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ABSTRACT

In this paper, we propose a novel approach to seamless texture stitch-

ing on a 3D mesh. The main idea is to blend the sampled images

by least-angle selection of gradients in overlapping patches. This is

in contrast to previous works which focus on vertex- or face-based

strategies with additional heuristics for robustness. Patches are ob-

tained by growing a uniform mesh segmentation via geodesic projec-

tions. Blending is achieved by formulating a screened Poisson equa-

tion using discrete differential operators. The processing pipeline

further includes an optional step of color transformation for calibra-

tion and correction. This is applied to a zippered mesh based on

range scans and a morphable model fitted to face photographs.

Index Terms— 3D model, texture reconstruction, seamless

stitching, Poisson blending, uniform overlapping patches

1. INTRODUCTION

The problem of stitching several textures to form a seamless texture

arises from various applications in 2D image and 3D mesh process-

ing. In particular, this problem is inherently tied to the process of

image-based object modeling to capture real-world objects. Stan-

dard techniques in this context use an RGB-D scanner or camera to

collect multiple view-dependent observations consisting of color and

depth maps, with technologies including time-of-flight or structured

light for range images and binocular stereo for intensity images. It is

relatively easy to recover the 3D shape of the object from these depth

maps, using classical methods such as the iterative closest point al-

gorithm [1] to align observations, and zippering [2] or volumetric

merging [3] to integrate them on a base shape mesh. However, it is

much more difficult to rebind color information to recover texture.

A related problem is shape-from-X, where the 3D shape is es-

timated from 2D images via cues such as shading or texture. Com-

mon methods include bundle adjustment [4] for image registration,

and silhouette-based visual hull [5] or space carving [6] for shape

recovery. Another example is when a statistical model for a specific

object class, such as 3D morphable models for human faces [7], is

fitted to one or more 2D images. In these scenarios, the recovered

shape must be textured from the available observations of the dif-

ferent scene points. Although established pipelines exist for recon-

structing shape, texture stitching is, surprisingly, much less studied.

In this paper, we assume that geometry has already been pro-

cessed and focus on texture. There is in general no exact correspon-

dence between points on the images and on the recovered surface.

Thus, one needs both to interpolate color and to integrate concur-

rent data from several images. For instance, a baseline method is to

sample the images on the mesh by projection and color interpola-

tion, and then merge the textures from overlapping images by aver-

aging. However, such a back-projection of color is likely to contain
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seams. The main issues are that (i) the reconstructed geometry is

only approximate, (ii) the views cannot be registered perfectly, (iii)

the acquisition settings may vary across views, and (iv) the lighting

may change between poses. Hence, texture reconstruction for 3D

models is still a challenging problem. Several approaches have been

developed to cope with these issues and obtain a seamless stitching.

1.1. Related work

Early works have focused on different weighting heuristics to aver-

age overlapping textures. Pulli et al. [8] couple viewing angle and

proximity to the projected outline. Neugebauer and Klein [9] addi-

tionally consider texture deviation from a normal model. Matsushita

and Kaneko [10] or Johnson and Kang [11] exploit projected face

areas. Levoy et al. [12] merge several cues: projected area, lighting

angle, proximity to the projected outline, to the image border, and to

the silhouette edge seen from the light source or the mirror direction,

in a confidence index which is then smoothed conservatively among

adjacent vertices. Bernardini et al. [13] also combine different fac-

tors: viewing angle, distance to an edge, deviation from a normal

model and resolution. Wang et al. [14] rather formulate an optimal

weighting based on sampling theory. Similarly, Baumberg [15] pro-

poses a multi-band approach to blend low and high frequencies over

long and short ranges, respectively, where weights are smoothed ra-

tios of projected area over actual area. More recently, Totz et al. [16]

propose a multi-band weighting based on the viewing distance and

angle, where textures are averaged after flattening based on disk-

homeomorphic patches that overlap for increased robustness.

In the meantime, some alternatives to weighting schemes have

also been devised. Rocchini et al. [17] select textures by least angle,

smooth out selection along adjacent vertices to obtain larger con-

tiguous regions that map to the same image, and only average border

faces using barycentric coordinates as weights after a local linear

registration. Lensch et al. [18] refine this approach and introduce

additional heuristics to discard points based on the viewing angle,

depth variation and proximity to the projected outline.

A common drawback of all these approaches is that they do not

correct for high color discrepancies due to different acquisition set-

tings or light variations across views. Moreover, ghosting and blur-

ring artifacts appear as soon as the textures are misaligned: if the

transition width of the weighting function is too large, then a slight

misalignment produces a double-exposure effect where some fea-

tures appear twice, whereas if it is too small, then texture merging is

made within a few pixels only which is prone to seams.

To tackle the former issue, Beauchesne and Roy [19] propose a

preprocessing step of automatic relighting, assuming almost convex

objects, where differences in illumination between two images are

corrected based on a lighting ratio. Agathos and Fisher [20] account

for lighting and camera calibration by applying both a global linear

correction estimated from overlapping views, and a local correction

to smooth out remaining seams based on iterative averaging along



the mesh connectivity. Bannai et al. [21] extend this to remove prop-

agation errors by accounting for a groupwise transform rather than

pairwise transforms between images, where a single joint problem

is solved instead of several binary problems. This approach is yet

computationally demanding, requiring several hours to run. More-

over, these approaches do not deal with issues of misalignment.

Alternatively, Lempitsky and Ivanov [22] apply a global opti-

mization based on a Markov random field to favor smoothness in

texture assignment and penalize sharp seams, followed by a seam-

leveling scheme similar to gradient-domain stitching. Gal et al. [23]

extend this by also optimizing with respect to local translations

to overcome misalignment problems. Following the success of

gradient-domain stitching methods, Chuang et al. [24] formulate a

robust stitching scheme via a screened Poisson equation, although

the approach lacks a local alignment scheme. The interest of such

methods is that the texture reconstruction error is optimized in the

gradient domain, leading to minimized perceptual errors in respec-

tive frequency bands and accounting for large color offsets between

views, without requiring any weighting heuristics. Moreover, they

include texturing of unobserved points as part of the process, hence

removing the need for postprocessing heuristics toward hole filling.

1.2. Contributions

In this work, we develop a novel patch-based approach for texture

stitching on a 3D mesh. Our methods are fully intrinsic to the mesh

surface, generic in that we make no restrictive assumptions on the

mesh topology (e.g., watertight, closed) or geometry (e.g., convex,

smooth), and only require a couple of minutes to run. After im-

age sampling, we perform gradient-based stitching within a uniform

mesh segmentation. Patch textures are first selected globally by least

angle, and gradient textures are then retained locally in patch over-

laps. We use an original variant on Poisson blending by coupling

discrete differential operators with screening. We also consider an

extension to handle color transformation via calibration and correc-

tion. Results are presented on both a zippered mesh based on range

scans and a morphable model fitted to face photographs.

2. PROPOSED METHODS

In this section, we expose our methods for seamless texture stitching.

The pipeline includes core steps of image sampling, mesh segmen-

tation and gradient stitching, with an optional color transformation.

2.1. Image sampling

For each view, we determine the set of visible vertices on the 3D

model. Occlusions can be tested by ray casting from the viewer, al-

though we here use an approximate but much less demanding depth

criterion with a z-buffer. The image is then sampled on the mesh by

back-projection of textures for visible vertices after bilinear color in-

terpolation within the pixel grid. Additionally, the viewing angles for

each face and vertex are computed as part of the process and stored

for later use. We notice finally that any of the heuristics discussed

in the introduction could be employed here to discard some vertices

that are potentially corrupted by considering them as occluded.

2.2. Mesh segmentation

We segment the mesh with a farthest-point strategy based on fast

marching [25], enhanced with an original patch growing step to form

an overlapping structure. This produces a uniform segmentation

compared to the region-growing scheme in [16]. Moreover, we do

not require patches to be disk-homeomorphic since our methods are

intrinsic to the mesh surface. Not only does it eliminate undesir-

able distortions inherent to flattening, but it also allows to consider

various mesh topologies with arbitrary genus and number of bound-

ary components. Lastly, instead of using extrinsic 3D ball radii

as thresholds for patch dilation, overlaps are obtained by growing

patches intrinsically within neighbors via geodesic projections.

We consider a triangular base shape mesh M and assume it de-

scribes a 2D manifold with geodesic distance map D. The connec-

tivity is given by a simplicial complex K whose elements are vertices

{i}, edges {i, j} or faces {i, j, k}, with indices i, j, k ∈ [1 .. N ],
where N is the number of vertices. We write a vertex {i} as i for

simplicity. We first select vertices iteratively by adding a new sam-

ple one at a time. Denoting by Dl(i) the geodesic distance map to

the first l selected samples, we select sample i⋆l+1 as the vertex that

maximizes Dl(i). The distance map Dl+1(i) can simply be updated

as the minimum between Dl(i) and D(i, i⋆l+1). We continue this

process until a desired number M of vertices have been sampled.

Patches P1, . . . ,PM are then obtained via the geodesic Voronoi

tessellation based on the samples. The segmentation thus defines a

dual graph G = (V, E), where V = [1 ..M ], and (m,n) ∈ E if Pm

and Pn are neighbors, i.e., are connected by an edge {i, j} ∈ K.

To grow a patch Pm, we consider separately each of its neighbor

patches Pn with (m,n) ∈ E , and define thresholds dmn as follows:

dmn = σ ×D(i⋆m, i⋆n) , (1)

where σ ≥ 0 is set by the user and can be seen as an overlap ratio or

factor, and the geodesic distance D is restricted to the union Pm∪Pn

of the reference patch and considered neighbor. The overlap Omn

of Pm onto Pn is then constructed by geodesic projections:

Omn =

{

i ∈ Pn : min
j∈Pm

D(i, j) ≤ dmn

}

. (2)

A given grown patch Qm is eventually constructed by concatenation

of the reference patch Pm with the respective overlaps:

Qm = Pm ∪
⋃

n|(m,n)∈E

Omn . (3)

The time complexity of the whole process is in O(N logN logM).

2.3. Gradient stitching

We stitch textures in the gradient domain by modifying a principled

approach to Poisson’s equation on a mesh with Dirichlet boundary

conditions [26] so as to incorporate a screening term instead. This

allows both to consider meshes with no boundary without having to

arbitrarily define a virtual one, and to relax hard constraints on tex-

ture values at boundary vertices via a soft regularization distributed

over all vertices. Since we rely on discrete differential operators

on the mesh surface, our approach completely preserves conserva-

tive vector fields compared to extrinsic 3D finite elements in [24].

This makes our approach more natural from a theoretical perspec-

tive, even if non-conservative fields are rather formed in practice.

A discrete vector field V is a piecewise constant vector function

defined for each triangle Tl by a coplanar vector vl. A discrete po-

tential field is a piecewise linear function φ(s) =
∑

i∈K φiBi(s)
on the mesh surface, where Bi is the piecewise linear basis func-

tion valued 1 at vertex i and 0 at other vertices, and φi specifies the

value of φ at vertex i. The discrete gradient of φ for triangle Tl is



∇φl =
∑

i∈K φi∇Bil, where ∇Bil is the gradient of Bi within Tl.

The divergence of V at vertex i is div V(i) =
∑

Tl∈Ki
|Tl| ∇B

⊤
il vl,

where Ki is the set of triangles sharing vertex i and |Tl| is the area

of triangle Tl. Writing Poisson’s equation div∇φ = div V in this

framework leads to a linear system of equations Ax = y for the

unknown potential values xi = φi, where:

aij =
∑

Tl∈Ki

|Tl| ∇B
⊤
il∇Bjl , yi =

∑

Tl∈Ki

|Tl| ∇B
⊤
il vl . (4)

This system is sparse since the sum for coefficients aij is non-null iff

{i, j} ∈ K (it is an edge). The sum is then simply over the triangles

Tl (two if not a boundary edge, one otherwise) sharing this edge.

This equation can be interpreted as seeking for a potential field

φ whose gradient ∇φ matches the guide vector field V . If V is con-

servative, i.e., it is the gradient of an existing potential field φ, then

φ is the exact solution. Otherwise, a more general minimizer can

still be obtained by least squares but its gradient differs from V . In

addition, we regularize the minimization via screening:

min
x∈RN

‖Ax− y‖22 + λ
∥

∥x− x
′
∥

∥

2

2
, (5)

where λ > 0 and x′ defines a guide potential field φ′ as φ′
i = x′

i.

We apply this to solve for texture by considering each color

channel independently as a potential field φ. For each view v, we

compute the mean viewing angle of vertices in the different patches.

Unobserved vertices, due either to occlusion or missing information,

are assumed to have a viewing angle of π/2. Hence, patches with

unobserved data are penalized and no difference on the nature of

non-observability is made. For each patch now, we select texture

from the view where the patch has the smallest viewing angle. For

unobserved vertices, we also select texture from subsequent sorted

views. We end up with partial textures φ(v) that we stitch in overlaps

by Poisson blending. To build up the guide vector field V , we select

local texture gradients by least angle for each triangle Tl:

vl =
∑

i∈K

φ
(vl)
i ∇Bil , (6)

where vl is the view whose angle is minimal for triangle Tl. We also

fill in unobserved faces simply by setting their gradients to zero for

smoothness. Screening is done via a rough estimate φ′ obtained by

averaging textures φ(v), unobserved textures being discarded from

the regularization. We use a small penalty λ = 10−6 to remove

color offset indeterminacies since we did not observe dramatic color

bleeding issues compared to [24]. The time complexity for build-

ing up the linear system is in O(M + N). A naive complexity for

least squares optimization via Cholesky decomposition is in O(N3),
though efficient solvers that exploit sparsity can be used instead.

2.4. Color transformation

To reduce texture discrepancies between views, we introduce two

optional steps of color transformation via calibration and correction.

Compared to [21], we consider pairwise interactions for computa-

tional efficiency, and assume that more subtle effects due to propaga-

tion errors are fixed by gradient-domain stitching. However, we al-

low for an affine instead of linear transform, which further accounts

for differences in color offset and ambient light intensity, rather than

just color gain and directional light intensity.

On the one hand, calibration is done if color charts are avail-

able. We first average pixels for each checking color to produce color

maps under the different views. We then choose the color map of an

arbitrary view or a virtual one (e.g., by averaging color maps) as ref-

erence, and solve for multiple pairwise affine transforms from color

maps to this target by least squares. We finally apply these respective

transforms to the sampled textures. On the other hand, correction is

estimated directly from the sampled textures. Here, a robust regres-

sion method (e.g., least absolute deviations, least trimmed squares)

is necessary to cope with potential outliers. We choose a reference

view and compute pairwise affine transforms where views overlap.

This not only compensates for different lighting conditions, but also

for acquisition settings if views have not been calibrated before.

3. EXPERIMENTAL RESULTS

In this section, we present experimental results to evaluate our meth-

ods on real-world datasets. We consider both a zippered mesh based

on range scans and a morphable model fitted to face photographs.

3.1. Range scans

We compare our methods on range scans with the only available tool

we have found: the state-of-the-art texture stitcher [24]. We use

their Rooster dataset, which consists of color information and a base

shape mesh reconstructed from 8 depth maps by zippering (Fig. 1).

The mesh features 68,612 vertices, a positive genus due to 1 visible

handle, and 1 boundary component as a result of a small hole in the

top. For a fair comparison, we do not apply color transformation

since their tool does not include such a step. To assess the effect of

the number of patches and benefits of using overlap, we try different

values of M,σ. For illustration, we also compare to two baseline

vertex-based strategies: averaging and least-angle selection.

On the one hand, these baseline strategies suffer from texture

discrepancies across scans. Averaging textures produces seams at

boundaries where some scans become or cease to be observable, and

a general color offset resulting in a darker texture due to account-

ing for shadowed vertices (Fig. 2a). Selecting the less foreshortened

vertices addresses these issues, but introduces more marked seams

at transitions between selected scans (Fig. 2b). Moreover, inherent

to these two approaches, many unobserved vertices are not textured.

On the other hand, our proposed approach tackles these issues at

once and leads to much smoother color transitions. For a small num-

ber of patches (M= 50, σ= 0.0), however, we observe a blurring

effect around the eye (Fig. 2c). Increasing the number of patches

(M = 100, σ = 0.0), we are able to remove this artifact, yet we

still observe slight seams (Fig. 2d). The best result is when fur-

ther growing the patches so as to overlap (M=100, σ=0.5), where

the obtained stitching is seamless (Fig. 2e). Looking at the frontal

view, our result preserves sharp edges of specularities, details of

the painted pattern, and color differences between the pattern and

body (Fig. 2f). In contrast, the texture stitcher [24] blurs the specu-

larities with the painted pattern, misses in particular the central spec-

ularity, and features a noticeable color bleed from the base so that de-

tails in the bottom half of the painted pattern are lost (Fig. 2g). The

improvement is confirmed by computing the root mean square errors

between scans and rendered models, with an average of 0.099 across

views for our methods against 0.109 for the texture stitcher [24].

3.2. Face photographs

We now consider photographs from the CMU PIE face database [28].

We choose 3 views of a given subject under the same illumination

(Fig. 3). We fit a state-of-the-art 3D morphable model [27] to

estimate shape, texture, camera and lighting parameters for the 3



Fig. 1. Scans of the Rooster dataset. Colors from the 8 depth images are back-projected to the base shape mesh. The different views reveal

substantial amounts of unavailable information and variations in illumination, hence seamless stitching for texture reconstruction is nontrivial.

(a) Average. (b) Least angle. (c) M=50, σ=0. (d) M=100, σ=0. (e) M=100, σ= 1
2

. (f) Idem. (g) Stitcher [24].

Fig. 2. Texture reconstruction of the Rooster dataset. We compare our patch-based approach to two baseline and one state-of-the-art vertex-

based approaches. Merging vertex information is not sufficient on this difficult dataset, whereas patch integration improves quality by

removing seams while preserving details, as soon as we blend the solutions with enough patches and overlaps for robustness and smoothness.

Fig. 3. Photographs from the CMU PIE face database. The 3 poses

of a given subject are taken simultaneously with different cameras.

Subtle texture discrepancies appear across views because of different

acquisition settings, which might lead to artifacts such as seams or

different eye colors if textures are not stitched properly.

(a) Fitted model [27]. (b) Core steps. (c) Color step.

Fig. 4. Texture reconstruction of face photographs on the morphable

model. Rendering the texture from the fitted model does not provide

a realistic appearance, whereas our result features plausible local as-

perities. However, care should be taken to compensate for texture

discrepancies via color transformation and avoid related artifacts.

poses. For better accuracy in shape alignment, we keep the 3 fittings

separately during image sampling, and average shapes to obtain a

base shape mesh afterwards only. The model has 53,490 vertices, 1

boundary component as a cut in the back of the face, a null genus.

We fix the segmentation parameters (M=100, σ=0.5), and demon-

strate the effects of color transformation via calibration only, since

lighting is consistent across views and color charts are available.

The results show that rendering a model fit [27] provides an in-

accurate estimate of the actual face appearance and misses local as-

perities because of statistical regularization and smoothing (Fig. 4a).

In contrast, our core stitching pipeline succeeds in improving tex-

ture details, although subtle color discrepancies still remain in that

the right side of the face is lighter than the left one (Fig. 4b). The

optional step of color transformation allows to tackle this latter prob-

lem so that the colors of both sides are more consistent (Fig. 4c). The

results are again corroborated by the root mean square errors, which

average to 0.0710 for the morphable model [27], against 0.0577 for

our core pipeline, and 0.0570 with the additional color calibration.

4. CONCLUSION

We presented a novel technique for seamless texture stitching on a

3D model by Poisson blending in overlapping patches on the mesh

surface. The obtained results demonstrate the relevance of our ap-

proach. Several perspectives were however left out for future work.

A drawback of our affine color transform is to ignore nonlinear-

ities due to specularities and shadows, so that an enhanced lighting

model could improve this step. In addition, we would like to evaluate

color correction in more difficult conditions where calibration charts

are not available and lighting varies between views. It would also

be worth integrating a shape correction step to improve robustness

against dramatic misalignment issues. Lastly, a more ambitious line

is to couple shape and texture reconstruction in a unified paradigm.
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