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The demand for more sophisticated Location Based Services (LBS) in terms of applications variety and 

accuracy is tripling every year since the emergence of the smartphone few years ago. Equally, smartphone 

manufacturers are mounting several wireless communication and localization technologies, inertial 

sensors as well as powerful processing capability to cater for such LBS applications. Hybrid of some 

wireless technologies is needed to provide seamless localization solutions and to improve accuracy, to 

reduce time to fix, and to reduce power consumption. The review of localization techniques/technologies of 

this emerging field is therefore important. This paper reviews the recent research-oriented and commercial 

localization solutions on smartphones. The focus of this paper is on the implementation challenges 

associated with utilizing these positioning solutions on Android-based smartphones. Furthermore, 

taxonomy of smartphone-location techniques is highlighted with a special focus on the detail of each 

technique and their hybridization. The comparative study of the paper compares the indoor localization 

techniques based on the accuracy, the utilized wireless technology, overhead and the used localization 

technique. The pursuit for achieving ubiquitous localization outdoors and indoors for critical LBS 

applications such as security and safety shall dominate future research efforts. 
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1. INTRODUCTION 
The first generation of localization solutions of mobile handsets was focused on 

achieving the requirements of the Federal Communications Commission-Enhanced 

911 (FCC-E911) authorization, and they were network based. Angle-of-arrival (AOA) 
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and time-based were some of the localization techniques deployed by some of the 

cellular networks at the time (Caffery & Stuber, 1998).  

The second generation of localization solutions was focused on vehicle navigation. 

They incorporated Global Positioning System (GPS) receivers and added data via the 

cellular network and/or assistance from inertial sensors such as accelerometers and 

gyroscope sensors (De Angelis, Baruffa, & Cacopardi, 2012). 

Some of these solutions have included a rough initial position obtained from WiFi 

access points (WAPs) available in the vicinity of these handsets/navigators. This 

provision is based on pre-surveyed WAPs in most built-up areas (where the WAPs 

location is stored in a central Internet server, e.g. solutions by Ekahau and Skyhook). 

Such implementations have formed the third generation of localization solutions 

(Gallagher, Li, Kealy, & Dempster, 2009).  

Current solutions attempt to mix multi-GNSS signals (GPS plus GLONASS) with 

cellular, wireless fidelity (WiFi), Bluetooth (BT), as well as embedded sensors (and 

including future technologies such as Ultra-Wide Band “UWB” (Hui, Lei, & Yuanfei, 

2010)) to offer accurate position of smartphones anywhere anytime. Typically, these 

solutions are focused on locating smartphones indoors to satisfy LBS requirements, 

thus attempting to offer seamless outdoors-indoors positioning. 

Smartphones, as well as recent tablets and laptops, are becoming very important to 

our communication, localization and information needs. These are mainly driven by 

smartphones based mobile services/applications (Butler, 2011). Examples of the new 

LBS on smartphones do attempt to: 1) help the user navigate outdoors and indoors of 

large buildings, such as hospitals; 2) track the user for security via telematics; 3) 

assist the user to find the nearest restaurant, bus stop, coffee shop, and/or other 

point-of-interest (POI) information (Priyanka Shah, 2012). The most recent LBS 

applications which are interested by smartphones-users within different scenarios 

and categories are showed in Table I. 

These LBS applications on smartphones are arising as current and/or next-

generation ‘killer apps’ (Yun, Haejung and Han, Dongho and Lee, Choong C, 2013). 

However, such LBS applications are restricted due to the weaknesses or limited 

signal reception when the smartphone is indoors (Ryoo, Kim, & Das, 2012).  For 

instance, GPS technology can be used to locate smartphones accurately and provide 

accurate time, when outdoors. However, this capability is degraded in urban areas or 

when indoors. 

In another vain, onboard smartphone wireless transceivers and sensors have been 

used as an alternative to define smartphone location (based on some calibration 

algorithms) especially in situations when GPS signals do not exist (B. Li & Rizos, 

2010). But, the position information of reference-stations, localization protocols and 

cost are the main challenges to offer seamless smartphone positioning. 

The aim of paper is to survey on recent localization solutions that can be 

implemented on smartphone. In addition, the uniqueness of this survey is to present 

the main technical/practical implementation challenges which are associated with 

utilizing smartphone localization technologies/solutions, such as received signals’ 

parameters measurements, wireless devices’ firmware/API modification, deploy new 

HW equipments, and/or build up reference-location database with Internet 

connection. This literature survey is also examining commercial localization solutions 

available on smartphones in terms of their limitations and performances. 
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Table I. LBS applications on smartphones in different categories (Strout, Aaron and Schneider, Mike, 

2011), (Anuar, Faiz and Gretzel, Ulrike, 2011), (Lopez-de-Ipina, Diego and Klein, Bernhard and 

Guggenmos, Christian and Perez, Jorge and Gil, Guillermo, 2011). 

 
LBS Categories Scenarios Applications on 

Actual-smartphones 

Marketing 
Shopping centres advertise for their items using 

location information of LBS-users 

Shop Kick 

Emergency 

LBS-users call the emergency response agency in 

fire, stolen and abnormal situations 

911 in US and 112 in EU 

via nearest public safety 

answering point (PSAP)  

Geotagging 
Finding location of touristic services using 

geotagged images  

GeoRSS 

Tracking 

LBS-users can track on smartphones exact location 

of the bus to be sure about the path and the 

schedule  

PDX Bus 

Navigation 

LBS-users can location information and Map 

information to navigate through the path of the 

trip to a specific destination 

Google Places 

Mobile Location-Based 

Gaming 

Treasure hunts (e.g.  GeoSocial and Geocaching ) SCVNGR 

Location Based Social 

Media 

LBS-users use their location information to keep 

their relation via Facebook and/or Twitter 

Gowalla, Loopt, Facebook 

Place, Foursquare 

Sports 

Real-time route of outdoor sport activity via 

smartphones using Google Maps and sharing that 

data with a social networks 

Nike+, Run Keeper, 

Endomondo 

Billing 
Using location information to charge LBS-users, 

when they access a particular services 

On-Board Units 

POI 

Discovering nearest cafes, restaurants, petrol 

stations as well as real-time traffic information 

OpenTable, Fandango, 

Vouchercloud, 

NearbyFeed 

 
In fact, there are many surveys (e.g. (Dardari, D. and Closas, P. and Djuric, P.M., 

2015), (Harle, 2013), (Partyka, 2012), (Mautz, 2009), (Bensky, 2008), (Roxin, Gaber, 

Wack, & Nait-Sidi-Moh, 2007), (Boukerche, Azzedine and Oliveira, Horacio ABF and 

Nakamura, Eduardo F and Loureiro, Antonio AF, 2007) and (Liu, Darabi, Banerjee, 

& Liu, 2007)) on localization system, a late survey needs to completely revealing 

insight into the new emerging localization systems with their limitations and 

challenges. Authors in (Dardari, D. and Closas, P. and Djuric, P.M., 2015), surveyed 

indoor wireless tracking of mobile nodes from a signal processing perspective as well 

as discussed the main sources of error that are present in indoor environments. R. 

Harle in (Harle, 2013) developed taxonomy of modern pedestrian-dead-reckonings 

(PDRs) as well as compared different PDR techniques/schemes with applying 

statistical filtering. Also, the authors in (Partyka, 2012) reviewed available indoor 

positioning solution on smartphones in terms of accuracy and diversity. However, 

these surveys don’t provide the detailed and experimental measurements of the 

emerging localization techniques/technologies. In addition, discussions on 

smartphone-LBS applications are not fully developed without the investigation of 

recent localization schemes/algorithms and their limitations that will impact of the 

overall localization solutions. 

The rest of this paper is structured as follows: section 2 reviews few localization 

solutions surveys and highlights the main attributes which are used to 
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compare/evaluate them. Section 3 details out the localization techniques and their 

practical challenges during the implantation on an Android-based smartphone, while 

Section 4 reviews onboard smartphone technologies with their measurement source 

errors. Section 5 explains the implementation of existing localization solutions on 

smartphones and discusses the main challenges to offer seamless outdoors-indoors 

positioning. Finally, Section 6 concludes this review as well as highlights the work 

planned for our future research. 

2. RELATED WORK 
Most of LBS applications that are based on existing wireless technologies included in 

smartphones need accurate outdoors as well as indoors location. Thus, they need a 

seamless positioning service. However, there is no such seamless solution yet due to 

the limitations of the existing wireless technologies included in smartphones, albeit 

many researches have been conducted to achieve it. The review of localization 

solutions/techniques of this emerging field is therefore important. This review 

provides a useful analysis and presents a roadmap to seamless localization solution 

and their implementation challenges. 

A classification scheme to compare various indoors and outdoors localization 

solutions should be centered on accuracy, cost, coverage and overheads (hardware 

“HW” and software “SW”) as well as indoors issues such as the multipath effect 

caused by the interior structure, moving objects blocking/reflecting signals amongst 

others (Hightower & Borriello, 2001). Most of the localization criteria are 

continuously revised as advances are made. Recent revisions for smartphones include 

aggressive power consumption, seamless positioning, more reliable implementations, 

and better accuracy. For example, phase II of FCC/E-911 rules now requires cellular 

network operators to provide the location of all smartphone emergency callers to an 

accuracy of about 50m horizontally and 3-4m vertically for 67% of emergency calls 

(previously was 125m accuracy only) (Fayaz, 2013). 

Since the GNSS technologies do not offer accurate positioning when smartphones are 

in urban area or indoors, embedded smartphones wireless technologies are used as 

alternative to offer localization. Therefore, many algorithms focus on addressing 

localization issues associated with offering ubiquitous positioning in pervasive 

environments (Roxin, Gaber, Wack, & Nait-Sidi-Moh, 2007). Such algorithms include 

location-fingerprinting, time-difference-of-arrival (TDOA) and enhanced observed-

time-difference (E-OTD) are used in Long Term Evolution (LTE). These algorithms 

have been used to offer accurate positioning, but at the same time they also present 

some challenges such as the need of deploying new additional HW. 

The performance of indoor localization solutions in a real implementation has been 

observed in different levels of quality according to the localization area, HW 

components, complexity, and robustness (Liu, Darabi, Banerjee, & Liu, 2007). For 

example, in unblocked signal and/or open area, indoors localization solutions based 

on the fingerprinting method achieves good accuracy while the accuracy is degraded 

in dense areas. The solution based on cellular technologies is possible if more 

basestations (BSs) (i.e. additional HW) are available in the localization area (e.g. 

around a building). Also, a balance between accuracy and complexity must be 

considered carefully when a localization solution is chosen for different localization 

applications (e.g. LBS applications or for emergency applications). The localization 

solution is not robust if it is based on single wireless technology (Boukerche, 

Azzedine and Oliveira, Horacio ABF and Nakamura, Eduardo F and Loureiro, 
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Antonio AF, 2008), because in some scenarios/environments the single wireless 

technology signals might not be available. Many integrated multiple-technologies 

have been developed to overcome these restrictions, especially on smartphones. For 

example, 1) integrated GPS-WiFi-Cellular to extend localization coverage, 2) hybrid 

GNSS signals with other wireless/sensor technologies such as:  Bluetooth, Near Field 

Communication (NFC), audio sensors and inertial sensors to achieve good accuracy 

and to reduce time/space complexity (Partyka, 2012). 

The complexities of the indoors structure (including moving objects, open/close spaces, 

multi floors, and dynamic changing structure of the indoors components like rooms, 

walls, and stairs) make more challenges to implement localization schemes. The 

challenges are: 1) obtaining high location accuracy, 2) huge cost due to pre-installed 

infrastructures, 3) as well as, most of the schemes suffers from the wireless signal 

multipath and interference problem (Mautz, 2009). 

Capabilities and drawbacks of smartphones localization solutions depend on the 

onboard technologies that have been used in the solutions. Location of smartphones 

based on cellular technology is calculated in short time, wide coverage, within low 

cost, but the accuracy is limited. However, with more cellular BSs in the dense urban 

area, more accurate smartphones location would be achieved. While the location 

accuracy based on satellite technology (e.g. GPS) in such density area is degraded 

due to multipath issue and few numbers of satellite vehicles (SVs) in the sky are 

available (Waadt, Bruck, & Jung, 2009).  

The literature survey for this research focuses on newly developed smartphones 

localization solutions and presents revised smartphone LBS user demands including 

seamless positioning, reliable solution, short time-to-first-fix (TTFF), and reasonable 

accuracy for both indoors and outdoors. 

3. LOCALIZATION TECHNIQUES 
Location information provides an important role in most current smartphones’ 

services including traffic information for navigation and POI information for 

routing/planning and emergency calls. Localization techniques (including AOA, 

received signal strength (RSS), Cell-ID/Proximity, time-based localization, map-

matching (MM) technique, and dead reckoning) have been developed to achieve these 

services (Bensky, 2008). Mainly, such services need high quality of performance from 

the localization solutions. Combination of different location techniques is possible to 

make a powerful localization solution including reasonable accuracy, short time to 

define smartphones’ location and low battery power consumption. 

Figure 1 displays the taxonomy of such techniques as well as shows new combined 

localization techniques including: time-of-arrival (TOA) & dead reckoning (DR) 

(Mariakakis, Alex and Sen, Souvik and Lee, Jeongkeun and Kim, Kyu-Han, 2014), 

RSS-Fingerprinting & TOA (Koenig, Schmidt, & Hoene, 2011), MM & DR and 

Proximity (Woodman & Harle, 2008) & RSS-radio propagation model (Park & Park, 

2011). 

The detailed of these techniques-implementation in the next subsections with their 

requirements/limitations and their ability are presented. 
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Fig. 1. Taxonomy of smartphone-localization techniques. 

3.1 Cell-ID or Proximity technique 
Proximity, cell of original (COO), or cell identification (Cell-ID) technique is a simple 

localization technique. It refers to define location of a smartphone as being within 

radio pseudoranges of a BS. Thus, the smartphone is known to be within the area 

around that BS location. Therefore, the issue here is that the accuracy of the defined 

smartphone location is based on the radio coverage (i.e. cell size) of the BSs. For 

example, in cellular networks the cell size lies between 2 Km to 20 Km (Roxin, Gaber, 

Wack, & Nait-Sidi-Moh, 2007). 

Certainly now in urban area the cell size is reduced to only tens of meters. 

Additionally, this technique has been used in WiFi networks, since the cell size of 

these networks is much smaller than the one in cellular network. However, the 

accuracy of this technique in WiFi networks depends on the effective signal 

propagation pseudoranges as well as the density and distribution of WAPs (Mok, 

2010).  Several solutions have been proposed for this technique to improve location 

accuracy, especially for cellular technology, (as illustrated in Figure 2) including:  

 Providing cell sector, 

 Providing cell ID with time advance (Cell-ID + TA), and  

 Providing cell-ID with max signal strength value. 

In cell sector: the cell is divided into sectors, such as by using directional base station 

antennas with 120' beam width antenna. In such cases, the obtained location 

accuracy of smartphones can more narrowed by taking only the coverage of the 

received-signal sector. Also, further improved accuracy can be achieved by reading 

more signal-received measurements either based on timing (i.e. measuring round-

trip-time “RTT” of the received signal ) or based on strength of the received signals 

(i.e. RSS measurements). 
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Fig. 2. Proximity technique. 

 

Practically, this technique is the easiest technique to implement on smartphones as 

well as it takes short time and consumes low power to locate smartphones. However, 

the accuracy of this technique is not enough for major smartphone LBS applications, 

especially when indoors. 

3.2 RSS-based technique 
To estimate smartphone’s location based on RSS technique, two methods have been 

used: 

1) Pseudoranges measurement method (Park & Park, 2011): This method is based 

on known radio propagation analytic relationship. It employs trilateration to find 

smartphone location from the estimated pseudoranges between a smartphone 

and multiple BSs/WAPs, as it can be seen in Figure 3. Practically estimating the 

path loss exponent, signal propagation parameters, and environmental 

conditional are the main challenges to measure the pseudoranges between the 

smartphone and the BSs/WAPs (Wu, Yinfeng and Li, Ligong and Ren, Yongji and 

Yi, Kefu and Yu, Ning, 2014). To estimate the pseudorange between the 

smartphones and BSs/WAPs, equation (1) should be utilized.  ∗ 10 ∗ᵑ 																																										 1 	
Where p  is the pseudorange between smartphones and BSs/WAPs, p  is the 

estimated calibrated pseudorange at zero distance,  RSS measured signal stength 

value for the p  , RSS is the measured signal strength for the received BSs/WAPs 

signals, and ᵑ  is the calculated/calibrated path loss exponent for the received 

BSs/WAPs signals. 

In addition, inaccuracy of measuring RSS values in a localization solution is due 

to: 

 HW implementation (approximately ±4dBm varies), 

 Mathematical methods to calculate the RSS values,  

 Other working systems in the same band (i.e. interference issue),  
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 Moving objects (e.g. human moving) in buildings, and  

 Fixed and/or movable obstacles.  

Certainly, many dynamic models have been proposed to mitigate these 

inaccuracies, which are more accurate than the traditional static model such as 

in (Elbes, Mohammed and Al-Fuqaha, Ala and Anan, Muhammad, 2013). But 

still these models are not appropriate for most LBS applications, especially when 

high location accuracy is demanded. 

 

 
Fig. 3. RSS-Radio propagation technique. 

 

2) The second method, RSS-fingerprinting, is based on searching for pre-stored RSS 

values of BSs in a database (Lymberopoulos, Dimitrios and Liu, Jie and Yang, 

Xue and Choudhury, Romit Roy and Handziski, Vlado and Sen, Souvik, 2015). In 

this method, offline and online stages should be performed to calculate 

smartphones location. These stages with their localization process are displayed 

in Figure 4. 

In the offline stage, a radio map (i.e. the database) for signals’ strength of the 

major BSs in different points (i.e. reference points) around an area should be 

recorded.  

Then in online stage, a matching process between real-time RSS and the recorded 

of the pre-defined radio map is involved to estimate smartphone’s location. 

The accuracy of this method is based on actual path loss at points near the 

smartphone. Thus, unknown factors of multipath and shadowing are bypass and 

affect only minimally on the smartphone location estimation. However, 

practically, this method has many challenges including: 

 This method is for a specific building or area (site-dependent), 

 It takes a long time due to connect with the Internet and searching in 

the location database/server and then sends back the result of location 

calculation for the users, 
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 This method also deduces huge cost to make the radio map. I.e. this 

method needs to use dedicated HW and re-calibration of the BSs/WAPs 

location, since the environment of the area may be changed over time. 

 

 
Fig. 4. Smartphone’s location determinations via RSS-Fingerprinting technique. 

3.3 AOA technique 
In AOA technique, pseudo-ranges and location are found by performing triangulation 

(Niculescu & Nath, 2004).  The location of a smartphone can be computed when: the 

angles of arrival of the received signals from the smartphone by two or more 

BS/WAPs are defined (as shown in Figure 5) and distance between the two 

BSs/WAPs is known. Such smartphone location definition for 2D coordinates is expressed in 
equation (2): 	 																																	 2 	
Where 	 	 are XY coordinate values of BS/WAPs positions, is the arrival angles for the 
received WAPs signals and 	&		 	are XY coordinate values of the smartphone location. 

To be more specific, location determination from numerous distance measurements is 

known as Lateration, while angulations allude to the use of heading or angle 

measurements respect to known reference position to define a smartphone’s location. 

However, the main factors that effect on angles measuring are:  

 Varying of signal-to-noise-ratio (SNR),  

 Modulation technique of the transmitted and/or received signals,  
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 Moving the smartphone, and  

 Reflecting surfaces near the Line-of-Sight (LOS) path of the received signals.  

Technically, AOA technique needs to deploy array-antennas to find out the angles of 

the received signals (Sen, Souvik and Lee, Jeongkeun and Kim, Kyu-Han and Congdon, Paul, 
2013). Practically, due to requiring these special antennas and then incurs large cost, 

this technique is rarely applicable to locate smartphones. 

 

Fig. 5. AOA technique with three angle measurements. 

3.4 Time-based technique 
Time-based localization techniques measure signal’s propagation time, which is 

called time-of-flight ‘TOF’, to estimate pseudoranges between smartphone and 

multiple BSs/WAPs/anchors (De Oliveira, Horacio Antonio Braga Fernandes and 

Boukerche, Azzedine and Nakamura, Eduardo Freire and Loureiro, Antonio Alfredo 

Ferreira, 2009). TOA, RTT and TDOA are the common techniques for pseudoranges 

estimation (Kim, Lee, & Park, 2008).  

TDOA calculates location of smartphone from only differences of the measured 

arrival times on pairs of BSs/WAPs’ signals, as expressed in equation (3) and employs 

hyperbolic process.  ∆ 	  

 ∆ 	                                                     (3) ∆ 	  ∆ ∆ ∗  

Where t  is the time measured of the received BSs/WAPs signals, ∆t  is the 

differences of the two received of BSs/WAPs signals, ∆ is the estimated difference of 

the pseudoranges and  is the speed of light. 

While TOA first measures the time of the arrived signals and subtract by the 

transmitted time of the signals to estimate pseudoranges, as express in equation (4), 



Seamless Outdoors-Indoors Localization Solutions on Smartphones: Implementation and Challenges        39:11  
                                                                                                                                         

 
ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY 

then it employs trilateration to find smartphone location from the estimated 

pseudoranges between the smartphone and the BSs. The process of TOA and TDOA 

are illustrated in Figure 6.  

	                                                      (4)                  

 ∗                

Where is the estimated pseudoranges between smartphones and BSs/WAPs, is 

the calculated propagated time of the received BSs/WAPs signals,  	&	  are the 

received and transmitted time of the signals, and  is again speed of light. Note: at 

least one extra BS/WAP/anchor is required for TDOA per dimension compared to 

TOA.   

 
Fig. 6. TOA and TDOA for smartphone’s location determinations. 

Clock-time synchronization is required among the smartphone and BSs in TOA, 

while synchronization is only required among BSs/WAPs/anchors’ clocks in TDOA. A 

way to do this clock synchronization is to use signal transmission between 

smartphones and BSs/WAPs/anchors. Beacon signals is a proper one, since it is a 

continuous or periodic transmission that facilitates timing synchronization or 

position measurements between the smartphones and BSs. However, for the clock 

synchronization, wireless devices’ clocks such WAPs and cellular BSs clocks are 

cheap and inaccurate (1 μsec in time error is equivalent to 300 meters in position 

error) (Günther & Hoene, 2005), therefore, high quality reference-time in nanosecond 

resolution is needed to synchronize such clocks.  

RTT estimates the spent time of the transmitted signal travelling from the 

smartphone to the BSs/WAPs and back, as expressed in equation (5).  

 

  /2 	∆                                               (5) 	 ∗  

Where is the estimated round trip time for each received BSs/WAPs signals, &	  are measured time of the transmitted and received signals (via the 
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smartphone) respectively, while &	  are measured time of the received and 

transmitted signals via BSs/WAPs respectively, ∆  is the delay time of the 

packets/signals processing through receiving and transmitting signals, and 	is the 

speed of light. To calculate smartphones location, RTT techniques employs 

trilateration process, as shown in Figure 7.  

 
Fig. 7. RTT for smartphone’s location determinations. 

 
In TOA, calculating the delay is by using both smartphones and BSs/WAPs clocks, 

while in RTT, it uses only the clock of the smartphone to record the transmitting and 

arrival times. Because of this advantage, RTT avoids the necessity of clock 

synchronization between the smartphones and BSs/WAPs to some extent. The 

drawback of this method, however, is that the range measurements are needed to be 

carried out from multiple BSs/WAPs consecutively which will cause precarious 

latencies for LBS applications where smartphones move quickly. Furthermore, this 

method makes huge traffic-load on the network due to exchange large number of 

frames between the smartphones and the BS/WAPs. 

Several factors are existing which extremely influence on time-based techniques and 

then affect on localization accuracy. These factors include: 

 Non-Line-of-Sight (NLOS) and multipath issue (Wibowo, Klepal, & Pesch, 

2009),  

 Inaccuracy of existing chipset-clocks on BSs/WAPs (Lee, Lin, Chin, & Yar, 

2010),  

 Radio-signal coverage of BSs/WAPs (Jaime Lloret, Jesus Tomas, Alejandro 

Canovas, Irene Bellver, 10 May 2011), 

 Time-source functions for timestamping (Mock, Frings, Nett, & Trikaliotis, 

2000) and 

 Taking time measurements at different network stack layers and OS 

interrupt handling time delay (Ciurana, Lopez, & Barcelo-Arroyo, 2009),   
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To mitigate the impact of these factors, practically, statistical/filter processes or some 

calibration/compensate algorithms are needed to estimate accurate pseudoranges 

between smartphone and BSs/WAPs and then to define smartphone location. 

3.5 Map-Matching technique 
Map-Matching (MM) technique is based on the theory of machine learning 

algorithms (e.g. pattern recognition/matching) which combines map with the 

measured smartphone’s location observations to obtain the real position of 

smartphones in 2D or 3D coordinates.  

Many solutions on the smartphones available to utilize mapping technique including 

GNSS, simultaneous localization and mapping (SLAM) solution, and WiFi-SLAM 

solution. This technique could be combined with time-based, RSS-based and DR 

techniques. Actually, this technique is mostly used in order to increase the accuracy 

of the localization solutions (Gallagher, Wise, Li, Dempster, Rizos, & Ramsey-

Stewart, 2012). However, the main drawback of this technique, especially when 

indoors, is to build and maintain huge knowledge of the buildings’ layout. 

3.6 Dead reckoning 
This localization technique is based on utilizing onboard smartphones inertial 

sensors including gyroscope, accelerometer, and magnetometer sensors. The DR 

technique uses: gyroscope for angular velocity, accelerometer sensor for acceleration, 

and magnetometer sensor for magnetic fields. To locate smartphones, using DR 

technique, calibrate these inertial sensors and an initial reference-point are required. 

This technique is highly smooth and stable, but its performance degrades quickly 

over time due to the accumulated measurement noise of sensors causing cumulative 

positioning error (Woodman & Harle, 2008). 

Figure 8 shows a typical smartphone’s dead-reckoning prototype model to 

compensate and to reduce both drift and sensor noise using dedicated filtering 

algorithms (e.g. Kalman Filter).  

 

 
Fig. 8. A DR-prototype model for smartphone localization solutions 
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The figure also shows how the model utilizes inertial sensors to measure both 

distances and heading and then how use these measurement to calculate 

smartphone’s location. To calculate smartphone position based on DR technique, 

equation (6) should be utilized. ∗ cos                                              (6) ∗ sin	             

Where 	&	  are the estimated XY coordinate values of smartphone position,  is 

the calculated distance using the accelerometer measurements and 	 is the 

estimated heading of the smartphone via gyroscope measurements. 

3.7 Combined localization techniques 
In order to improve the location accuracy, to reduce measurement records, short time 

to locate, and then to reduce battery-power consumption, a hybrid localization 

techniques is needed (Jaime Lloret, Jesus Tomás, Miguel Garcia, Alejandro Cánovas, 

2009).  

The combination technique is not only to make powerful localization solution, but it 

is also to reduce the number of reference positions to involve the smartphone location 

estimation. For example, combining TOA and DR techniques has been used to hybrid 

the range and the heading of the smartphone only with a single WAP (Mariakakis, 

Alex and Sen, Souvik and Lee, Jeongkeun and Kim, Kyu-Han, 2014). In this hybrid 

approach TOA is used to measure the range between the WAP and the smartphone 

in two different locations and it uses DR to estimate the heading as well as the 

distance-displacement between the two different locations.  

The combined technique, as it is shown in Figure 9, has the following achievements: 

 Obtaining better accuracy than DR (when it is used as a standalone 

technique) and  

 It needs only a single WAP to contribute smartphone location calculation in 

compare with TOA technique alone that needs three WAPs as reference 

positions. 

 

 
Fig. 9. Using TOA and DR techniques to construct a triangle between a smartphone and a WAP. 
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4. ONBOARD SMARTPHONES TECHNOLOGIES FOR LOCALIZATION 
The increasing technologies such as: GNSS (including GPS and GLONASS) receivers 

as well as cellular (e.g. LTE), NFC, WiFi, Bluetooth transceivers, inertial sensors on 

smartphones makes possible to more powerful positioning with smartphones in 

different circumstances. Figure 10 illustrates these technologies in standalone and in 

combined hybrid solution. In fact, some of these technologies are not originally 

intended for positioning functionality such as: Cellular, WiFi, and Bluetooth. But, the 

reading form of transmitted/received radio signals of these technologies in somehow 

can be utilized for localization purposes. In addition, each individual technology has 

its own advantages and limitations in terms of availability and robustness 

(Boukerche, Azzedine and Oliveira, Horacio ABF and Nakamura, Eduardo F and 

Loureiro, Antonio AF, 2008). Therefore, in this section, we are going to show the 

ability and the imperfections of the localization measurements via these technologies. 

 

 
Fig. 10. Taxonomy of technologies for smartphone localization 

4.1 Cellular technologies 
Cellular technologies rely on a group of BSs, with the radio coverage at different sizes. 

Historically, the localization solutions of mobile handsets were focused on achieving 

the requirements of the FCC-E911 mandate, and they were Cellular-Network based. 

Cell-ID, AOA, TOA, TDOA and E-OTD were some of the localization techniques 

deployed by some of the cellular networks at the time (Deng Zhongliang and Yu 

Yanpei and Yuan Xie and Wan Neng and Yang Lei, 2013). In addition, nowadays 

with existing LTE technology on smartphone, a new protocol, known as secure-user-

plane-location (SUPL) is included to provide secure smartphone positioning (Farid, 

Zahid and Nordin, Rosdiadee and Ismail, Mahamod, 2013).  

 

However, the obtained accuracy by cellular networks using above techniques is in the 

range of 20–200 meters, this is depend on the cell coverage and pseudorange 

measurements between the smartphones and the BSs. Generally, the accuracy is 

higher in urban areas and lower in rural environments (Cherian, Suma S and 

Rudrapatna, Ashok N, 2013). Also, for indoors, smartphone localization solutions 

based on cellular technology is conceivable if a large number of BSs are deployed 

around the buildings. 



39:16                                                                                                                            H. S. Maghdid et al. 
 

 
ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY 

4.2 GNSS technology  
The GNSS receiver, which is integrated on smartphones, is extensively used to 

obtain the smartphone position, when outdoors. GNSS receivers on smartphone have 

been developed with increasing performance and accuracy. GNSS systems provide 

accurate, continuous and world-wide, three dimension position, and velocity 

information to users with appropriate receiving equipments.  

Taking GPS as an example, the GPS satellite constellation nominally maintains of at 

least 24 satellites, 95% of the time, arranged in 6 orbital planes with 4 satellites per 

plane. The satellites broadcast ranges codes and navigation data (ephemeris and 

Almanac data) on two frequencies using a technique called Code Division Multiple 

Access (CDMA). The two frequencies are L1 (1,575.42 MHz) and L2 (1,227.6 MHz). 

GPS uses the concept of TOA pseudoranging and trilateration to determine 

smartphone position (Lee, Jae-Eun and Lee, Sanguk, 2010).  

Pseudoranging code enables the smartphone’s receiver to determine transit time 

(propagation time) of the signal thereby determines the satellite-to-smartphone 

pseudorange. Navigation data provides the means for the receiver to determine the 

location of the satellite at the time of signal transmission. GPS receiver in a 3D mode 

three satellites and three distances are needed. The equal-distance trace to a fixed 

point is a sphere in a 3D case. Two spheres intersect to make a circle. This circle 

intersects another sphere to produce two points. In order to determine which point is 

the user position, one of the points is close to the earth’s surface and the other one is 

in space. Since the user position is usually close to the surface of the earth, it can be 

uniquely determined (Kohtake, Morimoto, Kogure, & Manandhar, 2011).  

However, the distance measured between the receiver and the satellite has a 

constant unknown bias, because the smartphone’s clock usually is different from the 

satellites’ clocks. In order to resolve this bias error one more satellite is required. 

Therefore, in order to find the smartphone position four satellites are needed. Despite 

the position error due to the clock time error, there are several other error sources 

which are affected on location accuracy such as:  selective availability, DOP issue, 

ionospheric delays, tropospheric delays, multipath and receiver noise. 

Furthermore, these receivers are presently ready to locate smartphones more 

accurately in signal-degraded environments than before. Following these 

achievements of GNSS-based services in outdoor applications, however, the challenge 

has shifted to the dense urban and/or indoor environment (Ryoo, Kim, & Das, 2012). 
For example, an experiment has been performed in near indoors (around a building) 

on two Android-based smartphones: Samsung Galaxy S2 and S3 mini, as it is shown 

in Figure 11, the accuracy of the obtained position for both smartphones sometimes is 

up to 20 meters. Therefore in such environments, techniques to improve location 

accuracy are needed such as MM technique. Figure 12 shows such kind of 

improvements, as it is observed; the accuracy is within 1 to 2 meters. 



Seamless Outdoors-Indoors Localization Solutions on Smartphones: Implementation and Challenges        39:17  
                                                                                                                                         

 
ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY 

 

Fig. 11. Estimated location of two smartphones using only GNSS 

 

 
Fig. 12. Estimated location of a smartphone using GNSS and Google-Maps 

 
Although, several attempts to enhance this technology by adjusting new 

infrastructures including Pseudolite (Lee, Jae-Eun and Lee, Sanguk, 2010), Locata 

(Rizos, Roberts, Barnes, & Gambale, 2010), indoors messaging system (IMES) 

(Kohtake, Morimoto, Kogure, & Manandhar, 2011) in the area of degraded GNSS 

signals, however, GNSS ability to locate indoors smartphones remains a substantial 

challenge which prevents accurate positioning seamlessly from outdoors to indoors 

(Jin, February 03, 2012). The detailed explanation of these solutions is included in 

section 5. 

4.3 WiFi  
The WiFi transceivers integrated on smartphones are not only for data 

communication, but they are also to estimate smartphones position. Mainly, the LBS 
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applications use this technology to define the smartphone position inside buildings, 

where the WiFi signals prevail. For example, a smartphone can calculate the TOF of 

WiFi signals coming from each WAPs distinguished through its MAC address, and 

assuming these WAPs’ position are previously known. Based on these observations, 

the smartphone can perform a localization technique dynamically to report an 

estimation of the smartphone position. Specifically for WiFi time-based localization 

solution, however, due to existing inaccuracy clock source (clock drift and clock offset) 

for timing/TOF measurements on WAPs and onboard smartphone WiFi transceivers, 

pseudorange estimation based on the timing-measurements will not be accurate. 

To demonstrate the clock drift and clock offset of a WAP in relative to a WiFi 

transceiver onboard smartphones, this research study conducted few trial 

experiments on actual smartphones. In a single experiment, for example, an HTC 

Android-based smartphone is used to collect the clocks measurements. Figure 13 

shows the calculated clock drift and offset of a WAP in relative to a WiFi transceiver 

onboard smartphone. During the experiment, the smartphone’s WiFi transceiver 

(Atheros-chipset model-6) is worked in monitor mode to receive WAPs beacons 

frames passively. The smartphone calculates the clock offset by timestamps for the 

received beacons and retrieves timestamp function values from the beacon frames. 

Then, to calculate the relative clock drift, the linear regression (based on linear-least-

squares) method has been applied (using equation 7).  ∗ _                                    (7) 

Where t  is the clock difference between the WAP clock and WiFi-

transceiver-MAC clock reading, a	is the estimated slop (i.e. the estimated relative 

clock drift) and b is the intercept between both t and _  values. 

The estimated clock drift by the regression method is 10 microseconds (forward). 

 

 

Fig. 13. Clock time different between a smartphone-WiFi transceiver and a WAP 

 

It is observed that the clock error without any calibration or compensating 

algorithms is within microsecond’s level which is produce huge positioning error (one 

microsecond error in clock measurements is equivalent to 300 meters in positioning 

error). 
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4.4 Bluetooth  
Bluetooth has developed as a practical choice of indoors smartphone localization 

solutions and several indoor positioning systems relying on this technology (Subhan, 

Fazli and Hasbullah, Halabi and Rozyyev, Azat and Bakhsh, Sheikh Tahir, 2011). 

This is mainly because it has emerged as a low cost, low power consumption and 

bigger coverage range than traditional/classical Bluetooth classes.  

The recent developed localization solution based Bluetooth is Bluetooth-Low-Energy 

Beaconing (BLE-iBeconing). With BLE, all its needed is to drop a few Bluetooth 

anchors around the area and then smartphones based on RSS measurements can 

detect these anchors. In this way, a localization solution using these measurements 

can successfully track smartphones location (Della Rosa, Francescantonio and Pelosi, 

Mauro and Nurmi, Jari, 2012). The main feature of BLE is that permits us to supply 

just enough contexts, while still being agile and portable. This peer to peer 

messaging opens up numerous potential outcomes, extending from LBS applications 

in shopping centers to emergency reaction circumstances.  

However, during the research work we found out that RSS measurement has non-

uniform shadowing which causes huge location error. To demonstrate this, few trial 

experiments are conducted on two Android-based smartphones types of Samsung 

Galaxy S3 mini. Figure 14 shows the average result of  a  three conducted trials to 

measure RSS values of the received smartphone BT-signals (as a BT-anchor or in 

Master mode) by other movable smartphone (in Slave mode) in the vicinity. Note: the 

enabled BT-transceivers on the smartphones are type of Bluetooth 4 version. 

 

 
Fig. 14. RSS measurement values between two smartphones in different distances. 

 

In the figure, it can be observed that the measured RSS values are instable, 

especially (when the Slave is near to the Master) and the measured RSS values are 

not proportionally distributed (when the Slave is far from the Master, i.e. weak RSS 

values do not contain valuable information). This inaccuracy makes huge location 

error, therefore any pseudorange measurements and/or location estimation based on 

RSS measurements will be not accurate. 

4.5 Inertial sensors 
Embedded inertial sensors on smartphone only give a relative location estimate with 

accuracy degrading over short run; therefore, they must be utilized together with 

other technologies including GNSS, WiFi, and Bluetooth to estimate absolute 

-80

-70

-60

-50

-40

0 10 20 30 40 50 60 70 80

R
SS

I i
n 

dB
m

Walked distance in meter

instability measured
RSS values

No proportionally 
distributed



39:20                                                                                                                            H. S. Maghdid et al. 
 

 
ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY 

location and to get better accuracy (Yi Sun and Yubin Zhao and Schiller, J., 2014). 

Basically, a smartphone can read measurements from these sensors to locate users 

by performing DR technique. Accelerometer sensor to measure change of velocity 

(acceleration force), magnetometer sensor to measure magnetic field, and gyroscope 

to measure change of angles are the main inertial sensors that can used for 

smartphone positioning. However, accelerometer and magnetometer measurements 

are affected by sensors noises and interference issue (especially for indoors), while 

gyroscope measurements have huge drift over few seconds to estimate the heading 

(Xiao, Zhuoling and Wen, Hongkai and Markham, Andrew and Trigoni, Niki, 2015). 

To show these limitations, a set of trial experiments have been performed. Figure 15 

displays an experimental-result of the inaccuracy of estimating heading via inertial 

sensors in compare with the true heading. Note: to run the experiment, we used 

Android-based smartphone type of Samsung Galaxy S3 mini to collect and to read the 

sensors’ measurements, for 3000 samples. In this experiment, it can be noticed that 

these sensors are not accurate without calibration method to estimate heading due to 

fluctuation/accumulated drift for accelerometer & magnetometer and gyroscope 

sensors, respectively. In addition, in smartphone localization view, this inaccuracy of 

heading estimation induces huge positioning error. 

 
Fig. 15. Estimated heading through inertial sensors 

5. SMARTPHONES LOCALIZATION SOLUTIONS 
LBSs on smartphones adopt several solutions to ensure that location is achieved 

accurately and continuously. We adopted the following criteria to classify such 

solutions:  

 Environments (indoors and outdoors) 

 Standalone and hybrid solutions 

 Satellite and terrestrial  

 Unilateral and multilateral 

In this research work, we attempt to classify the current trials and the improved 

localization solutions into: outdoors, indoors, and seamless outdoors-indoors. 

Additionally, practical challenges for implementing of the solutions and for new 

available commercial solutions are discussed. 
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5.1 Outdoors localization solutions 
Cellular networks, GPS, and other GNSS technologies such as GLONASS are 

candidate solutions for smartphone outdoors localization (Roxin, Gaber, Wack, & 

Nait-Sidi-Moh, 2007). The onboard smartphones GNSS receivers can define their 

location within few meters.  However, GNSS receivers: 1) consume more power, 2) 

provide inaccurate location, and 3) take long time to fix the smartphone, when 

indoors or in urban area, due to the availability of the GNSS weak signal and 

multipath issue (Pei, et al., 2011).  Another factor of GNSS inaccuracy (or losing 

GNSS signal tracking) is due to GNSS jamming/interference (Paul Craven, Ronald 

Wong, Neal Fedora, and Paul Crampton). Vulnerable of GNSS signals from 

interference sources is due to received low GNSS signal strength. The interference 

sources do not necessarily need to be centered at the same frequency as the GNSS 

signals. 

The promise of alternative solution for such cases is to use cellular network signals 

for positioning, as a GNSS backup solution or aid GNSS (e.g. A-GNSS) (Lim, Lee, & 

Cho, 2007). An example of A-GPS architecture is shown in Figure 16.  

 
 

Fig. 16. AGPS overview-system architecture 

 

Several solutions have been proposed to locate the smartphones through using only 

cellular signals based on different techniques. For example: cell identification (Cell-

ID), RSS-based, AOA, TDOA, E-OTD and uplink-TDOA (U-TDOA) (Roxin, Gaber, 

Wack, & Nait-Sidi-Moh, 2007).  Furthermore, these solutions could be classified into 

two major types of localization solutions: network-based solutions and handset-based 

solutions. Both localization solutions have different capabilities in terms of privacy, 

SW/HW upgrading, accuracy, and power consumption. These capabilities and 

performance parameters are evaluated and explained in Table II.  
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In addition, these solutions somehow are utilized as indoors or urbane localization 

solutions. However, since most of these solutions’ accuracy is within tens of meters, 

as well as they are customized with special HW and take a huge cost (Adusei, 

Kyamakya, & Jobmann, 2002), therefore they are not utilized for most current 

smartphones LBS applications (Waadt, Bruck, & Jung, 2009). 

Table II. Handset-based and network-based localization solutions 

Handset-based location solution Network-based location solution 

It is more secure. It is less secure than Handset-Based. 

It doesn't affect the network capacity. It uses facilities and resources of the network. 

It is more accurate for location; it is not limited by 

the network to the number of measurements. 

It depends on the requiring measurements to be 

improved for location accuracy. 

It needs special SW and HW that must be 

incorporated together. 

It doesn't require upgrading SW for the handsets 

(devices). Most legacy handset can receive services 

It consumes the smartphone’s battery power to 

carry out the positioning task. 

It frees the handset of the power battery. 

It participates in the positioning task, or the 

calculation is done by itself. 

Network performs the positioning task without 

intervention by the smartphone (handset). 

It is known as self-positioning solution. It is known as remote positioning solution. 

 

To evaluate the performance of these solutions, it can be noted, that if one solution 

has a good accuracy then it will take long time to fix and consequently consume more 

battery power such as GPS and A-GPS. In comparison, Cell-ID and Cell-ID + TA take 

short time to fix and low power consumption but have low accuracy. Additionally, 

some of these solutions could not be applicable transparently, due to having huge 

costs and function limitations such as U-TDOA and AOA, respectively.  

Owing to the deployment of large number of WAPs in urban area, WiFi technology 

has been employed for such area as an alternative localization solution. Especially, 

when the cellular solutions are not accurate enough, or they are not applicable (Liu, 

Zhang, Quan, & Lin, 2010). However, in these situations WiFi-based solutions do not 

perform very well due to having multipath and NLOS signals which affect 

smartphones’ location accuracy. 

5.2 Indoors localization solutions 
There is a huge demand on making reliable indoors positioning solutions, since 

people spend 80-90% of their time, and 70% of people calls & 80% of their data 

exchanging are occur when indoors (Kalliola, 2008). Recent commercial indoors 

localization solutions based on different technologies and techniques with their 

accuracy are listed in Table III. However, neither high performance nor wide-spread 

indoors localization solution is obtainable yet. This is due to wireless technologies 

limitations and the complexity indoors structure.  

Although some of these solutions (e.g. WiFi-SLAM, Skyhook, and Ekahau) can 

achieve a reasonable accuracy (Faragher, R and Harle, R, 2013). But they need to 

deploy new HW; or they are using Internet to connect with reference-location 

database/server in order to calibrate the interest area and then to locate the 

smartphones (Miguel Garcia, Fernando Boronat, Jesus Tomás, Jaime Lloret, 2009). 

Furthermore, some of them are implemented on the smartphones (e.g. Sensewhere 

and Navizon), while some others are in process, i.e., they need more researching and 

solving practical issue (e.g. PlaceLab, ArrayTrack, and PinPoint).  
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Table III. Indoors localization solutions. 
Solution name Accuracy Wireless 

Technology 

Localization 

Technique 

Overhead Comments 

ArrayTrack (Xiong & Jamieson, 2011) Up to1m WiFi AOA Needs to deploy a new WiFi 

directional antennas 

It is good for LOS signals and for a 

small coverage 

Ekahau (Gallagher, Li, Kealy, & Dempster, 2009) 5m-15m WiFi RSS Clients need to calibrate and 

make the radio map for a 

specific area 

An Internet connection is needed to 

reference the location-database 

Skyhook (Gallagher, Li, Kealy, & Dempster, 2009) 10m-20m WiFi RSS Solutions need to calibrate and  

make a radio map for a specific 

area 
Navizon (Zandbergen, 2009) 20m-40m WiFi RSS 

Place Lab (LaMarca, et al., 2005) 20m-40m WiFi Proximity and 

RSS 

Sensewhere (Sensewhere LTD, 2011) Up to10m WiFi and A-GPS Proximity and 

RSS 

No WAP surveying nor 

associated database 

An Internet connection is needed to 

reference the location-database 

Polaries (The Communications Security, March 14, 

2013) 

100-500m RF technology RSS-

Fingerprinting 

Survey RSS-values for a specific  

geographical area 

Qualcomm (The Communications Security, March 

14, 2013) 

50-400m GPS and Cellular AGPS/AFLT 

method as a 

hybrid solution 

It doesn't need any additional or 

tailored HW during localization 

It depends on the visibility GPS 

satellite vehicles (SV) in sky and 

cellular network conditions 

NextNav (The Communications Security, March 14, 

2013) 

2-4m vertically and 

50-150m 

horizontally 

RF-technology ( GPS-

like signals) 

TOA Needs to deploy a special 

infrastructure in a geographical 

area 

Special receiver should be connected 

with the smartphones 

U-TDOA (Trueposition) (TruePosition, 2008) Up to 50m Cellular TDOA Needs to install Location 

Measurement Units (LMU) on 

the cell towers 

SNR, number of cell towers, 

timestamp, and transmitter/receiver 

geometry condition are the main 

factors on the solution’s accuracy 

PinPoint (Youssef, Youssef, Rieger, Shankar, & 

Agrawala, 2006) 

Up to 7m WiFi TOA (two-way 

measurements) 

and TDOA 

Needs constant number of 

message exchanges between 

smartphone and WAPs or any 

other nodes 

The accuracy is based on the 

accuracy of the clock rates (e.g. WiFi 

clock off-the-shelf is 40 MHz is ~ 25 

ns). And the coverage in tens of 

meters. 
Goodtry (Hoene & Willmann, 2008) Up to 4m WiFi TOA (four way 

measurements) 

WiFi-SLAM (Huang, Millman, Quigley, Stavens, 

Thrun, & Aggarwal, 2011) 

3m-5m WiFi and Map Mapping and 

RSS 

Needs to upload the map of the 

buildings/area and calibrates 

WAPs’ signals parameters 

They need an internet connection to 

communicate with the system’s 

location servers 

GraphSLAM (Huang, Millman, Quigley, Stavens, 

Thrun, & Aggarwal, 2011) 

4m-7m MAP and Sensors Mapping and DR Needs to upload the map of the 

buildings/area and calibrates 

sensors 

Pseudolite (Mahiddin, Safie, Nadia, Safei, & Fadzli, 

2012) 

Sub-meter Terrestrial replica of 

GNSS 

 

 

TOA They need to deploy new 

transmitters for (IMS) and 

transceivers for (Locata and 

Pseudolite) 

They are GPS-like signals. 

IMES (Kohtake, Morimoto, Kogure, & Manandhar, 

2011) 

Up to 10m Proximity 

Locata (Rizos, Roberts, Barnes, & Gambale, 2010) Sub-meter TOA 
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For indoors smartphones, most of the researches focused on technology to locate 

smartphones indoors as they have been located when outdoors and enable mapping, 

navigation, local search, sharing location, and other LBS. To achieve these services 

several solutions and researches have been proposed. For example, Pseudolite is as 

an alternative solution for GPS and used as an indoors technology to find the location 

of smartphones in sub meter accuracy (Mahiddin, Safie, Nadia, Safei, & Fadzli, 2012). 

However, it requires deploying ground-based transceivers which incurs huge cost. 

High quality of time synchronization, near-far problem, and multipath are the main 

challenges of the solution to locate the smartphones. 

In a variety of localization solutions, an IMES and GPS receiver to provide indoors 

positioning solution has been proposed (Kohtake, Morimoto, Kogure, & Manandhar, 

2011). The architecture of the IMES can be seen in Figure 17. Smartphones consume 

low battery power when IMES is used. However, obtained smartphones location 

performance by using this solution doesn’t meet the LBS user’s requirement, since 

IMES is based on proximity technique and it offers limited smartphone location 

accuracy. In addition for that, practically, a GPS receiver firmware modification is 

needed to implement IMES on the smartphones. 

 

 

Fig. 17. Indoors and outdoors positioning using IMES and GPS 

 
Locata system is another indoors solution (Rizos, Roberts, Barnes, & Gambale, 2010); 

it is able to replicate GPS/GNSS performance indoors, as it shown in Figure 18. 

Locata is GPS-like solution; it needs four transmitted signals to locate the 

smartphone as well as needs high quality clock synchronization to calculate accurate 

pseudoranges between the smartphones and Locata-transmitters.  
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Fig. 18. Locata positioning architecture 

 

All requirements and capabilities for IMES and Locata solutions are listed in Table 

IV. The main unique drawback of Pseudolite, Locata, and IMES is to establish new 

infrastructure to cover smartphones indoors for LBS application which is incur huge 

cost. 

 
Table IV. Comparison on Locata and IMES solutions 

IMES Locata Solution 

It does not need any synchronization.  Strong time synchronized ranging signals are 

needed. 

It operates in GPS L1 band (with offset 8.2 

kHz). 

It works in the  industrial, scientific and medical 

(ISM) band 2.4 – 2.4835 GHz. 

It does not need any HW modification. Needs equipped Locata receiver in smartphones. 

The accuracy is up to 10 meters.  Position accuracy is in cm-level. 

Application in deep indoors shopping builds 

and underground. 

Applications are in open-cut mines, urban and 

even indoors locations. 

Need a single transmitted signal and/or 

message to locate the smartphones.  

Needs four transmitted signals to locate the 

smartphone. 

 

Although WiFi technology is not planned or deployed for the purpose of localization, 

measuring WAPs signal-parameters provide the possibility of locating smartphones 

(Manodham, Loyola, & Miki, 2008). WiFi technology based on some calibration 
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conditions shows better smartphone positioning accuracy when other localization 

technologies embedded smartphones cannot be utilized.  

Many localization techniques such as: RSS-based, proximity, and time-based 

localization are likely being used to locate smartphones based on WiFi technology. 

However, due to having a lot of big obstacles indoors, most of the time the WAPs 

signals cannot penetrate the obstacles (i.e. multipath issue) (Zhao, Li, & Shi, 2010). 

Thus, such signals may reach smartphones by bypass deviation (i.e. NLOS), and then 

introduce large error on estimating pseudoranges and on location estimation.  

Several researchers have been involved to mitigate this inaccuracy in measurements 

by using different statistical and/or mathematical models. For example, due to the 

fluctuation of WAPs signals, calibrating some parameters for these signals are 

examined in (Park & Park, 2011) including attenuation factor of the WAP signal and 

offset parameter of the RSS. The calibration algorithm has been proposed to improve 

the accuracy of pseudoranges measuring. However, the accuracy of measured 

pseudoranges is not adequate as well as the algorithm takes huge processing and 

then consequently more power consumption. In other study, RSS-fingerprinting 

method has achieved better accuracy in (Feng, Au, Valaee, & Tan, 2010), but the 

database generation, maintenance and extra HW cost are the main drawbacks of the 

method. 

The other major approach in WiFi positioning solutions is to use time-based approach 

such as TOA, TDOA and RTT, which are more accurate than RSS technique, as it 

has been proved in (Koenig, Schmidt, & Hoene, 2011). However, all WiFi time-based 

localization solutions suffer from timestamps generation of the received and 

transmitted signals by using inaccurate local clocks, instability and limited of WAPs 

coverage (Lee, Lin, Chin, & Yar, 2010). Mainly, the current solutions based on time 

measuring ignore the use of accurate reference time for clock synchronization. 

In order to improve the localization performance, a combination of RSS and TOA 

localization techniques based on WiFi technology is proposed in (Koenig, Schmidt, & 

Hoene, 2011). The combined approach has achieved higher location accuracy than the 

RSS technique and TOA technique. However, in most cases, statistical processing or 

calibration algorithms, again, are needed as a pre-processing step. 

Another indoors localisation solution such as iBeaconing based on BT technology is 

released on Apple-iPhones and Android-based smartphones. This solution offers good 

smartphone-position accuracy based on the combined version of proximity and RSS 

techniques (Padilla, November 16, 2013). The position accuracy will be varied (up to 

2 meters) based on the number of deployed BT-anchors in the vicinity. The main 

LBS-application based on this solution is starting from shopping to patient 

monitoring in hospitals. However, the incurring cost to install this solution on 

smartphones and deploying large number of the BT-sensors are the main limitations 

for indoors-smartphones solutions. 

SLAM solutions using WiFi, inertial sensors and Map building information based on 

various localisation techniques, such as TOA, RSS, and DR, are reliable indoors 

localisation solutions, when Internet connection with smartphones is available to 

connect with the pre-defined radio-map/database of reference locations. GraphSLAM 

and WiFi-SLAM software are examples of such indoors-smartphone positioning 

solutions. Taking GraphSLAM as an example (Huang, Millman, Quigley, Stavens, 

Thrun, & Aggarwal, 2011), it fuses map buildings-information and inertial sensors 
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readings to define indoors-smartphones position by performing 

statistical/mathematical filtering. The well-known example these filters are particle 

filter and Kalman filter. However, the achieved smartphones position accuracy 

within 4m – 7m is not dependable for most indoors LBSs. 

On the whole, because the indoors environment are complex areas and the need of 

high location accuracy in smartphone LBS applications, current indoors localization 

solutions based on WiFi technology do not satisfy LBS users’ requirements. Therefore, 

more researches and further work are needed to mitigate and to overcome these 

limitations. 

5.3 Outdoors-Indoors seamless localization solutions 
Outdoors to indoors seamless localization is a main user demand for most of the 

smartphones LBS application. However, wireless technologies available on 

smartphones do not provide continuous positioning due to their environmental 

limitations and their own low performance. The performance of current localization 

implementations and limitation on smartphones are shown in Table V. 

To avoid technologies’ environmental limitations and/or to provide outdoors-indoors 

seamless positioning, combining the technologies should be utilized into a single 

positioning solution (Koenig, Schmidt, & Hoene, 2011). 

Table V. Performance of current localization implementations on smartphones 

 

The combination usually could be based on taking the advantages/capabilities of the 

technologies and avoiding their limitations. Actually, such combination is not only to 

offer seamless positioning, it can provide other performance improvements including 

reduce smartphones’ battery power consumption, reduce time to fix, maximize 

localization coverage, and improve location accuracy (Shafer & Chang, 2010). 

However, all these performance improvements are not supplied in a single 

localization solution so far, as well as current localization solutions are normally 

tailor-made with specialized HW and they incur large cost.  Note: to assure the cost 

level for each localization solutions, this research study produces Table VI. As shown 

in the table, the cost level is presented in different type of costs including: software 

(SW), hardware (HW), human resource (HR) and/or database (DB)/server. 

Furthermore, for HW cost either installing expensive basestations such as in SUPL 

and using vehicles in Skyhook solution or deploying cheap sensors such for 

iBeaconing solution. In addition, current localization solutions might us a dedicated 

DB/server and Internet connection to report the smartphone location information or 

Technology Time to fix Accuracy Coverage Environments 

GNSS 
Quick fix, when outdoors Up to 5m in clear 

sky. 

World wide  Outdoors 

WiFi 

Quick fix, when Internet 

and location database 

are available. 

Better accuracy 

when GNSS is worst, 

between 10m-25m. 

Build up area   Urban/Indoors 

Cellular 

Quick fix, when 

communication with BSs 

is available. 

25m-100m, wherever 

that there is cellular 

coverage. 

Build up area  Urban/Indoors 

Inertial 

sensors 

Possible fixing, when the 

other technologies are 

not available. 

Up to 5m, for short 

time since the last 

calibration (drift 

issue). 

Build up area  Indoors 
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sometime the solutions need HR to do the survey or calibrating the installed 

localization-infrastructures such in Ekahau. 

Table VI. Cost level for current localization solution. 

Level SW HW HR DB/Server 

Cheap Expensive 

Very-Low (VL) √ X X X X 

Low √ √ X X X 

Medium √ √ √ X X 

High √ √ √ √ X 

Very-High (VH) √ √ √ √ √ 

 

In research community, many trials and simulations to provide such service have 

been conducted a few years ago. Table VII shows capability of these recent 

smartphone localization solutions. 

Table VII. Seamless outdoors-indoors positioning solutions 

Solution  Accuracy Hybridisin

g onboard 

technologi

es 

Combined/sta

ndalone 

Localisation 

Technique 

Cooperative Cost 

(according 

to Table VI) 

Pre-

knowledge/ 

Pre-

calibration 

SILS (Ihsan Alshahib 

Lami, Halgurd S. 

Maghdid, Torben 

Kuseler, 2014) 

2 – 3 

meters 

GNSS with 

WiFi, BT 

and inertial-

sensors 

TOA and DR Yes V-Low No 

WGCP (B. Li & Rizos, 

2010) 

Up to 19 

meters 

GNSS with 

WiFi 

Standalone  

TOA 

None V-Low No 

WGIM (Mok, 2010) Cell-ID 

size (e.g. 20 

meters) 

GNSS with 

WiFi 

Cell-ID with 

RSSI 

None V-Low No 

DREAR (Torok, 

Agoston and Nagy, 

Akos and Kovats, 

Laszlo and Pach, 

Peter, 2014) 

5 – 10 

meters 

Inertial-

sensors with 

Internet 

DR and 

Activity-style 

Yes Low Yes 

Infra-free (Iwase, T. 

and Shibasaki, R., 

2013) 

Up to 5 

meters 

GNSS with 

WiFi and 

INS 

TOA and DR Yes Low No 

ADPS (Hassan & 

Khairulmizam, 2009) 

Up to 7 

meters 

GNSS and 

INS 

TOA and DR None Medium Yes 

CPSM (Taniuchi, 

Daisuke and Liu, 

Xiaopeng and Nakai, 

Daisuke and Maekawa, 

Takuya, 2015) 

Up to 4 

meters 

WiFi with 

BT 

Distance-based 

and RSSI-

Fingerprinting 

Yes V-High Yes 

HCLSN (Ruijun Fu 

and Yunxing Ye and 

Pahlavan, K., 2012) 

Up to 5 

meters 

GNSS with 

WiFi 

TOA and RSSI-

Fingerprinting 

Yes V-High Yes 

IGSC (Kaikai Liu and 

Qiuyuan Huang and 

Jiecong Wang and 

Xiaolin Li and Wu, 

D.O., 2013) 

Up to 4 

meters 

GNSS and 

acoustic  

Standalone 

TOA 

Yes V-High Yes 

SUPL (Rowe, Duffett-

Smith, Jarvis, & 

Graube, 2008) 

Up to 3 

meters 

GNSS with 

Cellular 

Cell-ID, TDOA 

and TOA 

None V-High No 

WiFi-GPS (B. Li & 

Rizos, 2010) 

2-10 

meters 

GNSS with 

WiFi 

TOA and RSSI-

Fingerprinting 

None V-High Yes 

 



Seamless Outdoors-Indoors Localization Solutions on Smartphones: Implementation and Challenges        39:29  
                                                                                                                                         

 
ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY 

For example, specifically to hybrid GNSS with WiFi technology: combining GPS 

technology with WiFi technology based on directional approach of WiFi RSS-

Fingerprinting with GPS parameters has been proposed in (B. Li & Rizos, 2010). 

GPS parameters include Horizontal Dilution of Precision (HDOP), Code to Noise 

Ratio, and the number of satellite signals acquired. The combination scheme provides 

large reduction in computational burden, different coordinate systems to be used in 

different situations (latitude-longitude-altitude “LLA” for outdoors and XYZ for 

indoors), also provides intended blocks of RSS-location information to be selected 

from the database when necessary. 

Combining GPS technology with WiFi technology based on directional approach of 

WiFi RSS-Fingerprinting with GPS parameters has been proposed in (B. Li & Rizos, 

2010). The GPS parameters include code-to-noise-ratio, horizontal dilution-of-

precision (HDOP) and the number of satellite-vehicles available. The combination 

scheme provides large reduction in computational burden, different coordinate 

systems to be used in different situations (e.g. LLA for outdoors, and XYZ for indoors), 

also provides intended blocks of RSS-location information to be selected from the 

database when necessary.  

Seamless outdoors-indoors positioning service by integrating GPS with WiFi location 

fingerprinting in different handover solutions on smartphones has been involved in 

(Hansen, Wind, Jensen, & Thomsen, 2009). Different handover scenarios have been 

conducted including always use GPS, always use WiFi or use both technologies (i.e. 

combined) when the acquired singles for each of them are available. The performance 

of the scenarios has been evaluated regarding to location accuracy and battery-power 

consumption of the smartphones. The evaluation showed that combined scenario 

provides good location accuracy and consumes low batter power.   

A solution that uses WiFi localization to supply a new kind of assisted-GPS (WiFi-

Assisted-GPS) has been proposed in (Weyn & Schrooyen, 2008). The solution from a 

smartphone can be started by enabling GPS receiver and simultaneously records all 

received WAPs signal strengths in the vicinity and send all these recorded 

information to a reference-location server. This server then processes the required 

position based on the recorded WAPs RSS values and will send back GPS-ephemeris 

data to the smartphone. Then the smartphone can start with the estimated position 

retrieved by the server. Thus, the GPS signal search space is reduced in comparison 

with a normal GPS receiver. Therefore, the solution shall avoid the main drawbacks 

of GPS technology such as: long TTFF, huge power consumption and enabling 

smartphone positioning when not enough satellite-vehicles are visible.   

4) Simulation experiments of a positioning scheme based on combined GPS and WiFi 

technologies using trilateration technique is conducted in (Zirari, Canalda, & Spies, 

2010). The simulated scheme is to locate of GPS-enabled device if the number of 

available satellite-vehicles is not enough for positioning. Mathematically, the scheme 

is to compensate the set of the GPS-signal equations (which are less than four 

equations) by equations obtained from the received WAPs signals. The aim of the 

scheme is to provide better position anywhere, anytime and to ensure a seamless 

positioning.  

5) A hybrid urban public WiFi with GPS positioning algorithm to provide reliable and 

to improve the accuracy of positional information in a knowledge-based logistics 

system (KLS) has been proposed in (Mok, 2010).  The integrated solution provides 

full use of the already available public WiFi signals to support correct position of the 
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smartphones in real time when insufficient GPS data are available for correct and 

reliable position fixing. 

These studies have been proposed to improve the location accuracy and to offer 

seamless positioning when GNSS signals are weak or numbers of visible GNSS 

signals are not enough for localization. However, the above solutions are tailored or 

customized solutions for some specialized scenarios. As well as accurate GPS 

parameters (e.g. time) for WiFi transceiver clock synchronization, traffic burden on 

WiFi networks, establishing special HW to survey the localization area, and cost for 

deploying the localization solutions have not been considered. 

Furthermore, integrating cellular networks with GPS technology could be applied to 

offer seamless positioning service. Using cellular signals, aiding information (like 

position information, time and frequency information) could be received from a server 

in the cellular network to enhance smartphones’ GPS receivers (Lim, Lee, & Cho, 

2007), when in harsh areas. For example, an Enhanced GPS (EGPS) and Aided-GPS 

(AGPS) are analyzed in (Rowe, Duffett-Smith, Jarvis, & Graube, 2008) to reduce the 

GPS signal search space by using cellular signal timing and consequently to reduce 

battery power consumption.  

The other possible way to achieve seamless smartphone localization service is to use 

inertial sensors to aid GNSS technologies. These sensors are available on the 

smartphones, and using these sensors with GNSS technology for localization can 

offer seamless localization (Hassan & Khairulmizam, 2009) and smartphones’ battery 

power saving (Oshin, Poslad, & Ma, 2012). However, using such sensors need 

calibration algorithms that are accurate for up to only few seconds. 

In another vain, on-the-go smartphones based seamless outdoors-indoors localization 

is essential to realize the full potential of LBS application. Currently, most of the 

solutions to offer continue localization are based on cooperative strategy. Cooperative 

solution is to collect and to fuse several measurements from nodes of a network to 

obtain high localization accuracy and to offer seamless positioning (Miguel Garcia, 

Diana Bri, Jesus Tomas and Jaime Lloret, 2-25 September 2013). 

Cooperation between smartphones, currently, is a new solution to improve location 

accuracy as well as to offer continuous and reliable localization solutions. A GNSS 

based cooperative location optimization scheme has been developed using a host 

server to fuse location coordinates supplied from onboard GNSS of any group of 

cooperative-smartphones to improve location accuracy (Kaikai Liu and Qiuyuan 

Huang and Jiecong Wang and Xiaolin Li and Wu, D.O., 2013). Then, pseudorange 

estimation between the group smartphones is calculated based on TOA technique 

using acoustic signal. The server then, as a final stage, receives these pseudoranges 

and uses a complex optimization model to obtain further location accuracy 

improvement, within 1.2 – 4 meters. Obviously this scheme has two main drawbacks, 

such as: 

1) It needs to access a dedicated database/server to improve and share the location 
information among all these smartphones which acceptable as a small overhead.  

2) Porting the task of the server into the smartphones will eliminate the overhead of this 
server and its associated wireless connectivity, but the optimization algorithm will take 
considerable resource and time that will drain the smartphones batteries.  
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Wi-Fi Positioning System (WPS)-Skyhook enabled smartphones can obtain WAPs 

location in any vicinity, as mentioned before. A group of such smartphones can then 

use these WAPs as reference point to locate themselves within a claimed 10-20 

meters when indoors. An improved location can be achieved if a GNSS position from 

an outdoors smartphone is shared with this group of smartphones via WiFi 

connectivity. This can be achieved by applying “conditional prior probability” to 

improve the indoors-smartphone location via probability distribution of the set of 

shared information (WAPs pseudorange, GNSS location of the reference smartphones 

outdoors). For example, the “cooperative smartphones localization” algorithm in 

(Ruijun Fu and Yunxing Ye and Pahlavan, K., 2012) is based on four probabilistic 

methods namely: 1) Centroid method, 2) Nearest Neighbour method, 3) Kernel 

method and 4) WAPs density method. Both empirical and simulation results claims 

that the WAPs density method provided more accurate results than the others, since 

WAPs density provides a function to distinguish the overlapped or the common 

shared WAPs information between the outdoors smartphones and the indoors-

smartphones. However, this location enhancement has resulted in 5 meters accuracy.  

Also, an infrastructure independent cooperative indoor localization (i.e. on-the-go) 

using sensors onboard smartphones GNSS, inertial sensors such as accelerometer & 

magnetometer and WiFi has been implemented to locate indoors-smartphones to 

within 5 meters (Iwase, T. and Shibasaki, R., 2013). In this solution, a group of WiFi 

networked smartphones, when outdoors, start a calibration process where estimated 

heading error is calibrated by GNSS heading estimation, and where pseudoranges 

error between these smartphones is mitigated by detecting pedestrian-step trajectory 

using the onboard accelerometer. When indoor smartphones join this network, 

shared location information will help establish initial position and the heading 

calibration process of these indoor smartphones. Experimental results show that this 

cooperative solution can achieve location accuracy up to 5 meters, if number of 

smartphones is exceeds 40. 

In another vain, to avoid the use of aided reference-positions and/or fixed devices 

such as WAPs and beacons, when indoors, DREAR (Torok, Agoston and Nagy, Akos 

and Kovats, Laszlo and Pach, Peter, 2014) proposes a new solution for indoors-

smartphones localization using onboard sensors based on user-activities recognition. 

I.e. the solution is completely independent of using any infrastructures and offers low 

cost solution. DREAR uses DR techniques to locate any indoors-smartphones based 

on some pre-defined constraints such as user’s motion-style, taking escalators and 

climbing stairs. This is important to mitigate the accumulated positioning error that 

caused by inertial sensors such as gyroscope. The solution is also follows to a client-

server concept in which the coarse position based on DR is processed on client-side, 

while the refinement of the obtained position is performed on server-side using the 

defined constraints. The obtained results from a set of trials show that the achieved 

smartphone-position accuracy is within 5-10 meters.  

Another collaborative indoors-smartphone-based solution using BT-RSS 

measurements between smartphones has been proposed in (Taniuchi, Daisuke and 

Liu, Xiaopeng and Nakai, Daisuke and Maekawa, Takuya, 2015) to improve indoors-

smartphones location. In this solution, the indoors-smartphones, first, use the 

measured WAPs-RSS values to define their location via existing WiFi-Fingerprinting 

technique. Then in next step, the solution estimates pseudorange measurements 

between smartphones by using BT-RSS measurements values to narrow the accuracy 

of the achieved smartphones location. The process of location improvement is based 
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on using force-directed-graph concept such as spring model. Different experiments in 

various indoors situations have been conducted to validate this solution. The high 

position accuracy that has been achieved is near to 4 meters. 

Also, SILS (Ihsan Alshahib Lami, Halgurd S. Maghdid, Torben Kuseler, 2014)as a 

smart and/or cooperative localization solution provided on-the-go smartphones based 

seamless outdoors-indoors localization. This scheme works whereby participating 

smartphones in the vicinity, outdoors and indoors, form a Bluetooth network to: a) 

synchronise all reachable WAPs with GNSS time from outdoors smartphones 

(database of the time offsets of the various connected nodes are hosted on the 

smartphones), b) exchange and establish smartphones location and time-offsets 

based on available/reliable GNSS location from outdoors smartphones, and c) 

calculate approximate location of indoor-smartphones based on the proposed (SILS). 

i.e. SILS combines various measurements on-the-go of nodes formed network of 

smartphones based on BT to BT relative distances of all participating smartphones 

based on: 1) hop-synchronisation, 2) new Master-Slave role switching to minimize the 

distance error, 3) GNSS measured location of outdoors-smartphones, as well as 4) 

WAPs-smartphones triangulation estimates. Results obtained from actual trials of 

SLIS based on Android-smartphones network implementations for various indoors 

scenarios show that around 2-meters accuracy can be achieved when locating 

smartphones at various indoors situations. 

These seamless localization solutions need further investigations to offer a robust, 

applicable and reliable solution. Furthermore, locating smartphones via these 

solutions are based on the estimation process, i.e. real complexity of indoors, 

obtaining high location accuracy, cost and traffic of the wireless networks are not 

considered. 

These seamless localization solutions need further investigations to offer a robust 

and reliable solution. Furthermore, locating smartphones via these solutions are 

based on the estimation process, i.e., real complexity of indoors, obtaining high 

location accuracy, and traffic of the wireless networks are not considered. 

6. CONCLUSION AND FUTURE PERSPECTIVE 
Achieving accuracy of smartphones location in localization solutions is varying 

according to: environmental complexity, using localization techniques as a 

standalone or as a combined approach, HW or SW of the designed solutions, and 

estimating/calculating ‘smartphones location’ method.  

Cellular, WiFi, Bluetooth or inertial-sensors based positioning systems have been 

proven to somewhat provide alternative solutions in GNSS-signal-denied areas to 

define smartphones location. However, limited coverage of WAPs/Bluetooth-anchors, 

no information of WAPs physical positions within a building, no access to API 

functions of important device data onboard smartphones, no WAPs localization 

protocol extensions, no synchronization between WAPs are some of the main 

challenges to design a spontaneous autonomous positioning solution with reliable 

accuracy at reasonable cost.  

Existing localization techniques, such RSSI/fingerprinting techniques, do provide 

good performance (despite non-uniform shadowing problem) but at the expense of 

pre-installing dedicated infrastructure and therefore limited in LBS application. 

Other trilateration/pseudoranging-based approaches suffer from jitters, instability, 

coverage and dilution of precision issues. Finally, DR technique, especially when 
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using low-cost inertial sensors such as accelerometer and gyroscope onboard 

smartphones, is highly smooth and stable, but their performance degrades quickly 

over time due to the accumulated measurement noise of sensors causing cumulative 

positioning error. 

Various outdoors-indoors localization solutions for smartphone positioning are 

discussed, and the limitations as well as capabilities among them are addressed. 

Regardless of available localization approaches to mitigate the indoors positioning 

problems, current solutions do not offer seamless positioning from outdoors into 

indoors with high accuracy and at reasonable cost that significant LBS applications 

required. To achieve these, further researches is required to handle the challenges. 

The future trend of seamless outdoors-indoors positioning systems on smartphones is 

as follows: 

1) Providing ideal platform to integrate HW and SW for GNSS with WiFi, 

Bluetooth, cellular and inertial sensors. I.e. hybrid multiple radio/sensor-

reading sources into a single localization solution to offer seamless 

positioning, 

2) Providing unconstrained and/or  infrastructure-less localization solutions to 

reduce the cost and size, 

3) Fusing of various localization algorithms/techniques to provide accurate 

localization solution. For example, fusing fingerprinting systems’ 

measurements using artificial intelligent techniques or fusing measured 

relative-pseudoranges between smartphones (using TOA technique) and DR-

technique measurements (distance-displacement and heading) of indoors 

smartphones by using Kalman filter. The fusion will be exploiting the 

advantages of each of these techniques while compensating for their 

limitations, 

4) And providing cooperative (i.e. crowd sourcing) smartphones localization 

solution which will help smartphones among each other to define their 

positions accurately as well as offers on-the-go solution, anywhere and 

anytime. 
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