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DESPITE THEIR INHERENT POWER and performance

drawbacks in comparison with ASICs, FPGAs are increas-

ingly becoming an option for silicon system designers. A

way to overcome FPGA shortcomings (such as clock fre-

quencies more than five times slower than those of ASICs

and general-purpose processors) is to blend temporal and

spatial computing paradigms in systems by using both gen-

eral-purpose processors and reconfigurable hardware. This

is the approach of reconfigurable SoCs (RSoCs) that have

recently appeared on the market—for example, Altera

Excalibur (http://www.altera.com/literature) and Xilinx

Virtex-II Pro (http://www.xilinx.com). Although researchers

have reported obtaining significant performance improve-

ments by combining temporal computing (on CPUs) and

spatial computing (on FPGAs), two major obstacles hinder

the wider acceptance of reconfigurable computing: the

lack of a standardized programming paradigm and the lack

of portability for codesigned reconfigurable applications.

We propose a general solution that overcomes these

obstacles by introducing an additional abstraction. We

also address the challenge of achieving seamless hard-

ware-software interfacing and portability with minimal

performance penalties.

Programmers should be able to pre-

serve their hardware-agnostic, high-level

programming approaches, even in the

presence of application parts executed

on FPGAs. On the other hand, hardware

designers should be able to write accel-

erators that can run across different plat-

forms, without any change in the

hardware description language (HDL)

code. To meet these goals, researchers have proposed

sequential programming paradigms (represented by

user programs with a single execution thread) for recon-

figurable computing systems. For example, addressing

hardware-software interfacing problems within a com-

piler considerably improves the programmability of

reconfigurable computing platforms.1 We introduce a

more general, parallel programming paradigm (repre-

sented by user programs with multiple execution

threads), which requires no changes on the compiler

side. Recently, researchers have introduced a hardware-

centered parallel programming model aimed mainly at

supporting the design of networking applications.2

Other researchers have proposed a hybrid hardware-

software architecture that enables a multithreaded pro-

gramming model by implementing execution support

blocks (for example, thread scheduling and synchro-

nization) in reconfigurable hardware.3

Our approach is the only one firmly based on the

properties that led to general-purpose computing’s com-

mon acceptance: programming ease and portability.

We introduce a multithreaded programming model for

reconfigurable computing based on a unified virtual-
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memory image for both software and hardware appli-

cation parts. The model supports transparent hardware-

software interfacing through an abstraction layer

consisting of hardware and software components. A

practical implementation of the abstraction layer shows

that it offers significant advantages while imposing a lim-

ited overhead.

Extending a multithreaded programming
paradigm

Our general, parallel-programming paradigm for

reconfigurable computing is an extension of the standard

multithreaded programming model in which multiple

software threads execute in the context of a common

process, relying on thread library and OS support for

interthread communication and synchronization.4 We

describe the proposed extension with the help of a sim-

ple motivational example.

Standard
multithreading

An OS process—a basic

OS design concept5—rep-

resents an executing pro-

gram with its associated

memory address space.

Having multiple processes

is a costly way to exploit

parallelism in applications;

using threads is more effi-

cient. Threads execute in

the context of a process, so

OS bookkeeping costs less,

and share the same virtual-

memory address space, so

data communication is

simpler. Virtual memory—

a basic computer design

concept6—simplifies the

programming paradigm

and allows code portabili-

ty across systems support-

ing the same OS but having

different memory systems.

Figure 1 shows a typical vir-

tual-memory system (without secondary mass storage

details).

As an example of standard multithreading, Figure 2

shows a simple program that computes the sum of two

vectors. The multithreaded application code uses Posix-

like thread management4—a standard of multithread-

ed programming. In the master thread, the programmer

declares the vector pointers and the slave thread func-

tion, initializes the vectors, and creates the slave thread

by launching the corresponding function. After doing
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Figure 1. Virtual-memory system. The memory management

unit (MMU) translates processor-generated virtual addresses

to physical addresses in main memory. The OS part called

the virtual-memory manager (VMM) takes care of the

translation process.

/* Master Thread */
void main() {

int *A, *B, *C;
int thr_id;
…
read(A, SIZE);
read(B, SIZE);
thr_id = thr_create(add_vectors, A, B, C, SIZE);
do_some_work_meanwhile();
thr_join(thr_id);
…

}
/* Slave Thread */
void add_vectors(int *A, int *B, int *C, int SIZE) {

int i;
for(i = 0; i < SIZE; i++)

C[i] = A[i] + B[i];
}

}
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Figure 2. Vector addition application code (a): After initializing input vectors A and B,

the master thread creates a slave thread to compute vector C. Thread creation is

similar to a function call, except that the caller and the callee continue execution

simultaneously and can work in parallel. The master thread synchronizes with the

slave thread using the thread join primitive—that is, it waits until the slave returns. In

the application execution, the two threads share the virtual-memory address space

and use the same memory pointers (b). Once the computation is finished, the master

thread can immediately access the results through its pointer to vector C.



some work simultaneously, the master and the slave

eventually synchronize through the join primitive.

A key aspect of multithreading is that threads share

the same virtual-memory address space. Figure 2b shows

the code execution from the memory perspective. The

master thread spawns a slave thread that performs vec-

tor addition. The slave thread accesses the same memo-

ry by using virtual-memory pointers to vectors A, B, and

C. Once it finishes the computation, the slave synchro-

nizes with the master thread. The threads share the same

memory, while having separate execution stacks.

Including hardware accelerators
Suppose now that in the process of hardware-software

partitioning, the designer decides to move the vector

addition slave thread to hardware execution. Because no

system-level support exists for threads executed in hard-

ware, the programmer must take explicit care of the com-

munication between application software and hardware

components. Figure 3 shows a solution for integrating a

hardware accelerator, which typically uses a software

wrapper thread. The master thread again spawns a slave

thread, which is a wrapper to the hardware accelerator.

The hardware accelerator accesses a local memory dis-

joint from the memory address space of the software

threads. The size of the data to be processed doesn’t nec-

essarily match the local memory’s size; therefore, the

wrapper thread, and ultimately the programmer, must

schedule and perform transfers from main memory to

local memory and vice versa.

Figure 3a shows the C code of the wrapper thread

(add_vectors). First, three sections of local memory are

assigned to partitions of the data for processing, one sec-

tion for each vector. After initializing the accelerator

and entering the main loop, the wrapper thread copies

partitions of input vectors A and B to the appropriate

sections of local memory. It launches computation and

waits for the accelerator to finish, possibly performing

some useful work in the meantime. When the acceler-

ator completes the current sections, the wrapper copies

back the computed part of result vector C to the user

space memory. Pointers are updated and the loop iter-

ates until the accelerator processes all data. Figure 3b

shows the code execution from the memory standpoint.

Although the wrapper code is not conceptually dif-

ficult to write, it violates encapsulation principles. In
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/* Wrapper Thread */
void add_vectors(int *A, int *B, int *C, int SIZE) {

int d_chunk = BUF_SIZE / 3;
int *d_ptr = 0;
write(HWACC CTRL, INIT); /* initialize accelerator */

while (d_ptr < SIZE) {
copy(A + d_ptr, BUF_BASE, d_chunk);
copy(B + d_ptr, BUF_BASE + d_chunk, d_chunk);
write(HWACC_CTRL, ADD_VECTORS); /* launch accelerator */
while () {

if (read(HWACC_STATUS) == FINISHED) {
copy(BUF_BASE + 2*d_chunk, C + d_ptr, d_chunk);
break;
} else {
do some work meanwhile();
}

}
d_ptr += d_chunk;

} …
}
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Figure 3. Code for vector addition application in the presence of a hardware accelerator. The master thread is

unchanged, but a wrapper thread (a) is now needed to control and transfer data to the hardware accelerator

responsible for the computation. The wrapper thread initializes the accelerator, copies data to its local memory,

and launches the computation. Input data does not necessarily fit the accelerator’s local memory, so the

wrapper iteratively copies data back and forth until all data is processed. In application execution, a hardware

accelerator and software threads don’t share the same memory address space (b). Typically, only partitions of

vectors A, B, and C fit in local memory.



fact, if the hardware accelerator didn’t visit vector index-

es sequentially, we would need to change the wrapper

implementation. Furthermore, if we didn’t know the

access pattern at compile time, we couldn’t delegate

the vector addition to the accelerator because we

couldn’t implement the part of the wrapper code that

performs copying. As a consequence, programming is

burdensome in this inelegant scenario.

Extending multithreading to hardware threads
Our goal is to provide for the seamless integration of

hardware and software components in reconfigurable

applications. Programmers should not be concerned

with interfacing and communication details. They

should code their applications as if no differences exist-

ed between software threads (executed on CPUs) and

hardware threads (executed on FPGAs). For program-

ming transparency, the code of the vector addition

example should be exactly the same as in the software-

only case (except that now a part of the code responsi-

ble for the very computation is in synthesizable HDL).

Figure 4 shows the code for the vector addition appli-

cation in a paradigm that provides seamless hardware-

software integration. It contains no explicit data

partitioning and transfer, tasks delegated to the OS

through a standard OS service (FPGA_EXECUTE). The

programmer interface to hardware is clean and elegant.

To achieve this scenario, we implement a shared virtu-

al-memory address space for both the software and the

hardware threads (as in the software-only case in Figure

2b, except that now the slave thread is in hardware). The

hardware thread (actually its HDL code) also generates

virtual-memory addresses to access data. The system per-

forms communication and synchronization using the

same primitives as in the software-only case. The software

is unaware that it communicates with a nonsoftware

thread, and the hardware

code, because it uses virtu-

al addresses, is indepen-

dent of the host platform.

The programming is now

transparent, and the hard-

ware-software interfacing is

portable. The memory

access pattern required by

the application (vector

index access in this exam-

ple) is no longer explicit in

software, as it was in the

wrapper code in Figure 3a.

Therefore, accelerators are now implementable even

when access patterns are unknown at compile time (as it

is, for example, in pointer chasing, tree traversal, and ran-

dom accesses): The OS now handles transfers at runtime.

Figure 5 summarizes the example to illustrate the ben-

efits of our approach. In standard multithreading (Figure

5a), an abstraction layer, usually consisting of threading

libraries (for example, Posix threads) and supporting OS

services, provides for the simultaneous execution of soft-

ware threads. But existing abstraction layers don’t support

integrating hardware accelerators with software (Figure
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/* Master Thread */
void main() {

int *A, *B, *C;
int thr_id;
…
read(A, SIZE);
read(B, SIZE);
thr_id = thr_create(add_vectors, A, B, C, SIZE);
do_some_work_meanwhile();
thr_join(thr_id);
…

/* Accelerator Thread */
void add_vectors(int *A, int *B, int *C, int SIZE) {

FPGA_EXECUTE(…);
}

Figure 4. Vector addition application code in

seamless integration paradigm. The master

thread is still unchanged, but there is no need for

the wrapper thread; the application delegates

accelerator control and data transfers to the OS

through FPGA_EXECUTE. In application

execution, the master (software) and accelerator

(hardware) threads share the same virtual-

memory address space, and the OS manages

virtual-to-physical-memory-address translation for

both software and hardware threads.

Software Software

Abstraction
layer

OS

(a)

Software Software

Abstraction
layer

OS

Hardware

(b)

Software Hardware

Abstraction
layer

OS
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Figure 5. Standard multithreading (a) relies on an abstraction layer and usually some

OS services. If the application includes a hardware accelerator (b), there is no

systematic support. Instead, the programmer must use a wrapper thread. Extended

multithreading (c) includes support for hardware accelerators in the abstraction layer

and the OS, permitting seamless integration of software and hardware.



5b), and wrapper threads typically perform accelerator

control and data transfers. Extending the abstraction layer

(Figure 5c) to support hardware threads (that is, to enable

communication, synchronization, and sharing of virtual-

memory address space), simplifies programming and

brings it to the software-only level.

Virtualization layer for transparent
programming

We can achieve transparency and portability of

reconfigurable applica-

tions by extending the

abstraction layer—con-

sisting of the thread library

and OS support—to seam-

lessly support hardware

threads. The extended

abstraction layer—or vir-

tualization layer—consists

of both software and hard-

ware components. To

illustrate the concept in

practice, we describe our

implementation running

on an RSoC platform.

Typical hardware
accelerator

Figure 6a shows a typi-

cal RSoC, which can exe-

cute critical application

parts in hardware. A stan-

dard CPU executes the

user application, while the

FPGA executes a hard-

ware accelerator running

on behalf of the user appli-

cation. The software

threads generate memory

accesses to virtual memo-

ry, hiding all details of the

physical-memory imple-

mentation. The memory

management unit (MMU)

performs translation from

virtual- to physical-memo-

ry addresses.6 The virtual-

memory manager (VMM)

supervises translation. The

hardware accelerator gen-

erates the local memory’s physical addresses and inter-

faces directly to the host platform. The programmer

controls the accelerator by accessing its control/status

registers, which are usually memory mapped. Then, the

programmer schedules and performs the transfers from

main memory to local memory and vice versa.

Programming is thus neither transparent nor portable:

Memory communication is explicit in the software code,

and the accelerator’s HDL code contains platform-spe-

cific details.
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Figure 6. FPGA accelerators in an RSoC: typical (a) and with a virtualization layer (b)

cases.



Virtualization extension
Figure 6b shows an RSoC with a virtu-

alization layer.7 As in the RSoC in Figure

6a, a standard CPU executes the user

application, while the FPGA executes a

hardware accelerator running on behalf

of the user application. However, instead

of directly interfacing to the host plat-

form, the hardware accelerator commu-

nicates with the rest of the system by

using the virtualization layer. The accel-

erator no longer generates physical-mem-

ory addresses. Instead, it generates

virtual-memory addresses translated by a

hardware translation engine called the

window management unit (WMU),

which is functionally similar to the MMU.

The WMU translates virtual-memory

accesses to physical addresses of local

memory. Local memory is divided into

pages forming a virtual-memory window

(VMW).

Figure 7 shows how the OS provides

the required data. If the accelerator gen-

erates an address of data not present in

local memory, a VMW miss interrupt

occurs. While the accelerator is stalled, the

OS copies—invisibly for both user soft-

ware and hardware—the required page

from main memory to local memory.

Once the OS finishes the transfer, the

accelerator can proceed with the compu-

tation. Besides memory transfers, the VMW

manager ensures memory consistency.

The virtualization layer consists of a

software part (the VMW manager, which

provides standardized OS services to the

user space libraries and applications)

and a hardware part (the WMU, which

provides standardized hardware inter-

facing to the hardware accelerators). If a

virtualization layer exists for a particular

platform, the reconfigurable application

becomes perfectly portable. To run it on

a different reconfigurable platform, we

need only recompile and resynthesize it.

Returning to our simple example, Figure 8 contrasts

the HDL-like code of the vector addition application for

the RSoC platforms in Figure 6. The code in Figure 8a gen-

erates platform-dependent addresses to access the buffer

region. The buffer has a hard-coded size and address in

the system memory map. Should the target platform

change, along with its buffer size and memory mapping,

the code would require modification. Instead of generat-

ing physical buffer addresses, the accelerator can use vir-
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Figure 7. OS data transfers initiated by accelerator memory accesses. A

hardware attempt to access data not present in local memory generates a

miss. After a response time, the OS transfers the required page from main

memory and resumes accelerator execution.

-- Initialization
-- with platform-dependent addresses
ptr_a <= BUF_ADDR;
ptr_b <= BUF_ADDR + BUF_SIZE/3;
ptr_c <= BUF_ADDR + 2*BUF_SIZE/3; …

-- Computation
cycle 1:

-- partition of A[]
BUF_ADDR <= ptr_a;
BUF_ACCESS <= ’1’;
BUF_WR <= ’0’;

cycle 2:
reg_a <= BUF_DATAIN;
-- partition of B[]
BUF_ADDR <= ptr_b;
BUF_ACCESS <= ’1’;
BUF_WR <= ’0’;

cycle 3:
reg_b := BUF_DATAIN;
reg_c := reg_a + reg_b;
-- partition of C[]
BUF_ADDR <= ptr_c;
BUF_DATAOUT <= reg_c;
BUF_ACCESS <= ’1’;
BUF_WR <= ’1’;
ptr_{a,b,c} <= ptr_{a,b,c} + 1;
if (ptr_c = BUF_ADDR + BUF_SIZE) then
-- finished for a data chunk

partial_finish;
else

cycle 1;
end if;

(a)

-- Initialization
-- with runtime-dependent 

virtual-memory pointers
ptr_a <= A;
ptr_b <= B;
ptr_c <= C; …

-- Computation
cycle 1:

-- object A[]
VIRTMEM_ADDR <= ptr a;
VIRTMEM_ACCESS <= ’1’;
VIRTMEM_WR <= ’0’;

cycle 2:
reg_a <= VIRTMEM_DATAIN;
-- object B[]
VIRTMEM_ADDR <= ptr_b;
VIRTMEM_ACCESS <= ’1’;
VIRTMEM_WR <= ’0’;

cycle 3:
reg_b := VIRTMEM_DATAIN;
reg_c := reg_a + reg_b;
-- object C[]
VIRTMEM_ADDR <= ptr_c;
VIRTMEM_DATAOUT <= reg_c;
VIRTMEM_ACCESS <= ’1’;
VIRTMEM_WR <= ’1’;
ptr_{a,b,c} <= ptr_{a,b,c} + 1;
if (ptr_c = C+SIZE) then
-- finished for the entire vectors

finish;
else

cycle 1;
end if;

(b)

Figure 8. VHDL-like hardware accelerator code: In platform-dependent

code (a), the hardware accelerator generates physical addresses. In

portable code (b), the hardware accelerator generates virtual-memory

addresses, and the abstraction layer provides translation and

synchronization.



tual ones (as Figure 8b shows) that belong to the appli-

cation address space. The accelerator code thus embod-

ies only pure functionality and communicates through

the standard shared-virtual-memory paradigm.

General virtualization architecture
Generalizing the architecture shown in Figure 6b

leads to a reconfigurable parallel computer similar to a

general parallel computer.8 Besides general-purpose

processors, this reconfigurable computing system con-

tains application-specific accelerators implemented

in—but not necessarily limited to—reconfigurable hard-

ware and running on behalf of a particular application.

Figure 9 presents such an architecture, in which gener-

al-purpose processors and reconfigurable hardware

accelerators communicate through a general intercon-

nection network.9

A local memory at each hardware accelerator node

is accessible directly by the node and indirectly by oth-

ers through the network. Each reconfigurable node con-

tains a hardware interfacing component that is actually

a standardized communication assistant (called the

WMU in the practical example described earlier). The

communication assistant defines the hardware interface

(signals and protocols)

and translates virtual to

physical addresses. It

guarantees correct execu-

tion either by initiating a

copy to local memory or

by accessing remote data.

Figure 10 shows the

general virtualization layer,

which supervises the copy-

ing and remote accesses. It

provides transparent, plat-

form-independent com-

munication of software

and hardware threads. Programmers and

hardware designers can compile, synthe-

size, and run a multithreaded application

on any reconfigurable platform provided

that the platform has an implemented vir-

tualization layer. The virtualization layer

consists of software (libraries and system

software) supported by hardware (com-

munication assistants). Its task is to

abstract details of the underlying archi-

tecture. Application threads are unaware

of the data’s physical location. Whatever

address an application accesses, the virtualization layer

manages transparent data movement and interthread

communication. A virtualization layer can use various

memory consistency protocols.8 As in software-only mul-

tithreading, application architects should be aware of the

potential penalties of coarse-grained data sharing. The

virtualization layer can try to minimize these penalties

through both hardware and software.

Results
We implemented a simplified virtualization layer

(currently supporting only a single hardware accelera-

tor) on a real RSoC system: an Altera Excalibur

(EPXA1)-based board running the Gnu/Linux OS.7 The

virtualization layer consists of a Linux OS module

(called the VMW manager) with some hardware sup-

port (the WMU from Figure 6b). The virtualization layer

allows a hardware accelerator running on behalf of a

user application to access the user space virtual mem-

ory. It also provides hardware-agnostic software func-

tions; programs can invoke functions executed in

hardware (hardware accelerators) as if they were com-

mon software functions.

To prove our approach’s viability, we ported two
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Figure 9. Reconfigurable parallel architecture: Computing nodes (standard processors

and hardware accelerators) communicate through a general interconnection network.

Hardware accelerators interface to local memories and the rest of the system through

standardized communication assistants (CAs).
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applications to the platform: the International Data

Encryption Algorithm (IDEA) and adaptive differential

pulse code modulation (ADPCM) voice decoding, a

common multimedia benchmark. We implemented the

critical parts of both applications in VHDL as coproces-

sors using the WMU interface. Figure 11 shows a pro-

gramming example for the two applications, similar to

the one shown in Figure 4. It represents how calls to hard-

ware are realized. The main function calls the hardware

to perform the accelerated function. The library functions

(idea_encrypt and adpcm_decode) initialize parameter-

passing structures and pass virtual-memory pointers to

the hardware accelerators. A standardized OS service

(FPGA_EXECUTE) invokes hardware execution. Once

the hardware finishes, the VMW manager returns control

to software. Although the application code here is not

multithreaded, the important point is that the virtualiza-

tion layer hides all communication details so program-

ming is transparent and portable. The layer performs

memory transfers and ensures consistency with no pro-

grammer interaction.

Figure 12 presents the two applications’ execution

times. The figure shows results for pure software, a typ-

ical coprocessor (a hardware accelerator directly pro-

grammed from the user application, similar to those

shown in Figures 3 and 6a), and a VMW-based

coprocessor. Small input data sizes allow both input

and output data to fit into local memory accessed by

the coprocessors.

Figure 12 shows that the coprocessors achieve signifi-

cant speedups over software. The performance penalty of

the overhead introduced by the virtualization layer is lim-

ited, as the differences between the two types of coproces-

sors’ execution speedups show. The penalty is mostly due

to the fact that we implement this WMU in an FPGA. In

principle, however, we could implement the WMU in an

ASIC as a standard SoC part, exactly as an MMU is today

a standard hard-wired component in every chip. In that

case, the overhead would become negligible.

Table 1 shows the WMU’s complexity in terms of

occupied FPGA resources (logic cells and memory

blocks) for the EPXA1. Although the FPGA device we

used is the smallest in its family, the WMU overhead is

acceptable (the WMU uses no more than one-fifth the

EPXA1’s resources). The WMU fraction columns show

the portion of the two accelerators’ overall designs

occupied by the WMU. For complex VMW accelerator

designs such as IDEA, the WMU’s resource overhead is

less significant. Moreover, area overhead would be

practically null if the WMU were implemented in ASICs

as a standard part of the SoC, and execution time over-

head would decrease considerably.

Further benefits of virtualization
Virtualization represents an additional layer on top

of already existing layers such as memory hierarchies

and communication protocol layers; thus, it inevitably

introduces overhead. Like typical layering approaches
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Figure 11. Programming with the virtual-memory window: ADPCM voice decoding (a) and IDEA

cryptography (b) applications. The main function initializes the input data and calls the appropriate

library function. The library function calls the hardware accelerator through an OS service and

passes the virtual-memory pointers to hardware.

/* main function */
void main() {

int *A, *B, n64;
…
read(A, n64);
idea_encrypt(A, B, n64);
…

}

/* library function */
int idea_encrypt(int *A, int *B, int n64) {

struct cp_param param;
…
param.u.nparam = 3;
param.p[0] = A;
param.p[1] = B;
param.p[2] = n64;
FPGA_EXECUTE(HW_IDEA, &param);
return param.u.retval;

}
(b)

/* main function */
void main() {

char *d_in; short *d_out; int size;
…
read(d_in, size);
adpcm_decode(d_in, d_out, size*2);

…
}

/* library function */
int adpcm_decode(char *d_in, short *d_out, int_size) {

struct cp_param param;
…
param.u.nparam = 3;
param.p[0] = d_in;
param.p[1] = d_out;
param.p[1] = size;
FPGA_EXECUTE(HW_ADPCM, &param);
return param.u.retval;

}
(a)



such as virtual-memory abstraction, our approach basi-

cally trades efficiency for generality and programming

comfort. Nevertheless, virtualization offers further ben-

efits and does not always jeopardize efficiency.

Dynamic optimization
As it participates in application execution and com-

munication transactions, the virtualization layer can

dynamically decide when and where to improve exe-

cution. For example, with communication assistants

extended by limited hardware, it can detect memory

access patterns generated by hardware accelerators.10

It can then predict future memory accesses and employ

an adequate prefetching technique, attempting to hide

memory communication latency.

Figure 13 shows how to improve application execu-

tion performance without programmer intervention or

even knowledge. With no prefetching (Figure 13a), the

hardware accelerator cannot execute continuously

because of misses: When the required data is not pre-

sent in local memory, the accelerator must wait for the

OS to supply it; the OS fetches the page containing the

required data and resumes the accelerator’s execution.

Between hardware executions, the OS part of the virtu-

alization layer spends some time idle (sleep time). We

can invest this time in a dynamic optimization (Figure

13b). With the communication assistant extended to

detect a sequential memory access pattern, the virtual-

ization layer can predict that future accesses will also

be sequential and supply data partitions likely to be

accessed in subsequent execution phases. With some

additional hardware, the virtualization layer can verify

its past predictions and decide whether to continue or

bail out. Prefetching is not limited to sequential access-

es, and several well-established prefetching techniques

for nonsequential accesses are available.

In practical cases, for applications that exhibit regular

memory accesses, significant performance improvements

are possible. For example, Figure 14 shows execution

times for the accelerator version based on an improved

VMW (with dynamic prefetching implemented in the vir-

tualization layer10). Although running at the same speed,

the ADPCM coprocessor with prefetching finishes its task

almost twice as fast as without prefetching. As Figure 13
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Figure 12. ADPCM (a) and IDEA (b) execution times. Coprocessor execution time consists of copy

time (spent in software for transferring data to and from local memory), hardware time (spent in

hardware for processing data), and manage time (spent in software for managing system data

structures). Input data size is 2 Kbytes for ADPCM and 8 Kbytes for IDEA.

Table 1. WMU area overhead.

      FPGA (EPXA1) resources                        Total accelerator resources                   

Block type No. of units WMU area (%) WMU area, ADPCM (%) WMU area, IDEA (%)

Logic cell 576 14 48 16

Memory 5 19 83 45



indicated, sleep time

decreases because the

OS is busy predicting

future memory accesses.

Correct predictions can

dramatically minimize

the number of page miss-

es. For example, in the

ADPCM case, for the

input data size of 64

Kbytes and the page size

of 4 Kbytes, the number

of misses decreases from

80 without prefetching to

only two with prefetch-

ing. Figure 14b shows the

total execution times of

IDEA encryption for different numbers of local mem-

ory pages (a VMW design parameter). Prefetching sig-

nificantly improves IDEA execution time. With

prefetching, management time is slightly longer than

without prefetching. With smaller page sizes, manage

and copy time intervals become comparable to the

hardware execution intervals: There are more pages

in local memory, and thus there are larger data struc-

tures for the VMW to process. The number of pages

chosen has some influence on performance.

With dynamic prefetching, VMW-based applications

could even outperform typical coprocessor solutions.

For example, in the IDEA application, for an input data

size of 64 Kbytes, the typical coprocessor provides a 22×
speedup, whereas the VMW-based coprocessor with

dynamic prefetching would provide a 24× speedup. The

VMW-based application can achieve such a speedup

thanks to the implementation of dynamic optimizations

within the virtualization layer, without any changes by

the software programmer and the hardware designer.

Execution of the application code (both software and

hardware) used in the nonprefetching case improves

simply because of the enhanced virtualization layer,

requiring neither recompilation nor resynthesis.

Unrestricted automated synthesis
Hardware synthesis from high-level programming

languages has long been a challenging topic.

Translating simple control and pure dataflow segments

of high-level programs into hardware is straightforward.

In contrast, mapping advanced high-level language con-

cepts and specific features to hardware is usually diffi-

cult. For example, accessing memory in C using

pointers—possibly aliased pointers—complicates hard-

ware synthesis.11 Also, a programming concept like
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without (a) and with (b) dynamic prefetching. In the prefetching case, the virtualization

layer (in the OS) uses some idle time to try predicting future memory accesses and

speculatively supplying data in advance. This can provide uninterrupted execution of
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Figure 14. Virtualization layer with and without dynamic

prefetching: total execution times of ADPCM for different

input data sizes (a); total execution times of IDEA for

different numbers of local memory pages (b). Execution time

consists of copy time (for transferring data to and from local
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recursion can pose problems in synthesizing hardware.

The virtualization layer’s existence fosters and signifi-

cantly simplifies automated synthesis.

Figure 8 indicated that there is no need for special

treatment of pointers. The virtualization layer enables

hardware threads to generate virtual memory addresses

belonging to the application address space. Suppose

that a pointer synthesized into the accelerator is

eventually aliased, and that the accelerator uses the

aliasing pointer to access the pointed-to data. The vir-

tualization layer can transparently handle the access by

copying the data to the access-generating node and, at

the same time, take care of memory consistency (for

example, write access by the aliasing pointer can initi-

ate data invalidation at the accelerator’s local memo-

ry). This is a common multiprocessor OS feature.

Figure 15 illustrates how the virtualization layer

enables a hardware accelerator to call back software,

even for sophisticated functions such as heap memory

allocation (malloc from the standard C library). This

software callback feature further facilitates synthesis

and hardware-software partitioning. The library code

performs the function call appropriate to the function

identifier passed by the hardware. Malloc returns a vir-

tual pointer to the newly allocated memory. Through

the virtualization layer, the library passes it to the hard-

ware accelerator. When the accelerator resumes, it can

use the pointer without obstacles; the generated

addresses will initiate transfer of the accessed data to

the accelerator’s local memory. No actions are required

by the programmer or the hardware designer. However,

an agreement (standardized by the VMW) must exist

between software and hardware that the library will call

the appropriate software function for the callback iden-

tification passed by the accelerator.

The virtualization layer can also appropriately treat

recursion, as well as dynamic thread creation, thus sig-

nificantly simplifying synthesis. Imagine a hardware

thread that, either directly or indirectly, calls itself.

Because every call goes through the virtualization layer,

the latter can dynamically decide how to proceed. If the

accelerator supports recursion (for example, if it has an

internal stack to preserve the state), the virtualization

layer will pass parameters and return control to the

accelerator. Otherwise, the virtualization layer can call

a software equivalent of the accelerator, thus dynami-

cally changing the execution manner from spatial to

temporal. Once recursion is finished, the shared mem-

ory mechanism automatically reflects changes back to

the originating hardware thread.

The existence of a virtualization layer allowing

unhindered hardware synthesis also facilitates easier

software-to-hardware migration, even dynamically, dur-

ing runtime. Partitioning applications to software and

hardware is easier because synthesis is unlimited.12 A

virtualization-layer-enabled reconfigurable platform can

be an ideal test bed for design space exploration and

prototyping. With an automated synthesizer available,

the designer can quickly switch from one possible solu-

tion to another. The virtualization layer respects the

encapsulation principle (that is, software is unaware of

hardware accelerators, which appear as if they were
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/* excerpt of a hardware library function */
…
struct cp_param param; /* parameter exchange structure */
…
FPGA_EXECUTE(HW_ACC, &params); /* coprocessor start */
…
while (!params.hwret) { /* wait for callback */

switch(params.cback) { /* choose function to call */
case 1: … break;
case 2: … break;
case 3: …

params.retval = malloc(params.p[0]);
break;

…
case n:

}
}

FPGA_RESUME(HW_ACC, &params); /* coprocessor resume */
(a) (b)

Figure 15. Library code for malloc callback (a). In code execution (b), the accelerator calls back the software.

The library code calls the appropriate function, and it passes the returned virtual-memory pointer to the

accelerator. Hardware accelerator execution then resumes.
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software), so even runtime changes of computation

manner (temporal or spatial) are possible and invisible

to the rest of the application.

IN OUR CURRENT WORK, we are implementing a system

with the full-fledged multithreaded programming para-

digm described here. We plan to explore other dynamic

optimizations in the virtualization layer, especially

prefetching techniques for nonsequential memory access-

es. We are also addressing unrestricted automated syn-

thesis: We have built a basic synthesis flow for our

platform and are considering how to extend the synthe-

sizer to cover advanced high-level language concepts. ■
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