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1. INTRODUCTION

Until very recently the optimal search literature has concerned
itself with the outcomes of either sequential or fixed-sample-size (fss)
search strategies only. Both of these strategies make strong presumptions
about the manner in which search is conducted. Sequential strategies
require that search proceeds by demanding one observation at a time (see,
for example, [l, p. 267]). After a period this observation becomes
available to the searcher who then chooses between stopping search or
demanding a further single observation. Thus a sequential searcher's
choice of sample size at each decision point is always unity until search
ceases. A number of writers (e.g. [7, pp. 689-694]) have pointed out

that ceteris paribus the best sequential strategy dominates the search

strategy in which the length of the sequence of observations taken one

at a time is fixed ex ante. This latter strategy has become known as

the fixed-sample-size (fss) strategy and has been often criticized as
inefficient. Recently, however, Manning and Morgan [5], [6] have shown
that a fss strategy will not be dominated by a sequential strategy if

the fss strategy is more realistically reinterpreted as demanding a single
sample of n observations simultaneously in one period.

This paper considers the class of search problems in which the
searcher can choose his sample size and whether or not to stop search at
each of a sequence of decision points. Sequential search problems are
the set of problems in which the sample size chosen at each decision point
is unity. Fss search problems are interpreted, as in [5] and [6], as the

set of problems in which only one sample of observations is drawn. Clearly

I



the search strategy which is optimal across the more general class of
problems considered here will dominate both the best sequential and best
fss search rules since they are both special cases of the optimal rule.
The existence and some of the properties of this general optimal search
strategy are proved in [2] and [6].

The principal purpose of this paper is to establish some of the
properties of the sample size sequences which result from searching optimally
with the freedom to choose both sample sizes and search duration. These
properties depend upon virtually all aspects of the searcher's problems
and provide necessary and sufficient conditions for the optimality of
sequential search strategies within the class of problems considered here,
Section 2 gives a detailed description of these problems, Section 3
extends the results of Gal, et al, [2] for search problems'with no recall,
Section 4 presents results describing the effects of full recall and
decision horizons upon the optimal sample size sequence. Section 5
explains the effects upon the optimal full recall and optiﬁal no recall
sample size sequences of altering the utility of not searching. Some

concluding comments are presented in Section 6.
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2. THE SEARCH PROBLEM AND THE OPTIMAL SEARCH RULE

The search problems addressed here are a subset of those examined
in [6]. Search consists of independent drawings from a set X C R, the
set of reals, over which is a known p.d.f. £(x). For instance, in a job
search context X is a set of wage rates. The searcher's objective is
to maximize his expected preseﬁt valued utility. He faces a sequence
[tj}g=o of decision points which are a;sumed to be equally spaced in
time so that each of the J periods (to,tl), (tl,tz),...,(tJ_l,tj) are
of equal length.2 At any decision point tj the searcher must make two
decisions. Firstly, he must determine nj > 0, the number of observations
he would draw from X in the next period if he continues to search.
Secondly, he must choose between continuing and stopping search at tj.
If he chooses to stop then he selects the terminal action providing the
highest utility from those currently available to himo If nj > 0 and he
continues his search past tj then he receives observations xi,...,xi at
the next decision point tj+1’ Search costs have two parts and are .
incurred before tj+1 is reached. Firstly, futufe net gains will be
discounted over the period (tj’tj+1) by the searcher at a rate § 2 0.

Secondly, demanding nj observations imposes a psychic cost at tj of

K(nj) > 0 where K(nj) =0 iff nj= 0 and is convex.

The solution to the searcher's problem is the (optimal) search
strategy which maximizes the expected present valued utility of search.
Manning and Morgan [6] show this strategy has two components; an optimal
stopping rule g* and an optimal sample size rule v*. The role of v* is
to determine nj, the size of the sample which should be demanded at tj

if search is to be continued to tj%i' The role of E* is to decide if

(2-1)



search should continue to tj+1 or should be stopped at tj. v¥, E* and

the structure of the searcher's problem determine the properties of the
optimal sample size sequence {n;};=o. Establishing these properties
requires a more detailed description of the optimal search strategy and
the searcher's problem.

R denotes a terminal action set. mﬁ is the set from which the
searcher can select an observation to provide a terminal utility when he
is at tj' If the searcher has no recall then mj is denoted by

j-1 j-1

J
{x geeeyX
1 nJ_1

}, if nj_ >0and j >1

o 1
Rj = .
g, if nj-l =0Qor j=0

1f the searcher has cbmplete recall3 then mﬁ is denoted by
j
0
®, = UR; 320
3 . 1
i=o

The best terminal utility available at tj is

max{u , max U(x)} , 1 <j <J
X emj

where u is the utility derived from accepting none of the observations
gathered. It is assumed that

U(x) is a continuous function of x.
Since individual observat;ons x are i.i.d. the utility levels u = U(x)

associated with these observations are i.i.d. with p.d.f. g() =g({Ux))

and c.d.f. G(u) = Iﬁw g(z)dz. The p.d.f. of the maximum utility obtained

from a sample of n > 1 observations is therefore

pln) =nc@)* T g@) s n 1

(2-2)

(2-3)

(2-4)

(2-5)

(2-6)
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To completely define p(u|n) for all values of n > 0, augment (2-6) by

l1,u-= u
p(u|0) ={ 2-7)
0,ufu
Let
u
P@ln) = I_w p(ujn)du ; n 20 . (2-8)
- *
Let Wg(u,a,J) and WE(uj,s,J) be the expected present valued utilities,

at tj, of continued optimal search when the searcher has no recall and

complete recall respectively; 0 < j < J-1. Similarly, let ﬁ?(ﬁ,a,J,nj) and

W, (u
J(j

n, observations at tj and then searching optimally from tj+1’ with no

,5,J,nj) be the expected present valued utilities, at tj’ of demanding

recall and complete recall respectively. Search is continued at tj+1 iff

the best terminal utility at t is smaller than the expected present

it
value of continuing to search.a Hence, from (2-2), (2-6), (2-7) and (2-8),

for 0 < j < J-1

max W (U, 5,7, n )

w‘J? (U, §,J) |

max {-K(n ) + 11
rh 20

5 p[max {G,U,Wg+1 (‘;» 65J) } Inj] }

Similarly, from (2-3), (2-6), (2-7) and (2-8),

WF(uf,s,J) = max ﬁ?(uf,égJ n.)
iti a, 20 I R (2-10)
= max {-K(n ) + 116 p[max[u ,u,Wj+1(max{u ,u},a,J)}ln 1} .

n, =0

j
W? and W; are different functions so the sample size which maximizes (2-9)
will generally differ from that which maximizes (2-10). Not unexpectedly,

therefore, the properties of the optimal sample size sequence will differ

between problems with no recall and problems with complete recall. Sections



3 and 4 examine the properties of W?, W? and the optimal sample size
sequences in the absence of recall and in the presence of complete

recall respectively. To avoid notational confusion the optimal sample

size sequence in the absence of recall will be denoted by {n?J}q=o and
]
by {n?J}§=o in the presence of complete recall.

3. SAMPLE SIZES FOR OPTIMAL SEARCH WITHOUT RECALL

This section considers only problems in which observations received

cannot be recalled at any subsequent decision point. This resuits in an
important simplification--the values of observations demanded now and
received at the end of the current period do not affect the expected
present value of optimal search continued in the next period. Gal, et al.
[2, pp. 603-605] show that when J < = the searcher's optimal sample size
sequence is monotonic increasing, i.e.,

oJ oJ oJ oJ
LR N E . -1
n” <mn < < ni; and nJ 0 (3-1)

where each ngJ is independent of the values of all received observations.
If J = » and the searcher has no recall then the searcher's problem

in determining the sample size which maximizes the expected utility of

continued search is identical at each decision point. Consequently the

@

optimal no recall sample size sequence is constant when J = ». Let n°

denote this sample size and let

Wo(ﬁ,s,m) = limit W?(G,G,J), for any j =0 .

J= o

Then, from (2-9) with J

Ox N .
o, n satisfies

W (8, 65®) = -K(n°") +1%6- E, [max {d,u,w’ @, 6,@) }|n°) (3-2)



Proposition 1l: If J = » and the searcher has no recall then

1) ng“ =n° for all j =0 ,
(ii) n°® = 0 iff no search is undertaken, and

(iii) n°% is the minimum of all optimal no recall sample

sizes for any 0 £ j < J-1, J =21,
Proof: (i) (3-2) is independent of j so n?m = n°” for all j =0,

(ii) 1f n°® = 0 then, from (i), ngm =0 for all j = 0 so no
search is undertaken. If no search is undertaken then ngm =0,
so n°® =0 by (i).

J

@ is a monotonic

decreasing function of J. Hence n°® < ngJ < n?J for all

(iii) From (i), ng = n°® but, from (3-1), ng

0sj<Jy J<E oo,
Q.E.D.

The effect of Proposition 1 is that when J = «» and the searcher
has no recall, the optimal search strategy is to demand the same fixed
sample size n°® at each decision point until search ceases. This is a
strategy alluded to by Stigler [8, p. 218]. This strategy is analogous
to a sequential search strategy since the same fss search strategy is
sequentially employed at each decision point (instead of sequentially
demanding a single observation at each decision point). Manning and Morgan
[5] have explored the dependencies of fixed sample sizes upon various
aspects of the searcher's problem and there is no reason in general for
ow

n’® = 1. However, should the searcher's problem be such that n°® = 1 then

the optimal search strategy is the best sequential strategy.
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Proposition 2: When the searcher has no recall, the optimal search rule

is the best sequential search rule iff (i) n°® = 1, for J = =
. oJ _
(ii) nJ-l =1, for J < w.

Proof: The optimal no recall search rule is a sequential rule iff

n3j=1 for all 0 < § < J-1

(i) If J = «», then the result follows directly from Proposition 1
and (3-3).

oJ

I-1 # 1 contradicts (3-3).

(ii) Necessity: n

Sufficiency: From (3-1), ni{l = 1 requires

oJ oJ _
0 < ng € ees S nJ_1 =1

(3-4) is satisfied either by (a) n?J =1 for all 0 < j < J-1 or, for some
0 <k < J-2, by (b) n§J=0for0$j < k and n§J=1 for k+1 < j < J-1.
However, this latter sampling strategy (b) is sub-optimal since demanding
no observations at to,...,tk and then sequentially demanding observations
with a decision horizon of tJ is dominated by the sub-optimal strategy of

sequentially demanding observations from to constrained by a decision

horizon of t Hence (3-4) must be satisfied by sampling strategy (@),

J-k*
i.e., n;J =1 for 0<j<J-1.

(3-3)

(3-4)

Q.E.D.



4. SAMPLE SIZES FOR OPTIMAL SEARCH WITH RECALL

This section considers problems in which the searcher has compiete
recall. Recall means that the current best terminal utility is the
current minimum for all future best terminal utilities. Discovering a
higher terminal utility now raises this minimum, which raises the
expected values of all future terminal utilities and so raises the expected
present value of continued search. The complication introduced into
the optimal sample size problem by recall is, therefore, that at any
decision point the expected value of continued search depends upon the
values of observations received before and at the. decision point.

Comparing (3-1) to Proposition 1 shows that the effect of
introducing a decision horizon into a search problem with no recall is
to alter the optimal sample size sequence from a constant sequence to
a monotonic increasing sequence. Later in this section it is shown
that introducing full recall into a search problem with no decision
horizon alters the optimal sample size sequence from a constant sequence to a
monotonic decreasing sequence. These opposing influences mean that in
problems with both full recall and decision horizons the optimal sample
size sequence will generally be neither monotonic increasing nor monotonic
decreasing. Nevertheless it seems reasonable to anticipate that the
influence of recall will dominate early in the search and that the
influence of the decision horizon will grow as the horizon is approached.
The remainder of this section presents several properties of the optimal
full recall sample size sequence.

In [2, pp. 600-601] Gal, et al. show the marginal rate of return

on investment in search with no recall is strictly decreasing within each
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search period, i.e., that ﬁg(ﬁ,s,J,nj) is strictly concave w.r.t. nj.
The following proposition shows that ﬁ;(uﬁ,s,J,nj) is also strictly
concave w.r.t. nj, so that the marginal rate of return on investment
in search with full recall is also strictly decreasing within each
search period. The proof of this proposition, and others following,
assume that K(n) and p(u[n) are both twice differentiable w.r.t. n.

This assumption avoids much analytic complexity and does not alter the

nature of the following results.

Proposition 3: The marginal expected rate of return on investment in

search with full recall is strictly decreasing within each period.
Proof: From (2-10), for any 1 £ J < =,

| * *
W (u 38575 n, ) =-K(n, )'*'1+6 £ max{uj,u,w§+1(max{uj,u},5,J)]p(u|nj)du (4-1)

Differentiating (4-1) twice w.r.t. nj gives, with the use of (2-6),

azwg(u;‘,-,nj) BZK(nj) L e
; 5 = - anz +1+6 J"max{u ,u,W (max{u »u};*)}
" 3 (4-2)
n, -1
2+ G (u))G(u) I gu)4nG(u)du
-2/n, J

Let z ¢ G-l(e Jy. Then

9 P(ul n, -1 > -
—-——J— (240, #0G(u))G(u) 7 g(u)4nGu) =0 as u = z (4-3)
3n? J < >
j

* *
with > for some u < z and with < for some u > ze max{uj,u,w§*1(max[uj,u},o}
% * *
is non-decreasing in u and strictly increasing in u >»max[uj,y } where y
6
is the searcher's reservation utility. Together with (4-3) this gives

2~r K 2
3 Wj(uj’ ,nj) P K(nj)

* r *
3n <t o M yeme Ny (axltyae )] G-4)
3 3 52 2
z p(u[n.) ® 9J p(u‘n.)
[ —5—L-du+ | ——51au]
-0 Bn. z

on
J
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© sz(u|n ) a2 ®
f—“jrl—m1= 5 Ipmhnﬁuso (4-5)
- al'l. 6n. - ]
J J
2 2~ , %
dK(@m,) OW.(u.,°,n.)
and —_—_fi- > 0 , by assumption (2-1). Hence % l.<o0.
on, on,
J J Q.E.D.

Suppose a searcher samples at tj but is unlucky enough to receive

*
no observation which improves his best terminal utility level uj so that,

* * .
at tj*i’ uj+1 = uj. Then, if J = o the searcher faces exactly the same
problem as at tj and so his best sample size at tj+1 will be the same as

at tj’ i.e.,

* * Too o

3 =uj+1 =:nj -nj'l‘l . 4-6)

u

rJ .
However, if J < « then the searcher's problem in deciding ni4 differs

from deciding n?J because, at t, . , the searcher has one period less than

jH

at tj left to him before his decision horizon tJ is reached. It is
intuitive that, for a given best terminal utility, the expected utility

of continued search will decline as the number of periods remaining to

J

tJ falls. What effect does this have upon the relative values of n§ and

rJ
2
Py

as possible, equate the marginal expected gain from sampling once more

At any decision point tj the optimal sample size must, as nearly

and then stopping at tj+1

At tj the expected cost of stopping at t:j_l__1 is the expected (foregone)

with the marginal expected cost of doing so.

. * * )
value of continuing to search past tj+1 and, if uj = uj+1, this must be
at least as great as the expected cost of stopping at tj+2' The margins
w.r.t. sample size of the expected costs of stopping decline with the

size of these costs so the marginal expected opportunity cost, at tj’ of
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stopping at t, is no greater than the marginal expected opportunity cost,

jH

* %
» of stopping at t,, . However, since uj =u the marginal

at Lt j2 jH

expected gains from sampling in one more period and then stopping are

identical at tj and t.

417 Consequently, the optimal sample size at tj+1

is at least as great as at tj when the searcher's best terminal utility is

the same at t, L yq e
e sa j as at t3+1

Proposition 4: If the searcher has full recall, weakly prefers to continue

to search at t_,,. and if sampling at tj did not increase the searcher's best

iH
terminal utility, then the searcher's optimal sample size at tj+1 is at
least as large as at tj’ i.e.,
* * * rJ rJ
= n <sn . 4-7
up =uy <y =0, 41 4-7)

Proof: (4-6) establishes the result for J = ». The remainder of the
proof considers the case of J < w.

* % *
For any 0 < j < J-1 let uj =u,,.=u and let

41
~ % *
A = w;(u ,G’J’n) - ﬁ;_'_l(u ’G’J,n) (4-8)
© - - %
= T35 -£[max{u ,u,Wj_l_1 ax{u ,u},s,J)}
-max{u®,u, W, (max{dﬁu},&,J)}]p(uln)du (4-9)
j+2
Define
* * * %

H(u) = max{u ,u,w§+1(max{u su};s 85J)} - max{u ,u,W§+2(haX{u »u}; 6,J)} (4-10)

so that
oA % Op(u|n)
(1+5) Sa __£ H(u) o du (4-11)

*
Since y is the reservation utility,

* * * *
max{u ,u} % w;(max{u su}s 8,J) as max{u ,u} £y for k=jH,j+2, (4-12)

AV
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% *
From (4-10), (4-11) and (4-12) with u <y ,

* *
(u ’6 J) Wj+2(u 36,J) sy u<<u

* *
H@) = w;.'ﬂ(u,f,,J) Wi @60 s u susy 4-13)

%
0;y <u

The next step in the argument is to show H(u) is monotonic decreasing.

* %
Since H(u) is constant for u ¢ (u ,y ) this step reduces to showing

awlf (u, §,J) BWY (u, 8:J)
+ E *
1 1au < _i¥2 - for u ¢ (W ,y ) . (4-14)

The general term in w§+1 (u,6,J) is

(u,6,3) = -K(n) +—— E

1+ p[max{u,ul,. L

J+l n

Wr_l_z(max{u,u] see .,un}a5aJ) ol @4-15)

* %
With u ¢ (u ,y ), (4-15) is

*
n-1
+ J‘ xnG(x) g(x)dx] (4-16)
*
y
Differentiating (4-16) w.r.t. u gives
oWt (u,e) W, (u,*)
j+l,n _ j+2 n _
o = Sa G(u) 4-17)
which establishes
ME . (,e) AW (u,r)
jHl,n j+2 for n 2 0 and u ¢ (u*,y*) . (4-18)

du = du

Since W l(u, «) = max WJ (u, ), (4-18) establishes (4-14).
nzo
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The final step in the proof is to use the monotonicity of H(u) to

prove (4-11) is negative. From (2-6),

QLB(‘;—L‘D- = (L4+n- ew))e@) Tgw) . (4-19)
Define
z’ eG-l(e-I/n) (4-20)
Then
PMn) 2 g 45y 2 2 (4-21)
on < <

with > for some u > z’ and with < for some u < z’. Since H(u) is monotonic

decreasing, (4-11) and (4-21) together imply

(1+5) B—A—s H(z') J'Md + H( )J‘mdu 0 (4-22)

o]
since [ 2888) 4o = 0. (4-22) and (4-9) imply that

-~ * ~. *
aw;(u »8,J,0) aW§+1 @ ,5,J,n)
<

on on (4-23)
which implies
*r *r

nj s nj_*_1 . (4-24)
(4-24) and the strict concavities of w (-,n) and W +1( ,N) w.r.t. n give
the result that

nrJ < nrJ )

i it Q.E.D.

The above result is illustrated in Figure 1.

The principal attraction of a sequential search strategy is that
observations are viewed one at a time. This prevents the possibility of
"over-investment" in information whi;h can arise whenever two or more
observations are demanded together in the one period because the best of

these observations is accompanied by the remaining costly inferior observations.



~,
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Figure 1
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The expected cost of this '"over-investment" reduces as smaller sized samples
are taken within each period. On the other hand the principal effect of

a finite decision horizon is to '"hurry up'" the searcher's information
gathering since, if only a few periods are available for search, the searcher
can compensate by simultaneously sampling more than one alternative in

each period to amass an adequate stock of information before being forced

to make a terminal decision through reaching his decision horizon. Giving
the searcher extra periods (i.e., increasing J) allows the searcher to
amass the same stock of information as before by demanding smaller samples
within each period, thereby increasing the expected value of search

by reducing the expected 'over-investment' cost due to simultaneous

sampling. This is the intuition behind
Corollary 1: an is monotonic decreasing w.r.t. J.

Proof: At t, the searcher's best terminal utility is u, the utility of

his best non-search generated alternative. Iet J=J + 1. At to the

!
searcher's optimal sample size is nz’J +1. Imagine the searcher demands
r,J' +l . . . .
no observations at to but receives no observation providing a utility
- !
in excess of u, Then, at t» the searcher's problem in determining ni’J H
is exactly the same as if he had begun with only J’ periods and so
! ’
gfed v (4-25)
1 o
* * -
However, from Proposition 4 with u = u, =u,
! /4
D S (4-26)
o 1
(4-25) and (4-26) together show
04 ?
nr,J +l < nrJ . (4-27)

o (o]
Q.E.D.



17

At any decision point tj the optimal sample size as nearly as
possible equates the marginal expected gain and the marginal expected
cost from sampling again at Fj and then stopping at tj+1’ given the current
best terminal utility u?. An increase in u? reduces the marginal expected
gain from sampling again at tj and then stopping at tj+1 since the

* *
higher is uj, the less likely it is that a reward in excess of uj will be

discovered at t,

341 through sampling again at tj. The marginal expected

cost of sampling again at tj and then stopping at tj+1 consists of two
components. The first of these is the marginal psychic sampling cost at

' *
tj’ which is independent of uj. The second is the marginal expected value

of sampling opportunities foregone by stopping at t, .. This is increasing

j+

Wer.t. u; since u% can be recalled at all future decision points. Overall,
J

therefore, the marginal expected gain and marginal expected cost of

sampling again at tj and then stopping at tj+1 are decreasing and increasing

*
respectively w.r.t. uj. A consequence of this is

' *
Proposition 5: ngJ is a monotonic decreasing function of uj, 0<js<J-1.

Proof: From (2-10)

W = - A * T * %
Wj(ujaG,J,nj)-— K(nj)-F1+6[max{uj,Wj+1(uj,6,J)}P(uj|nj) 259
T r
+ J'*max {u Moy W, 8J)p@ |nj )du]
u,
J
aw;:(UJ:',n ) 1 3 .
i . . . * r ) * i
Ju = 1+ u*lmax{uj,wj*i(uj, )}]P(uj|nj)du =0 (4-29)
3 j
82ﬁ§(U§,o,nj) 1 a * * aP(u’?In,) 0 4230
= ° r R < )
Bu§énj 1+5 Buflmax{uj’wj*i(uj’ 3 an ( )
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* * My
since P(ujlnj) = G(uj) is decreasing w.r.t. n,.

OW, (u,,°,n.) *r
(4-30) and the optimality condition Sn < 0 imply that nj is

* *
non-increasing w.r.t. uj and, from the concavity of ﬁ?(uj,°,nj) w.r.t. nj,

%
that ngJ is also non-increasing w.r.t. uj.

Q.E.D.
This result is illustrated below in Figure 2.
The problem of describing the optimal sample size sequence with
recall is greatly simplified if J = « since then the searcher does not
face a decision horizon. This simplification results from the fact
that when J = « the number of search periods remaining to the searcher
does not decrease as his search proceeds. For this reason the expected
value of search continued past any decision point tj is independent of j
and increasing in the best available terminal utility u;. (4-6) explained

that if sampling at tj did not improve the searcher's best terminal utility

% *
. . _ '

(i.e., if uj = uj+1) then the searcher's problem at tj+1 is exactly the

same as at tj and, accordingly, n?m = ngil. Suppose instead that sampling
* *

at tj does improve the searcher's best terminal utility, i.e., uj+1 > uj.

*
Then since uj_*_1 is always recoverable at all decision points past tj+2’

the opportunity cost of stopping search is higher at t, than at t The

j+2 jH°

marginal expected cost of stopping search is therefore higher at tj+2 than

a Conversely, the expected increase in the best terminal utility

tt .
jH
level from drawing n observations and stopping at the next decision point
falls as the current best terminal utility level increases and is therefore
smaller at t
jH

marginal expected costs from sampling together reduce the optimal sample size.

than at tj. Reduced marginal expected gains and increased
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Proposition 6: If J = » and the searcher has complete recall, then

. Yo _ Yo . *__*
(i) nj = nj+1 if uj = uj*i’

and -

To

. ro
l(il) nj 42 njii

g u¥ <u®
1 uj< j+1.

Proof: (i) is established by (4-6).
(ii) if J = « then

ﬁ?(u,&,w,n) = W§+i(u,6,m,n) (4-31)

* %
Hence, from (4-30) with uj < gj+1’

Ty ¢ S8 ~
3 J
~r
. % *
(4-32) and the optimality condition éﬂ—éaiﬁﬁ-s 0 imply nJ.r > njii which,
with the concavity of W and W s implies nt® > nt® .
j j+l j it Q.E.D

The search literature has paid considerable attention to search
problems in which J = » and the searcher has recall. Many of those articles
have imposed the restriction that search must be conducted sequentially.

This leads, in general, to a search strategy which is suboptimal in the
class of search problems considered here since there is no reason for nzm =1
in general and this is a necessary and sufficient condition for the

optimal search strategy to be sequential,

Corollary 2: If J = » and the searcher has complete recall, then the best

sequential search rule is optimal iff nzm = 1.
Proof: Necessity: If optimal search is sequential then ngm = 1.
Sufficiency: 1If nzm = 1 then, by Proposition 6,
reo Yoo h o) ’
lL=n"2n" 2...2 nj 2 ... 20 (4-33)
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i.e., optimal search consists of drawing one observation sequentially

until search ceases.
Q.E.DO

Furthermore, it appears that the sets of conditions under which
nzw = 1 are not particularly general, indicating that sequential search
strategies may be optimal for a relatively small subsef of the problems
considered here. One such subset of problems is identified in [6, PP. 16-21].S
These considerations do not, however, remove the possibility that the
subset of problems for which sequential search is optimal contains those
search problems frequently encountered in realitye.

One further implication of Proposition 5 allows a comparison of

the last elements of the optimal full recall and optimal no recall sample
size sequences. If just one search period remains then the ability to

recall offers revealed by sampling at t is of no advantage since

J-1
search must cease at tJ, the same instant that offers demanded at tJ_1 are
revealed to the searcher. At tJ-l’ therefore, the problems'of determining

the full recall and no recall optimal sample sizes are identical except

that a searcher with recall may be able to recall a terminal utility u§_1 >4,
the only terminal utility which can be "recalled" by a searcher unable

to recall previous offers. In each case the searcher's cost function at

tJ_1 reduces to just K(nJ-l)’ the psychic sampling cost function. Thus if

* - rJ _ oJ ie ¥ - ;
U= u then n;q nJ-l' However, if uJ-l > u then the marginal expected
gain to the searcher with recall from sampling again at tJ_1 is smaller

than for the searcher with no recall and, consequently, nﬁ{l < n3{1‘

Proposition 7: If J < » then, at tJ—l’ the optimal full recall sample

size is no greater than the optimal no recall sample size.
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Proof: At tJ-l’

~0 = _~ - _ _ 1 -
WJ_l(u,s,J,nJ_l) = WJ_I(u,s,J,nJ_l) = :ax { K(nJ_l)-i-1+6 Ep[max{u,u}an_l]}
J-1

oJ _ rJ ,- - * - .
so nyy = nJ_lcu). By (2-4), us.q ZU 80, by Proposition 8,

oJ rJ ,- rJ , *
n.=n_".(@u)zn" (@ ).
J-1 J-1 J-17J-1 _ Q.E.D.

5. THE FALLBACK UTILITY

u is the highest utility available if no search is undertaken. If
a sample of size n is drawn from a population with p.d.f. g(u) then

Emax{u,uyse--su_}1 = ac@)" + [ unG()"g (u)du (5-1)

u
If u is lower than any of the utilities available from search (i.e., if G(u) =0)

then a decrease in u will not affect expectations such as (5-1) and will
therefore affect neither W?(G,G,J) nor wg(u§,5,J) for any j=0,...,J. Hence
if G(u) =0 then a decrease in u will not affect any optimal sample sizes.
However, if G(u) > O then a change in u affects the gains from search

and the optimal sample sizes. For instance, an increase in u reduces the
gains to be made from searching and this results in a decrease in the
intensity with which search is undertaken,

Proposition 8: n?J and n?Jare both monotonic decreasing functions of G,

for j=0,oco,J'1; J < ™

*
Proof: (i) Full Recall: (2-4) shows uj is a monotonic increasing function
of u so, by Proposition 5, ngj is a monotonic decreasing function of u.

(ii) No Recall: Consider two values of u; u” >u’, Let
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— 70 ~n _11° (!
(1+8)b = (1+5)ﬂﬁj(u ,G,J,nj) Wj(u,b,J,nj))

- I[max (Gn,u,wg’ﬂ @, §,J) ]} - max {G',u,W?_'_l @), 85J) p (u lnj ydu (5-2)

-0

max{u ,W 1(u 98:7)}
- J\ [max{u”,w l(ul"é,J)} max{u ,W +1(u 5,J)}]p(u|n )du

-0
max{ﬁ",wcj,_*_l @', 6,J)}
- o -
+ I[max{u":wj+1(“"s6,J)} -u]p(U|nj )du

- o -
max {u”wj +1 ('Ll’, 6’ J) }

Define
max{u",w L @56,3)] - maX{u,W @8N} us max{u,W 4 @58,0)]

1° u) = max{ﬁ”,wz_l_l (1;”,5,.])} -u; max{ﬁ’,wg.)ﬂ (u’ 6:J)} <u = nlax{u”,wj+1(u”, 8:J)}
0; max{u”,W (u”,s,J)} <u (5-3)

o . .
H (u) is monotonic decreasing w.r.t. u, so

(1+8) Tﬂ ( )Bp(u|n )
+5 = u
a (5-4)
z bp(u|n ) o Jp(uln,)
< H (2’ )[J‘ 5o dut [ 5m du] =0,
j z’ j
where z’ is defined by (4-20). Hence
3WC (8", 5,7,n,)  JW.(§,6,7,0,)
] J J J -
an < an (5-3)

which, since ﬁ?(- n,) is strictly concave w.r.t. n., implies
it y i’

oI @y < %7 @h.
J J Q.E.D'
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6. CONCLUDING REMARKS

This paper presents a collection of results concerning the sizes
of samples drawn when the searcher can choose both the duration of his
search and his sample sizes at each of a sequence of decision points.
Sequential and fixed-sample-size strategies are special cases of the
optimal search strategy. The effect of recall in these problems is, in
essence, to generate a monotonic decreasing sequence of optimal sample
sizes, while a fixed decision horizon generates a monotonic increasing
sample size sequence. Problems containing both recall and fixed
decision horizons produce optimal sample size sequences with properties
which are mixtures of these opposing influences. The results on optimal
sample sizes provide necessary and sufficient conditioné for the optimality
of sequential search strategies.

The results are obtained subject to assumptions which exclude some
phenomena considered elsewhere in the search literature. These exclusions
include learning and the possibilities of different reward distributions
and different cost functions in each period. Even so, the results still
predict search behavior commonly observed in reality. One major exclusion
is that of financial search costs. Manning and Morgan [5] have shown
that the manner in which financial search costs affect an optimal sample
size depends upon the structure of the search problem being examined.

For example, if the searcher's preferences imply a marginal utility of

expenditure which is a decreasing function of wealth then, ceteris paribus,

the marginal utility cost of additional observations will rise as search
proceeds and the searcher's net wealth declines. However, this information

alone does not guarantee that the marginal disutility of psychic and
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financial search costs combined is increasing in the number of observations
taken, Search for prices reveals different best prices which, in turn,
affect marginal utilities. Without detailed information concerning how

this occurs, it is not possible to establish the properties of the

marginal overall cost of search function. Many cases may arise.
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Footnotes

1Thanks are due to Richard Manning, Bgver}ey Vickers, John McMillan,
Jim Markusen, Glenn MacDonald and the Western Microeconomic Theory Workshop
group for helpful comments. Responsibility for any errors remains my own,
This article was written at the University of Western Ontario while on

sabbatical leave from the Flinders University of South Australia.

2 .. . . . . .
This assumption is not crucial to the analysis and avoids much

notational complexity.

3This paper considers only the cases of no recall and complete
recall. Sequential search problems with uncertain recall have been

analyzed by Karni and Schwartz [3] and Landsberger and Peled [4].
4 . . .
The proof of this statement is given in [6, pp. 14-15].

5In [6, pp. 16-21] it is proved that the following set of conditions
is sufficient for the optimal search strategy to be sequential: § = 0;
J = »; no financial search costs; psychic costs K(*) are identical in
each period, non-negative and convex; the searcher has complete recall;
and observations are i.i.d.
6In [2, pp. 605-606] Gal, et al, show y* exists and is constant

across decision points,
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