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Abstract—Regression testing is an expensive, but important, process. Unfortunately, there may be insufficient resources to allow for

the reexecution of all test cases during regression testing. In this situation, test case prioritization techniques aim to improve the

effectiveness of regression testing by ordering the test cases so that the most beneficial are executed first. Previous work on

regression test case prioritization has focused on Greedy Algorithms. However, it is known that these algorithms may produce

suboptimal results because they may construct results that denote only local minima within the search space. By contrast,

metaheuristic and evolutionary search algorithms aim to avoid such problems. This paper presents results from an empirical study of

the application of several greedy, metaheuristic, and evolutionary search algorithms to six programs, ranging from 374 to 11,148 lines

of code for three choices of fitness metric. The paper addresses the problems of choice of fitness metric, characterization of

landscape modality, and determination of the most suitable search technique to apply. The empirical results replicate previous results

concerning Greedy Algorithms. They shed light on the nature of the regression testing search space, indicating that it is multimodal.

The results also show that Genetic Algorithms perform well, although Greedy approaches are surprisingly effective, given the

multimodal nature of the landscape.

Index Terms—Search techniques, test case prioritization, regression testing.
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1 INTRODUCTION

REGRESSION testing is a frequently applied but expensive
maintenance process that aims to (re)verify modified

software. Many approaches for improving the regression
testing processes have been investigated. Test case prioritiza-
tion [17], [18], [22] is one of these approaches, which orders
test cases so that the test caseswithhighestpriority, according
to some criterion (a “fitness metric”), are executed first.

Rothermel et al. [18] define the test case prioritization

problem and describe several issues relevant to its solution.
The test case prioritization problem is defined (by Rothermel

et al.) as follows:

The Test Case Prioritization Problem. Given: T , a test suite;

PT , the set of permutations of T ; f , a function from PT to the
real numbers.

Problem: Find T 0 2 PT such that

ð8 T 00 ðT 00 2 PT Þ ðT 00 6¼ T 0Þ ½fðT 0Þ � ðT 00Þ�:

Here, PT represents the set of all possible prioritizations
(orderings) of T and f is a function that, applied to any such

ordering, yields an award value for that ordering.
Test case prioritization can address a wide variety of

objectives [18]. For example, concerning coverage alone,

testers might wish to schedule test cases in order to achieve

code coverage at the fastest rate possible in the initial phase
of regression testing to reach 100 percent coverage soonest
or to ensure that the maximum possible coverage is
achieved by some predetermined cut-off point. Of course,
the ideal orderwould reveal faults soonest, but this cannot be
determined in advance, so coverage often has to serve as the
most readily available surrogate. In the Microsoft Developer
Network (MSDN) library, the achievement of adequate
coverage without wasting time is a primary consideration
when conducting regression tests [13]. Furthermore, several
testing standards require branch adequate coverage, making
the speedy achievement of coverage an important aspect of
the regression testing process.

In previous work, many techniques for regression test
case prioritization have been described. Most of the
proposed techniques were code-based, relying on informa-
tion relating test cases to coverage of code elements. In [6],
[17], [18], Rothermel et al. investigated several prioritizing
techniques, such as total statement (or branch) coverage
prioritization and additional statement (or branch) coverage
prioritization, that can improve the rate of fault detection. In
[22], Wong et al. prioritized test cases according to the
criterion of “increasing cost per additional coverage.” In
[20], Srivastava and Thiagarajan studied a prioritization
technique that was based on the changes that have been
made to the program and focused on the objective function
of “impacted block coverage.” Other noncoverage based
techniques in the literature include fault-exposing-potential
(FEP) prioritization [18], history-based test prioritization
[11], and the incorporation of varying test costs and fault
severities into test case prioritization [5], [6].

Greedy Algorithms have been widely employed for test
case prioritization. Greedy Algorithms incrementally add
test cases to an initially empty sequence. The choice of
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which test case to add next is simple: it is that which
achieves the maximum value for the desired metric (e.g.,
some measure of coverage). However, as Rothermel et al.
[18] point out, this greedy prioritization algorithm may not
always choose the optimal test case ordering. Greedy
Algorithms also require that it is possible to define the
improvement in fitness obtained by the addition of a single
element to a partially constructed sequence. As this paper
will show, in the case of regression test case prioritization,
this is not always possible.

A simple example, based on statement coverage, is
presented in Table 1. If the aim is to achieve full statement
coverage as soon as possible, a Greedy Algorithm may
select A;B;C;D (or A;C;D;B, depending upon the greedy
strategy). However, the optimal test case orderings for this
example are C;D;A;B and D;C;A;B.

Metaheuristic search techniques [15] are high-level
frameworks that utilize the automated discovery of heur-
istics in order to find solutions to combinatorial problems at
a reasonable computational cost. Evolutionary algorithms,
of which Genetic Algorithms are a subclass, are a form of
metaheuristic search that employs a Darwinian Evolution-
ary metaphor to guide the search by a process of “survival
of the fittest.” In the case of scheduling problems, of which
regression test case prioritization is an example, the
application of Genetic Algorithms has been shown to be
effective [9]. As such, an empirical study of the effectiveness
of these and related metaheuristic techniques is timely. As a
by-product of such a study, it is possible to gain an insight
into the nature of the search space denoted by test case
prioritization and to study the fitness metrics used to guide
the search.

This paper focuses on test case prioritization techniques
for code coverage, including block coverage, decision
(branch) coverage, and statement coverage, which are
widely studied in prior work. With different objective
functions, techniques will have different complexity and
search-space characteristics. Given a function f that
assesses the rate of achievement of code coverage, an
efficient solution to the test case prioritization problem
would provide an efficient solution to the knapsack
problem, which is known to be NP-hard [7]. Thus,
prioritization techniques for code coverage are necessarily
heuristic [18].

In this paper, five search techniques are studied: two
metaheuristic search techniques (Hill Climbing and Genetic
Algorithms), together with three greedy algorithms (Greedy,
Additional Greedy, and 2-Optimal Greedy). Of these five
algorithms, only Greedy and Additional Greedy have been
studied previously. The paper presents results from an

empirical study that compared the performance of the five

search algorithms applied to six programs, ranging from 374

to 11,148 lines of code.
The primary findings of the study are as follows:

1. The Additional Greedy and 2-Optimal Algorithms
appear to be the best approaches overall. However,
the difference between the performances of these
and the Genetic Algorithm was not statistically
significant for any of the small programs.

2. The results of the empirical study show that the
Additional Greedy, 2-Optimal, and Genetic Algo-
rithms always outperform the Greedy Algorithm.
These results for the programs studied are shown to
be statistically significant for all programs studied.

3. The results for the Hill Climbing algorithm indicate
that the fitness landscapes of the search spaces
involved are multimodal.

4. This paper also reveals some interesting properties
of the fitness metrics.

The rest of this paper is organized as follows: Section 2

describes the five algorithms studied in the paper, while

Section 3 presents the details and results of the empirical

study of the application of these algorithms to the set of six

subject programs. Section 4 presents some related work and

Section 5 concludes.

2 ALGORITHMS

This section describes the five algorithms used in the

experiments.

2.1 Greedy Algorithm

AGreedy Algorithm is an implementation of the “next best”

search philosophy. It works on the principle that the element

with the maximum weight is taken first, followed by the

element with the second-highest weight, and so on, until a

complete, but possibly suboptimal, solution has been

constructed. Greedy search seeks to minimize the estimated

cost to reach somegoal. It is simple, but in situationswhere its

results are of high quality, it is attractive because it is typically

inexpensive both in implementation and execution time.
Consider the example of statement coverage for a

program containing m statements and a test suite

containing n test cases. For the Greedy Algorithm, the

statements covered by each test case should be counted

first, which can be accomplished in Oðm nÞ time; then, the

test cases should be sorted according to the coverage. In

the second step, quicksort can be used, thereby increasing

the time complexity by Oðn log nÞ. Typically, m is greater

than n, in which case, the cost of this prioritization is

Oðm nÞ.
For the example in Table 1, test case A is selected first

since it covers six statements, the maximum covered by a

single test case. Test case B, which covers five statements, is

selected next. Test cases C and D cover the same number of

statements and so the Greedy Algorithm could return either

A;B;C;D or A;B;D;C, depending upon the order in which

test cases are considered.
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TABLE 1
A Case in Which the Greedy Algorithm
Will Not Produce an Optimal Solution



2.2 Additional Greedy Algorithm

The “Additional” Greedy Algorithm is also a kind of
Greedy Algorithm, but with a different strategy. It
combines feedback from previous selections. It iteratively
selects the maximum weight element of the problem from
that part that has not already been consumed by previously
selected elements.

Again, consider statement coverage: The Additional
Greedy Algorithm requires coverage information to be
updated for each unselected test case following the choice
of a test case. Given a program containingm statements and
a test suite containing n test cases, selecting a test case and
readjusting coverage information has cost Oðm nÞ and this
selection and readjustment must be performed OðnÞ times.
Therefore, the cost of the Additional Greedy Algorithm is
Oðm n2Þ.

Note that, after 100 percent coverage has been achieved,
there are possible remaining unprioritized test cases that
cannot add additional coverage. These remaining test cases
could be ordered using any algorithm; in this work, the
remaining test cases were ordered by reapplying the same
algorithm—Additional Greedy Algorithm. However, after
100 percent coverage has been achieved, no further fitness
improvement will be possible.

For the example in Table 1, test case A is selected first (it
covers six statements) leaving statements 4 and 5 uncovered.
Test case B is skipped since it covers neither statement 4 nor
statement 5. Test cases C and D cover statements 4 and 5,
respectively, so each covers only one uncovered statement.
Thus, Additional Greedy would return either A;C;D;B or
A;D;C;B.

2.3 2-Optimal Algorithm

The 2-Optimal (Greedy) Algorithm is an instantiation of the
K-Optimal Greedy Approach [12] when K ¼ 2. The
K-Optimal approach selects the next K elements that, taken
together, consume the largest part of the problem. In the
case of K-Optimal Additional Greedy, it is the largest
remaining part of the problem that is selected. In this
research, a 2-Optimal Additional Greedy Algorithm was
used, hereinafter referred to as the “2-Optimal” Algorithm
for brevity.

The K-Optimal approach has been studied in the area
of heuristic search to solve the Traveling Salesman
Problem (TSP) that is defined as “find the cycle of minimum
cost that visits each of the vertices of a weighted graph G at
least once” [16]. Extensive experiments suggest that 3-
optimal tours are usually within a few percent of the cost
of optimal tours for TSP. As shown by Skiena, for K > 3,
the computation time increases considerably faster than
solution quality. The 2-Optimal approach has been found
to be fast and effective [19].

Again, consider statement coverage: The 2-Optimal
Algorithm updates coverage information for each unse-
lected test case following the choice of each pair of test cases.
Given a program containing m statements and a test suite
containing n test cases, selecting a pair of test cases and
readjusting coverage information has cost Oðm n2Þ and this
selection and readjustment must be performed OðnÞ times.
Therefore, the time complexity of the 2-Optimal Algorithms
is Oðm n3Þ.

As with the other approaches, after complete coverage
has been achieved, the 2-Optimal Algorithms were re-
applied to the remaining test cases.

For the example in Table 1, test case C and D are chosen
first since the combination of test cases C and D covers
eight statements and this is the maximum among all pairs
of test cases. The 2-Optimal Algorithm could thus return
C;D;A;B, the global optimum for this simple example.

2.4 Hill Climbing

Hill Climbing is a well-known local search algorithm. There
are two primary variations of this strategy: steepest ascent
and next best ascent. In our empirical study, steepest ascent is
adopted.

The steepest ascent Hill Climbing algorithm for test case
prioritization is composed of the following steps:

1. Pick a random solution state and make this the
current (i.e., initial) state.

2. Evaluate all the neighbors of the current state.
3. Move to the state with the largest increase in fitness

from the current state. If no neighbor has a larger
fitness than the current state, then no move is made.

4. Repeat the previous two steps until there is no
change in the current state.

5. Return the current state as the solution state.

In our experiments, the state above is simply an ordering
of a test suite; the neighborhood is defined as any new
ordering of a test suite that can be obtained by exchanging
the position of the first test case and any other test case. This
definition of the neighborhood means that any test suite has
n� 1 neighbors that must be evaluated for each iteration of
the Hill Climbing algorithm. Of course, there are many
valid choices of near neighbor. Our approach is just one
choice and there is nothing special about the first test case.
An alternative approach is to say that any order that can be
obtained through swapping two elements is a neighbor.
However, this has the disadvantage of dividing Oðn2Þ
neighbors and so is unlikely to scale.

Hill Climbing is simple and cheap to implement and
execute. However, it is easy for the search to yield
suboptimal results that are merely locally optimal, but not
globally optimal.

2.5 Genetic Algorithms

Genetic Algorithms (GAs) represent a class of adaptive
search techniques based on the processes of natural genetic
selection according to Darwinian theory of biological
evolution [8]. Fig. 1 shows a typical GA procedure, which
includes initializing a population P , evaluating individuals,
selecting pairs of individuals that are combined and
mutated to generate new individuals, and forming the next
generation. The search proceeds through a number of
generations until the termination condition has been met.

The initial population is a set of randomly generated
individuals. Each individual is represented by a sequence of
variables/parameters (called genes), known as the chromo-
some. The chromosome encodes a possible solution to a
given problem. The encoding can take many forms, for
example, binary, real-valued, or character-based. A biased
selection depending on the fitness value decides which
individuals are to be used as the “parents” for producing
the next generation. Crossover is a genetic operator that
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combines two individuals (the parents) to produce a new
individual (the offspring). A probability of crossover
determines whether crossover should be performed. The
mutation operator alters one or more gene values in the
individual, depending on the probability of mutation. A GA
is not guaranteed to converge upon a single solution: The
termination condition is often specified as a maximal
number of generations, or as a given value of the fitness
function that is deemed to be sufficient.

The detailed settings for the parameters and the
operators of the GA in the experiments reported in this
paper are described as follows:

Encoding. Binary encoding is not suitable for the sequen-
cing problem, so an ordering chromosome was used. For a
test suite withN test cases, the chromosome is encoded as an
N-sized array, and the value of a chromosome element
indicates the position of a test case in the order.

Selection. Rank-based fitness assignment was used, i.e.,
the fitness assigned to each individual depends only on its
rank position in the current population and not on the
concrete value of the overall fitness, as would be the case for
proportional fitness assignment. Baker’s linear ranking
algorithm [2] is employed. The fitness of each individual
in the population is defined as

FitnessðPosÞ ¼ 2� SP þ 2 � ðSP � 1Þ �
ðPos� 1Þ

ðNind� 1Þ
;

where FitnessðPosÞ is the fitness assigned to the individual,
Pos is the position of the individual in the population, Nind

is the population size, and SP is selective pressure—the
ratio of the best individual’s selection probability to the
average selection probability of all individuals. In tuning
experimentation, a value of 2 for SP was found to produce
the best results, so Baker’s linear ranking algorithm
simplifies to the following:

FitnessðPosÞ ¼ 2 �
ðPos� 1Þ

ðNind� 1Þ
:

Crossover (Recombination). Two offspring (o1 and o2)
are formed from two parents (p1 and p2), following the
ordering chromosome crossover style adopted by Antoniol
et al. [1]:

1. A random position k is selected in the chromosome.
2. The first k elements of p1 become the first k elements

of o1.

3. The last N � k elements of o1 are the sequence of the
N � k elements which remain when the k elements
selected from p1 are removed from p2.

4. o2 is obtained similarly, composed of the first
N � k elements of p2 and the remaining elements
of p1 (when the first N � k elements of p2 are
removed).

Mutation. The mutation operator randomly selects two
genes and exchanges their position in the sequence.

It is commonwith the application ofGeneticAlgorithms to
find that some “tuning” of the parameters of the algorithm is
required to determine the values that yield the best results. In
the case of the study reported here, some initial experiments
were performed to optimize for the size of programs studied.
The size of the population determines the diversity of the
initial population. Insufficient diversity can lead to pre-
mature convergence to a suboptimal solution. Larger
problems denote larger search spaces and therefore require
a larger population in order to maintain diversity. The
population size was set at 50 individuals for small programs
(those with fewer than 1,000 lines of code), and 100 for the
large programs (those with 1,000 or more lines of code). The
algorithmwas terminated after 100 generations for the small
programsand300 for the largeprograms. Theother operators
were set to identical values for all program sizes. Stochastic
universal sampling was used in selection and mutation, the
crossover probability (per individual) was set to 0.8, and the
mutation probability (per individual) was set to 0.1.

3 EMPIRICAL STUDY

This section describes the family of empirical studies
performed, including the design, subjects, measurements,
and results.

3.1 Research Questions

The following two research questions motivated this study:

Q1. Which algorithm is most effective in solving the test case
prioritization problem for regression testing?

Q2. What factors could affect the efficiency of algorithms for the
test case prioritization problem for regression testing?

These two questions concern the quality and computa-
tional cost of regression testing and so are the two
uppermost considerations in deciding upon a particular
choice of prioritization algorithm.

3.2 Experimental Design

In order to improve the generality of the results reported in
this paper, the basic search experiment was instantiated
with several values of the three primary parameters that
govern the nature and outcomes of the search, namely:

1. The program to which regression testing is applied.
Six programs were studied, ranging from 374 to
11,148 lines of code and including real as well as
“laboratory” programs.

2. The coverage criterion to be optimized. The three
choices studied were block, decision, and statement
coverage for each program.
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Fig. 1. Genetic Algorithm structure.



3. The size of the test suite. Two granularities of test
suite size were used: small suites of size 8-155 and
large suites of size 228-4,350.

Of course, there is a connection between the first and
third category since a larger program will typically require
more test cases.

3.3 Subjects

In our study, we used two groups of programs, called
“small programs” and “large programs,”1 from a total of six
C programs and their corresponding test suites (see Table 2).
The programs and test suites were from an infrastructure
[4] that is designed to support controlled experimentation
with software testing and regression testing techniques.

Print_tokens2 and Schedule2 are variations of the
programs Print_tokens and Schedule, respectively.
These four programs were assembled by researchers at
Siemens Corporate Research for experiments with control-
flow and data-flow test adequacy criteria [10]; Space and
Sed are large programs. Space was developed for the
European Space Agency, and Sed is the Unix stream editor
string processing utility.

For the first four “small” programs, the researchers at
Siemens created a test pool containing possible test cases for
each program [10]; Rothermel et al. constructed test pools
for the two “large” programs following the same approach.

The infrastructure provided by Rothermel et al. [4] was
used to obtain test suites in the followingmanner: In order to
produce small test suites, a test case is selected at random
fromthe test pool and is added to the suite only if it adds to the
cumulative branch coverage. This is repeated until the test
suite achieves full branch coverage. In order to produce large
test suites, test cases are randomly selected from the test pool
and added to the test suite until full branch coverage is
achieved. Both small test suites and large test suites were
applied in all three coverage criteria in our studies.

3.4 Effectiveness Measure

The fitness metrics studied are based upon APFD (Average
of the Percentage of Faults Detected) [18], which measures
the weighted average of the percentage of faults detected
over the life of the suite. However, it is not (normally)
possible to know the faults exposed by a test case in
advance and so this value cannot be estimated before

testing has taken place. Therefore, coverage is used as a
surrogate measure. It is not the purpose of this paper to
enter into the discussion of whether or not coverage is a
suitable surrogate for faults found. Coverage is also an
important concern in its own right, due to the way in which
it has become a part of “coverage mandates” in various
testing standards (for example, avionics standards [14]).
The presence of these mandates means that testers must
achieve the mandated levels of coverage irrespective of
whether or not they may believe in coverage per se.

Depending on the coverage criterion considered, three
metrics were used in the paper:

1. APBC (Average Percentage Block Coverage). This
measures the rate at which a prioritized test suite
covers the blocks.

2. APDC (Average Percentage Decision Coverage).
This measures the rate at which a prioritized test
suite covers the decisions (branches).

3. APSC (Average Percentage Statement Coverage).
This measures the rate at which a prioritized test
suite covers the statements.

Consider the APBC metric as an example and a test suite
T containing n test cases that covers a set B of m blocks. Let
TBi be the first test case in the order T 0 of T that covers
block i. The APBC for order T 0 is given by the equation

APBC ¼ 1�
TB1 þ TB2 þ . . .þ TBm

nm
þ

1

2n
:

APBC measures the weighted average of the percentage
of block coverage over the life of the suite. APBC values
range from 0 to 100; higher numbers imply faster (better)
coverage rates.

To illustrate this measure, consider an example program
with 10 blocks and a test suite of five test cases, A through
E, each with block coverage characteristic as shown in
Table 3.

Consider two orders of these test cases, order T1: A-B-
C-D-E, and order T2: C-E-B-A-D. Fig. 2a and Fig. 2b
show the percentages of block coverage as a function of
the fraction of the test suite used, for the two orders T1

and T2, respectively. The area under the curve represents
the average of the percentage of block coverage over the
life of the test suite. APDC and APSC are defined in a
similar manner to APBC, except that they measure rate of
coverage of decisions and of statements, respectively.

3.5 Analysis Tools

Statement, decision, and block coverage information was
obtained using a tailor-made version of the commercial tool,
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1. Although the “large” programs may not be regarded as large for some
applications, in terms of the search space they denote, they are very large
indeed and so they represent nontrivial applications of these search
techniques.

TABLE 2
Experimental Subjects

TABLE 3
Test Suites and Block Coverage



Cantata++.2 To analyze experimental data, SPSS was used
to generate boxplots and perform an ANOVA (ANalysis Of
VAriance) to investigate the statistical significance of any
differences observed in the experiments. The “null hypoth-
esis” is that the means of the fitness values (APBC, APDC,
and/or APSC) for the five algorithms are equal. In order to
decide whether to accept or reject the null hypothesis, the
level of significance of the result was set at 0.05.

3.6 Experiments and Discussion

The experiments involved six C programs. For all the
programs except Sed, there were 1,000 small test suites and
1,000 large test suites. All test suites were obtained from the
same infrastructure [4] as the programs. In order to reduce
the computation time for the experiments, without sig-
nificant loss of generality, half of these test suites were used
in the experiments. Thus, the results reported for all
programs except Sed are averages obtained over 500 execu-
tions of the associated search algorithm, each execution
using a different test suite. For the largest program, Sed, no
division of all test cases into test suites was available.3

Therefore, all available test cases were simply combined
into a single test suite, and the search algorithms were each
applied 100 times to obtain averages that capture typical
performance.

For a program p and test case t for p, the blocks, decisions,
and statements covered by t were found using Cantata++.
For each program used, an instantiation of the experiment
was conducted for each of the five algorithms, for each test
suite, and for each of the three different coverage criteria.

3.6.1 Experiments with Small Test Suites

Fig. 3 shows boxplots of the fitness metrics APBC, APDC,
and APSC for all programs with small test suites. Each row
of subfigures indicates the results for one program.

As the graphs in Fig. 3 indicate, with the increase in
program size, the differences between the five algorithms
become more evident. For small programs, the five
algorithms show almost identical performance. The mean
fitness value for each program revealed that the Greedy

Algorithm is the worst and the Genetic Algorithm is slightly
better than the others.

First, consider the small programs with small test suites.
The ANOVA results for these experiments, which are
summarized in Table 13 in the Appendix, were remarkably
consistent across different programs and coverage criteria.
For example, in all cases, the difference between the GA and
Additional Greedy is not statistically significant. Since these
results are so similar, the results for the small programs
with small test suites have been combined in order to form
one group per algorithm. Table 4 presents an ANOVA
analysis between the groups. The F -ratio can be computed
from the ratio between the Mean Square for “between”
groups and the Mean Square for “within” groups. A larger
F -ratio indicates a greater confidence in rejecting the null
hypothesis. Significance (p-value) reports the significance
level of the F -ratio. The smaller the p-value (< :05), the
stronger the evidence against the null hypothesis. The
results in Table 4 show that there is strong evidence against
the null hypothesis; the algorithms do, indeed, have
significantly different performance.

However, rejecting the null hypothesis by ANOVA
analysis can only tell us whether the five algorithms’
performance was significantly different. To explore further,
to see where the differences lie, a multiple-comparison
procedure was performed. The LSD (Least Significant
Difference) method was employed in multiple-comparison
to compare the five algorithms pairwise.

Table 5 presents the results of this analysis for all of the
small programs and reports the pairwise comparisons. For
each pair of algorithms, the mean difference between the
results of applying the algorithms is given, as is the
significance level of the mean differences. If the significance
is smaller than .05, the difference between the algorithms is
statistically significant. As shown by the results, there was a
significant difference between all pairs except Additional
Greedy and GA, i.e., Additional Greedy and GA were not
significantly different for small programs with small test
suites. Since GA is slightly better than the others, Addi-
tional Greedy and GA produce the best results for small
programs.

Table 6 and Table 7 present ANOVA results and LSD
multiple comparison results, respectively, for the large
program Space, considering all coverage criteria. For these
experiments, there was no significant difference between the
Additional Greedy and 2-Optimal Algorithms, instead of no
significant difference betweenAdditionalGreedy andGA for
small programs.

Returning to the Boxplots for the Space program with
small test suites (the last row of subfigures in Fig. 3), the
Additional Greedy and 2-Optimal Algorithms both show
strong performance. However, the metaheuristic algo-
rithms perform less well. Hill Climbing always appears to
obtain a locally optimal value, indicating that there are
local optima (foothills in the search landscape). The Genetic
Algorithm performs much better than Hill Climbing,
suggesting that the local optima are indeed merely local
optima and better solutions are available. It is also
noteworthy that the Genetic Algorithm is often a little
worse than Additional Greedy and 2-Optimal Algorithms,
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2. Cantata++ is a professional software testing tool, developed by IPL
(http://www.iplbath.com). It has been designed to meet the requirements
of the C/C++ languages to produce a tool that allows developers to perform
efficient unit and integration testing. The product offers a set of testing,
coverage analysis, and static analysis features.

3. Sed and test cases were obtained directly for Rothermel’s early
unpublished draft infrastructure.

Fig. 2. Example illustrating the APBC measure. (a) APBC for order T1.

(b) APBC for order T2.



and the difference is significant. This suggests that, where
applicable, the cheaper-to-implement-and-execute Addi-
tional Greedy and 2-Optimal Algorithms should be used.

The results obtained are similar for the different cover-
age criteria, providing evidence for the robustness of these
results. That is, it would suggest that the results capture
something of the nature of the search problem denoted by

regression test case prioritization, rather than merely
capturing an aspect of a particular choice of coverage
criterion.

3.6.2 Experiments with Large Test Suites

Fig. 4 presents boxplots of the fitness metrics APBC,
APDC, and APSC for all programs with large test suites.
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Fig. 3. Boxplots of APBC, APDC, and APSC for all programs with small test suites (vertical axis is the AP*C score) by program and by coverage

criteria.



Each row of subfigures indicates the results for a single

program.
Tables 8 and 9 show the results of ANOVA analysis and

LSD multiple comparisons for all small programs with large

test suites. Tables 10 and 11 give the corresponding results

for the Space program, also with large test suites. The data

shows the same results as those produced from programs

with small test suites. That is, there is no significant

difference between Additional Greedy and the GA for

small programs and no significant difference between

Additional Greedy and the 2-Optimal Algorithm for Space.

All other pairwise comparisons have significant differences.
These experiments with large test suites are consistent

with those obtained for the small test suites. This lends

additional evidence to support the claim that the results

capture properties of the search problem in hand, rather

than some artifact of the choice of test suite or the overall

size of the test suites considered.
Necessity demanded a different experimental method for

the program Sed. That is, the lack of an available subdivision

into test suitesmeant that the single, large test suite was used

in 100 repetitions of the experiment (100 repetitions were

performed to allow for random effects inherent in search

algorithms) executed on the same test suite (for the

metaheuristic algorithms). The results produced by Hill

Climbing and Genetic Algorithms vary with each experi-

ment, while the results for the Greedy, Additional Greedy,

and 2-Optimal Algorithms do not, since these algorithms are

deterministic.

Consider the differences in the results for Hill Climbing
in Fig. 3 and Fig. 4. Observe that both the size of the
program and the size of the test suite do appear to influence
the variance in the results. However, larger programs
typically have larger test suites, since they usually require
more test cases in order to achieve a given level of coverage.
The program Space is about 10 times larger than the small
programs, and the corresponding test suite is also about
10 times larger than the average size of test suites for small
programs. The size of the program does not directly affect
the complexity of test case prioritization, whereas the size of
the test suite does since it determines the size of the search
space. However, it takes longer to determine the fitness of a
test case for a larger program. This suggests that the
deterministic search techniques are scalable to larger
programs, subject to the commensurate increase in the test
suite sizes, since the fitness metrics are computed only once.
For heuristic algorithms, the cost-benefits should be con-
sidered first before they are applied to large programs.

This finding is less pessimistic than it initially appears; it
is likely to prove possible to reduce problem complexity by
both reducing test suite size and reducing program size.
However, it might be easier to reduce the test suite size. For
example, techniques for automatically partitioning software
into smaller units, such as slicing [21], tend to produce
rather large (and overlapping) subprograms [3]. It is to be
hoped that techniques for partitioning test data might be far
easier to construct and would tend to produce a finer-
grained partition. For example, tests might (naturally) be
grouped according to the tester, to the revision for which
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TABLE 5
Multiple Comparisons (Least Significant Difference)

for Small Programs with Small Test Suites

TABLE 6
Anova Analysis for the Large Program (Space)

with Small Test Suites

TABLE 4
ANOVA Analysis for Small Programs with Small Test Suites

TABLE 7
Multiple Comparisons (Least Significant Difference) for the

Large Program (Space) with Small Test Suites
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Fig. 4. Boxplots of APBC, APDC, and APSC for all programs with large test suites (vertical axis is AP*C score) by program and coverage criteria.



they were constructed, or for the aspect of the specification
for which they were created. Importantly, all of these
approaches partition the set of test data to be applied,
whereas, by contrast, slices of a program may (and often do)
contain large amounts of overlap.

3.6.3 Fitness Landscapes

The results obtained using Hill Climbing, both for small
and large test suites, shed light on the nature of the search
landscape and the factors that govern the properties of the
fitness landscape. Naturally, it is important not to read too
much into these results. However, some observations are
worth noting.

For the problem of test case prioritization, the search
space is the set of permutations of the ordering of a test
suite. The global optimum is an order, or a set of orders, of a
test suite for which no other order has a strictly superior
fitness value; a local optimum is an order or a set of
interconnected orders with a fitness value that is no worse
than those of all its neighbors. For Hill Climbing, if the
fitness of the returned order is less than the global
optimum, then this order is termed “suboptimal.”

In Fig. 3 and Fig. 4, the vertical lengths of the boxplots of
Hill Climbing for small programs are similar or just a little
longer than those for other algorithms. The variation could
be a consequence of the use of 500 test suites, the height of
boxplots merely reflecting 500 computations, each using a
different test suite.

However, with the increase in program size and test suite
size, there is a noticeable difference, i.e., the vertical lengths of

the boxplots forHill Climbing aremuch longer than those for
the other techniques. This indicates that the fitness land-
scapes become much more complicated with the increase of
both program size and test suite size. For the program Sed,
where the metaheuristic algorithms were executed 100 times
using the same test suite, the vertical length forHill Climbing
is much longer than for others. This confirms that there are
many local optima with the consequence that Hill Climbing
tends to alight upon a local optimum.

The fact that there are many local optima in the search
space indicates that, for large test suites, the fitness
landscapes are likely to be inherently multimodal. This
result suggests that global search techniques could outper-
form local search techniques for regression testing prior-
itization problems, particularly for larger test suites.

3.6.4 Analysis of the Fitness Metric

The results presented here confirm that the Additional
Greedy Algorithm is superior to the Greedy Algorithm.

However, this is unsurprising because the addition of test
cases that cover new aspects of the program as yet
uncovered is bound to be better than the addition of new
test cases that may merely cover what has already been
covered.

It appears that the 2-Optimal Algorithm should over-
come the weakness of the Greedy or Additional Greedy
Algorithms shown by Table 1 in Section 1, so the 2-Optimal
Algorithm should be better than, or no worse than, the
Greedy and the Additional Greedy Algorithms. However,
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TABLE 8
ANOVA Analysis for Small Programs with Large Test Suites

TABLE 9
Multiple Comparisons (Least Significant Difference)

for Small Programs with Large Test Suites

TABLE 10
ANOVA Analysis for the Large Program (Space)

with Large Test Suites

TABLE 11
Multiple Comparisons (Least Signifcant Difference)

for the Large Program (Space) with Large Test Suites



in some experiments, the results show the counterintuitive
finding that the 2-Optimal Greedy Algorithm produces
lower values of the fitness metric than the Additional
Greedy Algorithm.

To understand this phenomenon, consider a program
with a test suite containing three test cases, A, B, and C,
such that the program has eight blocks covered by these test
cases, as shown in Table 12. Two orders of these test cases
are order T1: A-B-C, produced by the Greedy Algorithm or
the Additional Greedy Algorithm, and order T2: B-C-A,
produced by the 2-Optimal Algorithm. Fig. 5a and Fig. 5b
show the percentages of blocks covered by the fraction of
test suites used, for these two orders, respectively.

As Fig. 5a and Fig. 5b show, test order T2 uses two test
cases to cover 100 percent of the blocks compared to T1

with three test cases, so T2 achieves 100 percent block
coverage faster than T1. However, in terms of the rates of
block coverage for the whole test suite, T1 produces an
APBC of 70.83 percent, while T2 has an APBC of
66.67 percent; that is, T2 scores less than T1 according to
the APBC metric. This sample program shows that the 2-
Optimal algorithm can overcome the weakness of Greedy
and Additional Greedy Algorithms, while obtaining a lower
value from the APBC metric. However, with increasing test
suite size, the differences between the Additional Greedy
Algorithm and the 2-Optimal Algorithm become insignif-
icant, which suggests that this issue may be ignorable in
practice.

This phenomenon illustrates an interesting problem in
determining fitness for T1 and T2. In Fig. 5a and Fig. 5b, the
upper border line of the shaded area represents the block
coverage rate. These two lines are combined into a single
graph in Fig. 5c. The two lines cross at point P . Before the
crossover point P , T1 denotes a higher coverage attained,
but, after P , T2 is better than T1. The value associated with
a result therefore depends upon where the “crossover
point” P occurs. If a budget for regression testing is known

and P falls after the budget is exhausted, then it is desirable
to use T1 rather than T2.

Determining the point P is thus the key to determining
whether T1 or T2 is the preferred order. Unfortunately, it is
necessary to know the complete test case orderings in order
to be able to determine which one is better. This situation
may be thought of as a characteristic of a related family of
regression testing prioritization problems, in which the
entire order must be determined before a fitness value may
be assigned to a candidate solution.

In such a situation, it will be difficult to define a greedy
approach, because a greedy approachmust determinewhich
part of the solution to add next. For this class of problems,
algorithms will be required that can be guided by a fitness
function that takes account of the entire ordering. This
observation makes Genetic Algorithms attractive, since they
can be defined in this way and the results from Section 3.6.1
provide evidence that they can produce results of at least
equivalent quality to those produced by Greedy Algorithms.

3.7 Threats to Validity

This section discusses some of the potential threats to the
validity of the studies reported in this paper.

Threats to internal validity are influences that can affect
the dependent variables without the researchers’ knowl-
edge and thereby affect any supposition of a causal
relationship between the phenomena underlying the in-
dependent and dependent variables. In this study, the
greatest concern for internal validity involves instrumenta-
tion effects, i.e., the quality of the coverage information
measured. To limit problems related to this, a professional
commercial software tool was used: Cantata++.

Threats to external validity are conditions that limit
generalization from the results. The primary threats to
external validity for this study concern the representative-
ness of the artifacts utilized. Only one approach to test suite
generation, based on branch coverage adequacy, was used.
This could represent a particular distribution of test cases
that does not always occur in practice. This threat can be
addressed only by additional studies, using a wider range
of artifacts.

Threats to construct validity arise when measurement
instruments do not adequately capture the concepts they
are supposed to measure. For example, in the experi-
ments, the fitness metrics focus on the measures of
effectiveness of algorithms without measuring their cost.
The time complexity for the first three algorithms was
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TABLE 12
Test Suites and Block Coverage

Fig. 5. Example of the pathological case. (a) APBC for order T1 by the Additional Greedy Algorithm. (b) APBC order for order T2 by the 2-Optimal

Algorithm. (c) Crossover point.



stated, but no cost analysis was given for the two heuristic
algorithms.

4 RELATED WORK

In [6], [17], [18], Rothermel et al. formally defined the test
case prioritization problem and empirically investigated
six prioritization techniques. Four of the techniques were
based on the coverage of either statements or branches for
a program and two of the techniques were based on the
estimated ability to reveal faults. Several experiments
compared these with the use of no prioritization (un-
treated), random prioritization and optimal prioritization.
The experimental results showed that the prioritization
techniques can improve the rate of fault detection of test
suites. These experiments applied a Greedy Algorithm and
an Additional Greedy Algorithm based on code coverage.

In [22], Wong et al. presented a way to combine test suite
minimization and prioritization to select test cases, accord-
ing to the criterion of “increasing cost per additional
coverage.” Greedy Algorithms were also used and were
implemented in a tool named ATAC [22].

In [20], Srivastava and Thiagarajan studied a prioritiza-
tion technique based on the changes that have been made to
the program. Their technique orders the given test cases to
maximally cover the affected parts of the program so that
defects are likely to be found quickly and inexpensively. A
test prioritization system, Echelon, that uses a Greedy
Algorithm, was built based on this technique and it is
currently being integrated into the Microsoft software
development process. Echelon has been tested on large
Microsoft product binaries and it has proved to be effective
in ordering tests based on changes between two program
versions.

The use of Greedy Algorithms for test case prioritization
has been widely studied. However, no previous work has
investigated the use of metaheuristic and evolutionary
algorithms. This is thus the first paper to study metaheur-
istic and evolutionary algorithms empirically for test case
prioritization for regression testing.

5 CONCLUSIONS AND FUTURE WORK

This paper described five algorithms for the sequencing
problem in test case prioritization for regression testing. It
presented the results of an empirical study that investigated
their relative effectiveness.

The data and analysis indicate that the Greedy Algo-
rithm performs much worse than Additional Greedy,
2-Optimal, and Genetic Algorithms overall. Also, the
2-Optimal Algorithm overcomes the weakness of the
Greedy Algorithm and Additional Greedy Algorithm (see
Table 1) referred to by previous authors. However, the
experiments indicate that, in terms of effectiveness, there is
no significant difference between the performance of the
2-Optimal and Additional Greedy Algorithms. This sug-
gests that, where applicable, the cheaper-to-implement-and-
execute Additional Greedy Algorithm should be used.

The choice of coverage criterion does not affect the
efficiency of algorithms for the test case prioritization
problem. The size of the test suite determines the size of
the search space, thereby affecting the complexity of the test
case prioritization problem. The size of the program does

not have a direct effect, but increases the difficulty of
computing fitness values.

Studies regarding the performance of metaheuristic
algorithms led to several conclusions that have practical
ramifications. The results produced by Hill Climbing show
that the nature of the fitness landscape is multimodal. The
results produced by the Genetic Algorithm indicate that it is
not the best of the five considered in all cases, but that, in
most cases, the differences between the performance and
that of the Greedy approach is not significant. However, an
analysis of the fitness function shows that there are
situations in which it is important to consider the entire
ordering and, for such cases, Greedy Algorithms are
unlikely to be appropriate (see Fig. 5). Given their general-
ity, the fact that Genetic Algorithms perform so well is
cause for encouragement.

The criteria studied were based on code coverage, which
is different from criteria based on fault detection. The
application of metaheuristic algorithms to fault detection-
based prioritization problems could possibly yield different
results, but this is a topic for future work.

APPENDIX

See Table 13.
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TABLE 13
The Summary Results of the ANOVA Analysis per Program

with Different Coverage Criteria and Size of Test Suite
(Corresponding to Each Subfigure in Fig. 3 and Fig. 4)

“algorithm1:algorithm2” stands for their being no significant
difference between algorithm1 and algorithm2.
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