ensure that all the chunks are downloaded before they are
played back for seamless video streaming. Especially, our
policy tries to avoid rebuffering due to Wi-Fi throughput
degradation. To enable this goal, the following features are
introduced in our design:

i) We first set T ½r� ¼ tpðN̂w½r� 1� þNl½r�Þ, i.e., the play-
back time of N̂w½r� 1� chunks received over Wi-Fi in
the ðr� 1Þth request event and Nl½r� chunks requested
over LTE in the rth request event. By doing so, the
chunks received over Wi-Fi accumulate in the buffer,
which has the same effect as increasing the initial
buffer-time at the start of the next request event. It also
prevents rebuffering due to LTE throughput degrada-
tion that cannot be handled by the initial buffer.

ii) The video chunks requested over Wi-Fi in the rth
request event should be played after Tb from the end
time of the rth request event, where Tb is initial buffer-
time.3 For example, if Tb ¼ 2tp, N̂w½r� chunks received
over Wi-Fi in the rth request event are played after
t½r� þ T ½r� þ 2tp as illustrated in Fig. 1.

iii) If chunks are requested over both LTE and Wi-Fi, the
video chunk requested over Wi-Fi is played right after
the last video chunk requested over LTE in the same
request event. In other words, the first sequence ofNw½r�
chunks is the right next to the last sequence ofNl½r�.

iv) If the client fails to request some chunks over Wi-Fi,
those chunks are prioritized to request in the next
request event. For example, as illustrated in Fig. 1, if two
chunks could not be requested in the rth request event,
the client starts requesting the chunks in order in the
ðrþ 1Þth request event for the continuity of video.

Based on these features, we ensure that all chunks of a
video can be eventually received and played even though
some chunks could not be requested over Wi-Fi during a
request event. However, in practice, chunks may not be
received within a request interval, due to throughput degra-
dation of either LTE or Wi-Fi. In this case, the start of the
next request event can be delayed. The details are discussed
in Section 6.1. In addition, to maximize the video quality
while satisfying battery energy and LTE data quota con-
straints, we should properly determine b, T , Nl, and Nw for
each request event. To achieve this, we formulate a stochastic
optimization problem in the following section.

5 PROBLEM FORMULATION

Even if Wi-Fi and LTE links are sufficient to support the
highest video quality, we cannot request high quality video

if the battery energy and/or LTE data usage is limited.
Thus, we have to accurately determine the bitrate of chunks
and the number of requested chunks to maximize video
quality while satisfying battery and LTE data usage con-
straints during the entire video playback.

Objective. The objective of our optimization problem is to
maximize a time-average video utility. In this work, we
define the time-average utility as a time-average logarithmic
function of the video bitrate. The reason why we maximize
the logarithmic function of bitrate instead of bitrate directly
is to reflect the fact that the impact of increasing video qual-
ity on a user experience can be modeled by a concave func-
tion with diminishing returns [30].

Constraints. To guarantee longer battery life and use LTE
data without exceeding budget, we assume that a mobile
device is allowed to consume pav (W) and consume LTE
data with dav (Mbps) on average during a video playback.
In addition, pav refers to the total power consumed by the
display, CPU, and network interfaces including their tail
energy.

In order to design an optimal chunk request policy for
maximizing the time-average video quality with satisfying
time-average resource constraints, it would require a priori
statistical knowledge, such as the distribution of network
bandwidth. It would also need a complex computational
method, such as dynamic programming (DP) method for
finding the optimal solution based on the a priori statistical
knowledge [41]. However, it is practically difficult to obtain
the exact distribution of network bandwidth to solve the
problem with a DP method. Even if the distribution could
be obtained, very large state space composed of request
time, bitrate, number of chunks to request via networks
would have to be constructed [30], [42].

In order to overcome this challenge, we apply Lyapunov
optimization-based dynamic algorithm [42] that indepen-
dently determines the number of chunks to request and
their bitrate at the start of a request event by observing the
chunk reception result of the previous request event. The per-
formance of Lyapunov-based dynamic algorithm is close to
that of the optimal solution by a DP algorithm with a priori
statistical knowledge, but Lyapunov optimization algorithm
does not require any a priori knowledge [42].

Renewal-Based Lyapunov Optimization. According to the
chunk request policy proposed in Section 4, request inter-
valT ½r� is related to the number of requested chunks, and
hence, it is time-varying. To reflect this, we adopt renewal-
based Lyapunov optimization [24], [42].4 We assume that
the video playback time is infinite, i.e., R!1,5 for an
approach similar to that in [30]. Then, the problem based
on Lyapunov optimization framework to maximize time-
average video utility while satisfying time-average energy
and LTE data usage constraints is described as follows:

Maximize log ðbÞT=T;

subject to ee � pavT; ed � davT;
(1)

where log ðbÞT; T ; ee, and ed are infinite horizon expecta-
tions, i.e.,

2. All the chunks requested in a request event have the same bitrate.
3. The initial buffer-time is the playback time of video chunks ini-

tially received before video player starts rendering the video.

4. A request event in Fig. 1 corresponds to a renewal frame in the
renewal-based Lyapunov optimization.

5. R is the index of the last request event for a video.
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ðlog ðbÞT; T ; ee; edÞ

¼ lim
R!1

1

R

X

R�1

r¼0

ðlog ðb½r�ÞT ½r�; T ½r�; ee½r�; ed½r�ÞÞ;
(2)

where ee½r� and ed½r� are the energy consumption and LTE
data usage during the rth request event, respectively. Since
request interval is time-varying, we give a time weight to

log ðbÞ, thus maximizing log ðbÞT=T , which denotes the time-
average video utility.

Virtual Queues for Resource Constraints. We define virtual
queues to solve our optimization problem based on a drift-
plus-penalty ratio minimization algorithm, which greedily
minimizes drift-plus-penalty ratio to achieve near-optimal
time-average video utility while satisfying time-average
resource constraints.

Let us first define a virtual queue for energy consump-
tion Qe½r�. The arrival and service process of Qe½r� at the rth
request event are ee½r� and pavT ½r�, respectively. Then, the
queue backlog of Qe½r� evolves as follows:

Qe½rþ 1� ¼ maxðQe½r� þ ee½r� � pavT ½r�; 0Þ: (3)

If i)Qe½0� ¼ 0, ii) Qe½r� satisfies (3) for all r 2 f0; 1; 2; � � �g, and

iii) Qe½r� is mean-rate stable (i.e., limR!1
Qe½R�
R ¼ 0) [24], then

ee � pavT for all integers R > 0.

Lemma 1. If Qe½0� ¼ 0 and Qe½r� satisfies (3) for all r 2
f0; 1; 2; . . .g and Qe½r� is mean rate stability [24], then for all
integers R > 0:

ee � pavT: (4)

Proof. From (3) we have:

Qe½rþ 1� � Qe½r� þ ee½r� � pavT ½r�;

Qe½rþ 1� �Qe½r� � ee½r� � pavT ½r�:
(5)

Summing over r 2 f0; 1; . . . ; R� 1g provides:

Qe½R� �Qe½0� �
X

R�1

r¼0

ee½r� � pav
X

R�1

r¼0

T ½r�: (6)

Dividing by R, using Qe½0� ¼ 0, and taking the limit

R!1, we obtain limR!1
Qe½R�
R � ee � pavT . Since Qe½r� is

mean rate stability, i.e, limR!1
Qe½R�
R ¼ 0, we obtain

ee½r� � pavT: (7)

tu

In addition, from (6), for all R > 0 such that Qe½R� ¼ 0,

the average energy consumption 1
R

PR�1
r¼0 ee½r� is less than or

equal to 1
R pav

PR�1
r¼0 T ½r�, i.e., the inequality constraint of (1)

is satisfied.
The same approach can be applied to the LTE data usage

virtual queue Qd½r�, where the queue backlog evolution of
Qd½r� is represented as follows:

Qd½rþ 1� ¼ maxðQd½r� þ ed½r� � davT ½r�; 0Þ: (8)

Drift-Plus-Penalty Ratio. The renewal-based Lyapunov opti-
mization framework minimizes drift-plus-penalty ratio

which is obtained by normalizing drift-plus-penalty by
time [42]. Before defining the drift-plus-penalty ratio, we
first define the Lyapunov function L½r�. In addition to Qe

and Qd, we consider DASH client’s video buffer Qr½r� which
denotes the number of video chunks in video buffer at the
rth request event. Then, L½r� is defined by:

L½r� ¼
1

2
Qe½r�ð Þ2þ Qd½r�ð Þ2þ

Qmax

2
�Qr½r�

� �2
 !

; (9)

where Qmax is defined as the maximum number of chunks
stored in the video buffer. The energy consumption and
LTE data usage queues are desired to be empty to satisfy
the time-average constraints while the video chunk queue
should not be empty to avoid rebuffering. However, filling
the video buffer to Qmax is not desirable due to the possibil-
ity of queue overflow and the waste of resources, and hence,
we use Qmax

2
instead of Qmax when defining L½r�.

Then, the Lyapunov drift D½r�, which is desired to be
minimized, is defined as the difference between the Lyapu-
nov function of the rth request event and that of the ðrþ 1Þth
request event.

D½r� ¼ L½rþ 1� � L½r�: (10)

Conventional Lyapunov optimization framework mini-
mizes penalty. Since our work maximizes video utility, we
define penalty as �log ðbÞT to follow the Lyapunov frame-
work’s concept of penalty minimization. Finally, the drift-
plus-penalty ratio (DPPr) is defined as:

DPPr½r� ¼
D½r� þ V � penalty½r�

T ½r�
¼

D½r�

T ½r�
� V log ðb½r�Þ; (11)

where V is a positive constant parameter to allow a trade-off
between virtual queues’ backlogs and the gap from a theo-
retical optimal video utility. By taking an action to greedily
minimize the drift-plus-penalty ratio every request event, we
can achieve time-average video utility maximization deviat-
ing by at most Oð1=V Þ from optimality while satisfying
time-average resource constraint bound of OðV Þ.

6 REQUEST ALGORITHM

In this section, we introduce REQUEST, an online algorithm
to request video chunks with near-optimal video quality
while satisfying resource constraints and preventing video
rebuffering. The REQUEST architecture is illustrated as
Fig. 2. At the start of every request event, REQUEST observes
current virtual queue backlogs (Qe½r� and Qd½r�), video
queue backlog (Qr½r�), and estimated LTE and Wi-Fi link
throughput (~rl½r� and ~rw½r�). The detailed expressions for
Qr½r� and ~rl½r� are provided later in (13) and (16), respec-
tively. ~rw½r� is calculated in a fashion similar to ~rl½r�. By
using these values, REQUEST determines the four parame-
ters, i.e., video bitrate (b½r�), request interval (T ½r�), and the
number of chunks to request through LTE and Wi-Fi (Nl½r�
and Nw½r�), which minimize the drift-plus-penalty ratio,
DPPr½r�, in (11). Let the four-tuple (Nl½r�, Nw½r�, b½r�, T ½r�) be
the request policy p½r� for the rth request event.

The main algorithms of REQUEST include request interval
adaptation and chunk request adaptation. The request interval
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adaptation controls request interval according to chunk recep-
tion status, and the chunk request adaptation determines p

based onDPPr minimization algorithm.

6.1 Request Interval Adaptation

Delayed Start Time of Request Event. If all the chunks
requested in the rth request event are successfully down-
loaded within T ½r�, t½rþ 1� is equal to t½r� þ T ½r�. However,
in practice, some chunks requested via either LTE or Wi-Fi
may not be successfully received on time, i.e., within T ½r�,
due to severe throughput fluctuation. In such a case, we
should delay the start time of the next request event for suc-
cessful chunk receptions. If we request Nl½r� and Nw½r�
chunks by LTE and Wi-Fi at the rth request event, respec-
tively, the delay is allowed until the following conditions
are satisfied.

i) We wait until all the chunks requested over LTE
(Nl½r�) are successfully received.

ii) If a chunk is requested over Wi-Fi before t½r� þ T ½r�,
we wait until t½r� þ T ½r� for full reception of the
chunk.

Let the number of actually received chunks during the
rth request event by LTE and Wi-Fi be N̂l½r� and N̂w½r�. With
the above two conditions, N̂l½r� ¼ Nl½r� and N̂w½r� � Nw½r�.
The reason why we do not guarantee the reception of all
the chunks requested over Wi-Fi is that we quickly start a
new request event, and adapt the number of chunks and
bitrate for the next request event to resolve link throughput
degradation.

If the chunk download of the rth request event is not com-
pleted within T ½r� and it takes additional Ta½r� time to finish
the remaining chunk reception, the start time of the
ðrþ 1Þth request event t½rþ 1� becomes t½r� þ T ½r� þ Ta½r�.
Fig. 3 shows the examples for the start time of the next
request event when chunks are requested with Nl ¼ 4 and
Nw ¼ 5 for the rth request event.

Fig. 3a shows the case that all the requested chunks are
received within T ½r�. In Fig. 3b, download of the last chunk
(the fourth chunk) requested over LTE does not finish by
t½r� þ T ½r�, and t½rþ 1� is delayed by Ta½r�. In Fig. 3c, both of
the last chunks requested over LTE and Wi-Fi have not
been received until t½r� þ T ½r�, and the download over LTE
finishes earlier than the one over Wi-Fi so that Ta½r� is

determined by the download completion time of the fourth
Wi-Fi chunk. As shown in Fig. 3d, even though there are
two chunks left to request over Wi-Fi, those chunks will not
be requested over Wi-Fi after t½r� þ T ½r�.

Request Interval Adaptation.When a delay of Ta occurs, the
delay is compensated by reducing the next request interval
by Ta. If N̂w½r� 1� chunks are received over Wi-Fi and
the delay of Ta½r� 1� occurs, T ½r� is reduced by Ta½r� 1� as
follows:

T ½r� ¼ tpðN̂w½r� 1� þNl½r�Þ � Ta½r� 1�: (12)

By doing so, we can compensate for the amount of buffer
that has been reduced due to the delay. For example, even
though the rth request event is delayed by Ta½r� 1�, we can
ensure that there are N̂w½r� þ Tb=tp chunks in the buffer at
t½rþ 1� by reducing T ½r� by Ta½r� 1�. Without this adapta-
tion, the delays accumulate and initial buffer-time may not
be guaranteed at the start time of a request event, thus caus-
ing rebuffering. According to our request interval adapta-
tion, the video buffer backlog evolves as:

Qr½rþ 1� ¼ Qr½r� þ ðN̂w½r� þN l½r�Þ � ðT ½r� þ Ta½r�Þ=tp: (13)

Lemma 2. If Qr½1� ¼ Nb, T ½r� is determined by (12), and Qr½r�
evolves as (13) for all r 2 f1; 2; 3; � � �g, then for all integers
R > 0, there is no video stall if Ta½R� < Nb � tp.

Proof. From (12) and (13) we have:

Qr½rþ 1� �Qr½r� ¼ðN̂w½r� þ N̂l½r�Þ � ðT ½r� þ Ta½r�Þ=tp;

Qr½rþ 1� �Qr½r� ¼ðN̂w½r� þ N̂l½r�Þ

� ðN̂w½r� 1� þNl½r�Þ

þ ðTa½r� � Ta½r� 1�Þ=tp;

Qr½rþ 1� �Qr½r� ¼N̂w½r� � N̂w½r� 1�

þ ðTa½r� � Ta½r� 1�Þ=tp:

(14)

Summing over r 2 f0; 1; . . . ; R� 1g provides:

Qr½R� �Qr½1� ¼N̂w½R� 1� � ðTa½R� 1� � Ta½0�Þ=tp;

Qr½R� ¼Nb þ N̂w½R� 1� � ðTa½R� 1�Þ=tp;

Qr½R� �Nb � Ta½R� 1�=tp > 0:

(15)

tu

Fig. 2. REQUESTsoftware architecture.

Fig. 3. Examples for request interval and start time of the next request
event according to the chunk download results.
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6.2 Chunk Request Adaptation

Estimated LTE and Wi-Fi Throughput. For the rth request
event, the estimated LTE/Wi-Fi throughput, ~rl½r� and ~rw½r�,
are calculated by using the exponential weighted moving
average (EWMA) with the coefficient b.

~rl½r� ¼ b~rl½r� 1� þ ð1� bÞrl½r� 1�; (16)

where rl½r� 1� ¼
Nl½r�1�tpb½r�1�

tl½r�1�
, i.e., the average chunk down-

load speed by LTE during the ðr� 1Þth request event, and
tl½r� 1� is the total download time for Nl½r� 1� chunks of
bitrate b½r� 1� by the LTE interface. ~rw½r� is calculated in a
similar fashion.

Arrival Rate of Energy/LTE Data Virtual Queues. In order to
reduce energy and LTE data waste when a user stops
watching video in the early stage of playback, we put the
expected energy/LTE data waste as well as the expected
energy/LTE data consumption in the arrival process of the

energy/LTE data virtual queue in the stage of determining
the optimal p½r�. We define �Ew½r� and �Dw½r� as the expected
energy and LTE data waste during the rth request event,
respectively.6

The arrival rate ee½r� of energy virtual queue is given as

ee½r� ¼ ev½r� þ ee;w½r� þ ee;l½r� þ �Ew½r� � T ½r�=ðt½r� þ T ½r�Þ; (17)

where ev½r� is the energy consumption for video playback
including CPU and display power, ee;w½r� and ee;l½r� are
the energy consumption for Wi-Fi and LTE interfaces,

respectively. We multiply the expected waste by T ½r�
t½r�þT ½r�

to reflect the effect of waste amount on the average

power from the beginning of video playback until the
end of the current request event. The expected energy
consumption for network interface ni, where n1 ¼ l and
n2 ¼ w for LTE and Wi-Fi, respectively, is calculated as
follows:

ee;ni ½r� ¼
~Pni ½r�tni;d½r�

þ Pni ;tail �min ðT ½r� � tni;d½r�Þ; tni;tail
� �

;
(18)

where ~Pni ½r� is the average power for network ni with the

expected throughput ~rni ½r�, and tni;d½r� ¼
tpb½r�Nni ½r�

~rni ½r�

� �

is the

expected download time for Nni ½r� chunks of bitrate b½r� by
network ni with the expected throughput ~rni ½r�.

~Pni ½r�tni;d½r�
is the energy consumption of network interface ni for chunk
download and the remaining term denotes the energy con-
sumption for tail time [22].

Likewise, the arrival rate ed½r� of LTE data virtual
queue is

ed½r� ¼ tpb½r�Nl½r� þ �Dw½r� � T ½r�=ðt½r� þ T ½r�Þ: (19)

For �Ew½r� and �Dw½r�, we assume that the probability that a
user stops watching video during T ½r� takes a uniform dis-
tribution. During T ½r�, the video chunk remaining in the
buffer, which are received via Wi-Fi in the previous request
event, will be played back for tpQr½r�, and the chunk received
by LTE in the current request event will be played back for
the remaining time, i.e., T ½r� � tpQr½r�. We adopt the
approach in [13] to derive �Ew½r� and �Dw½r� as closed forms
(20) and (21), respectively.

�Dw½r� ¼
1

T ½r�
�

1

2
tp �Qr½r�
� �2

�ee;w½r� 1� þ T ½r� �
1

2
td;l

� �

� ee;l½r�

�

þ T ½r� �
1

2
td;w

� �

� ee;w½r� þ
T ½r� � tp �Qr½r�
� �2

2tp �Nl½r�
� ee;l½r�

)

¼ 1�
tl;d þ tpNl½r�

2T ½r�

� �

ed½r�:

(21)

Chunk Request Policy Determination Algorithm.Now, we
find the optimal p½r�which minimizesDPPr½r� as follows:

minp½r� DPPr½r�;

subject to T ½r� ¼ tp N̂w½r� 1� þNl½r�
� �

� Ta½r� 1�;

tpb½r�Nl½r�

T ½r�
� ~rl½r�;

tpb½r�Nw½r�

T ½r�
� ~rw½r�;

Nl½r�; Nw½r� 2 f0; 1; 2 . . . ; Qmaxg;

1 � Nl½r� þNw½r� � Qmax:

(22)

The first constraint of (22) is to follow the chunk request pol-
icy in Section 4. The second constraint is to prevent request-
ing more chunks than what the estimated link throughput
permits. The third and fourth constraints represent that the
video should be requested in a unit of chunk. The run time
algorithm to obtain the optimal p½r� is summarized in
Algorithm 1. At the start of a new request event, update Qe,
Qd, and Qr, and estimate ~rl and ~rw (line 5). For all the possi-
ble p½r� (lines 6–9), the algorithm checks whether p satisfies

�Ew½r� ¼
1

T ½r�

Z tp �Qr½r�

0

tp �Qr½r� � t
� �

� ee;w½r� 1�
	 


dtþ

Z tp�Qr½r�

0

minðtd;l; tÞ

td;l
� ee;l½r�

� �

dt

(

þ

Z tp�Qr ½r�

0

minðtd;w; tÞ

td;w
� ee;w½r�

� �

dtþ

Z T ½r�

tp �Qr½r�

minðtd;l; tÞ

td;l
�
t� tp �Qr½r�

tp �Nl½r�

� �

� ee;l½r�

� �

dt

þ

Z T ½r�

tp�Qr½r�

minðtd;w; tÞ

td;w
� ee;w½r�

� �

dt

)

¼
1

T ½r�

1

2
ðtpQr½r�Þ

2ee;w½r� 1� þ T ½r� �
1

2
tl;d

� �

ee;l½r� þ T ½r� �
1

2
tw;d

� �

ee;w½r� þ
ðT ½r� � tpQr½r�Þ

2

2tpNl½r�
ee;l½r�

( )

:

(20)

6. When updating Qe½r� and Qd½r� at t½r�, since the video has been
played back continuously, we set �Ew½r� 1� and �Dw½r� 1� to 0, and then
update Qe½r� and Qd½r�.
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the second constraint, and if p is feasible, it calculates DPPr

(lines 10–11). The pminimizing DPPr is selected as the opti-
mal request policy (line 13).

Algorithm 1. Optimal Chunk Request Policy
Determination

Initialize :
1: Qe  0, Qd  0, Qr  Tb=tp, andNw;prev  0

During video playback :
2: while Video playsbf do
3: ifNew request event starts then
4: Nw;prev  N̂w,DPPmin  1
5: Update Qe, Qd, Qr, Estimate l ~rl and ~rw
6: forNt 2 f1; 2; . . . ; Qmaxg do
7: forNl 2 f1; 2; . . . ; Ntg do
8: Nw  Nt �Nl, T  tpðNw;prev þNlÞ � Ta

9: for b 2 fb1; b2; . . . ; bmg do
10: if p ¼ fNl; Nw; T; bg is feasiblebf then
11: Calculate ee, ed, L, D, andDPPr

12: ifDPPr � DPPmin then
13: DPPmin  DPPr, p

opt  p

14: Request video chunks according to popt

15: else
16: Wait for the next start time of request event

7 PERFORMANCE EVALUATION

Comparison Scheme. Although many schemes for video
streaming have been proposed to improve QoE or energy
efficiency, there have been few studies to consider DASH-
based video streaming by using both LTE and Wi-Fi simul-
taneously. We select the energy-efficient HTTP adaptive
streaming algorithm (EE-HAS) proposed in [5] as a compar-
ison scheme. To the best of our knowledge, EE-HAS is the
only scheme that can be implemented as an application
without modifying other protocol stacks. EE-HAS considers
energy consumption and LTE data usage constraints to
determine the optimal bitrate of video chunks. It empha-
sizes a trade-off relationship between energy consumption
and video quality by using a, which is a real number
between zero and one. EE-HAS with smaller a works with
more weight on the energy consumption minimization. The
major difference between REQUEST and EE-HAS is that
EE-HAS divides each video chunk into two segments,
which are requested over LTE and Wi-Fi in parallel.

Performance Metrics. the following metrics are used in this
work.

[i) Average video quality: We measure the average video
bitrate during the entire playback time. For REQUEST,

the average bitrate is calculated as

PR

r¼1
b½r�ðN̂l½r�þN̂w½r�Þ

PR

r¼1
ðN̂l½r�þN̂w½r�Þ

,

whereR is the index of the last request event.

ii) Rebuffering: Rebuffering occurs if a video buffer
becomes empty or some chunks have not been suc-
cessfully received within the time limit due to abrupt
throughput degradation or Wi-Fi disconnection in the
middle of a chunk download. Frequent rebuffering
events severely degradeQoE of user [2], [30], [43].

iii) Amount of energy and LTE data waste: If a user stops
watching a video at time instant t, let the waste of

energy and LTE data at t be EwðtÞ and DwðtÞ, respec-
tively. We analyze the effect of energy and LTE data
waste on overall power and LTE data usage rate,
respectively, by dividing EwðtÞ and DwðtÞ by t. We
refer to EwðtÞ=t and DwðtÞ=t as the time-normalized
energy waste and LTE data waste, respectively.

Parameters. In both simulation and measurement, we use
a ¼ 0:5 for (16), Qmax ¼ 10, tp ¼ 4 (s), and V ¼ 1. Video
starts after downloading two initial chunks, i.e., Tb ¼ 8 s.
For the measurement, we use 596-second Big-Buck-Bunny
video clip.7 encoded at 20 bitrates, i.e., {0.045, 0.089, 0.128,
0.177, 0.218, 0.256, 0.323, 0.378, 0.509, 0.578, 0.783, 1.009,
1.207, 1.474, 2.087, 2.410, 2.944, 3.341, 3.614, 3.936} (Mbps).
For the simulation, each trial runs for 600 s, and uses the
same video encoded at 10 bitrates, i.e., {0.23, 0.33, 0.48, 0.69,
0.99, 1.43, 2.06, 2.96, 5.03, 6.00} (Mbps).8

7.1 Prototype-Based Evaluation

We implemented both REQUEST and EE-HAS by modify-
ing the open-source DASH Android application, ExoPlayer.
We use Samsung Galaxy S5 smartphone (SM-G900) which
runs on Android 5.0. For both schemes, the same power
model of SHV-E120 smartphone [22] is used to estimate
the energy consumption for chunk download and video play-
back.9 We conduct an experiment in a lab environment,
where average LTE throughput ranges from 10 to 15 Mbps.
We set the maximum throughput of Wi-Fi to 10 Mbps by
controlling the QoS option in the setting window of Wi-Fi
AP. In the middle of video playback, we degrade Wi-Fi
throughput to less than 2Mbps by adding a contending node
with saturatedUDP uplink traffic for 180 s.

7.1.1 REQUEST with Various Resource Constraints

We first evaluate REQUESTwith various power, pav (W), and
LTE data, dav (Mbps), constraints, i.e., fðpav; davÞjpav 2 f1:5; 2; 3g;
dav 2 f1; 2; 3; 4gg. Fig. 4 shows the average bitrate, power, and
LTE data usage rate during the entire playback. During the
period when there is no Wi-Fi background traffic from other
connected devices, REQUEST fully utilizes Wi-Fi link to save
LTE data usage while satisfying the power constraint, and
hence, the average LTE data usage is generally less than the
LTE data constraint. Obviously, REQUEST can achieve
almost the highest bitrate with the highest power and LTE
data constraints. Besides, with tight resource constraints,
REQUEST tends to select lower average bitrate to satisfy the
resource constraints. For all the cases, REQUEST satisfies the
constraints.

7.1.2 REQUEST without Resource Waste

Consideration

REQUEST considers the expected energy and LTE data waste
when calculating the arrival rate of energy and LTE data vir-
tual queues using (3) and (8). To evaluate the resource saving

7. http://www-itec.uni-klu.ac.at/ftp/datasets/DASHDataset2014/
BigBuckBunny/4sec/.
8. For simulation, we used video encoded with higher bitrate than

the measurement case, since LTE and Wi-Fi throughput measured in
real environments was much higher than the highest video bitrate used
in the measurement.

9. Our work is independent of power models, i.e., any power model
can be used for this REQUEST algorithm.
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by considering the expected waste, we implemented another
version of REQUEST, namely REQUEST-WO,which does not
consider the expectedwaste. Fig. 5 shows the expectedwaste,
i.e., EwðtÞ and DwðtÞ, and normalized waste, i.e., EwðtÞ=t and
DwðtÞ=t, when pav=2 W and dav=1 Mbps. For EE-HAS,
a ¼ 0:3. Since EE-HAS is prefetching aggressively, it is more
wasteful than REQUEST in the early stage of video playback.
Before the video plays for 50 s, both EwðtÞ=t and DwðtÞ=t of
REQUEST are smaller than half of those of REQUEST-WO.
REQUEST reduces the waste by selecting lower bitrate and a
smaller number of chunks to request compared to REQUEST-
WO at the beginning of the video streaming. Since the
resource waste is relatively high compared to the total
resource usage if a user stops watching video in a few sec-
onds, REQUEST can save more resources when the user quits
video early. REQUEST can be a more resource-saving option,
and enabling REQUEST-WO can be also an alternative if the
user simply wants to watch higher video quality with more
potential waste.

7.1.3 Comparison Study

For comparative evaluation of REQUEST, we run REQUEST
and EE-HAS with various pav and a. Fig. 6 presents the aver-
age bitrate and total rebuffering time during the entire play-
back time of the 596-second video. Playback smoothness

(%) is defined as
100�Total playback time

Total playback time + rebuffering time
.

EE-HAS with small a increases bitrate but suffers from long
total rebuffering time, i.e., 41.0 s for a ¼ 0:3, and total 59.6 s
for a ¼ 0:1 when the background traffic starts to degrade
Wi-Fi throughput abruptly. Even though EE-HAS with
large a, which operates more energy efficiently, does not
suffer rebuffering, the average bitrate is quite low, i.e.,
below 100 kbps with a ¼ 0:9. However, REQUEST retains
100 percent playback smoothness for all the power con-
straints with over 1 Mbps average bitrate. In addition, the
average bitrates of EE-HAS with a ¼ 0:4 and REQUEST
with pav ¼ 1:5 are similar, i.e., over 1.5 Mbps, but EE-HAS
shows only 93.6 percent playback smoothness (40.5 s

Fig. 4. Average bitrate, power, and LTE data usage rate of REQUEST. The x-label and y-label of each colormap are power and LTE data constraints,
respectively.

Fig. 5. Time-normalized energy and LTE data waste comparison for REQUEST, REQUEST-WO, and EE-HAS.

Fig. 6. Average bitrate, playback smoothness, and rebuffering time of REQUEST (pav) and EE-HAS (a) with various pav and a. For all the cases,
dav ¼ 1 Mbps.
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rebuffering time) while REQUEST provides seamless play-
back. In summary, in contrast to EE-HAS which provides
either too low bitrate without rebuffering or high bitrate
with long rebuffering time, REQUEST achieves enhanced
quality without rebuffering.

7.2 Trace-Driven Simulation

To comparatively evaluate the performance of REQUEST,
we implement both REQUEST and EE-HAS using Matlab.
For a fair comparison, measured LTE and Wi-Fi TCP
throughput traces are used. We first measured the LTE and
Wi-Fi TCP throughput using Iperf with SM-G900 every sec-
ond in various places, e.g., office, subway station, and cafe-
teria. A desktop in a lab is used as a server for Iperf.

We use a ¼ 0:1 for EE-HAS and pav ¼ 2 W for REQUEST.
dav is 1.5 Mbps. We classify rebuffering events into two
types, i.e., i) rebuffering due to empty video buffer (empty
buffer rebuffering) and ii) rebuffering due to absence of
video chunks to be played now even though video buffer is
filled with video chunks to be played later (out-of-order
rebuffering). The out-of-order rebuffering may occur espe-
cially with EE-HAS, where a chunk may be divided into
two segments that are requested over LTE and Wi-Fi, sepa-
rately in parallel. If these segments are not received by the
player on time, a partially received chunk cannot be
decoded and played back, thus causing out-of-order rebuf-
fering. In Table 2, # ER, and ER time denote the number of
empty buffer rebuffering events and the average buffering
time per event. # OR and OR time are those of the out-of-
order rebuffering. RT denotes the total rebuffering time of
REQUEST, and bitrate (Mbps) is the average bitrate during
playback. For all the cases, rebuffering time of REQUEST is
almost zero while EE-HAS suffers from frequent rebuffer-
ing events, e.g., 19 rebuffering events and total 32.65 s rebuf-
fering time for the third trace. The bitrate of REQUEST is
similar to or higher than that of EE-HAS while REQUEST
avoids rebuffering even in mobile and dense environments
where LTE and Wi-Fi throughput are often unstable. There-
fore, REQUEST may consume more data than EE-HAS in
some cases. This is expected since REQUEST’s purpose is to
ensure better quality while satisfying the data and energy
constraints.

8 DISCUSSION

In this section, we discuss how well REQUEST controls the
trade-off between resource usage and video quality. In
Section 5, we adopt Lyapunov optimization framework to
maximize time-average video utility and satisfy time-average

energy/LTE data resource constraints. Time-average res-
ource constraints are translated into virtual queues with (3)
and (8) which are based on traditional virtual queue concept
of Lyapunov optimization. We point out that drift-plus-pen-
alty algorithmwith the current version of virtual queues tends
to utilize resources conservatively. This behavior allows the
time-average resource constraints to be easily satisfied, but
time-average utility is farther from the optimum.

Furthermore, in Section 7, V is fixed without run time
adaptation where V is a positive constant to provide a
trade-off between virtual queues’ backlogs and the gap
from a theoretical optimal video utility. We expect that run
time adaptation of V controls the trade-off between resource
usage and video utility better, thus enhancing video utility
more under resource constraints.

8.1 Modification of Resource Virtual Queues

We revisit the Equations (3) and (9) for queue backlog evo-
lution Qe½r� and Lyapunov function L½r�. L½r� is related to
the squared backlogs, which is good when they are close to
zero. Since backlog cannot be negative, we use the max
function as in (3). However, this max function makes
resource utilization more conservative. This makes it diffi-
cult to enhance video utility even though there are enough
resources left. To allow more aggressive resource utiliza-
tion, we call ~Qe½r� the modified virtual queue with max
function removed from Qe½r�, which is defined as follows:

~Qe½rþ 1� ¼ ~Qe½r� þ ee½r� � pavT ½r�: (23)

~Qd is similarly defined to ~Qe as follows:

~Qd½rþ 1� ¼ ~Qd½r� þ ed½r� � davT ½r�: (24)

Then, the modified L½r� is defined as follows:

L½r� ¼
1

2
max ~Qe½r�; 0

� �� �2
þ max ~Qd½r�; 0

� �� �2
�

þ
Qmax

2
�Qr½r�

� �2
! (25)

Table 3 is a simple example which shows a comparison
of the values of Qe and ~Qe for the same arrival ee and depar-

ture pavT . When r ¼ 4, since
P4

r¼1 ee½r� ¼ 62, and
P4

r¼1

pavT ½r� ¼ 70,
P4

r¼1 ee½r� <
P4

r¼1 pavT ½r� which satisfies time-

average energy constraint until r ¼ 4. At r ¼ 5, ee½5�ð¼ 20Þ is
greater than pavT ½5�ð¼ 15Þ by 5, and Qe½5� ¼ Qe½4� þ 5 ¼ 5

which makes L½5� (� 25
2
) a relatively large positive number.

Therefore, DPPr½5� becomes large, which causes to act as a

TABLE 2
Bitrate and Rebuffering of EE-HAS (a ¼ 0:1) and REQUEST (pav ¼ 2) for Five Traces

EE-HAS REQUEST

Trace RT
(s)

# ER ER
time (s)

# OR OR
time (s)

Bitrate
(Mbps)

RT
(s)

Bitrate
(Mbps)

1 (office) 4 1 4 0 0 5.27 0 5.17
2 (station) 16.39 3 5.33 � 1.89 1 0.4 3.03 0.30 5.14
3 (station2) 43.83 3 8 � 3.27 3 6.61 � 3.81 2.00 0 2.22
4 (cafe) 12 3 4 0 0 4.06 0 5.17
5 (cafe2) 32.65 3 6.67 � 1.89 16 0.79 � 0.16 2.59 0 5.23
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drift reduction, i.e., towards less resource usage to reduce
energy queue backlogs at the next request event. This
behavior can be one reason for unnecessarily dropping the
bitrate at the next request event. However, since the equa-
tion

P5
r¼1 ee½r� <

P5
r¼1 pavT ½r� is still satisfied, it does not

need to operate conservatively at all.
On the other hand, ~Qe is smaller than zero, and hence, it

does not affect the increase of drift. This tendency enhances
the video utility by aggressively utilizing resources.

8.2 Adaptation of V

V provides a trade-off between video quality and resource
utilization. With large V , REQUEST decides to use more
resources to enhance video utility, On the other hand, with
small V , REQUEST tends to lower video utility to prevent
increasing backlogs of virtual queues. Since it is difficult to
theoretically obtain the optimal V , we propose a run time
adaptation algorithm which heuristically controls V based
on the variation of virtual queues’ backlogs. A heuristic V
adaptation algorithm is described in Algorithm 2.

Algorithm 2. V Adaptation Algorithm

Initialize :
1: V  1; ~Qe  0; ~Qeprev  0; ~Qd  0, and ~Qdprev  0

During video playback :
2: whileVideo playsbf do
3: ifNew request event starts then
4: Update ~Qe and ~Qd based on popt

5: if ~Qe > ~Qeprev > 0 or ~Qd > ~Qdprev > 0 then

6: w min 2; 1
2

~Qe= ~Qeprev þ
~Qd= ~Qdprev

� �� �

7: V  V =w
8: if ~Qe < ~Qeprev < 0 and ~Qd < ~Qdprev < 0 then

9: w min 2; 1
2

~Qe= ~Qeprev þ
~Qd= ~Qdprev

� �� �

10: V  V � w
11: ~Qeprev  

~Qe and ~Qdprev  
~Qd

12: Return V to Algorithm 1
13: else
14: Wait for the next start time of request event

The main concept of Algorithm 2 is that it reduces V
when virtual queue’s backlog continues to increase, and
conversely, increases V when backlog keeps decreasing in
negative numbers. Since it is difficult to satisfy the time-
average resource constraints with the current value of V
when either ~Qe or ~Qd continues to increase, it is desirable to
reduce V so that Algorithm 1 selects a policy which reduces
the backlog as an optimal policy. If both ~Qe and ~Qd are less
than zero and continue to decrease, it means that it would
be possible to satisfy time-average constraints even if

Algorithm 1 selected a policy with higher video utility. In
this case, it is better to increase V to make Algorithm 1 select
a policy with higher video utility by using more resources.

In order to determine howmuch to increase and decrease
V , we define a weighting factor w. w is determined in rela-
tion to the amount of variation of ~Qe and ~Qd, derived as
lines 2 and 2 in Algorithm 2. The weighting factor w is lim-
ited to less than two to prevent performance degradation
due to abrupt change of V . As shown in line 8, the algorithm
increases V only if both ~Qe and ~Qd are less than zero and
continue decreasing, i.e., both energy and LTE data resour-
ces are used less than time-average constraints. On the con-
trary, when either ~Qe or ~Qd is larger than zero and
continues to increase, the algorithm decreases V to impose
more weight for reducing virtual queue’s backlog to satisfy
both time-average resource constraints.

8.3 Trace-Driven Simulation

Through trace-driven Matlab simulation, we evaluate the
performance of REQUEST with the modified virtual queues
and V adaptation algorithm. We use LTE and Wi-Fi
throughput traces for 600 s in five difference places. Time-
average constraints, pav and dav are configured to pav 2 2;
2:5; 3ðW Þ, and dav 2 1; 2; 3; 4; 6 (Mbps), respectively. We run
Matlab simulation for 75 cases which are the combinations
of five throughput traces, three energy constraints, and five
LTE data constraints. Table 4 shows the performance of
three versions of REQUEST in terms of three evaluation
metrics, i.e, bitrate, power usage deviation dp, and LTE data
usage deviation dd. dp and dd indicate how well the resources
are used during video playback. dpð¼

p�pav
pav

) is defined as the
ratio of the difference between the average power p and tar-
get power pav to the target power. If de < 0, the average
power during video playback p is less than the target power
pav, i.e., a smartphone saves the energy compared to the tar-
get energy usage. On the other hand, dp > 0, a smartphone
consumes power more than pav, i.e., it uses excessive battery
energy. dd is defined similar to dp, and has a similar
characteristic.

V is fixed to one in REQUEST while REQUEST-Q modi-
fies the virtual queues from Qe and Qd to ~Qe and ~Qd, respec-
tively. REQUEST-QV adapts V with Algorithm 2 and the
modified virtual queues. As shown in Table 4, REQUEST-
QV outperforms REQUEST and REQUEST-Q in terms of
the bitrate. With these throughput traces, the dp and dd of
REQUEST, REQUEST-Q, and REQUEST-QV are less than
zero, which means that actual resource usages are less than
target resource usages. However, REQUEST-QV utilizes
resources more aggressively while not exceeding the target
resource usages by adapting V in run time. This results in
the enhanced video bitrate of REQUEST-QV.

TABLE 3
Simple Example of ~Qe

r 1 2 3 4 5 6

ee½r� 8 22 12 20 20 21

pavT ½r� 10 20 10 30 15 20

Qe½rþ 1� 0 2 4 0 5 6
~Qe½rþ 1� �2 0 2 �8 �3 �2

maxð ~Qe½rþ 1�; 0Þ 0 0 2 0 0 0

TABLE 4
Simulation Results for Performance Comparison Among

REQUEST, REQUEST-Q, and REQUEST-QV

REQUEST REQUEST-Q REQUEST-QV

Bitrate (Mbps) 5.10 � 0.47 5.24 � 0.57 5.29 � 0.66

dpð¼
p�pav
pav
Þ �0:33� 0:11 �0:21� 0:14 �0:19� 0:14

ddð¼
d�dav
dav
Þ �0:98� 0:03 �0:50� 0:37 �0:42� 0:38

1658 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO. 7, JULY 2019



9 CONCLUSION

In this paper, we propose REQUEST which utilizes both LTE
and Wi-Fi networks to provide seamless video streaming
under resource constraints. The proposed chunk request pol-
icy of REQUEST ensures that all the video chunks are received
even in unstable network environments. REQUEST achieves
near-optimal time-average video quality while satisfying
time-average resource constraints by adopting Lyapunov
optimization framework. Our prototype-based evaluation
and trace-driven simulation demonstrate that REQUEST pro-
vides seamless video streaming by using both LTE andWi-Fi
links in real-world environments.

In addition, enhancements in terms of virtual queue
remodeling and tradeoff coefficient V adaptation are finally
discussed, and the corresponding performance improve-
ments are verified.
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