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ABSTRACT The maritime industry expects several improvements to efficiently manage the operation
processes by introducing Industry 4.0 enabling technologies. Seaports are the most critical point in the
maritime logistics chain because of its multimodal and complex nature. Consequently, coordinated com-
munication among any seaport stakeholders is vital to improving their operations. Currently, Electronic
Data Interchange (EDI) and Port Community Systems (PCS), as primary enablers of digital seaports, have
demonstrated their limitations to interchange information on time, accurately, efficiently, and securely,
causing high operation costs, low resource management, and low performance. For these reasons, this
contribution presents the Seaport Data Space (SDS) based on the Industrial Data Space (IDS) reference
architecture model to enable a secure data sharing space and promote an intelligent transport multimodal
terminal. Each seaport stakeholders implements the IDS connector to take part in the SDS and share their
data. On top of SDS, a Big Data architecture is integrated to manage the massive data shared in the SDS and
extract useful information to improve the decision-making. The architecture has been evaluated by enabling
a port authority and a container terminal to share its data with a shipping company. As a result, several Key
Performance Indicators (KPIs) have been developed by using the Big Data architecture functionalities. The
KPIs have been shown in a dashboard to allow easy interpretability of results for planning vessel operations.
The SDS environment may improve the communication between stakeholders by reducing the transaction
costs, enhancing the quality of information, and exhibiting effectiveness.

INDEX TERMS Analytics, big data, industry 4.0, industrial data spaces, Internet of Things, maritime,
seaport, intelligent transport.

I. INTRODUCTION

The rapid growth of new technologies is leading the industry
to the fourth industrial revolution, named Industry 4.0 [1].
This concept refers to the digitalization and optimization of
industrial processes through the use of emerging technology
enablers such as the Internet of Things (IoT), Cloud Comput-
ing, Big Data, or Artificial Intelligence [2], [3]. Although the
concept of Industry 4.0 has been present for some years, only
about 48% of manufacturing companies declared that they
are ready to face technological changes supported by such
building blocks [4]. The Industry 4.0 technologies adoption
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gap is caused by the existing barriers encountered during the
enabling of industrial environments 4.0 [4].

The maritime industry is one of the transportation and
logistics industries with themost significant economic impact
on world trade. Maritime seaports support about 80% of
the world trade [5]. Each year the traffic that seaports sup-
port increases by 1.4% [6]. Seaports must be able to adapt
to this constant growth in an efficient manner, minimizing
unproductive operations. Industry 4.0 enablers can transform
the seaports into smart seaports capable of optimizing their
processes to support the expected growth of traffic in the
coming years.

Seaports are complex intermodal terminals where several
stakeholders are involved. The synergy between them is of
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vital importance for the efficient management of resources
and optimization of stakeholders’ processes. The coordinated
interaction between stakeholders might bring several bene-
fits, such as reliability, timeliness, safety, lower transaction
costs, and lower operational costs [7]. However, enabling
such coordinated interaction is challenging because each
of the participants involved in the distribution chain uses
heterogeneous systems. Heterogeneous data sharing is one
of the challenges with greater difficulty than the industrial
environments 4.0 have to face [3]. Currently, the stakeholders
use systems based on Electronic Data Interchange (EDI) to
exchange information under the same data format, but this
approach has shown drawbacks such as incorrect, double, and
out of time information exchange [7]. Another problem asso-
ciated with enabling coordinated communication is privacy
and security. The stakeholders are reluctant to share their data
to improve the maritime processes since the data is one of
the most critical assets [8]. Thus, seaports require a secure-
by-design environment, overcoming the limitations of current
information exchange systems to become an intermodal intel-
ligent transport terminal.
The Industrial Data Space (IDS) initiative emerges as a

reference architecture model to solve the problems of het-
erogeneous data sharing, considering the data sovereignty,
privacy, and traceability [9]. This model developed by the
Industrial Data Space Association (IDSA) is in the process
of being standardized by the German Institute for Standard-
ization (DIN). Themain objective of IDS is to enable a trusted
virtual data space to support the secure exchange and linkage
of data in business ecosystems. IDS architecture has been
used in several industrial cases successfully. IDS architecture
is a novelty as it has not been implemented in the maritime
industry yet.
This work presents the Seaport Data Space (SDS) based on

the IDS architecture to solve the problem of data interoper-
ability and associated interoperation among stakeholders in a
seaport to lead to the promotion of the smart seaport concept.
SDS enables a secure virtual environment for sharing data
in a Seaport environment. Additionally, this work presents
a Big Data architecture to provide scalability and reliability
to support the massive data shared in the SDS. The SDS
was evaluated using three stakeholders: (i) a port authority;
(ii) a container terminal operator, and (iii) a shipping com-
pany. Each stakeholder implemented an IDS connector based
on the Fiware IoT platform [10] to interconnect to each other
in the SDS. The port authority shared data related to the vessel
position in real-time, while the container terminal operator
historical load/unload berth operations. The shipping com-
pany implemented the Big Data architecture to manage the
massive shared data and exploit it to extract useful informa-
tion. The Big Data architecture used the flow-based system
Apache NiFi [11] for pulling data from the IDS connector and
pushing them to the Big Datamodules. The Big Datamodules
were implemented using Big Data open-source frameworks
and systems such as Apache Spark [12], Apache Kafka [13],
and among others. The Big Data architecture facilitated the

development of relevant Key Performance Indicators (KPIs)
about vessels’ fuel consumption, time at berth and anchorage,
and about container terminal occupancy. These KPIs might
be useful to improve operational planning of a shipping com-
pany fleet, and consequently, seaport operations.

In summary, the main contributions and novelties of the
proposed work are:

• A SDS where seaport stakeholders can share and track
data to overcome the information exchanging issues
with ownership, interoperability, privacy, and security
guarantees.

• A Big Data Architecture which is integrated with the
IDS architecture to handle the massive data shared and
extract useful information to improve making decisions.

• Several KPIs that are extracted from the massive data
shared in SDS to improve planning operations.

The remainder of the paper is structured as follows.
Section 2 reviews the current literature concerning this field
of research. Section 3 presents the SDS architecture and the
Big Data architecture overview, as well as implementation
and the integration process details. Section 4 presents the
Big Data analytics results and KPIs by using the Big Data
Architecture in the SDS scenario. Finally, Section 5 presents
conclusions and future work.

II. RELATED WORKS AND MOTIVATION

The fundamental pillars of smart seaports are the automa-
tion of operations and seaport equipment, and the intercon-
nection of the participants involved in the seaport logistics
chain [14], [15]. Cyber-physical systems (CPSs) are being
used to enable the automation of seaport equipment. These
systems are able to connect physical devices with the virtual
world. Currently, the Reference Architectural Model Industry
(RAMI) 4.0 and the Industrial Internet Reference Archi-
tecture (IIRA) leads the implementation of the CPSs [16].
Meanwhile, IoT allows the interconnection of any seaport
equipment to the Internet. IoT as a smart seaport enabler
is being used within important European seaports such as
the Seaport of Valencia, Hamburg, Rotterdam, among others,
demonstrating its effectiveness [17]–[20].

Nowadays, the maritime environment employs EDI-based
systems for the information exchange between subsys-
tems in charge of container tracking, rail management,
and inland navigation, and between partners in the supply
chain [21], [22]. These systems allow vertical coopera-
tion between stakeholders. Moreover, Port Community Sys-
tems (PCS) have been created to reduce the complexity of
the information interchange between the stakeholders in the
seaport operations [23]. The PCS are systems that centralize
the vessels’ information and the goods they transport so
that the stakeholders can better control and coordinate the
movements of goods [24]. Also, the Port Collaboration for
Decision Making (PortCDM) platform proposed by the Sea
Traffic Management (STM) aims to serve as an integral point
of transport information systems to encourage cooperation
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among them and allows the intelligent management of mar-
itime traffic [25]. The PortCDM provides information about
the cargo arrival and delay, and loading-unloading process
in the operations terminal to facilitate making decisions. The
current information exchange systems based on EDI and PCS
are not sufficient to solve problems in cooperative commu-
nication. Mainly, these systems do not exchange informa-
tion on time, accurately, and efficiently [7]. The information
exchange is vital to improve the quality of transport.
Unlike the information interchange model, data sharing

involves both vertical and horizontal collaboration between
companies. A data market might be created to encourage
collaboration among competitors to achieve a common goal
using the data-sharing approach. The IDS architecture pro-
poses a secure environment to ease the data sharing between
companies involved in the production and distribution of a
product [9]. The IDS reference architecture was developed to
meet the industrial needs of trust, security, data sovereignty,
data ecosystem, standardized interoperability, value-added
applications, and a data market. The IDS reference architec-
ture is composed of five layers: business, functional, infor-
mation, process, and system layer. The business layer defines
the specific roles to enable data exchange, Fig.1. The func-
tional layer describes the characteristics of trust, security,
data ecosystem, interoperability, value-added applications,
and data market. The process layer specifies the interactions
between the components of the architecture. These compo-
nents are grouped into sub-processes that are responsible
for accessing the data space, exchanging data, publishing,
and using applications. The information layer specifies the
information model to facilitate compatibility and interoper-
ability. The system layer describes the specific roles of the
business layer to cover the functional requirements. This layer
defines the connector, the broker, the identity provider, and
the application store [26].

FIGURE 1. Roles interaction in the IDS Architecture.

Since the IDS architecture does not define the interfaces
to be used nor provide details for implementation, the inter-
action between the academia and industry provides rele-
vant information through implementation cases. For example,
some research has provided relevant information about com-
ponents implementation [27], security implementation [28],
and the ontology-based information model [29]. On the other

hand, the industry has implemented the IDS architecture
successfully in logistics cases: to optimize the loading and
unloading times of trucks [30] and to predict railway-tracks
maintenance [31]. In the case of the maritime industrial sec-
tor, the SINTEF Ocean institute analyzed the use of the IDS
architecture to support the Maritime Data Space (MDS) [32].
They stated that the obstacles to enable the MDS are the
connection of vessels with the IDS, the shipping system com-
plexity, and the international nature of shipping. Even though
IDSA encourages the industry to use the IDS architecture in
industrial environments, the implementation of the IDS archi-
tecture model in the Seaport case has not been implemented
yet.

Recently, the Boost 4.0 project was released to design and
implement Big Data middleware for IDS support. The main
project motivation is to fill the gap between IDS architecture
and Big Data management [33]. The project is planning to
publish its results by the end of 2021. Also, few Big Data
architectures were proposed in the current literature for the
maritime industry [34], [35]. The primary approach used by
these architectures was to employ the Lambda processing
architecture, which has proven to be efficient in meeting
the requirements of scalability, efficiency, and high avail-
ability [36]. However, these architectures did not consider
IoT requirements for Big Data management or the use of
the Big Data life cycle model for their designs. The Interna-
tional Telecommunication Union (ITU) has released a bunch
of recommendations (Y. 2066 [37] and Y4114 [38]) to be
considered in the design of the Big Data architecture for
IoT. Also, the Big Data life-cycle model (BDLM) proposed
by Demchenko et al. [39] provides essential advantages to
the data re-usability at any life cycle stage and the massive
reduction of the data at an initial stage. Big Data architecture
is fundamental to extract relevant information from shared
data to improve seaport operations.

There are several models, considered as state of the art,
used to estimate some vessel operations process. For exam-
ple, these models are intended to estimate fuel consumption
and pollution generated by vessels [5], [40], [41]. However,
the problem appears when the models are applied to large
datasets without the support of adequate processing infras-
tructure. The models need to be adapted so that they can be
efficiently exploited by the resources used by the Big Data
architecture [42]. The lack of know-how to implement these
algorithms in a Big Data architecture is limiting the efficient
exploitation of the shared data to improve the operation in the
seaport.

Unlike related works, the main motivation of this work is
facilitating the coordinated communication between stake-
holders in a multimodal seaport terminal thought the IDS
reference architecture. Also, this work fills the gap between
IDS reference architecture and Big Data management by
providing a Big Data architecture implementation details
and know-how. Finally, this work proposes vessel operations
algorithms based on Big Data techniques to improve seaport
operations.
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III. VALENCIA SEAPORT DATA SPACE

This section presents the design and implementation of the
SDS, the Big Data architecture implementation details, and
the Big Data architecture and SDS integration. The proposal
is applied to the Valencia-Spain Seaport.

A. REQUIREMENTS

Valencia seaport is considered one of the most important
ports on the Mediterranean coast. This seaport supports more
than 4.7 million Twenty-foot Equivalent Units (TEUs) per
year [43]. Recently, traffic has shown a growth of 1.77 mil-
lion TEUs, which has affected the seaport operations
efficiency [15]. Valencia seaport requires strategies that
would allow it to optimize seaport operations and exploit its
resources efficiently.
The transformation of Valencia seaport into a smart seaport

requires solving the problems that appear in the data sharing
process between stakeholders to improve decision making.
The stakeholders involved in the maritime port’s

operations are the port authority, terminal operators, ship-
ping companies, truck companies, railway operators, seaport
equipment maintenance companies, and cold container main-
tenance companies. This work studies the integration of the
port authority, a container terminal operator, and a shipping
company to demonstrate the feasibility of the SDS. Fig. 2
shows an overview of the Valencia Seaport case.

FIGURE 2. Valencia SDS case overview.

The container terminal operator is responsible for loading
and unloading containers from vessels, trains, and trucks.
In this case, the container terminal operator has a sys-
tem based on Structured Query Language (SQL) to record
the operations of loading and unloading performances. The
shared data are structured using the JavaScript Object Nota-
tion (JSON) data format.
The port authority controls the arrivals and departures of

vessels, trains, and trucks to and from the seaport. In this case,
the port authority keeps track of the vessels that are near the
port through the Automatic Identification System (AIS). The
AIS provides information about the vessel’s navigation state.

B. SDS ARCHITECTURE OVERVIEW

The main objective of this case is to design a secure Big
Data sharing environment among seaport stakeholders based

on the IDS reference architecture. The SDS architecture
overview presents the details about the SDS architecture
components, systems adapters, data models, and the sharing
process. Fig. 3 shows the high-level SDS architecture.

FIGURE 3. SDS architecture components.

1) SDS ARCHITECTURE COMPONENTS

The SDS architecture is composed of IDS connectors,
an identity provider, and an IDS broker.

The IDS connectors share data, ensure data sovereignty,
and keep the interoperability between systems [9]. This con-
nector uses a publish/subscribe mechanism to share data,
a proxy Policy Enforcement Point (PEP) to ensure data
sovereignty, and an information model to keep the same
data model and format. The IDS connector functionalities
are implemented using the Fiware IoT platform Generic
Enablers (GEs) Orion Context Broker, and Wilma. Each
stakeholder implements an IDS connector in their tech-
nological infrastructure to connect to the SDS and share
data. Fig.4 shows the structure of the IDS connector for
this case. The GE Orion Context Broker provides a pub-
lish/subscribe mechanism to receive entities context updates.
To do so, the Orion Context Broker uses the NGSI9 and
NGSI10 interfaces to send information about the context data

FIGURE 4. IDS connector.
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and send context data. On the other hand, the GE Wilma
provides PEP-Proxy functionalities to keep control of the
data.
The identity provider keeps the information about the

IDS connectors of the SDS and validates the connectors’
identity [9]. These functionalities are implemented using
the GE Identity Manager-Keyrock (IdM). The IdM uses the
Oauth2 protocol to allow connectors authentication. Also,
the IdM keeps a record of its service through logs.
The IDS broker keeps the information about the data

sources, data models, and usage policies [9]. These func-
tionalities are implemented using the GE Policy Decision
Point/Policy Administration Point (PDP/PAP) AuthZForce
GE. AuthZForce uses the eXtensible Access Control Markup
Language (XACML) to allow the definition of fine-grained
policies.

2) DATA MODELS

Data models abstract the stakeholders’ systems to organize
the data into the Fiware IoT platform. Vessels are modeled
through the entity vesselObserved in the case of the AIS
system. This entity represents a vessel with its characteristics.
These characteristics are the maritime mobile service iden-
tity (MMSI), position (latitude and longitude), course over
ground (COG), speed over ground (SOG), rate of turn (ROT),
observation date, and operation mode. The identity created
in the Fiware based IDS connector is updated with every
AIS vessel message. Fig. 5 shows a vesselObserved JSON
example.

FIGURE 5. JSON schema of vesselObserved entity.

Meanwhile, the seaport berths are modeled through the
entity berth in the case of the container terminal operat-
ing system. this entity represents a container terminal berth.
These characteristics are the initial and final operational
dates.

3) SYSTEMS ADAPTERS

The systems adapters interconnected the stakeholders’ Appli-
cation Programming Interfaces (APIs). This connection is
developed using the Node-RED platform [44]. This platform
facilitates the development of data flows through its web user
interface. The flows use nodes that are capable of making data
transformations.

The AIS system flow queries the AIS HTTP server, con-
verts the AIS message format (NMEA standard) to JSON
format, assemblies the JSON based on the data model entity,
adds the Fiware JSON headers and sends the data to the IDS
connector. Fig. 6 shows the AIS system Node-RED flow.

FIGURE 6. AIS system adapter node-RED flow.

4) SHARING PROCESS

The process of data sharing between Fiware-based IDS con-
nectors exploits the federation functionality of the Orion
Context Broker. The federation pushmode allows the sending
of context notifications between two Orion Context Brokers.
After enabling the Orion Context Broker federation, the shar-
ing process requires a subscription notification that contains
the entities’ id and the uniform resource locator (URL) of
the other IDS connector that is going to receive the entities’
data.

C. BIG DATA ARCHITECTURE OVERVIEW

The architecture is based on the Lambda processing architec-
ture [36] and the BDLM [39]. Also, the Big Data architecture
design considers the ITU recommendations Y. 2066 [37] and
Y4114 [38]. The Big Data architecture is composed of several
modules that can be adapted depending on the needs of each
SDS member. The different Big Data architecture modules
are implemented using open source platforms for Big Data
management. In the case studied, the Big Data architecture is
implemented in the shipping company technological infras-
tructure to exploit the data, Fig.7. Next, the functionalities,
technologies, and platforms used for the implementation are
described:

• Integration module: is in charge of facilitating the
connection between the IDS connector and the Big Data
architecture. This module exploits the pull/push mecha-
nisms employed by the IDS connector to collect the data.
This module is implemented using the flow automation
system, Apache NiFi [11]. The selection of Apache NiFi
responds to its ability to design flows visually through its
user interface and as a highly scalable, configurable, and
secure tool. Apache NiFi provides several processors
capable of performing specific operations over the data
flow. The primary operations to be carried out in this
module are the connection with the IDS connector and
the conversion of the data format JSON to the Parquet
format. The Parquet format is a high-performance for-
mat [45]. The historical data repository receives the data
resulting from the converting format tasks. In the case
of real-time data, they are sent to the data processing
platform in real-time through Apache Kafka [13].
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FIGURE 7. Big data architecture implementation.

• Historical Database: stores all the data that come from
the IDS connector. This module is implemented using
the Hadoop Distributed File System (HDFS). HDFS is
widely used in the current literature in Big Data ecosys-
tems because it provides high availability, reliability,
and scalability [46]. The HDFS cluster consists of a
NameNode and several DataNodes. TheDataNodes are
intended for data storage in 64 megabytes data blocks,
while the Name Node manages the location of the files
and their replicas in the Data Nodes.

• Processing module: provides batch and real-time data
processing. The data processing modules are imple-
mented using the Apache Spark framework [12]. The
selection of Apache Spark responds to its ability to
execute jobs both in batchmode and in real-time through
its APIs. Apache Spark temporarily stores the results of
its operations in memory, so it has shown better per-
formance than Hadoop, which stores its operations on
disk [47]. The Spark Streaming API processes real-time
data. This API allows the execution of applications
almost in real-time. The applications are focused on per-
forming operations over data in a time sliding window.

• Batch Repository: stores the batch processing results.
This repository is implemented using the NoSQL
Apache HBase database system [48]. This database sys-
tem provides scalability and high availability.

• Real-time Repository: is in charge of storing the
real-time processing results. This module is imple-
mented using the Postgres relational database system
and its PostGIS extension [49]. PostGIS is an efficient
system to store geospatial data. The selection of PostGIS
responds to the data reduction in the initial processing
stages, which reduces the scaling problems overtime.

• QueryManagermodule:manages queries that are used
to generate descriptive analytics. Mainly, the module
exploits the platforms’ API and functions to generate

data queries. This module is implemented using the tools
provided by the GeoMesa framework and the SparkSQL
API [50]. GeoMesa allows the analysis of geospatial
data through a set of tools that are integrated with pro-
cessing frameworks such as Apache Spark and with
a database system like HBase. GeoMesa provides a
Spatio-temporal indexation to store data of point, line,
polygon type in HBase. While SparkSQL allows struc-
turing data in DataFrames for analysis using a language
similar to SQL. Also, SparkSQL presents functionalities
to perform a descriptive analysis of data (descriptive
statistics) and to perform a data cleaning, aggregations,
and filtering. These tools are used to extract useful infor-
mation from the data.

• Data Visualization module: displays the results of Big
Data Analytics to users. This module implements a
graphical user interface (GUI) for the deployment of
KPIs and diagrams. The GUI goal is to help opera-
tors infer the information extracted from the data. The
GUI is a web application implemented using Bootstrap,
NodeJS, Socketio, ChartJS, and Leaflet. The web appli-
cation uses a backend and frontend structure to present
the information to the user efficiently.

D. BIG DATA AND IDS ARCHITECTURE INTEGRATION

The integration of Big Data architecture and IDS architec-
ture is developed by implementing a dataflow in Apache
NiFi [11]. This dataflow is in charge of the data extraction
from the IDS connector, the data transformation, and load-
ing data to Big Data platforms. The dataflow is composed
of 4 processors: ListenHTTP, PutParquet, PublishKafka, and
LogAttribute. Fig. 8 shows the dataflow and the processors
used for its implementation.

The ListenHTTP processor is in charge of receiv-
ing the Context Notification from the IDS connector.
The ListenHTTP processor implements an HTTP server.
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FIGURE 8. Apache NiFi DATAFLOW for integration.

This server listens for POST requests on a specific port. The
port configured is port 8080 in this case. The IDS connector
sends POST requests with context notifications in JSON
format to the HTTP server. The ListenHTTP processor redi-
rects these notifications to the PutParquet and PublishKafka
processors.
The PutParquet processor is in charge of receiving the

Context Notification from the ListenHTTP processor, con-
verting to Parquet format, and storing it into theHDFS cluster.
The PutParquet processor requires the data schema in Avro
format to translate successfully to Parquet. The Avro format
is a JSON format that describes the data types and protocols
used in the definition of the data model. Also, the PutParquet
processor requires the information of the HDFS cluster to
store the converted data. The processor needs access to the
configuration files of the HDFS cluster (coresite.xml and
hdfs-site.xml) to know what the Node Name and Data Nodes
servers are, and the configuration of the replication blocks.
Another essential configuration parameter is the file tree path,
where the data are loaded. Finally, the PutParquet processor
loads the converted data into the HDFS file tree path.
The PublishKafka processor is in charge of receiving the

Context Notification from the ListenHTTP processor and
publishing it into the Kafka broker. The PublishKafka pro-
cessor requires the Kafka broker URL and the topic as con-
figuration parameters. The Apache Spark cluster receives the
data by subscribing to the same topic to processing on-the-fly.
Finally, the LogAttribute processor completes the dataflow.

This processor allows registering the status of each transac-
tion of both the PutParquet processor and PublishKafka. This
process facilitates the easy identification of errors that may
occur during the dataflow operation.

IV. RESULTS

The results show the SDS feasibility and the use of Big
Data architecture to extract useful information in planning
the shipping company operations. For this, two datasets were
used in the experimental evaluation. Table 1 describes the
datasets used in this experiment. The data shared between the
IDS connectors of the SDS are exploited to extract relevant
KPIs for the planning of a shipping company operations.

The KPIs are about the vessel’s average occupation time
in the containers loading and unloading process in the sea-
port container terminal, the container terminal occupancy,
the waiting time of the shipping company vessels in the
seaport anchorage zone and the vessel’s fuel consumption
estimation during its waiting time in the seaport anchorage
zone. Several applications were developed in Apache Spark
to load, process, and analyze the shared data for generating
these KPIs.

TABLE 1. Seaport datasets details.

A. VESSELS AVERAGE TIME OCCUPANCY

The vessels’ occupation time in the container terminal is
calculated using the container terminal operations dataset.
The container terminal IDS connector shares the data about
berths load/unload processes to the shipping company IDS
connector. Subsequently, the HDFS repository stores the data
shared in the IDS environment by following the data flow
defined in the Big Data and IDS architecture integration
subsection.

The loaded data from HDFS is structured in a DataFrame
using a SparkSQL function. The features related to the berth’
id, unloading process start timestamp, and loading process
finish timestamp are selected from the first DataFrame to
calculate the occupation time. Vessels occupancy on berths
is performed by the difference between the unloading and
loading timestamps. Next, the application calculates the aver-
age time at berth throughout an aggregation function by
evaluating the new DataFrame in a week as frequency.

The vessels’ maximum and minimum time occupancy in
berth provides more information to make decisions. Since
the dataset is a time-series data, the time-series decompo-
sition into season and trend components is necessary to
assess whether the maximum and minimum values vary
over time. For this, the DataFrame obtained in the pre-
vious phase is decomposed using the Python Statsmodels
library. Fig. 9 shows the decomposition into components
of the DataFrame. The figure shows an incremental trend
in time and a repeated season pattern every two months.
As a result, vessels’ average time is not the same in short
periods (season), and it varies over time (trend). In the same
way, the maximum and minimum values also vary over time,
so the maximum and minimum calculation is made using
the maximum and minimum average values per week. The
average, maximum, andminimum occupation time values are
used as KPIs to estimate the time that the shipping company
fleet is going to be berthing in the seaport.

B. CONTAINER TERMINAL OCCUPANCY WEEKLY

The container terminal occupancy gives information about
how many vessels the seaport terminal can support during
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FIGURE 9. Terminal containers time-series decomposition.

the week. Similar to previous KPI, this is calculated using
the dataset of the container terminal operations shared from
the container terminal IDS to the shipping company IDS.

FIGURE 10. Box-whisker container terminal occupancy by day and month.

Unlike the previous KPI, the features related to the ves-
sel’ MMSI and the starting timestamp are selected from
the first DataFrame to calculate berth’s occupancy. In this
case, the application aggregates the data by days, weeks,
and months, and applies the count function on them. In this
way, the application extracts information about the num-
ber of vessels per day, week, and month that are berthing
in the container terminal. The result is summarized in a
box-whisker diagram to represent the days and months most
busy. Fig. 10 shows that Saturday and August are the day of
the week and the month of the year most busy.

FIGURE 11. The algorithm used for calculating vessels berthing time.

FIGURE 12. The algorithm used for estimating vessel fuel consumption.

The information obtained allows the shipping company to
plan its operations in the days and months with less working
load so that its vessels stay the least amount of time possible
in the seaport.

C. AVERAGE TIME WAITING FOR A FREE TERMINAL

The vessels’ anchorage time reduces the shipping company
efficiency and produces a higher operational cost. The appli-
cation estimates this time by using the AIS dataset. The port
authority IDS connector shares AIS data (onlymessages from
the company’s fleet) to the shipping company IDS connector.
Next, the shared data are stored in the HDFS repository and
sent to the Apache Spark platform following the data flow
defined in the Big Data and IDS architecture integration
subsection. Fig. 11 shows the application data flow developed
using Apache Spark Streaming and SparkSQL.
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FIGURE 13. Shipping company Web GUI dashboard.

In this case, the application executes the SparkSQL func-
tionalities on the real-time data through the Apache Spark
Structures Streaming engine. This engine takes advantage
of micro-batch processing to execute highly scalable, fast,
and fault-tolerant queries. The AIS messages are filtered in
real-time to select only the AIS messages whose vessels’
positions are near the seaport. The application applies a filter
based on a polygon of 4 geospatial points (latitude, longi-
tude). Next, the filtered data get onto a 60-minutes-sliding
window. This data is structured in a DataFrame by using the
Structured Streaming engine. Then, the application splits the
DataFrame into two DataFrames based on vessels’ operation
mode (anchorage and not anchorage). The new DataFrame
contains the vessels’ MMSI identification and timestamp.
Next, the application searches the vessels that have changed
the operation mode from the anchorage state. The applica-
tion employs the MMSI identifier in the searching process.
The join DataFrame function allows making a comparison
of the DataFrames and selects the rows where the MMSI is
the same in both DataFrames. Next, the application creates a
new DataFrame with the selected rows. This new DataFrame
contains the MMSI and the start and finish timestamp of
the anchorage mode. The application updates the anchorage
DataFrame by deleting the rowwith theMMSI founded in the
searching process. Finally, the application calculates the time
at anchor by mean of the difference between the timestamps
(finish-start) and loads the results into a table in the PostGIS
database. The web application queries the table and shows
the average, the minimum, and maximum time at anchor per
vessel as KPI. In this way, the shipping company can order to
their vessels to reduce the speed before arriving at the seaport
to save fuel.

D. VESSELS AVERAGE FUEL CONSUMPTION IN THE

WAITING PERIOD

The fuel consumption estimation provides information about
the tons of fuel occupied by the vessels when they are waiting
for a berth. As the previous KPI, this is calculated using the
AIS message dataset shared from the port authority IDS to
the shipping company IDS. Fig. 12 shows the algorithm used
based on the study presented in [40] and [5].

The fuel consumption estimation depends directly on the
power used during the period evaluated. Vessels’ power infor-
mation is not available on the AIS messages, so it is esti-
mated based on the motor’s load factor during anchorage
operating mode. The literature estimates that the load factor
is 5% for the main engine (ME) and 50% for the auxiliary
engine (AE) [41]. The total power is the result of the sum
ME and AE powers during the anchorage operation mode.
These results are stored on a table inside the HBase database.
Next, the application multiplies the total power by the waiting
time at the anchorage zone (previously calculated in the
subsection C) by the base-specific consumption fuel and by
a factor of 1.1, according to [40]. The base-specific fuel
consumption has been estimated at 195g/kWh for vessels
built since 2001 and at 205 g/kWh for vessels built between
1984 and 2000 [5]. Finally, the application stores the results in
a table in the Postgres database. The web application queries
the table and shows an average, minimum, andmaximum fuel
consumption during the vessels’ waiting time at the seaport
anchorage zone.

The web GUI dashboard groups the KPIs developed for
a straightforward user interpretation. Fig. 13 shows the GUI
with the developed KPIs. Also, the GUI has a map to show
the vessel’s position near the Valencia seaport.
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V. CONCLUSION

In this paper, we have proposed the use of the IDS reference
architecture to overcome the current limitations on seaport
systems data sharing and facilitate the cooperative commu-
nication interoperability and interaction between stakehold-
ers. Data sovereignty is the main advantage of using IDS
architecture in industry 4.0, and specifically in transport and
logistics. Since the IDS architecture does not consider the
Big Data management, it has been proposed the integration
of a Big Data architecture in our SDS environment pro-
posal. The integration module facilitates the connection to the
IDS connector to extract, clean, and load data into the Big
Data platforms. The integration module functionalities were
implemented using Apache NiFi. Apache NiFi proved to be
useful on the integration due to its high capacity for designing
data flows. The rest of the Big Data architecture modules
provide features to store, process, and analyze the data shared
in IDS. These functionalities were implemented using current
Big Data open-source platforms and frameworks such as
Hadoop, HDFS, Apache Spark, Apache Kafka, and HBase.
The chosen platforms guaranteed efficientmanagement of the
data shared in the IDS architecture and provided a scalable
and high available environment to develop and execute appli-
cations for massive data processing.
The feasibility of our proposal was validated by using

several datasets related to vessel positions and terminal opera-
tions. The use of the Big Data architecture in SDS allowed the
extraction of valuable information for the operations planning
of a shipping company. The information was transformed into
KPIs for a better interpretation of the data analysis results.
The KPIs were compiled on a dashboard to improve the
decision-making. Also, we adapted some state of art vessel
operation models to be used in the Big Data Architecture.
The SDS improves the coordination between stakeholders

by lower transaction costs. Also, the SDS allows the re-use
of information by multiple parties and improving the quality
of information. Finally, the data shared through SDS in time
enhanced the vessel transit time and saved cost in the seaport
operations. Although this paper has evaluated the proposed
architecture in the maritime application domain, it is extensi-
ble and flexible to any industrial sector.
Moreover, the proposed Big Data architecture covers the

IoT requirements proposed by the ITU-T so that it can be
extended to application domains and cases involving indus-
trial IoT devices. As future work, there will be further testing
of the Big Data architecture in other application domains and
cases to demonstrate its extensibility and adaptability. Also,
more stakeholders and their dataset will be added to the SDS.
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