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Abstract This paper describes the design and development of two w0rld-class Lines of Ac­

tion game-playing programs: YL, a three time Computer Olympiad gold-medal 

winner, and MaNA, which has dorninated international e-mail correspondence 

play. The underlying design philosophy of the two programs is very different: 

the former emphasizes fast and efficient search, whereas the latter focuses on a 

sophisticated but relatively slow evaluation of each board position. In addition to 

providing a technical description of each program, we explore some long-standing 

questions on the trade-offs between search and knowledge. These experimen­

tal results confirm the conclusions made by earlier researchers in the domain of 

chess, thus showing that the trends are not game-specific. In particular, we see 

dirninishing retums with additional search depth, and observe that the knowledge 

level of a program has a significant impact on the results of such experiments. 
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1. Introduction 

One of the most important considerations when designing a strategic game­

playing program is the trade-off between know ledge and search. 

To decide on the best move continuation, programs typicallx perfonn a look­

ahead search, evaluate the positions at the leaves of the search tree, and then 

propagate those values back to the root using the minimax principle. A pro­

gram that uses a sophisticated but time-consuming board evaluation can more 

accurately determine the merit of each game-state visited, at the cost of sacri­

ficing some of the look-ahead depth. Conversely, a program that uses a faster 

but less sophisticated board evaluation method can perform a deeper search, 

improving its short-term tactica! ability. There is also compensation toward 

better knowledge, in that each additionallevel of search provides a more re­

fined approximation of the value of each preceding position. 

The trade-off between knowledge vs. search has spurred a considerable 

amount of research interest in the past, mainly for the game of chess (Schaeffer, 

1986; Berliner et al., 1990; Junghanns and Schaeffer, 1997; Heinz, 2000). This 
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paper provides further insights using the game of Lines of Action (LoXfor short) 

as a new test-bed. LoA is tactically and strategically complex, and programs 

can employ many of the advanced search techniques and enhancements used 

by successful chess programs. 

Two of the world's strongest LoA programs were developed hand-in-hand 

at the University of Alberta (Billings, 2000). One program, YL, developed by 

Yngvi Bjornsson, uses a very fast but somewhat restricted framework for board 

evaluation, allowing deep look-ahead. The other program, MONA, developed 

by Darse Billings, employs a relatively slow evaluation function resulting in 

shallower search, but with added features that provide a better assessment of 

each position encountered. This fundamental difference in design philosophy 

provides an opportunity to investigate the relative importance of knowledge 

versus search. 

The main contributions of this paper are: (a) descriptions of the design and 

cooperative development process of two high-performance game-playing pro­

grams, and (b) experimental investigation of some general trade-offs between 

search and knowledge, using a domain that is different from chess, but belongs 

to the same class of games. 

The next section briefly presents the rules ofLoA and summarizes important 

strategic game concepts to be considered by programs. Section 3 describes 

some of the many benefits of the co-development process. Sections 4 and 5 

provide detailed technical descriptions of YL and MoNA, respectively. Section 

6 provides empirica! results and some knowledge versus search experiments 

using the two programs. Finally, Section 7 summarizes the content and states 

conclusions. 

2. Lines of Action 

Lines of Action was invented by Claude Soucie in the early 1960s, and 

was popularized by Sid Sackson in his book "A Gamut of Games" (Sackson, 

1969). The simple, elegant rules are now presented, along wifu an overview 

of some of the important strategic concepts that a high-performance program 

might consider incorporating. 

2.1 Rules 

Objective. The object of the game is to move ali of your pieces into a single 

connected group. Pieces may be connected diagonally or orthogonally. The 

leftmost diagram in Figure 1 shows the initial board layout. 

Movement. Black moves first, and players alternate, moving one piece per 

turn. A piece may move horizontally, vertically, or diagonally. Along a given 

line, the distance a piece moves is the same as the total number of pieces (of 

both colours) on that line. You may jump over your own pieces, but not your 
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Figure 1. Initial LoA board layout, blockades, and mate-threat examples. 

opponent's pieces. You may land on and capture your opponent's pieces, which 

are then removed from the game. You may not land on your own pieces. 

2.2 Strategic Concepts 

In chess and checkers, having more pieces than the opponent is highly corre­

lated with winning, and this property outweighs ali other factors in importance. 

In contrast, there is no single dominant feature in the assessment of LoA po­

sitions. As such, it is quite common to make concessions in one positional 

factor in order to strengthen another, and strong programs are frequently able to 

manage these trade-offs in order to maximize several features simultaneously. 

We now list some of the important principles of LoA encountered during the 

development of MONA and YL. 

Material. In LoA, there is no clear consensus on whether having extra 

material is advantageous, neutra!, or detrimental. Since the gaal of the game 

is to connect ali of ones pieces into a single group, having fewer pieces can 

require less work to fuliy coordinate them. In contrast, having more pieces 

might make it easier to form one large group, and might also enable better 

control of the board, preventing the opponent from connecting their pieces. 

It may be the case that having more pieces than the opponent only offers an 

indirect advantage, by increasing the value of other properties tnentioned in this 

section. Those indirect advantages may exceed the added liability of managing 

the extra pieces, yielding a net positive effect for material advantage. However, 

since those other attributes are being measured separately, the weight assigned 

to material difference may be zero, or negative. 

Mobility. As with many other board games, it is normaliy advantageous 

to have a position with many options and possible continuations. Increased 

mobility generaliy entails increased flexibility. Simply having many moves 

available can make it easier for a player to develop their own plans, interfere 

with the opponent's plans, and defend against an opponent's immediate threats. 

Moreover, several types of moves can be identified, such as: moves that capture 

a piece, moves toward or away from the center of the board, moves that connect 

aur pieces, or moves that cut an opponent group. Bach of the distinct move types 
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can then be evaluated differently. Having the move (i.e., being the next player 

to move in a given position) can also be treated as a distinct characteristic of 

the position. The value of this privilege depends on other positional properties, 

and generally increases toward the end of the game. 

Centrality. In LoA, controlling the center of the board is very important. 

This can be accomplished by direct occupation of the more central squares, or 

by tactica! counter-measures that prevent the opponent from occupying those 

squares. The center is particularly important in view of the standard starting 

position. Since each side must unite pieces from opposite sides of the board, 

seizing control of the center gains the shortest route to unification, while simul­

taneously interfering with the opponent's connection. Having a bias toward 

centrality also has added pragmatic value, giving the program a sound high­

level "plan" of bringing its pieces together in the middle of the board. 

Piece Coordination. There are severa! identifiable concepts under the broad 

heading of piece coordination. Bach of these is normally with respect to the 

pieces of the same colour. First, we say two pieces are connected if they 

are orthogonally or diagonally adjacent to each other. A group is a strongly 

connected subset of pieces (the abject of the game being to forma single group ). 

A program may designate a main group to be the largest group, or perhaps the 

most central group. The concept of connectivity can be measured as the number 

of pairwise connections between pieces; or the total number of groups; or the 

number of pieces that are not connected to the main group. The proximity 

or cohesion is a measure of distance or scatteredness of a player's pieces. An 

outlier is an isolated piece (typically at the edge of the board) that needs tobe 

brought into connection with or proximity of the main group, or the majority 

of like-coloured pieces. 

Obstructions. An opponent's piece or group of pieces may constitute an 

obstruction to connection. A piece may block one direction of movement of 

an enemy piece. A strong defensive formation is a blockade albng the second 

rank or file, which greatly restricts the mobility of enemy pieces along the edge, 

and disconnects them from other like-coloured pieces. The effectiveness of an 

enemy blockade can be greatly reduced by having a foothold, which is a piece 

on the second rank that extends the edge group toward the center, and creates 

a defect in the blockade wall. The center diagram in Figure 1 shows a strong 

blockade for White along the tap edge, and a White foothold (labeled '1 ') in 

Black's blockade on the left. 

Mate Threats. A mate threat is a threat to win the game on the next move, 

by connecting all pieces into one group. In general, mate threats are devastating 

in LoA, since the opponent typically must weaken their position considerably to 

answer the threat. Given the rather highly constrained movement options, this 
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will commonly lead to subsequent mate threats, until finally there is no adequate 

response. The rightmost diagram in Figure 1 shows an example position where 

a long sequence of mate threats secures Black a win. Since they frequently lead 

to forced winning sequences, it can be worthwhile to detect statically certain 

types of mate threats, and give a large evaluation bonus for each one present. 

This property of LoA also encourages special-purpose algorithms near the end 

of the game, such as threat-based search; or the proof-number techniques seen 

in Sakuta et al. (2002) and Winands, Uiterwijk, and Van den Herik (2002). 

3. Co-development, Co-evolution 

The development of both YL and MONA began in February of 2000. Since 

YL was expected tobe clearly superior in terms of engineering and search speed, 

the author of MONA decided early on to focus on having superior knowledge 

in the form of a better-informed evaluation function. This turned out to be a 

fortuitous decision, as the contrasting styles of play enabled both sides to learn 

far more from friendly contests than would have otherwise been possible, and 

the progress of both programs was greatly accelerated as a result. 

YL is based on a very fast framework, and its evaluation function is fully 

incremental, meaning that it has very little work to do at eaclţ leaf node. In con­

trast, MoN A has a work-intensive evaluation function applied to each leaf node. 

Overall, YL is about 22 times faster than MONAin terms ofpositions processed 

per second. In compensation, MoNA evaluates each position somewhat more 

thoroughly. 

To build a high-performance search engine like YL, the philosophy is: "start 

fast and stay fast", meaning that speed considerations and optirnizations must 

be made at every stage of development. However, it can become increasingly 

difficult to make significant changes to the highly constrained architecture. In 

contrast, the design of MONA is basic and flexible, so new features can be 

added without difficulty. Since the evaluation function is alrtrady very costly, 

new attributes can be added that are rather expensive to compute, with only a 

minimal impact on overall speed performance. One might say "if you're slow 

anyway, take advantage of it!". 

These fundamental differences in approach significantly enhanced the co­

evolution of YL and MoNA. A much broader range of positions were explored 

than would been seen with self-play matches, and critica! weaknesses in each 

program were quickly revealed when playing into the other ptogram's strength. 

The advantages of cooperative development do not end there. Since evaluation 

features are easy to add and experiment with in MoNA, the slower program 

could be used as a proving ground for new ideas. If certain properties prove 

to be extremely valuable, they could then warrant the more difficult changes in 

YL. One example of this cross-fertilization occurred with "footholds" (a piece 
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on the second rank that diminishes the effect of an opponent blockade, as shown 

in Figure 1, and discussed in Section 5). This feature turned outto be so valuable 

in practice that a special effort was made to detect similar pattems within the 

framework of YL's fast evaluation function. The co-evolution worked in both 

directions. For example, games that MONA lost to YL due to short-term tactical 

errors suggested game-specific knowledge that could be added to reduce the 

risk associated with that weakness. As a result, some of MONA's knowledge 

is designed to compensate directly for the shallower search. 

The development of MoNA and YL was greatly facilitated by two e-mail 

games played against Kerry Handscomb ( one of the strongest LoA players in 

the world, having tied for first place in the 2000 e-mail championship). Early 

versions of MoNA and YL combined efforts against him, choosing the move 

with highest average score. The lessons leamed from those games, and Kerry's 

commentary, resulted in major improvements to the evaluation functions of 

both programs. Kerry also wrote a series of informative articles on LoA for 

the magazine Abstract Games (Handscomb, 2003) (see issues 1-3, and others). 

Another valuable source of LoA domain knowledge was Dave Dyer's (2003) 

excellent website for the game, which includes the game records of past e-mail 

championships. For other resources, see the MONA and YL webpage (Billings, 

2000). 

4. YL 

This section describes the architecture of YL, including the underlying 

framework, the board-evaluation scheme, and the search algorithm. 

4.1 Line Decomposition 

The program evaluates board positions line by line - that is, each file, rank, 

and diagonal is evaluated independently. The score of a board position is the 

sum of the scores of its lines. The board is decomposed into 32,lines as shown 

in Figure 2. The first diagram pictures the 8 files, the second diagram the 

8 ranks. The two remaining diagrams show the diagonals, which are paired 

to form 8-square-long diagonals, hereafter referred to as extended diagonals. 

This pairing is done to achieve a more compact representation. An extended 

diagonal is still considered as two distinct diagonals for evaluation purposes. 

Evaluating the lines independently makes it possible to use a fast table look­

up evaluation scheme to score the board during game play. For each line there 

are only 38 = 6561 possible different piece configurations. The total number 

of configurations (32 x 6561) is thus small enough tobe evaluated beforehand. 

This evaluation is done at program startup and stored in tables residing in 

memory, called evaluation tables. The game is divided into three game phases 
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Figure 2. Example lines: file, rank, and extended diagonals. 

(beginning, middle, and endgame) and different evaluation tables are used for 

eachphase. 

The program represents a board position intemally using integers, one for 

each line. Each integer takes a value in the range O to 6560, representing the 

current piece configuration for the line. Piece configuration$ are mapped into 

integers as: 

where Si identifies the occupant of the i-th square on the line (empty = O, 

black = 1, and white = 2). These piece-configuration numbers are updated 

incrementally as moves are made on the board. Removing' or adding a piece 

from/to a square affects only the configuration of the four lines intersecting the 

affected square. One benefit of this representation is that the piece-configuration 

numbers can be used directly as indicies into the evaluation tables. Evaluating 

a board position is then simply a matter of looking up the merit of each line 

in the evaluation table. This evaluation is also done incrementally by keeping 

track of the current board score, and adjusting it by the evaluation differences 

of only the line configurations that changed during a move. This requires only 

a few table lookups. This efficient way of representing and evaluating boards 

is not new. Similar board representations are used by some high-performance 

Othello programs (Buro, 1999). 

4.2 Evaluation Function 

The main attraction of the aforementioned line-by-line evaluation scheme is 

its efficiency. On the down-side, the type of features that can be expressed within 

this framework are necessarily somewhat restricted. However, several impor­

tant features can be measured precisely (including material· balance, number 

of connections, and piece mobility), whereas other features must be approx­

imated (such as proximity, obstruction, and blockage effectiveness). Where 

such approximations are not sufficient we use special non-line-based pattems. 

Material. YL has a slight dislike for being up material, increasing as the game 

progresses. Note that this does not necessarily imply that it is bad to capture 

pieces. Rather, YL captures pieces only if it gives positional advantages. 
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Figure 3. Example of a blockage penalty, and proximity bounding boxes. 

Mobility. The program distinguishes between four types of moves (in de­

creasing order of importance): capture moves, moves that establish a connec­

tion, regular moves, and moves that disconnect own piece formation. Note that 

a single move can belong to more than one category. The merit of such a move 

is the combined merit from all relevant categories. Also, the side to move gets 

a constant bonus. 

Centrality. A bonus is given for both direct and indirect center control; the 

more centralized a piece is the higher bonus it gets. Pieces sitting on the edge 

of the board are penalized, although somewhat less if they can move towards 

the center. 

Piece coordination. YL measures connectivity by summing the number of 

neighbours of the same colour over all pieces on the board. It also measures 

line-wise piece proximity (how far apart pieces lie on a line). However, ex­

perience showed this measure to be insufficient on its own. Therefore, before 

the Computer Olympiad in 2002, a new non-line-based proximity feature was 

added. It keeps track of the area (number of squares) of the minimal bounding 

box needed to enclose pieces of each side; the smaller the box, the higher bonus 

a side gets. These boxes also encourage outliers to start gravitating toward the 

rest of the pieces. In Figure 3, the diagram on the right shows the bounding 

boxes for both sides. 

The program bas no notion of how many groups there are on the board 

except, of course, detecting the "single group" end-of-game condition. A single 

remaining group is detected by doing a breadth-first search over all neighbours 

of the same colour, starting with the piece last moved. If the number of pieces 

visited is equal to the number of pieces a player bas, we know the pieces form 

a single group (in case of a capture move we need also to check end-of-game 

condition for the opposing side). Detecting the single-group condition initially 

slowed the program down significantly. However, by keeping two bitmasks for 

each side indicating which columns and rows its pieces occupy, we can cheaply 

check for necessary conditions of a single group being formed, in which case 

we then do the more expensive connection test. In practice, this trick eliminates 

most calls to the breadth-first search. These bitmasks are also used to efficiently 

keep track of the proximity bounding boxes. 



Search and Knowledge in Lines of Action 239 

Obstructions. YL gives additional penalty to edge pieces that are fully or 

partially blocked by the opponent's pieces. For example, in the diagram on 

the left in Figure 3 both white pieces are penalized. The number of penalty 

points is determined by the length of the blocked lines: piece 1 gets in total 11 

penalty points (shown with an '1 ') whereas piece 2 is only penalized by only 1 

point (shown with a '2'). However, this scheme overestimates the penalty for 

blockades with footholds (the blockade is less effective because the edge pieces 

are connected to the outside via the foothold piece). A line-by-line evaluation 

scheme is unable to detect such situations. Footholds do occur frequently 

enough in practice to warrant a special treatment. Thus a special configuration 

pattern is used in YL that looks at the second file/rank in conjunction with the 

first, allowing the program to detect whether blocked edge pieces are connected 

to the outside and then scale down the blockade penalty appropriately. 

YL also detects (along lines) how many opposite coloured pieces there are 

in between one own pieces, slightly penalizing such obstructions. 

4.3 Evaluation Weights 

Bach line is evaluated using the aforementioned features that are then com­

bined into a single line value using a linear function. A lţnear function was 

chosen somewhat arbitrary. In practice we could equally well have used a more 

complex non-linear function without sacrificing performance. However, we 

have not experimented with such altematives. 

Instead of hand-tuning the evaluation weights, we initially used a temporal­

difference learning method for determining the relative importance of each eval­

uation feature. This was a sensible decision given the limited expert knowledge 

about the game, and allowed us to obtain a initial set of weights superior to what 

we could come up with by hand. A version of the program using the learned 

weights won the gold-medal at the Computer Olympiad held in London in 2000. 

However, further tuning of the weights (mainly based on observations from tour­

nament play) and, in particular, introduction of new evaluation features have 

since then significantly increased the program's playing strength. 

4.4 Search 

YL uses a traditional alpha-beta-based search algorithm (more specifically 

Principal Variation Search (Marsland, 1982)). The algorithm is augmented 

with many state-of-the-art enhancements, such as: iterative deepening, aspi­

ration windows, a two-level transposition table, extensive automatically built 

opening book, repetition detection, and thinking on opponent's time. The pro­

gram also employs two well-documented speculative pruning schemes: null­

move (Beai, 1989) and multi-cut pruning (Bjomsson and Marsland, 2001). 
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As mentioned earlier, evaluation of game positions is done incrementally 

using table lookups. Move generation is also relatively fast, in part because 

legal moves for ali possible line configurations are pre-calculated at program 

startup. The program employs both static (based on evaluation-table values) and 

dynamic (transposition-table move, kilier-moves and history-heuristic) move­

ordering techniques. A hierarchical move-ordering approach is used: in the 

upper levels of the tree (closer to the root) a more sophisticated move order­

ing is employed whereas at the lower levels a faster, although somewhat less 

sophisticated, ordering mechanism is used. Ali together, this results in a very 

fast and efficient search (the program typically explores close to 1.5 million 

positions-per-second in the opening on a 2.4GHz P4 PC). 

5. Mona 

This section describes the search engine and the evaluation function of 

MONA. As stated before, emphasis is on evaluation. 

5.1 Search Engine Components 

MONA is a fairly basic alpha-beta search program, using Principle Varia­

tion Search. The data structures for board representation, evaluation features, 

and move lists are simple integer arrays. Most of the weli-established search 

enhancements are used, such as iterative deepening, transposition tables (with 

embellished Zobrist hashing), and the nuli-move heuristic. 

Since move generation is used in the leaf-level evaluation function as weli as 

the search process, the program spends a significant fraction of its execution time 

in this procedure. An optimization calied move gathering was implemented, 

where aii possible moves for each line configuration (row, column, or dia:gonal) 

are pre-computed, and those short move lists are concatenated at runtime. This 

resulted in a 40% speed-up to the program. A further 200-300% speed-up might 

be possible by incrementally carrying the move list indices (the new bottieneck), 

but this was not done prior to the program's retirement in 2001. 

Good move ordering is accomplished with a two-level hierarchy. First, the 

transposition table move is considered (i.e., the move which produced the best 

score the previous time the position was encountered, typicaliy in the previous 

iteration). The second level is the default static move ordering, which ranks 

the general desirability of each move. A move toward the center of the board is 

rated higher (specificaliy, the centrality of the destination square), and capture 

moves are given a small bonus. Since this ranking is over a fixed interval (2-

16), a linear time Radix sort is used to order the move list. This default move 

ranking is built into the move generator to reduce overhead. Move ordering 

with kilier moves and the history heuristic are available as an option, but do not 

significantly increase program performance. 
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Since a prominent odd-even effect is observed in evaluations, and since mate 

threat detection (described below) only occurs on odd-ply searches, MoNA 

iterates 2-ply ata time. The courser granularity of iterative deepening results in 

an inefficient use of time when using a fixed-time-per-move time control, but 

this is partially offset by the savings from not doing even-numbered iterations. 

5.2 Evaluation Function Components 

The strength of MONA lies in the evaluation function, which attempts to as­

sess several properties of strategic importance, in the hope that this information 

will more than compensate for the overhead added by the relatively expensive 

computations. 

The most basic evaluation simply determines whether the position is won, 

lost, drawn (by simultaneous connection), or unknown. This is done with a low­

overhead breadth-first search to identify each group. Ifthere is only one group of 

a given colour, then the game isover. The most important components of the full 

evaluation functionare centrality, mobility, thickness, and mate threats. Useful 

refinements consider outlier mobility, blockades, footholds, outlier blocking, 

the progress toward connectivity, and the value of the move. 

In most cases, it is the net difference between Black pieces and White pieces 

that is of interest. For example, the program would willingly reduce its own 

mobility provided that the opponent's mobility is reduced by an even greater 

amount. For the most part the evaluation is symmetric (with the exception of 

outlier mobility, and mate threats). 

Centrality. From a practica! programming point of view, centrality is more 

than just a feature - it can be thought of as an overall game plan. The other two 

most important features in MONA's evaluation function (mobility and thick­

ness) also have a significant centrality bias. This lends a degree of "harmony" 

to the evaluation, in that they are ali striving for mutually supportive goals, 

rather than being at odds with each other. And indeed, it is quite common to 

sacrifice some of one commodity in order to gain more of another, in a cyclic 

process that eventually reaches positions that are powerful on ali three counts. 

To quantify centrality, each square is assigned a weight corresponding to the 

sum of orthogonal distances from the nearest corner (the four corner squares 

having a weight of 2, up to the four center ~quares having a weight of 8). The 

net centrality is relative to the number of pieces remaining. Thus, a few pieces 

on squares near the center would have a higher average centrality than a large 

number of pieces scattered about the board. 

Mobility. A basic measure of mobility would simply count the number of 

moves that can be made. However, some moves are generally better than others. 

As noted above, the static move ordering value is determined by the destination 

centrality, and whether the move captures an enemy piece. By summing over 
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those values, tbe mobility function is naturally biased toward tbe moves tbat 

are likely to be useful. Tbis is an absolute measure, so baving more pieces, and 

tbus more moves, is generally favourable. 

An interesting consequence results from giving capture moves a greater 

weigbt. This actually discourages even exchanges, because baving tbe op­

tion to make a capture bas more value than actually making tbat capture. Tbus, 

all else being equal, the program favours building up the pressure on key squares 

ratber than releasing tbe tension througb an even excbange. Tbis has consider­

able practica! value, especially in play against bumans, because the computer 

program can bandle the extra burden of many complex continuations mucb 

better tban a human player. The cbance of tbe opponent making a fatal error 

is tbus increased in practice. Tbis principle is higbly analogous to tbe famous 

cbess adage "the threat is stronger tban tbe execution". 

Thickness. In general, "clumping" of pieces is desirable, and there is some 

value in baving redundant connections, preventing a group from being cut into 

two. However, we want to avoid baving groups that are "too beavy", thereby 

reducing its own mobility. 

The measure of connectivity used by MoNA is called center-thickness, 

or simply thickness. A straigbt-forward measure would count the number of 

pairwise adjacent pieces on the board. Tbe embellisbment used is to weigbt 

eacb of those pairs according to the centrality of tbe squares they occupy. This 

is another cumulative measure, so baving more pieces is generally favourable. 

MoNA uses a zero weigbt for tbe material factor, but stiU exhibits a preference 

for extra pieces, based on mobility and thickness. 

It sbould be clear tbat tbe centrality biases built into mobility and thickness 

will generaUy encourage pieces tobe moved away from the edge; and for groups 

to be formed in the center, if possible. However, this is not a beavy-banded 

bias, and cannot be easily obtained against quality opposition. It is simply a 

preference over otber types of moves and piece formations. The relative ,weights 

of these three evaluation terms were set to bave rougbly equa1 contributions, 

with a sligbt preference for mobility, since it usuaUy bas a bit more pragmatic 

value. Very little was done in the way of tuning, and it is unknown if tbe 

program's performance could be enbanced significantly with more thorougb 

experimentation. 

Mate Threats. MONA computes many useful properties for eacb position. 

AU groups are identified with the breadth-first searcb described previously. 

MoNA designates tbe largest group tobe the main group (cboosing arbitrarily 

among equals). 

Since tbe fuU move list is also available, it is possible to selectively do a cbeck 

for tbe case wbere a single remaining outlier bas a move tbat will put it adjacent 

to tbe main group, whicb constitutes an immediate threat to win the game. 
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This particular type of mate threat is the most common in practice, and can be 

detected without a full extra ply of look-ahead. While it is possible to write a 

special-purpose mate solver that looks only at direct threats and responses, we 

found that most of that utility was accomplished by simply knowing that a threat 

exists. MoNA assigns a huge bonus for each such threat, which dominates all 

other evaluation terms. Thus it will always choose the best move among those 

that contain a threat ( or highest number of multiple threats ). 

This policy is something of a gamble, since the threat may not actually lead 

to a win. However, to date we have only seen two cases where a winning 

position was lost by chasing a specious mate threat (both were against YL and, 

unfortunately, one in an important game). 

Outlier Mobility. Given the rich information maintained about the board 

position, MONA can determine the individual mobility for every piece that is 

not part ofthe main group. She applies a non-linear penalty to the least mobile 

outlier for each side. Only the single worst outlier is considered. The search will 

naturally uncover combinations of moves that improve more than one outlier. 

The weights for this feature are heavily skewed, making our worst outlier 

more important than the opponent's worst outlier. The reasoning is that we do 

not want to invest a lot of energy (and evaluation points) on trying to trap an 

opponent piece that might easily escape, leaving us in a weakened position. 

Conversely, it is also risky to allow our own outliers to be trapped, since there 

may be no effective way to solve the problem (especially against humans, who 

can easily visualize such futures). The program is careful to avoid losing a 

game due to such traps, while preferring to build up steadily a strong position 

rather than trying to trap the opponent. This is one of several examples where 

the evaluation is consistent with the natural strengths and weaknesses of the 

program. 

Blockades and Footholds. MoNA's evaluation function expends a lot of 

effort on the analysis ofblockades along the second rank (see center Figure 1). 

These formations arise naturally from the standard starting position, even when 

using only the basic evaluation knowledge. The special purpose evaluation 

assesses the effectiveness of each blockade. Bach additional blocking piece has 

a multiplicative effect on the penalty, while the presence of a foothold nullifies 

it almost completely. The program also di~tinguishes between a blockade of 

the main group and a blockade of outliers, with the latter being more serious. 

Other Features. Sin ce the character of LoA positions change radically dur­

ing the course of the game, it is desirable to alter the overall plan and assessment 

to match the prevailing conditions. As a case in point, even the most refined 

positional evaluation is of little use in the final stage of the game - the only 

relevant question is whether we can form a single connected group before the 

opponent does. Empirically, it was found that the value of having the move 
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increases steadily toward the end of the game, when having the initiative is 

usually decisive. 

The progress toward game completion is actually measured in a variety of 

ways. One of the simplest is to count the number of remaining pieces that are 

not part of the main group. A bonus is given for having two remaining outliers, 

and a larger bonus for having only one (since mate threats are commonly on 

the horizon). However, it is dangerous to try to converge too quickly, as it may 

fail tactically after all of the positional advantage bas been sacrificed. 

Many of the strategic properties perceived by MoNA's evaluation function 

cannot possibly be uncovered within a practica! search horizon. For example, a 

piece trapped behind a wall of enemy pieces can be identified by static analysis, 

but the consequences of having that piece trapped might not begin to be felt 

until many moves in the future. MONA can add this type ofknowledge without 

much down-side, whereas it is difficult to detine within the fralnework of YL, 

and might be prohibitively expensive in any case (resulting in a net decrease in 

performance ). 

6. Empirical Results and Experiments 

In this section we first provide insights into the playing strength of YL and 

MONA by reviewing tournament results. Secondly, we investigate the trade­

offs of knowledge versus search in the game of LoA both via self-play and by 

matching the two programs against each other. 

6.1 Over-The-Board Competitions 

After a series of mutually beneficia! friendly matches against each other, YL 

and MONA made their competitive debut in the University of Alberta Lines of 

Action Open, in April 2000 (Billings, 2002). The tournament was a double 

round-robin format with a time control of 20 seconds per move. YL won with 

a perfect 22-0 score, and MoNA finished secondat 19-3. 

In August 2000, both programs competed in the Fifth Computer Olympiad 

in London, England. YL won the gold medal, and MoNA won the silver. 

Although MONA lost a critica! game to YL on time only seconds before proving 

a win, both authors believed YL to be the stronger program at the 30-minute 

per game time constraints. The program MIA, by Mark Winands at University 

of Maastricht, took the bronze medal. YL successfully defended its title at the 

Sixth Computer Olympiad in 2001 ahead of MIA-II, and again won the gold 

medal at the Seventh Computer Olympiad in 2002 ahead of a steadily improving 

MIA-III (Bjomsson and Winands, 2002). MONA did not compete in either 

event. In July 2002, a faur game friendly match was played between MIA-III 

and the original MoNA from 2000. Bach program won two games, and based 

on further analysis ofthe moves played, it appeared that MIA-III had largely 

closed the gap that previously existed. 
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Rank Rating Colour Name (Country) 

1 2763 MONA (Canada) 25 wins, O draws, O losses 

3 2374 w Jorge Gomez Arrausi (Spain) 

4 2202 WB CI aude Chaunier (France) 

5 2192 BW Kerry Handscomb (Canada) 

6 2102 w Uli Vogel (Germany) 

7 2086 w Ragnar Wikman (Finland) 

8 2062 w Hartmut Thordsen (Germany) 

10 1999 w Dave Dyer (USA) 

11 1981 BB Patrick Duff (USA) 

13 1919 B John Bosley (New Zealand) 

18 1871 w Fred Kok (Netherlands) 

Table 1. MoNA's e-mail resu1ts against the top human players. 

6.2 E-mail Correspondence Competitions 

At deeper search depths, MONA's strength increases dramatically. However, 
due to the expensive evaluation function, it can tak:e a few hours to complete 
11-ply early in the game, or 13-ply in the middlegame. This mak:es MoNA 
particularly well-suited to e-mail correspondence play, with a pace of roughly 
one move per day. 

Beginning in the summer of2000, MONA began playing on Richard's PBeM 
server (a popular play-by-email service) against many of the strongest known 
human players, winning every game played. MoNA then won the Fifth An­
nual E-mail Toumament (the defacto world championship) with a perfect 14-0 

record, including wins over most of the best LoA players in the world. 
Table 1 lists some of the e-mail games played by MONA from May 2000 

to May 2001. The chess-style ratings were calculated independently, using 
iterative re-computation over a database of more than 1000 PBeM LoA games 
until reaching convergence. The #2 rated correspondence player, at 2417, is 
the program MIA, which bas only lost to the top human player, Jorge Gomez 
Arrausi. Jorge Gomez Arrausi won the 2000 e-mail championship, and was the 
top finishing human again in 2001, losing only to MoNA. Severa! ofthe players 
Iisted are former LoA medalists at the Mind Sports Olympiad, including Fred 
Kok (gold twice), Hartmut Thordsen (gold), Ragnar Wikman (silver twice), and 
John Bosley (bronze). 

MoNA had the second move in most of the games against the top players, 
which is believed to be a larger disadvantage than having the Black pieces in 
chess. MONA also used considerably less time than her human opponents. In 
the final round ofthe 2001 e-mail tournament, MONA used an average elapsed 

time of 3.2 days per game, while her opposition used an average of 42.7 days 
per game against her. Based on the perfect record against elite competition, it is 
safe to conclude that the playing strength of MONA exceeds that of ali human 
players by a considerable margin. However, it should be noted that LoA is 
still a young game, growing in popularity, and it is possible that "grandmaster" 
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calibre players could emerge in the future, giving programs a tougher challenge 

than has been seen to date. Programs will also continue to improve, and as 

they help humans to deepen their understanding of the game, that in turn could 

provide new knowledge tobe added to future programs. 

In Apri1200 1, an 8-game match was played between older versions of M ON A 

and YL, using the correspondence time control of 8 hours per move. Bach game 

took roughly one week to complete. It is likely that these games constituted the 

highest level of play ever attained in LoA at that time. MoNA won the match 

convincingly, with 7 wins and lloss. We intend to repeat this experiment using 

a more recent (and much stronger) version of YL. 

6.3 Knowledge versus Search Experiments 

In general, the farther a program looks ahead, the better it plays. This is the 

main justification for designing fast-searching game-playing programs. Histor­

ically, deeper search in chess programs bas always led to significant improve­

ments in performance. However, experimental studies have demonstrated di­

minishing returns with additional search depth (Junghanns and Schaeffer, 1997; 

Heinz, 2001). 

We are also interested in investigating the importance of knowledge as LoA 

programs are given more time to think, since this will be a good predictor of 

how faster hardware platforms in the future will affect a program's playing 

strength. Traditionally, such investigations have involved a series of self-play 

experiments. 

Constant Knowledge (Self-play) Experiments. First we repeated the most 

common self-play experiments, using YL and MONA. The results of those 

matches are shown on the left in Table 2. Bach data point is the outcome 

of a 200-game match. A standardized set of 100 3-ply openings was defined 

(available upon request), and each player played both sides of each opening. 

As in chess, searching deeply is obviously important: the deeper searching 

program invariably outperforms the shallower searching program by a consid­

erable margin. However, as the search depth increases, the winning margin 

decreases, supporting the aforementioned experimental results found in the do­

main of chess. 

Also of interest is that YL appears to ben,efit more from the deeper search 

than M ON A. As noted in previous discussion, some of the knowledge in M ON A 

Depth YLvsYL MONAVSMONA 

Time(sec) YLvsYLOl YLvsMONA 5 vs 7 89.75 79.50 

2 77.50 81.00 7 vs 9 85.75 78.00 

8 79.75 79.25 9 vs 11 79.75 72.50 

32 83.25 80.25 11 vs 13 79.00 -
128 81.00 65.75 13 vs 15 72.75 -

Table 2. Fixed and variab1e know1edge experiments. 
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directly compensates for the shallower search; whereas YL must depend on the 

deeper search to actually witness certain short-term tactics, refining its minimax 

evaluation of the position. The results of 200-game matches alone are not 

conclusive, but the same trend has been observed for other experiments as well. 

Varying Knowledge Experiments. The self-play experimental setup only 

shows the benefits of additional search when playing against a very similar 

program. This does not address the possible effects of knowledge. The exper­

iments reported above might be misinterpreted to infer that YL would benefit 

more than MoNA from faster hardware- the exact opposite is true! 

To test the knowledge differences directly, YL was also played against the 

2001 version, labeled YLOl. The more recent version was greatly improved 

with the addition of severa! types of knowledge and evaluation features, but 

the two YL programs are almost identica! in search capacity, due to the pre­

calculated evaluation tables described earlier. Although MONA bas not un­

dergone any significant changes since the 2000 Computer Olympiad, it is still 

regarded to have the best-informed evaluation function of the three programs. 

The results of those matches are shown to the right in Table 2. At shorter 

time controls, YL outperforms both YLOl and MoNA by a similar winning 

margin. As the time controls get longer, YL continues to outperform YLOl at 

a comparable win rate, indicating that the improvements in kllow ledge ( the only 

significant difference between the two programs) continue to pay dividends as 

search depth increases. 

However, the win rate against MONA drops off dramatically once the latter 

is given at least two minutes per move, despite the fact that YL continues to 

outsearch MONA by almost 3-ply on average. (This trend continues at longer 

time controls, but those experiments were not complete and are not shown here). 

Presumably, the fast search engine is gaining less and less from deeper search, 

while the knowledge advantage continues to provide sustainable benefits. 

Further evidence is seen in matches between MONA and YL with equal 

fixed depths (using comparable sets of search enhancements). Whereas MONA 

won about 55% of games at 5-ply, 7-ply, and 9-ply (54.50%, 55.25%, and 

56.00%, respectively), her win rate increased to 71.00% when searching 11-ply 

permove. 

The implication of these observations is that faster hardware platforms do 

indeed benefit knowledge-~ich programs more than fast searchers. This in turn 

suggests that when developing strategic game-playing programs, time invested 

on improving the program's board evaluation will generally pay greater div­

idends in the long run than effort spent on search improvements (especially 

in view of the ever increasing difficulty in obtaining significant improvements 

in search efficiency). Similar behaviour has been observed in chess programs 

(Berliner et al., 1990). 
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7. Conclusions 

We have revisited some long-standing questions regarding the ro les of search 

and knowledge in high-performance game-playing programs, using two cham­

pion Lines of Action programs which emphasize different aspects of these 

contrasting approaches. Although the experiments are far from exhaustive, the 

results obtained so far are entirely consistent with previous studies for the game 

of chess. This supports the view that these are general phenomena, rather than 

game-specific. 

By considering the effects of the knowledge level of game-playing programs 

over increasing search depths, it is possible to get a glimpse of what willlikely 

be seen in the future. Although it is clear that search depth is and will continue to 

be very important, there are definite indications that increasing the knowledge 

holds the greater promise for lasting improvements in perforffiance. 
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