
SEARCHAND KNOWLEDGE IN LINES OF ACTION

D. Billings and Y. Bjomsson
Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada

{darse,yngvi}@cs.ualberta.ca, http://www.cs.ualberta.ca/

Abstract This paper describes the design and development of two w0rld-class Lines of Ac­

tion game-playing programs: YL, a three time Computer Olympiad gold-medal

winner, and MaNA, which has dorninated international e-mail correspondence

play. The underlying design philosophy of the two programs is very different:

the former emphasizes fast and efficient search, whereas the latter focuses on a

sophisticated but relatively slow evaluation of each board position. In addition to

providing a technical description of each program, we explore some long-standing

questions on the trade-offs between search and knowledge. These experimen­

tal results confirm the conclusions made by earlier researchers in the domain of

chess, thus showing that the trends are not game-specific. In particular, we see

dirninishing retums with additional search depth, and observe that the knowledge

level of a program has a significant impact on the results of such experiments.

Keywords: Lines of Action, search, knowledge

1. Introduction

One of the most important considerations when designing a strategic game­

playing program is the trade-off between know ledge and search.

To decide on the best move continuation, programs typicallx perfonn a look­

ahead search, evaluate the positions at the leaves of the search tree, and then

propagate those values back to the root using the minimax principle. A pro­

gram that uses a sophisticated but time-consuming board evaluation can more

accurately determine the merit of each game-state visited, at the cost of sacri­

ficing some of the look-ahead depth. Conversely, a program that uses a faster

but less sophisticated board evaluation method can perform a deeper search,

improving its short-term tactica! ability. There is also compensation toward

better knowledge, in that each additionallevel of search provides a more re­

fined approximation of the value of each preceding position.

The trade-off between knowledge vs. search has spurred a considerable

amount of research interest in the past, mainly for the game of chess (Schaeffer,

1986; Berliner et al., 1990; Junghanns and Schaeffer, 1997; Heinz, 2000). This

H. J. Van Den Herik et al. (eds.), Advances in Computer Games

© IFIP International Federation for Information Processing 2004

232 D. Billings, Y. Bjărnsson

paper provides further insights using the game of Lines of Action (LoXfor short)

as a new test-bed. LoA is tactically and strategically complex, and programs

can employ many of the advanced search techniques and enhancements used

by successful chess programs.

Two of the world's strongest LoA programs were developed hand-in-hand

at the University of Alberta (Billings, 2000). One program, YL, developed by

Yngvi Bjornsson, uses a very fast but somewhat restricted framework for board

evaluation, allowing deep look-ahead. The other program, MONA, developed

by Darse Billings, employs a relatively slow evaluation function resulting in

shallower search, but with added features that provide a better assessment of

each position encountered. This fundamental difference in design philosophy

provides an opportunity to investigate the relative importance of knowledge

versus search.

The main contributions of this paper are: (a) descriptions of the design and

cooperative development process of two high-performance game-playing pro­

grams, and (b) experimental investigation of some general trade-offs between

search and knowledge, using a domain that is different from chess, but belongs

to the same class of games.

The next section briefly presents the rules ofLoA and summarizes important

strategic game concepts to be considered by programs. Section 3 describes

some of the many benefits of the co-development process. Sections 4 and 5

provide detailed technical descriptions of YL and MoNA, respectively. Section

6 provides empirica! results and some knowledge versus search experiments

using the two programs. Finally, Section 7 summarizes the content and states

conclusions.

2. Lines of Action

Lines of Action was invented by Claude Soucie in the early 1960s, and

was popularized by Sid Sackson in his book "A Gamut of Games" (Sackson,

1969). The simple, elegant rules are now presented, along wifu an overview

of some of the important strategic concepts that a high-performance program

might consider incorporating.

2.1 Rules

Objective. The object of the game is to move ali of your pieces into a single

connected group. Pieces may be connected diagonally or orthogonally. The

leftmost diagram in Figure 1 shows the initial board layout.

Movement. Black moves first, and players alternate, moving one piece per

turn. A piece may move horizontally, vertically, or diagonally. Along a given

line, the distance a piece moves is the same as the total number of pieces (of

both colours) on that line. You may jump over your own pieces, but not your

Search and Knowledge in Lines of Action 233

··= •
r•r• .. ,

1 1 •
Figure 1. Initial LoA board layout, blockades, and mate-threat examples.

opponent's pieces. You may land on and capture your opponent's pieces, which

are then removed from the game. You may not land on your own pieces.

2.2 Strategic Concepts

In chess and checkers, having more pieces than the opponent is highly corre­

lated with winning, and this property outweighs ali other factors in importance.

In contrast, there is no single dominant feature in the assessment of LoA po­

sitions. As such, it is quite common to make concessions in one positional

factor in order to strengthen another, and strong programs are frequently able to

manage these trade-offs in order to maximize several features simultaneously.

We now list some of the important principles of LoA encountered during the

development of MONA and YL.

Material. In LoA, there is no clear consensus on whether having extra

material is advantageous, neutra!, or detrimental. Since the gaal of the game

is to connect ali of ones pieces into a single group, having fewer pieces can

require less work to fuliy coordinate them. In contrast, having more pieces

might make it easier to form one large group, and might also enable better

control of the board, preventing the opponent from connecting their pieces.

It may be the case that having more pieces than the opponent only offers an

indirect advantage, by increasing the value of other properties tnentioned in this

section. Those indirect advantages may exceed the added liability of managing

the extra pieces, yielding a net positive effect for material advantage. However,

since those other attributes are being measured separately, the weight assigned

to material difference may be zero, or negative.

Mobility. As with many other board games, it is normaliy advantageous

to have a position with many options and possible continuations. Increased

mobility generaliy entails increased flexibility. Simply having many moves

available can make it easier for a player to develop their own plans, interfere

with the opponent's plans, and defend against an opponent's immediate threats.

Moreover, several types of moves can be identified, such as: moves that capture

a piece, moves toward or away from the center of the board, moves that connect

aur pieces, or moves that cut an opponent group. Bach of the distinct move types

234 D. Billings, Y. Bjornsson

can then be evaluated differently. Having the move (i.e., being the next player

to move in a given position) can also be treated as a distinct characteristic of

the position. The value of this privilege depends on other positional properties,

and generally increases toward the end of the game.

Centrality. In LoA, controlling the center of the board is very important.

This can be accomplished by direct occupation of the more central squares, or

by tactica! counter-measures that prevent the opponent from occupying those

squares. The center is particularly important in view of the standard starting

position. Since each side must unite pieces from opposite sides of the board,

seizing control of the center gains the shortest route to unification, while simul­

taneously interfering with the opponent's connection. Having a bias toward

centrality also has added pragmatic value, giving the program a sound high­

level "plan" of bringing its pieces together in the middle of the board.

Piece Coordination. There are severa! identifiable concepts under the broad

heading of piece coordination. Bach of these is normally with respect to the

pieces of the same colour. First, we say two pieces are connected if they

are orthogonally or diagonally adjacent to each other. A group is a strongly

connected subset of pieces (the abject of the game being to forma single group).

A program may designate a main group to be the largest group, or perhaps the

most central group. The concept of connectivity can be measured as the number

of pairwise connections between pieces; or the total number of groups; or the

number of pieces that are not connected to the main group. The proximity

or cohesion is a measure of distance or scatteredness of a player's pieces. An

outlier is an isolated piece (typically at the edge of the board) that needs tobe

brought into connection with or proximity of the main group, or the majority

of like-coloured pieces.

Obstructions. An opponent's piece or group of pieces may constitute an

obstruction to connection. A piece may block one direction of movement of

an enemy piece. A strong defensive formation is a blockade albng the second

rank or file, which greatly restricts the mobility of enemy pieces along the edge,

and disconnects them from other like-coloured pieces. The effectiveness of an

enemy blockade can be greatly reduced by having a foothold, which is a piece

on the second rank that extends the edge group toward the center, and creates

a defect in the blockade wall. The center diagram in Figure 1 shows a strong

blockade for White along the tap edge, and a White foothold (labeled '1 ') in

Black's blockade on the left.

Mate Threats. A mate threat is a threat to win the game on the next move,

by connecting all pieces into one group. In general, mate threats are devastating

in LoA, since the opponent typically must weaken their position considerably to

answer the threat. Given the rather highly constrained movement options, this

Search and Knowledge in Lines of Action 235

will commonly lead to subsequent mate threats, until finally there is no adequate

response. The rightmost diagram in Figure 1 shows an example position where

a long sequence of mate threats secures Black a win. Since they frequently lead

to forced winning sequences, it can be worthwhile to detect statically certain

types of mate threats, and give a large evaluation bonus for each one present.

This property of LoA also encourages special-purpose algorithms near the end

of the game, such as threat-based search; or the proof-number techniques seen

in Sakuta et al. (2002) and Winands, Uiterwijk, and Van den Herik (2002).

3. Co-development, Co-evolution

The development of both YL and MONA began in February of 2000. Since

YL was expected tobe clearly superior in terms of engineering and search speed,

the author of MONA decided early on to focus on having superior knowledge

in the form of a better-informed evaluation function. This turned out to be a

fortuitous decision, as the contrasting styles of play enabled both sides to learn

far more from friendly contests than would have otherwise been possible, and

the progress of both programs was greatly accelerated as a result.

YL is based on a very fast framework, and its evaluation function is fully

incremental, meaning that it has very little work to do at eaclţ leaf node. In con­

trast, MoN A has a work-intensive evaluation function applied to each leaf node.

Overall, YL is about 22 times faster than MONAin terms ofpositions processed

per second. In compensation, MoNA evaluates each position somewhat more

thoroughly.

To build a high-performance search engine like YL, the philosophy is: "start

fast and stay fast", meaning that speed considerations and optirnizations must

be made at every stage of development. However, it can become increasingly

difficult to make significant changes to the highly constrained architecture. In

contrast, the design of MONA is basic and flexible, so new features can be

added without difficulty. Since the evaluation function is alrtrady very costly,

new attributes can be added that are rather expensive to compute, with only a

minimal impact on overall speed performance. One might say "if you're slow

anyway, take advantage of it!".

These fundamental differences in approach significantly enhanced the co­

evolution of YL and MoNA. A much broader range of positions were explored

than would been seen with self-play matches, and critica! weaknesses in each

program were quickly revealed when playing into the other ptogram's strength.

The advantages of cooperative development do not end there. Since evaluation

features are easy to add and experiment with in MoNA, the slower program

could be used as a proving ground for new ideas. If certain properties prove

to be extremely valuable, they could then warrant the more difficult changes in

YL. One example of this cross-fertilization occurred with "footholds" (a piece

236 D. Billings, Y. Bjărnsson

on the second rank that diminishes the effect of an opponent blockade, as shown

in Figure 1, and discussed in Section 5). This feature turned outto be so valuable

in practice that a special effort was made to detect similar pattems within the

framework of YL's fast evaluation function. The co-evolution worked in both

directions. For example, games that MONA lost to YL due to short-term tactical

errors suggested game-specific knowledge that could be added to reduce the

risk associated with that weakness. As a result, some of MONA's knowledge

is designed to compensate directly for the shallower search.

The development of MoNA and YL was greatly facilitated by two e-mail

games played against Kerry Handscomb (one of the strongest LoA players in

the world, having tied for first place in the 2000 e-mail championship). Early

versions of MoNA and YL combined efforts against him, choosing the move

with highest average score. The lessons leamed from those games, and Kerry's

commentary, resulted in major improvements to the evaluation functions of

both programs. Kerry also wrote a series of informative articles on LoA for

the magazine Abstract Games (Handscomb, 2003) (see issues 1-3, and others).

Another valuable source of LoA domain knowledge was Dave Dyer's (2003)

excellent website for the game, which includes the game records of past e-mail

championships. For other resources, see the MONA and YL webpage (Billings,

2000).

4. YL

This section describes the architecture of YL, including the underlying

framework, the board-evaluation scheme, and the search algorithm.

4.1 Line Decomposition

The program evaluates board positions line by line - that is, each file, rank,

and diagonal is evaluated independently. The score of a board position is the

sum of the scores of its lines. The board is decomposed into 32,lines as shown

in Figure 2. The first diagram pictures the 8 files, the second diagram the

8 ranks. The two remaining diagrams show the diagonals, which are paired

to form 8-square-long diagonals, hereafter referred to as extended diagonals.

This pairing is done to achieve a more compact representation. An extended

diagonal is still considered as two distinct diagonals for evaluation purposes.

Evaluating the lines independently makes it possible to use a fast table look­

up evaluation scheme to score the board during game play. For each line there

are only 38 = 6561 possible different piece configurations. The total number

of configurations (32 x 6561) is thus small enough tobe evaluated beforehand.

This evaluation is done at program startup and stored in tables residing in

memory, called evaluation tables. The game is divided into three game phases

Search and Knowledge in Lines of Action 237

1 2 3 4 5 6 7 8 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 8 1 2 3 4 5 6 7
1 2 3 4 5 6 7 8 2 2 2 2 2 2 2 2 2 3 4 5 6 7 8 1 7 8 1 2 3 4 5 6
1 2 3 4 5 6 7 8 3 3 3 3 3 3 3 3 3 4 5 6 7 8 1 2 6 7 8 1 2 3 4 5
1 2 3 4 5 6 7 8 4 4 4 4 4 4 4 4 4 5 6 7 8 1 2 3 5 6 7 8 1 2 3 4
1 2 3 4 5 6 7 8 5 5 5 5 5 5 5 5 5 6 7 8 1 2 3 4 4 5 6 7 8 1 2 3
1 2 3 4 5 6 7 8 6 6 6 6 6 6 6 6 6 7 8 1 2 3 4 5 3 4 5 6 7 8 1 2
1 2 3 4 5 6 7 8 7 7 7 7 7 7 7 7 7 8 1 2 3 4 5 6 2 3 4 5 6 7 8 1
1 2 3 4 5 6 7 8 8 8 8 8 8 8 8 8 8 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8

Figure 2. Example lines: file, rank, and extended diagonals.

(beginning, middle, and endgame) and different evaluation tables are used for

eachphase.

The program represents a board position intemally using integers, one for

each line. Each integer takes a value in the range O to 6560, representing the

current piece configuration for the line. Piece configuration$ are mapped into

integers as:

where Si identifies the occupant of the i-th square on the line (empty = O,

black = 1, and white = 2). These piece-configuration numbers are updated

incrementally as moves are made on the board. Removing' or adding a piece

from/to a square affects only the configuration of the four lines intersecting the

affected square. One benefit of this representation is that the piece-configuration

numbers can be used directly as indicies into the evaluation tables. Evaluating

a board position is then simply a matter of looking up the merit of each line

in the evaluation table. This evaluation is also done incrementally by keeping

track of the current board score, and adjusting it by the evaluation differences

of only the line configurations that changed during a move. This requires only

a few table lookups. This efficient way of representing and evaluating boards

is not new. Similar board representations are used by some high-performance

Othello programs (Buro, 1999).

4.2 Evaluation Function

The main attraction of the aforementioned line-by-line evaluation scheme is

its efficiency. On the down-side, the type of features that can be expressed within

this framework are necessarily somewhat restricted. However, several impor­

tant features can be measured precisely (including material· balance, number

of connections, and piece mobility), whereas other features must be approx­

imated (such as proximity, obstruction, and blockage effectiveness). Where

such approximations are not sufficient we use special non-line-based pattems.

Material. YL has a slight dislike for being up material, increasing as the game

progresses. Note that this does not necessarily imply that it is bad to capture

pieces. Rather, YL captures pieces only if it gives positional advantages.

238 D. Billings, Y. Bjornsson

1--.2 1

1

~ 1

............. ,,._" L
.• H

1--
1

te 1 1 1 1 1 1

1 ············:······:··········

Figure 3. Example of a blockage penalty, and proximity bounding boxes.

Mobility. The program distinguishes between four types of moves (in de­

creasing order of importance): capture moves, moves that establish a connec­

tion, regular moves, and moves that disconnect own piece formation. Note that

a single move can belong to more than one category. The merit of such a move

is the combined merit from all relevant categories. Also, the side to move gets

a constant bonus.

Centrality. A bonus is given for both direct and indirect center control; the

more centralized a piece is the higher bonus it gets. Pieces sitting on the edge

of the board are penalized, although somewhat less if they can move towards

the center.

Piece coordination. YL measures connectivity by summing the number of

neighbours of the same colour over all pieces on the board. It also measures

line-wise piece proximity (how far apart pieces lie on a line). However, ex­

perience showed this measure to be insufficient on its own. Therefore, before

the Computer Olympiad in 2002, a new non-line-based proximity feature was

added. It keeps track of the area (number of squares) of the minimal bounding

box needed to enclose pieces of each side; the smaller the box, the higher bonus

a side gets. These boxes also encourage outliers to start gravitating toward the

rest of the pieces. In Figure 3, the diagram on the right shows the bounding

boxes for both sides.

The program bas no notion of how many groups there are on the board

except, of course, detecting the "single group" end-of-game condition. A single

remaining group is detected by doing a breadth-first search over all neighbours

of the same colour, starting with the piece last moved. If the number of pieces

visited is equal to the number of pieces a player bas, we know the pieces form

a single group (in case of a capture move we need also to check end-of-game

condition for the opposing side). Detecting the single-group condition initially

slowed the program down significantly. However, by keeping two bitmasks for

each side indicating which columns and rows its pieces occupy, we can cheaply

check for necessary conditions of a single group being formed, in which case

we then do the more expensive connection test. In practice, this trick eliminates

most calls to the breadth-first search. These bitmasks are also used to efficiently

keep track of the proximity bounding boxes.

Search and Knowledge in Lines of Action 239

Obstructions. YL gives additional penalty to edge pieces that are fully or

partially blocked by the opponent's pieces. For example, in the diagram on

the left in Figure 3 both white pieces are penalized. The number of penalty

points is determined by the length of the blocked lines: piece 1 gets in total 11

penalty points (shown with an '1 ') whereas piece 2 is only penalized by only 1

point (shown with a '2'). However, this scheme overestimates the penalty for

blockades with footholds (the blockade is less effective because the edge pieces

are connected to the outside via the foothold piece). A line-by-line evaluation

scheme is unable to detect such situations. Footholds do occur frequently

enough in practice to warrant a special treatment. Thus a special configuration

pattern is used in YL that looks at the second file/rank in conjunction with the

first, allowing the program to detect whether blocked edge pieces are connected

to the outside and then scale down the blockade penalty appropriately.

YL also detects (along lines) how many opposite coloured pieces there are

in between one own pieces, slightly penalizing such obstructions.

4.3 Evaluation Weights

Bach line is evaluated using the aforementioned features that are then com­

bined into a single line value using a linear function. A lţnear function was

chosen somewhat arbitrary. In practice we could equally well have used a more

complex non-linear function without sacrificing performance. However, we

have not experimented with such altematives.

Instead of hand-tuning the evaluation weights, we initially used a temporal­

difference learning method for determining the relative importance of each eval­

uation feature. This was a sensible decision given the limited expert knowledge

about the game, and allowed us to obtain a initial set of weights superior to what

we could come up with by hand. A version of the program using the learned

weights won the gold-medal at the Computer Olympiad held in London in 2000.

However, further tuning of the weights (mainly based on observations from tour­

nament play) and, in particular, introduction of new evaluation features have

since then significantly increased the program's playing strength.

4.4 Search

YL uses a traditional alpha-beta-based search algorithm (more specifically

Principal Variation Search (Marsland, 1982)). The algorithm is augmented

with many state-of-the-art enhancements, such as: iterative deepening, aspi­

ration windows, a two-level transposition table, extensive automatically built

opening book, repetition detection, and thinking on opponent's time. The pro­

gram also employs two well-documented speculative pruning schemes: null­

move (Beai, 1989) and multi-cut pruning (Bjomsson and Marsland, 2001).

240 D. Billings, Y. Bjornsson

As mentioned earlier, evaluation of game positions is done incrementally

using table lookups. Move generation is also relatively fast, in part because

legal moves for ali possible line configurations are pre-calculated at program

startup. The program employs both static (based on evaluation-table values) and

dynamic (transposition-table move, kilier-moves and history-heuristic) move­

ordering techniques. A hierarchical move-ordering approach is used: in the

upper levels of the tree (closer to the root) a more sophisticated move order­

ing is employed whereas at the lower levels a faster, although somewhat less

sophisticated, ordering mechanism is used. Ali together, this results in a very

fast and efficient search (the program typically explores close to 1.5 million

positions-per-second in the opening on a 2.4GHz P4 PC).

5. Mona

This section describes the search engine and the evaluation function of

MONA. As stated before, emphasis is on evaluation.

5.1 Search Engine Components

MONA is a fairly basic alpha-beta search program, using Principle Varia­

tion Search. The data structures for board representation, evaluation features,

and move lists are simple integer arrays. Most of the weli-established search

enhancements are used, such as iterative deepening, transposition tables (with

embellished Zobrist hashing), and the nuli-move heuristic.

Since move generation is used in the leaf-level evaluation function as weli as

the search process, the program spends a significant fraction of its execution time

in this procedure. An optimization calied move gathering was implemented,

where aii possible moves for each line configuration (row, column, or dia:gonal)

are pre-computed, and those short move lists are concatenated at runtime. This

resulted in a 40% speed-up to the program. A further 200-300% speed-up might

be possible by incrementally carrying the move list indices (the new bottieneck),

but this was not done prior to the program's retirement in 2001.

Good move ordering is accomplished with a two-level hierarchy. First, the

transposition table move is considered (i.e., the move which produced the best

score the previous time the position was encountered, typicaliy in the previous

iteration). The second level is the default static move ordering, which ranks

the general desirability of each move. A move toward the center of the board is

rated higher (specificaliy, the centrality of the destination square), and capture

moves are given a small bonus. Since this ranking is over a fixed interval (2-

16), a linear time Radix sort is used to order the move list. This default move

ranking is built into the move generator to reduce overhead. Move ordering

with kilier moves and the history heuristic are available as an option, but do not

significantly increase program performance.

Search and Knowledge in Lines of Action 241

Since a prominent odd-even effect is observed in evaluations, and since mate

threat detection (described below) only occurs on odd-ply searches, MoNA

iterates 2-ply ata time. The courser granularity of iterative deepening results in

an inefficient use of time when using a fixed-time-per-move time control, but

this is partially offset by the savings from not doing even-numbered iterations.

5.2 Evaluation Function Components

The strength of MONA lies in the evaluation function, which attempts to as­

sess several properties of strategic importance, in the hope that this information

will more than compensate for the overhead added by the relatively expensive

computations.

The most basic evaluation simply determines whether the position is won,

lost, drawn (by simultaneous connection), or unknown. This is done with a low­

overhead breadth-first search to identify each group. Ifthere is only one group of

a given colour, then the game isover. The most important components of the full

evaluation functionare centrality, mobility, thickness, and mate threats. Useful

refinements consider outlier mobility, blockades, footholds, outlier blocking,

the progress toward connectivity, and the value of the move.

In most cases, it is the net difference between Black pieces and White pieces

that is of interest. For example, the program would willingly reduce its own

mobility provided that the opponent's mobility is reduced by an even greater

amount. For the most part the evaluation is symmetric (with the exception of

outlier mobility, and mate threats).

Centrality. From a practica! programming point of view, centrality is more

than just a feature - it can be thought of as an overall game plan. The other two

most important features in MONA's evaluation function (mobility and thick­

ness) also have a significant centrality bias. This lends a degree of "harmony"

to the evaluation, in that they are ali striving for mutually supportive goals,

rather than being at odds with each other. And indeed, it is quite common to

sacrifice some of one commodity in order to gain more of another, in a cyclic

process that eventually reaches positions that are powerful on ali three counts.

To quantify centrality, each square is assigned a weight corresponding to the

sum of orthogonal distances from the nearest corner (the four corner squares

having a weight of 2, up to the four center ~quares having a weight of 8). The

net centrality is relative to the number of pieces remaining. Thus, a few pieces

on squares near the center would have a higher average centrality than a large

number of pieces scattered about the board.

Mobility. A basic measure of mobility would simply count the number of

moves that can be made. However, some moves are generally better than others.

As noted above, the static move ordering value is determined by the destination

centrality, and whether the move captures an enemy piece. By summing over

242 D. Billings, Y. Bjornsson

those values, tbe mobility function is naturally biased toward tbe moves tbat

are likely to be useful. Tbis is an absolute measure, so baving more pieces, and

tbus more moves, is generally favourable.

An interesting consequence results from giving capture moves a greater

weigbt. This actually discourages even exchanges, because baving tbe op­

tion to make a capture bas more value than actually making tbat capture. Tbus,

all else being equal, the program favours building up the pressure on key squares

ratber than releasing tbe tension througb an even excbange. Tbis has consider­

able practica! value, especially in play against bumans, because the computer

program can bandle the extra burden of many complex continuations mucb

better tban a human player. The cbance of tbe opponent making a fatal error

is tbus increased in practice. Tbis principle is higbly analogous to tbe famous

cbess adage "the threat is stronger tban tbe execution".

Thickness. In general, "clumping" of pieces is desirable, and there is some

value in baving redundant connections, preventing a group from being cut into

two. However, we want to avoid baving groups that are "too beavy", thereby

reducing its own mobility.

The measure of connectivity used by MoNA is called center-thickness,

or simply thickness. A straigbt-forward measure would count the number of

pairwise adjacent pieces on the board. Tbe embellisbment used is to weigbt

eacb of those pairs according to the centrality of tbe squares they occupy. This

is another cumulative measure, so baving more pieces is generally favourable.

MoNA uses a zero weigbt for tbe material factor, but stiU exhibits a preference

for extra pieces, based on mobility and thickness.

It sbould be clear tbat tbe centrality biases built into mobility and thickness

will generaUy encourage pieces tobe moved away from the edge; and for groups

to be formed in the center, if possible. However, this is not a beavy-banded

bias, and cannot be easily obtained against quality opposition. It is simply a

preference over otber types of moves and piece formations. The relative ,weights

of these three evaluation terms were set to bave rougbly equa1 contributions,

with a sligbt preference for mobility, since it usuaUy bas a bit more pragmatic

value. Very little was done in the way of tuning, and it is unknown if tbe

program's performance could be enbanced significantly with more thorougb

experimentation.

Mate Threats. MONA computes many useful properties for eacb position.

AU groups are identified with the breadth-first searcb described previously.

MoNA designates tbe largest group tobe the main group (cboosing arbitrarily

among equals).

Since tbe fuU move list is also available, it is possible to selectively do a cbeck

for tbe case wbere a single remaining outlier bas a move tbat will put it adjacent

to tbe main group, whicb constitutes an immediate threat to win the game.

Search and Knowledge in Lines of Action 243

This particular type of mate threat is the most common in practice, and can be

detected without a full extra ply of look-ahead. While it is possible to write a

special-purpose mate solver that looks only at direct threats and responses, we

found that most of that utility was accomplished by simply knowing that a threat

exists. MoNA assigns a huge bonus for each such threat, which dominates all

other evaluation terms. Thus it will always choose the best move among those

that contain a threat (or highest number of multiple threats).

This policy is something of a gamble, since the threat may not actually lead

to a win. However, to date we have only seen two cases where a winning

position was lost by chasing a specious mate threat (both were against YL and,

unfortunately, one in an important game).

Outlier Mobility. Given the rich information maintained about the board

position, MONA can determine the individual mobility for every piece that is

not part ofthe main group. She applies a non-linear penalty to the least mobile

outlier for each side. Only the single worst outlier is considered. The search will

naturally uncover combinations of moves that improve more than one outlier.

The weights for this feature are heavily skewed, making our worst outlier

more important than the opponent's worst outlier. The reasoning is that we do

not want to invest a lot of energy (and evaluation points) on trying to trap an

opponent piece that might easily escape, leaving us in a weakened position.

Conversely, it is also risky to allow our own outliers to be trapped, since there

may be no effective way to solve the problem (especially against humans, who

can easily visualize such futures). The program is careful to avoid losing a

game due to such traps, while preferring to build up steadily a strong position

rather than trying to trap the opponent. This is one of several examples where

the evaluation is consistent with the natural strengths and weaknesses of the

program.

Blockades and Footholds. MoNA's evaluation function expends a lot of

effort on the analysis ofblockades along the second rank (see center Figure 1).

These formations arise naturally from the standard starting position, even when

using only the basic evaluation knowledge. The special purpose evaluation

assesses the effectiveness of each blockade. Bach additional blocking piece has

a multiplicative effect on the penalty, while the presence of a foothold nullifies

it almost completely. The program also di~tinguishes between a blockade of

the main group and a blockade of outliers, with the latter being more serious.

Other Features. Sin ce the character of LoA positions change radically dur­

ing the course of the game, it is desirable to alter the overall plan and assessment

to match the prevailing conditions. As a case in point, even the most refined

positional evaluation is of little use in the final stage of the game - the only

relevant question is whether we can form a single connected group before the

opponent does. Empirically, it was found that the value of having the move

244 D. Billings, Y. Bjărnsson

increases steadily toward the end of the game, when having the initiative is

usually decisive.

The progress toward game completion is actually measured in a variety of

ways. One of the simplest is to count the number of remaining pieces that are

not part of the main group. A bonus is given for having two remaining outliers,

and a larger bonus for having only one (since mate threats are commonly on

the horizon). However, it is dangerous to try to converge too quickly, as it may

fail tactically after all of the positional advantage bas been sacrificed.

Many of the strategic properties perceived by MoNA's evaluation function

cannot possibly be uncovered within a practica! search horizon. For example, a

piece trapped behind a wall of enemy pieces can be identified by static analysis,

but the consequences of having that piece trapped might not begin to be felt

until many moves in the future. MONA can add this type ofknowledge without

much down-side, whereas it is difficult to detine within the fralnework of YL,

and might be prohibitively expensive in any case (resulting in a net decrease in

performance).

6. Empirical Results and Experiments

In this section we first provide insights into the playing strength of YL and

MONA by reviewing tournament results. Secondly, we investigate the trade­

offs of knowledge versus search in the game of LoA both via self-play and by

matching the two programs against each other.

6.1 Over-The-Board Competitions

After a series of mutually beneficia! friendly matches against each other, YL

and MONA made their competitive debut in the University of Alberta Lines of

Action Open, in April 2000 (Billings, 2002). The tournament was a double

round-robin format with a time control of 20 seconds per move. YL won with

a perfect 22-0 score, and MoNA finished secondat 19-3.

In August 2000, both programs competed in the Fifth Computer Olympiad

in London, England. YL won the gold medal, and MoNA won the silver.

Although MONA lost a critica! game to YL on time only seconds before proving

a win, both authors believed YL to be the stronger program at the 30-minute

per game time constraints. The program MIA, by Mark Winands at University

of Maastricht, took the bronze medal. YL successfully defended its title at the

Sixth Computer Olympiad in 2001 ahead of MIA-II, and again won the gold

medal at the Seventh Computer Olympiad in 2002 ahead of a steadily improving

MIA-III (Bjomsson and Winands, 2002). MONA did not compete in either

event. In July 2002, a faur game friendly match was played between MIA-III

and the original MoNA from 2000. Bach program won two games, and based

on further analysis ofthe moves played, it appeared that MIA-III had largely

closed the gap that previously existed.

Search and Knowledge in Lines of Action 245

Rank Rating Colour Name (Country)

1 2763 MONA (Canada) 25 wins, O draws, O losses

3 2374 w Jorge Gomez Arrausi (Spain)

4 2202 WB CI aude Chaunier (France)

5 2192 BW Kerry Handscomb (Canada)

6 2102 w Uli Vogel (Germany)

7 2086 w Ragnar Wikman (Finland)

8 2062 w Hartmut Thordsen (Germany)

10 1999 w Dave Dyer (USA)

11 1981 BB Patrick Duff (USA)

13 1919 B John Bosley (New Zealand)

18 1871 w Fred Kok (Netherlands)

Table 1. MoNA's e-mail resu1ts against the top human players.

6.2 E-mail Correspondence Competitions

At deeper search depths, MONA's strength increases dramatically. However,
due to the expensive evaluation function, it can tak:e a few hours to complete
11-ply early in the game, or 13-ply in the middlegame. This mak:es MoNA
particularly well-suited to e-mail correspondence play, with a pace of roughly
one move per day.

Beginning in the summer of2000, MONA began playing on Richard's PBeM
server (a popular play-by-email service) against many of the strongest known
human players, winning every game played. MoNA then won the Fifth An­
nual E-mail Toumament (the defacto world championship) with a perfect 14-0

record, including wins over most of the best LoA players in the world.
Table 1 lists some of the e-mail games played by MONA from May 2000

to May 2001. The chess-style ratings were calculated independently, using
iterative re-computation over a database of more than 1000 PBeM LoA games
until reaching convergence. The #2 rated correspondence player, at 2417, is
the program MIA, which bas only lost to the top human player, Jorge Gomez
Arrausi. Jorge Gomez Arrausi won the 2000 e-mail championship, and was the
top finishing human again in 2001, losing only to MoNA. Severa! ofthe players
Iisted are former LoA medalists at the Mind Sports Olympiad, including Fred
Kok (gold twice), Hartmut Thordsen (gold), Ragnar Wikman (silver twice), and
John Bosley (bronze).

MoNA had the second move in most of the games against the top players,
which is believed to be a larger disadvantage than having the Black pieces in
chess. MONA also used considerably less time than her human opponents. In
the final round ofthe 2001 e-mail tournament, MONA used an average elapsed

time of 3.2 days per game, while her opposition used an average of 42.7 days
per game against her. Based on the perfect record against elite competition, it is
safe to conclude that the playing strength of MONA exceeds that of ali human
players by a considerable margin. However, it should be noted that LoA is
still a young game, growing in popularity, and it is possible that "grandmaster"

246 D. Billings, Y. Bjornsson

calibre players could emerge in the future, giving programs a tougher challenge

than has been seen to date. Programs will also continue to improve, and as

they help humans to deepen their understanding of the game, that in turn could

provide new knowledge tobe added to future programs.

In Apri1200 1, an 8-game match was played between older versions of M ON A

and YL, using the correspondence time control of 8 hours per move. Bach game

took roughly one week to complete. It is likely that these games constituted the

highest level of play ever attained in LoA at that time. MoNA won the match

convincingly, with 7 wins and lloss. We intend to repeat this experiment using

a more recent (and much stronger) version of YL.

6.3 Knowledge versus Search Experiments

In general, the farther a program looks ahead, the better it plays. This is the

main justification for designing fast-searching game-playing programs. Histor­

ically, deeper search in chess programs bas always led to significant improve­

ments in performance. However, experimental studies have demonstrated di­

minishing returns with additional search depth (Junghanns and Schaeffer, 1997;

Heinz, 2001).

We are also interested in investigating the importance of knowledge as LoA

programs are given more time to think, since this will be a good predictor of

how faster hardware platforms in the future will affect a program's playing

strength. Traditionally, such investigations have involved a series of self-play

experiments.

Constant Knowledge (Self-play) Experiments. First we repeated the most

common self-play experiments, using YL and MONA. The results of those

matches are shown on the left in Table 2. Bach data point is the outcome

of a 200-game match. A standardized set of 100 3-ply openings was defined

(available upon request), and each player played both sides of each opening.

As in chess, searching deeply is obviously important: the deeper searching

program invariably outperforms the shallower searching program by a consid­

erable margin. However, as the search depth increases, the winning margin

decreases, supporting the aforementioned experimental results found in the do­

main of chess.

Also of interest is that YL appears to ben,efit more from the deeper search

than M ON A. As noted in previous discussion, some of the knowledge in M ON A

Depth YLvsYL MONAVSMONA

Time(sec) YLvsYLOl YLvsMONA 5 vs 7 89.75 79.50

2 77.50 81.00 7 vs 9 85.75 78.00

8 79.75 79.25 9 vs 11 79.75 72.50

32 83.25 80.25 11 vs 13 79.00 -
128 81.00 65.75 13 vs 15 72.75 -

Table 2. Fixed and variab1e know1edge experiments.

Search and Knowledge in Lines of Action 247

directly compensates for the shallower search; whereas YL must depend on the

deeper search to actually witness certain short-term tactics, refining its minimax

evaluation of the position. The results of 200-game matches alone are not

conclusive, but the same trend has been observed for other experiments as well.

Varying Knowledge Experiments. The self-play experimental setup only

shows the benefits of additional search when playing against a very similar

program. This does not address the possible effects of knowledge. The exper­

iments reported above might be misinterpreted to infer that YL would benefit

more than MoNA from faster hardware- the exact opposite is true!

To test the knowledge differences directly, YL was also played against the

2001 version, labeled YLOl. The more recent version was greatly improved

with the addition of severa! types of knowledge and evaluation features, but

the two YL programs are almost identica! in search capacity, due to the pre­

calculated evaluation tables described earlier. Although MONA bas not un­

dergone any significant changes since the 2000 Computer Olympiad, it is still

regarded to have the best-informed evaluation function of the three programs.

The results of those matches are shown to the right in Table 2. At shorter

time controls, YL outperforms both YLOl and MoNA by a similar winning

margin. As the time controls get longer, YL continues to outperform YLOl at

a comparable win rate, indicating that the improvements in kllow ledge (the only

significant difference between the two programs) continue to pay dividends as

search depth increases.

However, the win rate against MONA drops off dramatically once the latter

is given at least two minutes per move, despite the fact that YL continues to

outsearch MONA by almost 3-ply on average. (This trend continues at longer

time controls, but those experiments were not complete and are not shown here).

Presumably, the fast search engine is gaining less and less from deeper search,

while the knowledge advantage continues to provide sustainable benefits.

Further evidence is seen in matches between MONA and YL with equal

fixed depths (using comparable sets of search enhancements). Whereas MONA

won about 55% of games at 5-ply, 7-ply, and 9-ply (54.50%, 55.25%, and

56.00%, respectively), her win rate increased to 71.00% when searching 11-ply

permove.

The implication of these observations is that faster hardware platforms do

indeed benefit knowledge-~ich programs more than fast searchers. This in turn

suggests that when developing strategic game-playing programs, time invested

on improving the program's board evaluation will generally pay greater div­

idends in the long run than effort spent on search improvements (especially

in view of the ever increasing difficulty in obtaining significant improvements

in search efficiency). Similar behaviour has been observed in chess programs

(Berliner et al., 1990).

248 D. Billings, Y. Bjornsson

7. Conclusions

We have revisited some long-standing questions regarding the ro les of search

and knowledge in high-performance game-playing programs, using two cham­

pion Lines of Action programs which emphasize different aspects of these

contrasting approaches. Although the experiments are far from exhaustive, the

results obtained so far are entirely consistent with previous studies for the game

of chess. This supports the view that these are general phenomena, rather than

game-specific.

By considering the effects of the knowledge level of game-playing programs

over increasing search depths, it is possible to get a glimpse of what willlikely

be seen in the future. Although it is clear that search depth is and will continue to

be very important, there are definite indications that increasing the knowledge

holds the greater promise for lasting improvements in perforffiance.

References

Beai, D. (1989). Experiments with the nul! move. In Advances in Computer Chess 5, pages

65-89. Elsevier Science Publishers B.V. D. Beai (editor).

Berliner, H., Goetsch, G., Campbell, M. S., and Ebeling, C. (1990). Measuring the performance

potential of chess programs. Artificial Intelligence, 43(1):7-20.

Billings, D. (2000). http: 1 /www. cs. ualberta. cargames/LDA/.

Bjornsson, Y. and Marsland, T. (2001). Multi-cut alpha-beta pruning in game-tree search. The­

oretical Computer Science, 252:177-196.

Bjornsson, Y. and Winands, M. (2002). YL wins Lines of Action tournament. ICGA Journal,

25(3):185-186. See also: 23(3):179-179, and 24(3):180-181.

Buro, M. (1999). From simple features to sophisticated evaluation functions. In Proceedings of

The Ist International Conference on Computers and Games (CG '98). LNCS special issue

Computers and Games, pages 126-145. Springer-Verlag, Berlin, Germany.

Dyer, D. (2003). Lines of action. http: 1 /www. andromeda. com/people/ ddyer /loa/.

Handscornb, K. (2003). Abstract Games. http: 1 /www. abstractgamesmagazine. com.

Heinz, E. (2000). Scalable search in computer chess. Vieweg Verlag, Germany.

Heinz, E. (2001). Self-play, deep search and diminishing returns. ICCA Jour~al, 24(2):75-79.

Junghanns, A. and Schaeffer, J. (1997). Search versus knowledge in game-playing programs

revisited. In IJCAI-97, pages 692-697.

Marsland, T. A. (1982). Relative performance ofthe alpha-beta algorithm. ICCA Journal, 5(2):21-

24.

Sackson, S. (1969). A Gamut ofGames. Random Hou~e.

Sakuta, M., Hashimoto, T., Nagashima, J., and lida, H. (2002). Endgame-search techniques

developed in shogi: application to Lines of Action. In Caulfield, H. et al., editor, Proceedings

of JCIS 2002, pages 458-460.

Schaeffer, J. (1986). Experiments in search and knowledge. Ph.D. thesis, Department of Com­

puting Science, University of Waterloo, Canada.

Winands, M.H.M., Uiterwijk, J.W.H.M., and Van den Herik, H.J. (2002). PDS-PN: A new proof­

number search algorithm: Application to Lines of Action. In Proceedings of The 3rd Inter­

national Conference on Computers and Games (CG '02). To appear.

