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Abstract. We present a methodology that enables the use of classification algorithms on 
regression tasks. We implement this method in system RECLA that transforms a regression 
problem into a classification one and then uses an existent classification system to solve this 
new problem. The transformation consists of mapping a continuous variable into an ordinal 
variable by grouping its values into an appropriate set of intervals. We use misclassification 
costs as a means to reflect the implicit ordering among the ordinal values of the new 
variable. We describe a set of alternative discretization methods and, based on our 
experimental results, justify the need for a search-based approach to choose the best method. 
Our experimental results confirm the validity of our search-based approach to class 
discretization, and reveal the accuracy benefits of adding misclassification costs. 
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1 Introduction 

Machine learning (ML) researchers have traditionally concentrated their efforts on 
classification problems. However, many interesting real world domains demand for 
regression tools. In this paper we present and evaluate a discretization method that 
extends the applicability of existing classification systems to regression domains. 
The discretization of the target variable values provides a different granularity of 
predictions that can be considered more comprehensible. In effect, it is a common 
practice in statistical data analysis to group the observed values of a continuous 
variable into class intervals and work with this grouped data (Bhattacharyya & 
Johnson, 1977). The choice of these intervals is a critical issue as too many intervals 
impair the comprehensibility of the models and too few hide important features of 
the variable distribution. The methods we propose provide means to automatically 
find the optimal number and width of these intervals. The motivation for 
transforming regression into classification is to obtain a different tradeoff between 
comprehensibility and accuracy of regression models. As a by-product of our 
methods we also broaden the applicability of classification systems. 

We argue that mapping regression into classification is a two-step process. First 
we have to transform the observed values of the goal variable into a set of intervals. 
These intervals may be considered values of an ordinal variable (i.e. discrete values 
with an implicit ordering among them). Classification systems deal with discrete 
target variables. They are not able to take advantage of the given ordering. We 
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propose a second step whose objective is to overcome this difficulty. We use 
misclassification costs which are carefully chosen to reflect the ordering of the 
intervals as a means to compensate for the information loss regarding the ordering. 

We describe several alternative ways of transforming a set of continuous values 
into a set of intervals. Initial experiments revealed that there was no clear winner 
among them. This fact lead us to try a search-based approach to this task of finding 
an adequate set of intervals. We use a wrapper technique (John et al., 1994; Kohavi, 
1995) as a method for finding near-optimal settings for this mapping task. 

We have tested our methodology on four regression domains with three different 
classification systems : C4.5 (Quinlan, 1993); CN2 (Clark & Nibblet, 1988); and a 
linear discriminant (Fisher, 1936; Dillon & Goldstein, 1984). The results show the 
validity of our search-based approach and the gains in accuracy obtained by adding 
misclassification costs to classification algorithms. 

The next section describes how to transform a continuous target variable into a 
set of intervals. In section 3 we describe our proposal of using misclassification costs 
to deal with ordinal variables. The experiments we carried out done are described on 
section 4. Finally, we comment the relations to other work and present the 
conclusions of this paper. 

2 Obtaining a Set of Intervals 

In regression problems we are given samples of a set of independent (predictor) 
variables xl, x2 . . . . .  Xn, and the value of the respective dependent (output) variable y. 
Our goal is to obtain a model that captures the mapping y = f (  Xl, x2, .... x,) based on 
the given samples. Classification differs from this setup in that y is a discrete 
variable instead of continuous one. 

Mapping regression into classification can be seen as a kind of pre-processing 
technique that enables the use of classification algorithms on regression problems. 
Our method starts by creating a data set with discrete target variable values. This 
step involves examining the original continuous values of the target variable and 
suitably dividing them into a series of intervals. Every exarnple whose output 
variable value lies within the boundaries of an interval wilt be assigned the 

respective "discrete class"1. 
Grouping the range of observed continuous values of the target variable into a set 

of intervals involves two main decisions : how many intervals to create; and how to 
choose the interval boundaries. As for this later issue we use three methods that for a 
given a set of continuous values and the number of intervals return their defining 
boundaries : 

�9 Equally probable intervals (EP): This creates a set of N intervals with the same 
number of elements. 

�9 Equal width intervals (EW): The original range of values is divided into N 
intervals with equal width. 

1 We use the median of the values lying within the interval as class label. 
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�9 K-means clustering (KM): In this method the aim is to build N intervals that 
minimize the sum of the distances of each element of an interval to its gravity 
center (Dillon & Goldstein, 1984). This method starts with the EW 
approximation and then moves the elements of each interval to contiguous 
intervals whenever these changes reduce the referred sum of distances. 

The number of intervals used (i.e. the number of classes) will have a direct effect on 
the accuracy of the subsequent learned theory. This means that they can be seen as a 
parameter of the learning algorithm. Our goal is to set the value of this "parameter" 
such that the system performance is optimized. As the number of possible ways of 
dividing a set of continuous values into a set of intervals is potentially infinite a 
search algorithm is necessary. The wrapper approach (John et al., 1994; Kohavi, 
1995) is a well known strategy has been mainly used for feature subset selection 
(John et al., 1994) and parameter estimation (Kohavi, 1995). The use of this iterative 
approach to estimate a parameter of a learning algorithm can be described by the 
following figure: 

Training set 

Test set - -  

Search for New 
Parameter settings 

Evaluate 
Parameter settings 

Induction Algorithm 

Induction 
Algorithm 

Final 
'~ Evaluation 

Figure I - The wrapper approach. 

The two main components of the wrapper approach are the way new parameter 
settings are generated and how their results are evaluated in the context of the target 
learning algorithm. The basic idea is to try different parameter settings and choose 
the one that gives the best estimated accuracy. This best setting found by the wrapper 
process will then be used in the learning algorithm in the real evaluation using an 
independent test set. As for the search component we have used a hill-climbing 
search coupled with a settable lookahead parameter to minimize the well-known 
problem of local minima. Given a tentative solution and the respective evaluation 
the search component is responsible for generating a new tentative. We provide the 
following two alternative search operators : 

�9 Varying the number of intervals (VNI): This simple alternative consists of 
incrementing the previously tried number of intervals by a constant value. 

�9 Incrementally improving the number of intervals (INI) : The idea of this 
alternative is to try to improve the previous set of intervals taking into account 
their individual evaluation. The next set of intervals is built using the median of 
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these individual error estimates. All intervals whose error is above the median are 
further split by dividing them in two. All the other intervals remain unchanged. 

These two alternatives together with the three given splitting strategies make six 
alternative discretization methods which can be tuned to the given task using a 
wrapper approach. The RECLA system allows the user to explicitly select one of 
these methods. If this is not done the system automatically selects the one that gives 
better estimated results. 

The other important component of the wrapper approach is the evaluation 
strategy. We use a N-fold Cross Validation (Stone, 1974) estimation technique which 
is well-known for its reliable estimates of prediction error. This means that each time 
a new tentative set of intervals is generated RECLA uses an internal N-fold Cross 
Validation (CV) process to evaluate it. In the next subsection we provide a small 
example of a discretization process to better illustrate our search-based approach. 

2.1 An illustrative example 
In this example we use the servo data set (see details in section 4). We have coupled 
RECLA with C4.5 and evaluated the learned model with the MAE statistic (see 
section 3). We have performed two experiments with different discretization 
methods. In the first experiment we use the VNI search operator with the KM 
splitting algorithm. Table 1 presents the discretizations of this first experiment 

(KM+VNI). The first column shows the number of intervals tried in each iteration 2 . 
The second column shows the obtained intervals by the KM splitting method. The 
second line of this column includes the median of the values within the intervals (the 
used "classes"). The last column gives the internal 5-fold CV error estimate of each 
tentative set of intervals. In this example we have used the value 1 for the 
"Lookahead" parameter mentioned before. The solution of this method is thus 4 
intervals (the trial with best estimated error). 

N.Ints Intervals/Discrete Class Values Error 

2 110.13-2.60] [2.60-7.10] 0.510 
10,58 . 4.50 

4 [0.13-0.45] [0.45-0.75] [0.75-3.20] [3.20-7.10] 0.374 
I 0.34 0.54 1.03 4.50 

6 [0.13-0.38] [0.38-0.52] [0.52-0.75] [0.75-1.08] [1.08-3.20] [3.20-7.10] 0.429 
[ 0.28 0.47 0.58 0.90 1.30 4.50 

Table I - Trace o f  KM+ VNI method. 

In the second experiment we use the same splitting algorithm but with the INI search 
operator. The results are given in Table 2. We also include the estimated error of 
each interval (the value in parenthesis). The next tried iteration is dependent on 
these estimates. The intervals whose error is greater than the median of the estimates 
are split in two intervals. For instance, in the third iteration we can observe that the 
third interval was maintained from the second trial, while the other were obtained by 
splitting a previous interval. 

2 The fact that starts with 2 and goes in increments of 2 is just an adjustable 
parameter of RECLA. 
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N.lnts Intervals / Discrete Class Values Error 

I [0.13-7.10] 0.91 
0.73 (0,91) 

2 [0.13-2.60] [2.60-7.10] 0.42 
0.58 (0.41) 4.50 (0.32) 

3 [0.13-0.73] [0.73-2.60] [2.60-7.10] 0.35 
0.5 (0.35) 1.90 (0.35) 4.50 (0.33) 

5 [0.13-0.4] [0.46-0.73] [0.73-1,07] [1.1-2.60] [2.60-7.10] 0.41 
0.35 (0.29) 0.54 (0.38) 0.9 (0.51) 1.4 (0.49) 4.50 (0.4) 

Table 2 - Trace o f  KM+INI  method. 

The two methods follow different strategies for grouping the values. In this example 
the second alternative lead to lower error estimates and consequently this alternative 
was preferred by RECLA. 

An interesting effect of increasing the number of intervals is that after some 
threshold the algorithm's performance decreases. This may be caused by the decrease 
of the number of cases per class leading to unreliable estimates due to overfitting the 
data. 

3 Using Misclassification Costs with Ordinal Variables 

Classification systems search for theories that have minimal estimated prediction 
error according to a 0/1 loss function, thus making all errors equally important. In 
regression, prediction error is a function of the difference between the observed and 
predicted values (i.e. errors are metric). Accuracy in regression is dependent on the 
amplitude of the error. In our experiments we use the Mean Absolute Error (MAE) 
and the Mean Absolute Percentage Error (MAPE) as regression accuracy measures : 

MAE_ [yi-y;[ MAPE=Z(yi-y~)/y i • (1) 
N N 

In order to differentiate among different errors our method incorporates 
misclassification costs in the prediction procedure. If we take ci,j as the cost of 
classifying a class j instance as being class i, and if we take p(jlX) as the probability 
given by our classifier that instance X is of class j, we can take the task of classifying 
instance X as finding the class i that minimizes the expression 

 ]ci, j p(j x) (2) 
je{classes} 

Here we associate classes with intervals and we take as class labels the intervals 
medians. In our methodology we propose to estimate the cost of misclassifying two 
intervals by using the absolute difference between their representatives, i.e. 

Ci,j = Yi -- Yj (3) 

where y, is the median of the values that where "discretized" into the interval i. 

By proceeding this way we ensure that the system predictions minimize the expected 
absolute distance between the predicted and observed values. 
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4 Exper imenta l  Evaluat ion  

We have carried out several experiments with four real world domains. These data 
sets were obtained from the UCI machine learning repository (Merz & Murphy, 
1996). Some of the characteristics of the data sets used are summarized in Table 3. 

Data Set N. Examples N. Attributes 
housing 506 13 (13C) 

servo 167 4 (4D) 
auto-mpg 398 7 (4C+3D) 
machine 209 6 (6D) 

Table 3- The used data sets ( C - continuous attribute; D - discrete attribute). 

RECLA system was coupled with C4.5 (a decision tree learner), CN2 (a rule-based 
system) and Discrim (a linear discriminant). MAE and MAPE were used as 
regression accuracy measures. The error estimates presented in Table 4 are obtained 

by a 5-fold cross validation test 3 . We also include the standard deviation of the 
estimates and the discretization methodology chosen by RECLA. 

DataSet Algorithm MAE MAPE 
Servo Cn2 0.38 + 0.13 (ep-INI) 36.0 + 9.03 (ep-INI) 

C4.5 0.36 +0.06 (ep-INI) 32.6 + 8.6 (ep-INI) 
Discrim 0.39 +0.10 (km-VNI) 37.5 +4.0 (km-INI) 

Auto-Mpg Cn2 3.0 +0.3 (km-INI) 13.8 +2.07 (krn:INI) 
C4.5 3.1 +1.6 (ep-VNI) 13.1 +3.6 (ep-VNI) 
Discrim 2.6 + 1.1 (ep-VNI) 11.5 +2.3 (ep-VNI) 

Housing Cn2 3.68 + 0.5 (ew-INI) 18.09 + 3.8 (km-INI) 
C4.5 4.2 + 0.66 (ew-VNI) 21.9 + 5.7 (km-VNI) 
Discrim 3.8 + 1.14 (km-VNI) 18.0 _+4.85 (ep-VNI) 

Machine Cn2 46.8 + 11.8 (km-INI) 43.3 _+9.2 (ew-INI) 
C4.5 47.1 + 24.5 (ep-INI) 47.4 + 8.5 (ep-VNI) 
Discrirn 38.8 + 23.7 (km-VNI) 42.0 + 11.6 (km-VN1) 

Table 4 - Best  results o f  Classification algorithms using RECLA. 

The observed variability of the chosen discretization method provides an empirical 
justification for our search-based approach. We can also notice that the best method 
is dependent not only on the domain but also on the used induction tool (and less 
frequently on the error statistic). This justifies the use of a wrapper approach that 
chooses the best number of intervals taking these factors into account. 

In another set of experiments we have omitted the use of misclassification costs. 
This lead to a significant drop on regression accuracy in most of the setups thus 
providing empirical evidence of the value of adding misclassification costs. However, 
it should be mentioned that misclassification costs cannot be used with all 
classification systems. In effect, if the system is not able to output class probability 

3 Notice that this test is independent from the internal cross validation that is 
performed by RECLA to estimate the best discretization. 
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distributions when classifying unseen instances, we are not able to use 
misclassification costs. The consequence will probably be a lower accuracy as our 
experiments indicate. 

RECLA provides means of using different types of classification systems in 
regression tasks. The regression models obtained by this methodological approach 
are in a way more comprehensible to the user as the predictions have higher 
granularity. However, the loss of detail due to the abstraction of continuous values 
into intervals has some consequences on regression accuracy. We have tried to find 
out this effect by obtaining the results of some "pure" regression tools on the same 
data sets using the same experimental methodology. Table 5 shows the results 
obtained by a regression tree similar to CART (Breiman et al., 1984), a 3-nearest 
neighbor algorithm (Fix & Hodges, 1951) and a standard linear regression method : 

Dataset Algorithm MAE MAPE 
Servo Regression tree 0.43 + 0.4 34.0 + 9.9 

3-NN 0.52 + 0.11 57.1 + 17.3 
Linear Regression 0.87 -+ 0.07 104.5 + 22.7 

Auto-Mpg Regression tree 2.6 _+ 0.3 11.22 + 0.9 
3-NN 2.4 + 0.25 10.05 + 1.5 
Linear Regression 2.5 + 0.23 11.06 + 0.9 

Housing Regression tree 2.8 +_ 0.2 14.5 + 2.2 
3-NN 2.9 + 0.4 13.7 + 1.08 
Linear Regression 3.4 + 0.4 16.5 + 2.7 

Machine Regression tree 46.8 + 12.6 54.5 + 9.47 
3-NN 34.1 + 11.1 47.45 + 8.8 
Linear Regression 36.8 + 6.7 58.9 + 14.6 

Table 5 - Performance of Regression Tools. 

These results are comparable with the ones given in Table 4. This means that our 
approach can provide an interesting alternative when a different trade-off between 
accuracy and comprehensibility is needed. 

5 Related Work 

Mapping regression into classification was first proposed by Weiss & Indurkhya 
(1993, 1995). These authors incorporate the mapping within their regression system. 
They use an algorithm called P-class that splits the continuous values into a set of K 
intervals, and use cross validation to estimate the number of intervals. Their 
methodology is similar to our KM+VNI discretization. Compared to this work we 
added other alternative discretization methods and empirically proved the necessity 
of a search-based approach to class discretization. Moreover, by separating the 
discretization process from the learning algorithm we extend this approach to other 
systems. Finally, we have introduced the use of misclassification costs to overcome 
the inadequacy of classification systems to deal with ordinal target variables. 

Previous work on continuous attribute discretization usually proceeds by trying to 
maximize the mutual information between the resulting discrete attribute and the 
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classes (Fayyad & Irani, 1993), This strategy is applicable only when the classes are 
given. Ours is a different problem, as we are determining which classes to consider. 

6 Conclusions 

The method described in this paper enables the use of classification systems on 
regression tasks. The significance of this work is two-fold. First, we have managed to 
extend the applicability of a wide range of ML systems. Second, our methodology 
provides an alternative trade-off between regression accuracy and comprehensibility 
of the learned models. Our method also provides a better insight about the target 
variable by dividing its values in significant intervals, which extends our 
understanding of the domain. 

We have presented a set of alternative discretization methods and demonstrated 
their validity through experimental evaluation. Moreover, we have added 
rnisclassifications costs which provide a better theoretical justification for using 
classification systems on regression tasks. We have used a search-based approach 
which is justified by our experimental results which show that the best discretization 
is often dependent on both the domain and the induction tool. 
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