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Abstract

In this work we introduce a novel, CNN-based archi-

tecture that can be trained end-to-end to deliver seam-

less scene segmentation results. Our goal is to predict

consistent semantic segmentation and detection results by

means of a panoptic output format, going beyond the sim-

ple combination of independently trained segmentation and

detection models. The proposed architecture takes advan-

tage of a novel segmentation head that seamlessly inte-

grates multi-scale features generated by a Feature Pyramid

Network with contextual information conveyed by a light-

weight DeepLab-like module. As additional contribution we

review the panoptic metric and propose an alternative that

overcomes its limitations when evaluating non-instance cat-

egories. Our proposed network architecture yields state-of-

the-art results on three challenging street-level datasets, i.e.

Cityscapes, Indian Driving Dataset and Mapillary Vistas.

1. Introduction

Scene understanding is one of the grand goals for au-

tomated perception that requires advanced visual compre-

hension of tasks like semantic segmentation (Which seman-

tic category does a pixel belong to?) and detection or

instance-specific semantic segmentation (Which individual

object segmentation mask does a pixel belong to?). Solv-

ing these tasks has large impact on a number of applica-

tions, including autonomous driving or augmented reality.

Interestingly, and despite sharing some obvious commonali-

ties, both these segmentation tasks have been predominantly

handled in a disjoint way ever since the rise of deep learn-

ing, while earlier works [49, 50, 56] already approached

them in a joint manner. Instead, independent trainings of

models, with separate evaluations using corresponding per-

formance metrics, and final fusion in a post-processing step

based on task-specific heuristics have seen a revival.

The work in [24] introduces a so-called panoptic eval-

uation metric for joint assessment of semantic segmenta-

tion of stuff and instance-specific thing object categories,

to encourage further research on this topic. Stuff is defined

as non-countable, amorphous regions of similar texture or

material while things are enumerable, and have a defined

shape. Few works have started adopting the panoptic metric

in their methodology yet, but reported results remain sig-

nificantly below the ones obtained from fused, individual

models. All winning entries on designated panoptic Seg-

mentation challenges like e.g. the Joint COCO and Mapil-

lary Recognition Workshop 20181, were based on combina-

tions of individual (pre-trained) segmentation and instance

segmentation models, rather than introducing streamlined

integrations that can be successfully trained from scratch.

The use of separate models for semantic segmentation

and detection obviously comes with the disadvantage of

significant computational overhead. Furthermore, and due

to a lack of cross-pollination of models, there is no way

of enforcing labeling consistency between individual mod-

els. Moreover, we argue that individual models supposedly

spend significant amounts of their capacity on modeling re-

dundant information, whereas sensible architectural choices

in a joint setting are leading to favorable or on par results,

but at much reduced computational costs.

In this work we introduce a novel, deep convolutional

neural network based architecture for seamless scene seg-

mentation. Our proposed network design aims at jointly

addressing the tasks of semantic segmentation and instance

segmentation. We present ideas for interleaving information

from segmentation and instance-segmentation modules and

discuss model modifications over vanilla combinations of

standard segmentation and detection building blocks. With

our findings, we are able to train high-quality, seamless

scene segmentation models without the need of pre-trained

recognition models. As result, we obtain a state-of-the-

art, single model that jointly produces semantic segmen-

tation and instance segmentation results, at a fraction of

the computational cost required when combining indepen-

dently trained recognition models.

We provide the following contributions in our work:

• Streamlined architecture based on a single network

backbone to generate complete semantic scene seg-

mentation for stuff and thing classes

• A novel segmentation head integrating multi-scale fea-

tures from Feature Pyramid Network, with contex-

tual information provided by a light-weight, DeepLab-

inspired module

1http://cocodataset.org/workshop/coco-

mapillary-eccv-2018.html
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• Re-evaluation of the panoptic segmentation metric and

refinement for more adequate handling of stuff classes

• Comparisons of the proposed architecture against in-

dividually trained and fused segmentation models, in-

cluding analyses of model parameters and computa-

tional requirements

• Experimental results on challenging driving scene

datasets like Cityscapes [10], Indian Driving

Dataset [51], and Mapillary Vistas [39], demon-

strating state-of-the-art performance.

2. Related Works

Semantic segmentation is a long-standing problem in

computer vision research [3, 26, 27, 48] that has signifi-

cantly improved over the past five years, thanks in great part

to advances in deep learning. The works in [2, 38] have in-

troduced encoder/decoder CNN architectures for providing

dense, pixel-wise predictions by taking e.g. a fully convo-

lutional approach. The more recent DeepLab [5] exploits

multi-scale features via parallel filters from convolutions

with different dilation factors, together with globally pooled

features. Another recent Deeplab extension [9] integrates a

decoder module for refining object boundary segmentation

results. In [8], a meta-learning technique for dense predic-

tion tasks is introduced, that learns how to design a decoder

for semantic segmentation. The pyramid scene parsing net-

work [59] employs i) a pyramidal pooling module to cap-

ture sub-region representations at different scales, followed

by upsampling and stacking with respective input features

and ii) an auxiliary loss applied after the conv4 block of

a ResNet-101 backbone. The works in [57, 58] propose

aggregation of multi-scale contextual information using di-

lated convolutions, which have proven to be particularly

effective for dense prediction tasks, and are a generaliza-

tion of the conventional convolution operator to expand its

receptive field. RefineNet [32] proposes a multi-path re-

finement network to exploit multiple abstraction levels of

features for enhancing the segmentation quality of high-

resolution images. Other works like [45, 53] are address-

ing the problem of class sample imbalance by introducing

loss-guided, pixel-wise gradient reweighting schemes.

Instance-specific semantic segmentation has recently

gained large attention in the field, with early, random field-

based works in [21, 49]. In [17] a simultaneous detec-

tion and segmentation algorithm is developed that classi-

fies and refines CNN features obtained from regions under

R-CNN [16] bounding box proposals. The work in [18] em-

phasizes on refining object boundaries for binary segmenta-

tion masks initially generated from bounding box propos-

als. In [12] a multi-task network cascade is introduced that,

beyond sharing features from the encoder in all following

tasks, subsequently adds blocks for i) bounding box gen-

eration, ii) instance mask generation and iii) mask catego-

rization. Another approach [11] introduces instance fully

convolutional networks that assemble segmentations from

position-sensitive score maps, generated by classifying pix-

els based on their relative positions. The follow-up work

in [31] builds upon Faster R-CNN [43] for proposal gen-

eration and additionally includes position-sensitive outside

score maps. InstanceCUT [25] obtains instance segmen-

tations by solving a Multi-Cut problem, taking instance-

agnostic semantic segmentation masks and instance-aware,

probabilistic boundary masks as inputs, provided by a CNN.

The work in [1] also introduces an approach where an in-

stance CRF provides individual instance masks based on

exploiting box, global and shape cues as unary poten-

tials, together with instance-agnostic semantic information.

In [36], sequential grouping networks are presented that

run a sequence of simple networks for solving increas-

ingly complex grouping problems, eventually yielding in-

stance segmentation masks. DeepMask [40] first produces

an instance-agnostic segmentation mask for an input patch,

which is then assigned to a score corresponding to how

likely this patch it to contain an object. At inference, their

approach generates a set of ranked segmentation propos-

als. The follow-up work SharpMask [41] augments the

networks with a top-down refinement approach. Mask R-

CNN [19] forms the basis of current state-of-the-art in-

stance segmentation approaches. It is a conceptually simple

extension of Faster R-CNN, adding a dedicated branch for

object mask segmentation in parallel to the existing ones for

bounding box regression and classification. Due to its im-

portance in our work, we provide a more thorough review in

the next section. The work in [37] proposes to improve lo-

calization quality of objects in Mask R-CNN via integration

of multi-scale information as bottom-up path augmentation.

Joint segmentation and instance-segmentation ap-

proaches date back to [50], introducing a Bayesian ap-

proach for scene representation by establishing a scene

parsing graph to explain both, segmentation of stuff and

things. Other works before the era of deep learning of-

ten built upon CRFs where [49] alternatingly refined pixel

labelings and object instance predictions, and [56] framed

holistic scene understanding as a structure prediction prob-

lem in a graphical model, defined over hierarchies of re-

gions, scene types, etc. The recently proposed work in [22]

addresses automated loss balancing in a multi-task learning

problem based on analysing the homoscedastic uncertainty

of each task. Even though their work addresses three tasks

at the same time (semantic segmentation, instance segmen-

tation and depth estimation), it fails to demonstrate consis-

tent improvements over semantic segmentation and instance

segmentation alone and lacks of comparisons to comparable

baselines. The supervised variant in [30] generates panop-

tic segmentation results but i) requires separate (external)
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input for bounding box proposals and ii) exploits a condi-

tional random field during inference, increasing the com-

plexity of the model. The work in [14] attempts to introduce

a unified architecture related to our ideas, however, the re-

ported results remain significantly below those of reported

state-of-the-art methods. Independently and simultaneously

to our paper, a number of works [23, 29, 35, 54, 55] have

proposed panoptic segmentation provided by a single deep

network, confirming the importance of this task to the field.

While comparable in complexity and architecture, we ob-

tain improved performance on challenging street-level im-

age datasets like Cityscapes and Mapillary Vistas.

3. Proposed Architecture

The proposed architecture consists of a backbone work-

ing as feature extractor and two task-specific branches ad-

dressing semantic segmentation and instance segmentation,

respectively. Hereafter, we provide details about each com-

ponent and refer to Fig. 1 for an overview.

3.1. Shared Backbone

The backbone that we use throughout this paper is a

slightly modified ResNet-50 [20] with a Feature Pyramid

Network (FPN) [33] on top. The FPN network is linked to

the output of the modules conv2, conv3, conv4 and conv5

of ResNet-50, which yield different downsampling factor,

namely ×4, ×8, ×16 and ×32, respectively. Akin to the

original FPN architecture, we have a variable number of

additional lower resolution scales covering downsampling

factors of ×64 and ×128, depending on the dataset. The

main modification in ResNet-50 is the replacement of all

Batch Normalization (BN) + ReLU layers with synchro-

nized Inplace Activated Batch Normalization (iABNsync)

proposed in [46], which uses LeakyReLU with slope 0.01
as activation function due to the need of invertible activation

functions. This modification gives two important advan-

tages: we gain up to 50% additional GPU memory since the

layer performs in-place operations, and the synchronization

across GPUs ensures a better estimate of the gradients in

multi-GPU trainings with positive effects on convergence.

3.2. Instance Segmentation Branch

The instance segmentation branch follows the state-of-

the-art Mask R-CNN [19] architecture, but with some mod-

ifications described next. This branch is structured into a

region proposal head and a region segmentation head.

Region Proposal Head (RPH). The RPH introduces the

notion of an anchor. An anchor is a reference bounding

box (a.k.a. region), centered on one of the available spatial

locations of the RPH’s input and having pre-defined dimen-

sions. The set of pre-defined dimensions is chosen in ad-

vance, depending on the dataset and the scale of the FPN

output (see details in Sec. 5). We denote by A all anchors

that can be constructed by combining a position on an avail-

able, spatial location and a dimension from the pre-defined

set, and which are entirely contained in the image. Given

an anchor a we denote its position (in the image coordi-

nate system) by (ua, va) and its dimensions by (wa, ha).
The role of RPH is to apply a transformation to each an-

chor in order to obtain a new bounding box proposal to-

gether with an objectness score, that assesses the validity

of the region. To this end, RPH applies a 3 × 3 convolu-

tion with 256 output channels and stride 2 to the outputs

of the backbone, followed by iABNsync, and a 1 × 1 con-

volution with 5Nanchors channels, which provide a bounding

box proposal with an objectness score for each anchor in

A. In more details, for each anchor a ∈ A the transformed

bounding box has center (û, v̂) = (ua + ouwa, va + ovha),

dimensions (ŵ, ĥ) = (wa e
ow , ha e

oh) and objectness score

ŝ = σ(os), where (ou, ov, ow, oh, os) represents the output

from the 1× 1 convolution for anchor a, and σ(·) is the sig-

moid function. The resulting set of bounding boxes are then

fed to the region segmentation head, with distinct filtering

steps for training and test time.

Region Segmentation Head (RSH). Each region proposal

r̂ = (û, v̂, ŵ, ĥ) obtained from RPH is fed to RSH, which

applies ROIAlign [19], pooling features directly from the

kth output of the backbone within region r̂ with a 14 × 14
spatial resolution, where k is selected based on the scale

of r̂ according to the formula k = max(1,min(4, ⌊3 +

log2(
√

ŵĥ/224)⌋)) [19]. The result is forwarded to two

parallel sub-branches: one devoted to predicting a class la-

bel (or void) for the region proposal together with class-

specific corrections of the proposal’s bounding box, and the

other devoted to providing class-specific mask segmenta-

tions. The first sub-branch of RSH is composed of two

fully-connected layers with 1024 channels, each followed

by Group Normalization (GN) [52] and LeakyReLU with

slope 0.01, and a final fully-connected layer with 5Nclasses+
1 output units. The output units encode, for each possi-

ble class c, class-specific correction factors (ocu, o
c
v, o

c
w, o

c
h)

that are used to compute a new bounding box centered

in (ûc, v̂c) = (ûo + ocuŵ, v̂r + ocvĥ) with dimensions

(ŵc, ĥc) = (ŵ eo
c

w , ĥ eo
c

h). This operation generates from

r̂ and for each class c a new class-specific region propos-

als given by r̂c = (ûc, v̂c, ŵc, ĥc). In addition, we have

Nclasses + 1 units providing logits for a softmax layer that

gives a probability distribution over classes and void, the

latter label assessing the invalidity of the proposal. The

probability associated to class c is used as score function ŝc

for the class-specific region proposal r̂c. The second sub-

branch applies four 3× 3 convolution layers each with 256
output channels. As for the first sub-branch each convolu-

tion is followed by GN and LeakyReLU. This is followed
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Figure 1: Comparison of two architectures for panoptic segmentation. Left: Separate models (including bodies) for detection

and segmentation. Both predictions are fused to obtain the final panoptic prediction. Right: Shared body between the heads.

by a 2× 2 deconvolution layer with output stride 2 and 256
output channels, GN, LeakyReLU, and a final 1 × 1 con-

volution with Nclasses output channels. This yields, for each

class, 28 × 28 logits that provide class-specific mask fore-

ground probabilities for the given region proposal via a sig-

moid. The resulting mask prediction is combined with the

output of the segmentation branch described below.

3.3. Semantic Segmentation Branch

The semantic segmentation branch takes in input the out-

puts of the backbone corresponding to the first four scales of

FPN. We apply independently to each input (not sharing pa-

rameters) a variant of the DeepLabV3 head [6] that we call

Mini-DeepLab (MiniDL, see Fig. 2) followed by an upsam-

pling operation that yields an output downsampling factor

of ×4 and 128 output channels. All the resulting streams are

concatenated and the result is fed to a final 1×1 convolution

layer with Nclasses output channels. The output is bilinearly

upsampled to the size of the input image. This provides

the logits for a final softmax layer that provides class prob-

abilities for each pixel of the input image. Note that each

convolution in the semantic segmentation branch, including

MiniDL, is followed by iABNsync akin to the backbone.

MiniDL. The MiniDL module consists of 3 parallel sub-

branches. The first two apply a 3× 3 convolution with 128
output channels with dilations 1 and 6, respectively. The

third one applies a 64 × 64 average pooling operation with

stride 1 followed by a padding with boundary replication

to recover the spatial resolution of the input and a 1 × 1
convolution with 128 output channels. The outputs of the

3 sub-branches are concatenated and fed into a 3 × 3 con-

volution layer with 128 output channels, which delivers the

final output of the MiniDL module.

As opposed to DeepLabV3, we do not perform the global

pooling operation in our MiniDL module for two reasons:

i) it breaks translation equivariance if we change the input

resolution at test time, which is typically the case and ii)

since we work with large input resolutions, it is preferable

to limit the extent of contextual information. Instead, we re-

placed the global pooling operation with average pooling in

the 3rd sub-branch with a fixed large kernel size and stride

1, but without padding. The lack of padding yields an output

resolution which is smaller than the input resolution and we

re-establish the input resolution by replicating the boundary

of the resulting tensor, i.e. we employ a padding layer with

boundary replication. By doing so, we generalize the solu-

tion originally implemented in DeepLabV3, for we obtain

the same output at training time if we keep the kernel size

equal to the training input resolution, but we preserve trans-

lation equivariance at test time, and can reduce the extent of

contextual information by properly fixing the kernel size.

↑Up

↑Up

↑Up

Mini
Deep-
Lab

Mini
DL

Mini
DL

Mini
DL

Mini
DL

C

FPN
x4

FPN
x32

FPN
x16

FPN
x8

1x1
6

3x3
128

3x3 / 6
128

64x64
AVG

1x1
128

3x3
128

C

MiniDL

C Concatenation

KxK/D
C

K...Kernel Size, C...Channels, D...Dilation

Figure 2: Segmentation Head (top) and the architecture of

the Mini Deeplab (MiniDL) module (bottom), which is used

in the head.

3.4. Training losses

The two branches of the architecture are supported with

distinct losses, which are detailed below. We denote by
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Y = {1, . . . , Nclasses} the set of class labels, and assume

for simplicity input images with fixed resolution H ×W .

Semantic segmentation branch. Let Yij ∈ Y be the se-

mantic segmentation ground truth for a given image and

pixel position (i, j) and let Pij(c) denote the predicted

probability for the same pixel to be assigned class c ∈
Y . The per-image segmentation loss that we employ is a

weighted per-pixel log-loss that is given by

Lss(P, Y ) = −
∑

ij

ωij logPij(Yij) .

The weights are computed following the simplest version

of [45] with p = 1 and τ = 4
WH

. This corresponds to

having a pixel-wise hard negative mining, which selects the

25% worst predictions, i.e. ωij = τ for all (i, j) within

the 25% pixels yielding the lowest probability Pij(Yij), and

ωij = 0 otherwise.

Instance segmentation branch. The losses for the instance

segmentation branch and the training procedure are derived

from the ones proposed in Mask R-CNN [19]. We refer

to [42] for additional details due to the lack of space.

3.5. Testing and Panoptic Fusion

At test time, given an input image I we extract features

F with the backbone and generate region proposals with

corresponding objectness scores by applying RPH. We fil-

ter the resulting set of bounding boxes with Non-Maxima

Suppression (NMS) guided by the objectness scores. The

surviving proposals are fed to the RSH (first sub-branch)

together with F in order to generate class-specific region

proposals with corresponding class probabilities. A second

NMS pass is applied on the resulting set of bounding boxes,

this time independently per class guided by the class prob-

abilities. The resulting class-specific bounding boxes are

fed again to RSH together with F , but this time through the

second sub-branch which provides the corresponding mask

predictions. The extracted features F are fed in parallel to

the segmentation branch, which provides class probabilities

for each pixel. The output of RSH and the segmentation

branch are finally fused using the strategy given below, in

order to deliver the final panoptic segmentation.

Fusion. The fusion operation is inspired by the one pro-

posed in [24]. We start iterating over predicted instances

in reverse classification score order. For each instance we

mark the pixels in the final output that belong to it and are

still unassigned, provided that the latter number of pixels

covers at least 50% of the instance. Otherwise we discard

the instance thus resembling a NMS procedure. Remaining

unassigned pixels take the most likely class according to the

segmentation head prediction, if it belongs to stuff, or void

if it belongs to thing. Finally, if the total amount of pixels

of any stuff class is smaller than a given threshold (4096 in

our case) we mark all those pixels to void.

4. Revisiting Panoptic Segmentation

In this section we review the panoptic segmentation met-

ric [24] (a.k.a. PQ metric), which evaluates the performance

of a so-called panoptic segmentation, and discuss a limita-

tion of this metric when it comes to stuff classes.

PQ metric. A panoptic segmentation assigns each pixel

a stuff class label or an instance ID. Instance IDs are fur-

ther given a thing class label (e.g. pedestrian, car, etc.). As

opposed to AP metrics used in detection, instances are not

overlapping. The PQ metric is computed for each class

independently and averaged over classes (void class ex-

cluded). This makes the metric insensitive to imbalanced

class distributions. Given a set of ground truth segments Sc

and predicted segments Ŝc for a given class c, the metric

collects a set of True Positive matches as TPc = {(s, ŝ) ∈
Sc × Ŝc : IoU(s, ŝ) > 0.5} . This set contains all pairs of

ground truth and predicted segments that overlap in terms

of IoU more than 0.5. By construction, every ground truth

segment can be assigned at most one predicted segment and

vice versa. The PQ metric for class c is given by

PQc =

∑

(s,ŝ)∈TPc
IoU(s, ŝ)

|TPc|+
1
2 |FPc|+

1
2 |FNc|

,

where FPc is the set False Positives, i.e. unmatched pre-

dicted segments for class c, and FNc is the set False Nega-

tives, i.e. unmatched segments from ground truth for class c.
The metric allows also specification of void classes, both in

ground truth and actual predictions. Pixels labeled as void

in the ground truth are not counted in IoU computations

and predicted segments of any class c that overlap with void

more than 50% are not counted in FPc. Also, ground truth

segments for class c that overlap with predicted void pixels

more than 50% are not counted in FNc. The final PQ metric

is obtained by averaging the class-specific PQ scores:

PQ =
1

Nclasses

∑

c∈Y

PQc .

We further denote by PQTh and PQSt the average of thing-

specific and stuff-specific PQ scores, respectively.

The issue with stuff classes. One limitation of the PQ met-

ric is that it over-penalizes errors related to stuff classes,

which are by definition not organized into instances. This

derives from the fact that the metric does not distinguish

stuff and thing classes and applies indiscriminately the rule

that we have a true positive if the ground truth and the pre-

dicted segment have IoU greater than 0.5. De facto it re-

gards all pixels in an image belonging to a stuff class as a

single big instance. To give an example of why we think

this is sub-optimal, consider a street scene with two side-

walks and assume that the algorithm confuses one of the

two with road (say the largest) then the segmentation quality
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Figure 3: Prediction on a Cityscapes validation set image,

where light colored areas highlight conducted errors. Sev-

eral classes, e.g. pole (IoU 0.49) and traffic light (IoU 0.46),

are just below the PQ acceptance threshold, while the side-

walk class (IoU 0.62) is just above it. Thus, the former will

be overly penalized (PQ → 0), while the latter will con-

tribute positively (PQ → 0.62), even if they look qualita-

tively similar. Best viewed in color and with digital zoom.

on sidewalk for that image becomes 0. A real-world exam-

ple is provided in Fig. 3, where several stuff segments are

severely penalized by the PQ metric, not reflecting the real

quality of the segmentation. The >0.5-IoU rule for thing

classes is convenient because it renders the matching be-

tween predicted and ground truth instances easy, but this is

a problem to be solved only for thing classes. Indeed, pre-

dicted and ground truth segments belonging to stuff classes

can be directly matched independently from their IoU be-

cause each image has at most one instance of them.

Suggested alternative. We propose to maintain the PQ

metric only for thing classes, but change the metric for stuff

classes. Specifically, let Sc be the set of ground truth seg-

ments of a given class c and let Ŝc be the set of predicted

segments for class c. Note that each image can have at most

1 ground truth segment and at most 1 predicted segment

of the given stuff class. Let Mc = {(s, ŝ) ∈ Sc × Ŝc :
IoU(s, ŝ) > 0} be the set of matching segments, then the

updated metric for class c becomes:

PQ†
c =

{

1
|Sc|

∑

(s,ŝ)∈Mc
IoU(s, ŝ) , if c is stuff class

PQc , otherwise.

Furthermore, we denote by PQ† the final version of the pro-

posed panoptic metric, which averages PQ†
c over all classes,

i.e.

PQ† =
1

Nclasses

∑

c∈Y

PQ†
c .

Similarly to PQ, the proposed metric is bounded in [0, 1] and

implicitly regards a stuff segment of an image as a single

instance. However, we do not require the prediction of stuff

classes to have IoU>0.5 with the ground truth.

5. Experimental Results

We assess the benefits of our proposed network ar-

chitecture on multiple street-level image datasets, namely

Cityscapes [10], Mapillary Vistas [39] and the Indian Driv-

ing Dataset (IDD) [51]. All experiments were designed to

provide a fair comparison between baseline reference mod-

els and our proposed architecture design choices. To in-

crease transparency of our proposed design contributions,

we deliberately leave out model extensions like path ag-

gregation network extensions [7, 37], deformable convolu-

tions [13] or Cascade R-CNN [4]. We do not apply test time

data augmentation (multi-scale testing or horizontal flip-

ping) or explicit use of model ensembles, etc., as we assume

that such bells and whistles approximately equally increase

recognition performances for all methods. All models were

only pre-trained on ImageNet [47]. We use the following

terminology in the remainder of this section: Ours Indepen-

dent refers to fused, but individually trained models (Fig. 1

left) each following the proposed design, and Ours Com-

bined refers to the unified architecture in Fig. 1 (right).

Model and Training Hyperparameters. Unless other-

wise noted, we take all the hyperparameters of the in-

stance segmentation branch from [19]. These hyperparam-

eters are shared by all the models we evaluate in our ex-

periments, and are exhaustively listed in [42]. We initial-

ize our backbone model with weights extracted from Py-

Torch’s ImageNet-pretrained ResNet-50 despite using a dif-

ferent activation function, motivated by findings in our prior

work [46]. We train all our networks with SGD, using a

fixed schedule of 48k iterations and learning rate 10−2, de-

creasing the learning rate by a factor 10 after 36k and 44k

iterations. At the beginning of training we perform a warm-

up phase where the learning rate is linearly increased from
1
3 · 10−2 to 10−2 in 200 iterations.2 During training the

networks receive full images as input, randomly flipped in

the horizontal direction, and scaled such that their shortest

side measures ⌊1024 · t⌋ pixels, where t is randomly sam-

pled from [0.5, 2.0]. Training is performed on batches of

8 images using a computing node equipped with 8 Nvidia

V100 GPUs. At test time, images are scaled such that their

shortest size measures 1024 pixels (preserving aspect ratio).

5.1. Cityscapes

Cityscapes [10] is a street-level driving dataset with im-

ages from 50 central-European cities. All images were

recorded with a single camera type, image resolution of

1024 × 2048, and during comparable weather and lighting

conditions. It has a total of 5,000 pixel-specifically anno-

tated images (2,975/500/1,525 for training, validation and

test, respectively), and additionally provides 19,998 images

2Note that the warm-up phase is not strictly needed for convergence.

Instead, we adopt it for compatibility with [19].
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Figure 4: Qualitative results obtained by our proposed combined architectures. Top row: Cityscapes. Middle row: IDD.

Bottom row: Vistas. Best viewed in color and with digital zoom.

forming the coarse extra set, where only coarse annotations

per image are available (which we have not used in our ex-

periments). Images are annotated into 19 object classes (11

stuff and 8 instance-specific).

For Ours Independent, we trained each recognition

model independently, using the hyperparameter settings de-

scribed above (again, each with a ResNet-50+FPN back-

bone). For the semantic segmentation model, we obtain a

baseline segmentation result of 73.8%(mean Intersection-

over-Union [15]), which is comparable to 75.2% reported

in [28] (using a DenseNet-169 backbone), 73.6% using

DeepLab2 in combination with a ResNet-101 backbone

as reported in [45], or 74.6% with a ResNet-152 in [53].

The instance-segmentation APM (mean average precision

on masks) results of our single model baseline are 31.9%,

which is slightly above the reported baseline score in Mask

R-CNN [19] (31.5% w/o COCO [34] pre-training).

Fusing the results of our individually trained models

(Ours Independent) delivers PQ = 59.8%, PQSt = 64.5%,

PQTh = 64.5% and PQ† = 59.0%. We furthermore pro-

vide results of Ours Combined in Tab. 1, performing equally

well on PQ and PQ†. This is remarkable, given the signifi-

cantly reduced number of model parameters (see discussion

in Section 5.4) and when assuming that the fusion of in-

dividually trained models could lead to an ensemble effect

(often deliberately used to improve test results, at the cost

of increased computational complexity).

In addition, we show results of jointly trained networks

from independent, concurrently appearing works [14, 23,

29, 54, 55], with focus on comparability of network archi-

tectures and data used for pre-training. In Tab. 1 we ab-

breviate the network backbones as R50, R101 or X71 for

ResNet50, ResNet101 or Xception Net71, respectively, and

provide datasets used for pre-training (I = ImageNet and

C = COCO). All our proposed variants outperform the di-

rect competitors by a considerable margin, i.e., our baseline

models as well as jointly trained architectures are better.

The last entry in Tab. 1 shows results for another variant

of our network where we deactivated freezing of all param-

eters and dropped weight decay on the batch normalization

parameters (keeping the rest as described above). We can

see that this gives another boost in terms of PQ. Finally, the

top row in Fig. 4 shows some qualitative seamless segmen-

tation results obtained with our architecture.

5.2. Indian Driving Dataset (IDD)

IDD [51] was introduced for testing perception algo-

rithm performance in India. It comprises 10,003 images

from 182 driving sequences, divided in 6,993/981/2,029 im-

ages for training, validation and test, respectively. Images

are either of 720p or 1080p resolution and were obtained

from a front-facing camera mounted on a car roof. The

dataset is annotated into 26 classes (17 stuff and 9 instance-

specific), and we report results for level 3 labels.
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Cityscapes Vistas

Method Body Data PQ PQSt PQTh PQ† APM IoU PQ PQSt PQTh PQ† APM IoU

de Geus et al. [14] R50 I - - - - - - 17.6 27.5 10.0 - - 34.7

Supervised in [30] R101 I 47.3 52.9 39.6 - 24.3 71.6 - - - - - -

FPN-Panoptic [23] R50 I 57.7 62.2 51.6 - 32.0 75.0 - - - - - -

TASCNet [29] R50 I+C 59.2 61.5 56.0 - 37.6 77.8 32.6 34.4 31.1 - 18.5 -

UPSNet [54] R50 I 59.3 62.7 54.6 - 33.3 75.2 - - - - - -

DeeperLab [55] X71 I 56.3 - - - - - 32.0 - - - - 55.3

Ours Combined R50 I 59.8 63.6 54.6 59.0 33.0 76.2 36.2 40.0 33.6 37.5 16.5 45.8

Ours Combined no freeze|decay BN R50 I 60.2 63.6 55.6 59.6 33.3 74.9 35.8 39.8 33.0 37.2 16.2 45.6

Table 1: Comparison of validation set results on Cityscapes and Vistas with related works. Used network bodies include

R101, R50 and X71 for ResNet-101, ResNet-50 and Xception-71, respectively. Data indicates datasets used for pre-training

where I = ImageNet and C = COCO. All results in [%].

The recognition models for Ours Independent obtained

segmentation and instance segmentation results of IoU =
67.2% and APM = 29.8%, respectively. The numbers re-

ported as baselines in [51] for semantic segmentation are

55.4% using ERFNet [44] and 66.6% for dilated residual

nets [58] and again Mask R-CNN for instance-specific seg-

mentation on a ResNet-101 body yielding APM = 26.8%.

Those numbers supposedly belong to the test set, while no

numbers are reported for validation. Moreover, Ours In-

dependent yields PQ = 47.2%, PQSt = 46.6%, PQTh =
48.3% and PQ† = 48.8%. For Ours Combined we ob-

tain PQ = 46.9%, PQSt = 45.9%, PQTh = 48.7%,

PQ† = 48.5%, APM = 29.8% and IOU = 67.5%. In the

key metrics PQ and PQ† the results differ by ≤ 0.3 points,

and we again stress that the numbers for Ours Combined are

provided from network architectures with significantly less

parameters.

The middle row in Fig. 4 shows seamless segmentation

results obtained by our combined architecture.

5.3. Mapillary Vistas

Mapillary Vistas [39] is one of the richest, publicly

available street-level image datasets today. It comprises

25k high-resolution (on average 8.6 MPixels) images, split

into sets of 18k/2k/5k images for training, validation and

test, respectively. We only used the training set during

model training while evaluating on the validation set. Vis-

tas shows street-level images from all over the world, with

images captured from driving cars as well as pedestrians

taken them on a sidewalk. It also has large variability in

terms of weather, lighting, capture time during day and sea-

son, sensor type, etc., making it a very challenging road

scene segmentation benchmark. Accounting for this, we

modify some of our model’s hyper-parameters and training

schedule as follows: we use anchors with aspect ratios in

{0.2, 0.5, 1, 2, 5} and area (2 × D)2, where D is the FPN

level’s downsampling factor; we train on images with short-

est side scaled to ⌊1920 · t⌋, where t is randomly sampled

from [0.8, 1.25]; we train for a total of 192k iterations, de-

creasing the learning rate after 144k and 176k iterations.

Scores for both, Ours Combined and its slightly modi-

fied variant discussed at the end of Section 5.1 are given in

Tab. 1. We obtain +4.2% and +3.6% PQ score over Deep-

erLab [55] and TASCNet [29], respectively. More details

are given in [42]. We also show seamless scene segmenta-

tion results in the bottom row of Fig. 4.

5.4. Computational Aspects

Here, we discuss computational aspects when compar-

ing two individually trained recognition models against our

combined model architecture. When fused, the two task-

specific models have ≈ 78.06M parameters, which are ≈
51.8% more than our combined architecture (≈ 51.43M ).

The majority of saved parameters belong to the backbone.

The amount of computation is similarly reduced, i.e. the

combined, independently trained models require ≈ 50.4%
more FLOPs due to two inference steps per test image.

In absolute terms, the individual models require ≈ 0.864
TFLOP while our combined architectures requires ≈ 0.514
TFLOP on 1024× 2048 image resolution, respectively.

6. Conclusions

In this work we have introduced a novel CNN architec-

ture for producing seamless scene segmentation results, i.e.

jointly acting semantic segmentation and instance segmen-

tation modules operating on top of a single network back-

bone. We depart from the prevailing approach of train-

ing individual recognition models, and instead introduce a

multi-task architecture that benefits from interleaving net-

work components as well as a novel segmentation mod-

ule. Moreover, we revisit the panoptic metric used to as-

sess combined segmentation and detection results, and pro-

pose a relaxed alternative for handling stuff segments. Our

findings include that we can generate state-of-the-art recog-

nition results that are significantly more efficient in terms

of computational effort and model sizes, when compared to

combined, individual models.
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