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SUMMARY

Model transformations are an important cornerstone of model-driven engineering, a discipline which
facilitates the abstraction of relevant information of a system as models. The success of the final system
mainly depends on the optimization of these models through model transformations. Currently, the
application of transformations is realized either by following the apply-as-long-as-possible strategy or by the
provision of explicit rule orchestrations. This implies two main limitations. First, the optimization objectives
are implicitly hidden in the transformation rules and their orchestration. Second, manually finding the best
orchestration for a particular scenario is a major challenge due to the high number of possible combinations.
To overcome these limitations, we present a novel framework that builds on the non-intrusive integration
of optimization and model transformation technologies. In particular, we formulate the transformation
orchestration task as an optimization problem, which allows for the efficient exploration of the
transformation space and explication of the transformation objectives. Our generic framework provides
several search algorithms and guides the user in providing a proper search configuration. We present different
instantiations of our framework to demonstrate its feasibility, applicability, and benefits using several case
studies. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Transformations are an important concept in computer science in general and in software
engineering in particular, since, indeed, computation can be viewed as data transformation. The
same situation occurs in Model-Driven Engineering (MDE) [1], which has model transformations
at its heart [2]. In MDE, models are the central artifacts which describe complex systems from
various viewpoints and at multiple levels of abstraction using appropriate modeling formalisms. In
fact, when constructing a system, the design can be expressed in terms of models defined at different
levels of abstraction that can be simulated [3]. Indeed, it is recommended to test and optimize the
system already in the design phase [4], since errors that are detected in this phase are cheaper
and easier to correct than those detected later on. Model transformations provide the essential
mechanisms for manipulating models. For instance, they are crucial for refining the models in the
design phase. Another well-known example of the application of model transformations is model
refactoring, i.e., improving the structure of models while preserving their observable behaviour.
Transformations can also be used to abstract software models such as UML class diagrams from
existing source code using reverse engineering techniques [5], or to obtain some knowledge from
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the system, such as slicing the domain model out of a UML class diagram [6]. Several distinct
categories of model transformation languages have been identified [7, 8]. In broader terms, there
exist declarative, imperative, and hybrid approaches. In any case, most of them are expressed by
means of transformation rules.

A crucial aspect when dealing with model transformations is their orchestration. A transformation
orchestration includes the rule scheduling, i.e., the definition of the order in which the rules are
executed, and the rule parametrization, i.e., the specification of values for the parameters of the
rules. This orchestration can be defined implicitly or explicitly [7]. In an implicit orchestration,
the developer has no control over the order in which rules are triggered. This task is delegated
to the transformation engine. This is typically the case with purely declarative languages, such
as QVT Relations [9] or Triple-Graph-Grammars [10], and many graph transformation languages
[11–13]. Other languages offer mechanisms to explicitly define the rule scheduling. For instance,
ATL [14] is a hybrid transformation language that offers the possibility of partially orchestrating
the transformation by explicitly making calls to so-called lazy rules. Other languages provide more
dedicated mechanisms to schedule rules, such as VIATRA [15], which offers rule scheduling using
abstract state machines, and Henshin [16], which offers dedicated units for this purpose.

When developing a model transformation, the rules that manipulate the input models have to
be defined. However, reasoning about how these rules can be applied in order to retrieve a model
with certain characteristics is a non-trivial task suffering from three major drawbacks. First, the
effect of a rule application on the characteristics of the resulting model is implicitly hidden in the
behavior encoded by the rule. Second, if several rule applications to the same model exist, they
may be in conflict or rule applications may enable each other [17], i.e., a given rule may require
some information produced by another rule. Third, the number of rule combinations may be very
large or even infinite, especially when considering the input parameters a rule may have, making an
exhaustive exploration of transformation orchestrations very difficult.

The idea to tackle this problem using search-based techniques is reflected in the recent
approaches by Abdeen et al. [18] who integrate multi-objective optimization techniques to drive
a rule-based design exploration, and Denil et al. [19] who integrate single-state search-based
optimization techniques such as Hill Climbing and Simulated Annealing directly into a model
transformation approach. Based on this trend and the ideas that we have initially outlined in previous
work [20] on combining Search-Based Software Engineering (SBSE) [21] and MDE, we have
introduced an algorithm-agnostic approach called MOMoT (Marrying Optimization and Model
Transformations) [22] which formulates the problem of finding the best transformation orchestration
for a given set of transformation rules as an optimization problem. Our approach loosely couples the
MDE and SBSE worlds to allow the users to benefit from search-based techniques while staying in
the model engineering technical space [23], i.e., the search configuration and the computed solutions
are provided at model level. In particular, we are focusing on how different SBSE techniques can
be used to solve an optimization problem, on how we can support the users in configuring these
techniques, and on the separation of the objectives of the transformation from the transformation
itself. This separation enables us to reuse the same set of transformation rules for several problem
scenarios.

Our approach is implemented within the Eclipse Modeling Framework (EMF)† and builds
upon Henshin‡ [16] to define model transformations and the MOEA framework§ for providing
optimization techniques. Henshin is a graph transformation engine that provides a graphical notation
for defining model transformations as graph transformation rules. The MOEA framework provides
several multi-objective evolutionary algorithms, such as NSGA-II [24], NSGA-III [25], and ε-
MOEA [26], as well as tools to execute and statistically test these algorithms. In addition, our
framework integrates other optimization techniques, including for instance single-objective and
local search techniques, and provides hooks for integrating further techniques.

†Eclipse Modeling Framework: http://www.eclipse.org/modeling
‡Henshin Project: http://www.eclipse.org/henshin
§MOEA Framework, version 2.8, available from http://www.moeaframework.org
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SEARCH-BASED MODEL TRANSFORMATIONS 3

This article is an extension of a paper presented at the NasBASE 2015 conference [22]. Besides
several incremental advancements, this article extends the previously introduced approach with the
following aspects:

Control Flow Units: The approach supports the orchestration of control flow units such as loops
and conditions as part of the search. These control flow units are treated as a single step
in the resulting transformation orchestration. Previously, the orchestration only supported
transformation rules as steps. The use of these control flow units is investigated in an
additional case study (cf. Section 4).

Configuration Language: We provide a configuration language that enables the user to configure
necessary information to use our approach in a single model. Furthermore, when using
this language, we provide content-assist to the user and collect information about the
configuration. Using this information, we prevent invalid configurations from executing, warn
the user about uncommon settings and inform the user about the different aspects of the
configuration. This is especially useful for model engineers who are non-experts in SBSE
techniques (cf. Section 3).

Extended Evaluation: Finally, we investigate the contributions of our approach by arguing about
the benefits and drawbacks over a pure MDE approach. In this sense, we compare the
configuration steps that an engineer needs to perform with our approach for solving a specific
problem, provided the system is represented in the MDE domain (applying meta-modeling
and model transformations), with how the problem is solved with current existing MDE
approaches (cf. Section 4). Furthermore, we show that our approach is applicable to complex
problems by applying it on a real-world system in one of the case studies.

The remainder of this paper is structured as follows. In Section 2 we give a short introduction
to MDE, i.e., meta-modeling, models and model transformation, and present a running example.
Section 3 introduces our approach and describes the features of the framework that has been
developed, in particular, which techniques we provide and how the framework can be used and
extended. Section 4 describes the evaluation of our framework, before we give an overview on
related work in Section 5. Finally, Section 6 concludes the paper with an outlook on future work.

2. PREREQUISITES AND RUNNING EXAMPLE

This section introduces the background of this work, namely the basic notions of search-based
software engineering, models and meta-models as well as how to manipulate models with model
transformations. Furthermore, we present a particular example to demonstrate these basic notions
and that serves as the running example of this paper.

2.1. Search-Based Software Engineering

Search-based software engineering [21] is a field that applies search-based optimization techniques
to software engineering problems. Search-based optimization techniques can be categorized as
metaheuristic approaches that deal with large or even infinite search spaces in an efficient manner.
Therefore SBSE techniques are often applied on problems where it is infeasible to use exact or
enumerative approaches [27].

Formally, a solution to a given optimization problem can be seen as a vector of decision
variables in the decision space X . In order to evaluate the quality of a solution, a fitness function
f : X 7→ Z maps a given solution to an objective vector in the objective space Z. A metaheuristic
approach uses these mappings to manipulate the decision variables of a solution in such a way
that we reach good values in the objective space. The notion of good values relates to the
direction of the optimization; typically, an objective value in the objective vector needs to be
minimized or maximized. Additionally, a solution may be subject to a set of inequality constraints
denoted gi(x) ≥ 0 with i = 1, . . . , P and a set of equality constraints denoted hj(x) = 0 where
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j = 1, . . . , Q. A solution satisfying the (P +Q) constraints is said to be feasible and the set of all
feasible solutions defines the feasible search space.

Metaheuristic approaches dealing with large or infinite search spaces are often divided in two
groups, namely local search methods and evolutionary algorithms. The aim of local search methods
is to improve one single solution at a time while evolutionary algorithms [28] manage a set of
solutions, called a population, at once. Examples for local search algorithms are Tabu Search [29] or
Simulated Annealing [30]. Examples for evolutionary algorithms include NSGA-II [24] and NSGA-
III [25].

The number of objectives that need to be optimized, i.e., the size of the objective vector, is also
used to categorize optimization problems. Single-objective or mono-objective problems only deal
with one objective at a time, multi-objective problems deal with more than one objective. For
multi-objective problems, the fitness function can also be denoted as a set of individual fitness
functions f(x) = [f1(x), f2(x), ..., fm(x)] where m is the number of objectives. In order to have a
uniform optimization direction for all functions, a maximization objective can be easily turned into
a minimization objective by taking its negative value and vice versa. Recently, due to the limits of
how many objectives different algorithms can handle, a distinction is made between multi-objective
problems and many-objective problems [25]. A many-objective problem, as opposed to a multi-
objective problem, is a problem with at least four objectives.

The type of the optimization problem also defines how different solutions can be compared in
order to find good solutions to a problem. In the mono-objective case, a solution x1 ∈ X can be
considered better than another solution x2 ∈ X , if f(x1) < f(x2) when the aim is to minimize the
objective, or if f(x1) > f(x2) when the aim is to maximize the objective. In the multi-objective and
many-objective cases, the comparison is not that simple. One way to compare two objective vectors
is to aggregate all objective values of each vector and compare the aggregated values. However,
this is only possible if all values are on the same scale. Alternatively, we can use the notion of
Pareto optimality to define whether one solution can be considered better than another. Under Pareto
optimality, as defined in Equation 1 and in Equation 2 for strict inequality [21], one solution x1

dominates another solution x2 if it is better according to at least one of the objective values fi(x1)
and not worse according to all the others.

f(x1) ≥ f(x2) ⇔ ∀i fi(x1) ≥ fi(x2) (1)

f(x1) > f(x2) ⇔ ∀i fi(x1) ≥ fi(x2) ∧ ∃i fi(x1) > fi(x2) (2)

Each non-dominated solution can be considered as an optimal trade-off between all objectives.
However, there may exist several optimal trade-offs between the individual objectives. Therefore,
an algorithm may yield a set of optimal solutions, often denoted as the Pareto-optimal set.

2.2. Models and Meta-models

Meta-models are the means in MDE to specify the abstract syntax of modeling languages [31].
For defining meta-models, there are meta-modeling standards such as the Meta Object Facility
(MOF) [32] which are mostly based on a core subset of the UML class diagrams, i.e., classes,
attributes, and references. A meta-model gives the intentional description of all possible models
within a given language. Practically, meta-models are instantiated to produce models which are in
essence object graphs, i.e., they consist of objects (instances of classes) representing the modeling
elements, object slots for storing values (instances of attributes), and links between the objects
(instances of references), which have to conform to the UML class diagram describing the meta-
model. Therefore, models are often represented in terms of UML object diagrams. A model has to
conform to its meta-model which is often indicated by the conformsTo relationship (cf. Figure 1).
In addition to the constraints defined by the meta-model, additional constraints may be defined
based on the meta-model elements using a constraint language. The Object Constraint Language
(OCL) [33] is a standardized and formal language to describe expressions, constraints, and queries
on models. As such, OCL is the language of choice for defining constraints going beyond simple
multiplicity and type constraints defined by UML class diagrams and meta-models.
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2.3. Model Transformations

In a general sense, a model transformation is a program executed by a transformation engine which
takes one or more models as input to produce one or more models as output as is illustrated by the
model transformation pattern¶ [7] in Figure 1. In MDE, model transformations are used to solve
different tasks [7, 34]. One important aspect is that model transformations are developed on the
meta-model level, and thus, are reusable for all valid model instances.

Transformation

Specification

Source 

Models

Source 

Metamodel

Target 

Models

Target 

Metamodel

«conformsTo» «conformsTo»

Transformation

Engine

«reads» «writes»

«executes»

«refersTo» «refersTo»

Figure 1. Model transformation pattern [7]

In the MDE field, various model transformation kinds emerged in the last decade [7, 34]. A
model transformation can be categorized as out-place if it creates new models from scratch, e.g.,
reverse engineering code as models, or as in-place if it rewrites the input models until the output
models are obtained, e.g., as it is the case in model refactoring. In this paper we focus on in-
place model-to-model transformations, which can be expressed using graph transformation rules.
In the software engineering process, these transformations are tailored at improving and refining the
models in the design phase in order to validate them before the implementation starts [15, 35].
The applicability of graph transformations for model transformations builds upon the fact that
most models exhibit a graph-based structure, e.g., consider the underlying structure of UML class
diagrams or state machines, whereas the meta-models of the models act as type graphs. The
initial graph representing a model evolves through the application of graph transformation rules
until the execution stops and we obtain the output graph, i.e., the output model. In general, a
graph transformation rule r = (L,R) consists of left-hand side (L) and right-hand side (R), which
describe the model patterns and conditions to be matched (preconditions) and the effect of the
changes to be applied (postconditions), respectively. The left-hand side of a rule may have positive
and negative application conditions (PACs and NACs), which specify the mandatory presence and
absence of graph patterns before the rule may be applied. To apply a rule, a graph transformation
engine finds a match m : L 7→ M in the model M , removes elements from M which have an
image in L \R and creates all elements of R \ L in M . The result is a new graph on which
further rules may be applied. In order to pass contextual information between rules, rules can
also have parameters. There is a plethora of frameworks and languages to define these kinds of
transformations, such as AGG [12], AToM3 [36], AToMPM [37], e-Motions [11], Henshin [16],
Maude [38], and VIATRA [15]. Due to the different possibilities of orchestrating transformations, a
mechanism that automatically determines the optimal execution order and parametrization of rules
for a specific scenario may ease the work of the transformation engineer substantially.

2.4. Running Example: Modularization

A well-known problem in software architecture design that can often not be solved through
exhaustive approaches is the modularization problem [39–41]. The goal is to create high-quality
object-oriented models by grouping classes into modules. Solving this problem implies to decide
where classes belong and how objects should interact. Producing a class diagram where the
right number of modules is chosen and a proper assignment of classes is realized is a non-
trivial task, often requiring human judgement and decision-making [42]. In fact, the problem
has an exponentially growing search space of potential class partitions given by the Bell number
Bn+1 =

∑n

k=0

(

n
k

)

Bk. The nth of these numbers, Bn, counts the number of different ways a given

¶Please note that the terms source/target models and input/output models are used synonymously.
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ModularizationModel

name: EString

Class

name: EString

Module

name: EString

modules

0..*

module

classes0..1

0..*

classes 0..*

0..*

dependsOn

0..* providesFor

Figure 2. Modularization meta-model

set of n classes can be divided into modules. If there are no classes given (B0), we can in theory
produce exactly one partition (the empty set, ∅). The order of the modules as well as the order of
the classes within a module do not need to be considered as the semantics of a class diagram does
not depend on that order. Already starting from a low number of classes, the number of possible
partitions is unsuitable for exhaustive search. For instance, with 15 classes, which are not many in
a real-world example, the problem yields 1, 382, 958, 545 possible ways to create modules. Even
when dismissing special cases where we group all classes into one module or every class into a
separate module, the search space is still enormous.

Meta-Modeling. In MDE, the first step to solve such a problem is to model the problem domain in
terms of a meta-model. UML already considers this problem as part of its class diagram structure.
However, for simplicity we will work on a smaller version of such meta-model, as depicted in
Figure 2. In our modularization meta-model, a system consists of modules and classes. Classes may
depend on an arbitrary number of other classes (dependsOn-providesFor relationship), i.e., if class
A depends on class B, B is a provider for A. Modules are used to group classes into meaningful
clusters. As we can see, each class may be in one module, while modules may contain many
classes. An instance of such modularization meta-model is depicted in Figure 3. In the figure, the
relationships between classes are shown in different colors to foster the figure’s readability. It is a
representation of mtunis [43], an operating system for educational purposes written in the Turing
Language, which contains 20 classes and 57 dependencies among them. This means that there are,
according to the Bell number described above, 51, 724, 158, 235, 372 possibilities for grouping these
classes into modules. Please note that the figure depicts the abstract model syntax, i.e., the graph-
based representation of the model information modulo its notation.

File

FileTableDirectory

Inode

Panic

Device

Tty

Disk

System

InodeTable

FreeInode

FileIO

InodeGlobals

main

Control

User

FamilyState

Memory
Computer

Figure 3. Modularization model instance (mtunis system)

Model Transformations. To manipulate model instances in order to group classes into modules,
we propose two rules depicted in Figure 4. In this figure, we use the Henshin notation. Since
at the beginning there are no modules in the input model (it only contains classes and the
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dependencies among them), we need a rule to create a module (createModule). Elements marked
as forbid are part of the rules negative application condition. This rule creates a module within
the ModularizationModel with the provided name, only if a module with such a name does not
already exist. Rule assignClass then enables the system to group a previously unassigned class into
a module. All rules have parameters, namely moduleName, module, and class. While producing a
match for these rules, all these input parameters acquire a value, i.e., they are instantiated, and the
rules can be applied. For retrieving such values, the graph transformation engine matches the pattern
in the rules consisting of nodes and edges with the model graph. Since the moduleName parameter
provides a value for a newly created class instance, it cannot be matched automatically and requires
input from the user before it can be applied.

Rule createModule(moduleName: EString)

«preserve»
: ModularizationModel

«forbid»
: Module

name = moduleName

«create»
: Module

name = moduleName
«create»
modulesmodules

«forbid»

Rule assignClass(class: Class, module: Module) @ModularizationModel

«preserve»
class : Class

«forbid»
: Module

«preserve»
module : Module«create»

modulemodule
«forbid»

Figure 4. Rules to manipulate a modularization model

Quality. For determining the quality of the obtained modularization model, we follow an Equal-

Size Cluster Approach (ECA) [39]. The ECA attempts to produce a modularization that contains
modules of roughly equal size. Specifically, we use the following metrics for measuring the quality
of the modularization: (i) coupling, (ii) cohesion, (iii) modularization quality, (iv) number of
modules, and (v) the difference between the maximum and minimum number of classes in a module.
Please note that in general several metrics may exist to measure the same aspect of a system, but
the results retrieved from these metrics do not necessarily compare to each other [44]. For instance,
the coupling and cohesion of a system can be calculated using several different metrics, as studied
by Abdeen et al. [45]. In our example, coupling refers to the number of external dependencies a
specific module has, i.e., the sum of inter-relationships with other modules. This translates to the
number of class dependencies (dependsOn in our meta-model depicted in Figure 2) that origin in one
module but end in another. Cohesion refers to the dependencies within a module, i.e., the sum of
intra-relationships in the module. In our example, this reflects the number of class dependencies
that origin and end in the same module. Typically, low coupling is preferred as this indicates
that a module covers separate functionality aspects of a system, improving the maintainability,
readability and changeability of the overall system [45, 46]. On the contrary, the cohesion within
one module should be maximized to ensure that a module does not contain parts that are not part of
its functionality. Ideally, a module should be a provider of one functionality [45]. The calculations of
coupling and cohesion used in our example are depicted in Equation 3 and Equation 4, respectively.
In these equations M refers to the set of all modules and C(m) refers to the set of classes contained
in the module m.

COP =
∑

mi,mj∈M
mi 6=mj

∑

ci∈C(mi)
cj∈C(mj)

{

1 if ci depends on cj

0 otherwise
(3)

COH =
∑

mi∈M

∑

ci,cj∈C(mi)

{

1 if ci depends on cj

0 otherwise
(4)

The modularization quality (MQ) [39] evaluates the balance between coupling and cohesion
by combining them into a single measurement. Since MQ is a well-studied objective function,

Copyright © 2015 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2015)
Prepared using smrauth.cls DOI: 10.1002/smr



8 M. FLECK ET AL.

we include it as an objective. This is one of the attractive aspects of multi- and many-objective
approaches, we can always include other candidate single objectives as one of the multiple
objectives to be optimized [39]. It has been proven that the higher the value of MQ, the better the
quality of the modularization [47]. The aim is to reward increased cohesion with a higher MQ score
and to punish increased coupling with a lower MQ score. The modularization quality is defined in
Equation 5, where MFm is the modularization factor for module m. The modularization factor is
the ratio of intra-edges to edges in each cluster, as defined in Equation 5, where i is the number of
intra-edges, i.e., cohesion, and j is the number of all edges that originate or terminate in module
m. The reason for the occurrence of the term 1

2 rather than merely j is to split the penalty of the
inter-edge across the two modules connected by that edge [39]. The MQ value will tend to increase
if there are more modules in the system, so it also makes sense to include the number of modules
in the modularization as an objective. Indeed, also in order to avoid having all classes in a single
large module which would yield no coupling and a maximum cohesion, we maximize the number
of modules. At the same time, the maximum and minimum number of classes in the modules ought
to be minimized to aim at equal-sized modules.

MQ =
∑

m∈M

MFm, where MFm =

{

0 if i = 0
i

i+ 1

2
j

if i > 0
(5)

With the rules and quality objectives presented, it is not clear how to orchestrate the two rules
depicted in Figure 4 in order to obtain a desired model where all measures are optimized. In
fact, model transformation languages do not offer any mechanism to specify the objectives of a
transformation explicitly. Besides, if objectives were encoded somehow within the transformation,
e.g., by using a scheduling language for transformation rules or encoding the schedule as additional
positive or negative application conditions, the transformation could only be used to solve this
particular problem and only for the given objectives. On the other hand, if they are not encoded
in the transformations, it is not clear how the rules affect the objectives and how they should be
applied. Therefore, in next section we show our approach to solve problems of this type.

3. TRANSFORMATION ORCHESTRATION WITH MOMOT

This section introduces the MOMoT approach by explaining the requirements, the approach at a
glance, and subsequently, also in detail by discussing its implementation.

3.1. Requirements

As we have outlined in the previous section, model engineers are facing problems to deal with huge
or even infinite state spaces which may have a multi-modal nature. The goal of our approach is
to support model engineers in solving such problems which are either too large or too expensive
to solve through an exhaustive or manual approach. Specifically, we provide an approach which
enables model engineers to specify their problems declaratively, i.e., by specifying what is expected
from the output model (objectives and constraints) but not how to get there (transformation
orchestration). In order to provide such an approach, the following requirements are desirable:

Generic: The approach should be problem- and algorithm-agnostic so that no assumptions about
the problem or the selected search algorithm need to be made in advance. The switch between
algorithms should be simple and the changes necessary to switch from one problem to another
problem should be minimal to reduce the learning effort.

Transparent: In order to understand the approach, the executed process must be transparent to
the user. This means that the approach must (i) take the artifacts produced by the model
engineer as input, i.e., the model which constitutes the problem instance and the set of model
transformation units that can manipulate this model, (ii) produce output on the same level as
the input, i.e., an output model conforming to a meta-model and a sequence of orchestrated
transformation units, and (iii) provide analysis about the search process.

Copyright © 2015 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2015)
Prepared using smrauth.cls DOI: 10.1002/smr



SEARCH-BASED MODEL TRANSFORMATIONS 9

Declarative: The goal of the orchestration, i.e., the objectives and constraints of the output model,
must be separated from the model transformation specification and elevated to first-class
citizens. By making the objectives explicit, in contrast to implicitly defining them as part
of the model transformation semantics, we make both the transformations and the objective
specifications re-usable for other problems. Additionally, explicit objectives may also serve
as documentation for the problem solving process. The language(s) in which the objectives
and constraints can be defined should be known by the model engineer.

Supportive: Since it cannot be assumed that every model engineer is proficient in search-based
techniques, a support system must be in place to inform the model engineer about different
aspects of the meta-heuristic search and prevent common mistakes when configuring the
search for a specific problem.

3.2. MOMoT at a Glance

In order to realize an approach that meets the above stated requirements, we combine MDE
techniques with SBSE techniques. Instead of manually deriving an orchestration of transformations
for a given scenario in a specific problem domain, dedicated search algorithms are employed to
calculate the transformation orchestration based on a given set of objectives and constraints. In fact,
SBSE techniques allow us to address multi-modality problems as they aim to find the Pareto-optimal
set of solutions, as opposed to trying to obtain a single optimal solution. For the modularization
problem this would mean that we are interested in a set of solutions where all objectives are
compensated and optimized instead of being combined into a single metric, which may not achieve
optimality [39]. An overview of our approach is depicted in Figure 5.

MOMoT

Problem Instance Model

Transformation Units

Objectives

Constraints

Exploration Configuration

Constraint Values

Transformation Orchestration
Problem 
Encoding

Search‐based 
Exploration

Objective and 
Constraint Evaluation

Solution

Generation

Transformation

Application

Objective Values

Solution Models

Exploration Statistics

Figure 5. Overview of the MOMoT approach

To realize our approach, we need the following ingredients: (i) a generic way to describe the
problem domain and the concrete problem instance, (ii) an encoding for the solution of the concrete
problem instance based on model transformation solutions, (iii) a random solution generator that
is used for the generation of an initial, random individual or random population, and (iv) a set
of search-based algorithms to execute the search. To further support the use of multi-objective
evolutionary algorithms, we additionally provide (v) generic objectives and constraints for our
solution encoding, (vi) generic mutation operators that can modify the respective solutions, and
(vii) a configuration language that provides feedback about the specified search configuration.
Since our approach combines MDE techniques with SBSE techniques, the key building blocks are
an environment to enable the creation of meta-models and models, a model transformation engine
and language to manipulate those models and a set of meta-heuristic algorithms that perform the
search to find transformation orchestrations that optimize the given objectives and fulfil the specified
constraints. In the following sections, we describe the different parts of our approach on the basis of
the modularization problem introduced in the previous section.

3.3. Problem Encoding: Meta-Models and Models

As it is typical in MDE, the problem domain itself is defined as a meta-model (e.g., cf. the meta-
model of the modularization problem depicted in Figure 2). Based on the specific problem domain,
a user can define both concrete problem instances, i.e., models (e.g., cf. Figure 3) and transformation
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rules that specify how problem instances can be modified (e.g., cf. Figure 4) in order to produce a
solution, i.e., output model (e.g., cf. Figure 11).

3.4. Solution Representation: Model Transformations

A solution in general consists of a set of decision variables that are optimized by the respective SBSE
algorithm, a number of constraints that need to be fulfilled in order for the solution to be valid, and a
number of objective values, one for each of the objective dimensions evaluated by the defined fitness
function. As we deal with a transformation problem, there are two common ways in representing
a solution. Either a solution is an ordered sequence of rule applications or it is the model resulting
from the application of that sequence. We chose the first encoding as we consider it more flexible,
because the resulting model can always be calculated from the sequence of configured rules and
may be stored in a solution as attribute to avoid re-execution. Furthermore, in our understanding,
using a rule application sequence as first-class citizen in the encoding has several advantages. First,
we are in line with the general SBSE problem formulation, where a solution consists of separate
decision variables that are optimized by an algorithm. This increases the understanding for users
who are knowledgeable in SBSE. Second, we are on the level of abstraction on which the user has
provided information, i.e., transformation rules. Therefore, giving also novices in SBSE a bit of
insight into the solutions. And third, we think that having the rule sequence shown explicitly also
makes the output models more comprehensible as the user can compare solutions on the level they
are computed and not only based on the output model which may increase the acceptance of our
approach. Therefore, a decision variable in our solution is one transformation unit. A description of
all supported transformation units based on [16] can be found in Table I.

The most basic transformation unit is a transformation rule which directly manipulates the model
being transformed. Other transformation units can be used to combine one or more transformation
units to provide simple control-flow semantics. It is important to note that a loop unit may create an
infinite search space in which our approach would not stop until it runs out of memory, e.g., when
the provided sub-unit manipulates the graph in a way that produces additional matches for that sub-
unit. Currently, we have no way to automatically detect whether a loop unit creates an infinite search
space, but we inform the user about the possibility using our support system (cf. Section 3.8).

Each transformation unit can have an arbitrary number of parameters that need to be instantiated,
i.e., values for these parameters must be found. Additionally, application conditions can be specified

Table I. Transformation units based on [16] that serve as decision variables in the encoding

Unit Description

Transformation Rule Rules are the main transformation units and the only ones that are ultimately executed
on the input model. A rule consists of a left-hand side and a right-hand side graphs
which describe the pattern to be matched and the changes to be made, respectively.
Rules may have positive and negative application conditions and can be nested to
execute inner rules as long as possible if the outer rule matches.

Sequential Unit A sequential unit executes all sub-units in the given order once and may be configured
to stop the execution if any of the sub-units cannot be executed and to rollback any
changes that have been made by the sequential unit.

Priority Unit A priority unit executes the first given sub-unit that can be successfully applied on the
given input model. Subsequent sub-units are not executed.

Independent Unit An independent unit executes the first randomly selected sub-unit that can be executed
on the given input model. Other sub-units are not executed.

Loop Unit A loop unit consists of one sub-unit. The loop unit is executed as long as the sub-unit
can be applied in the underlying graph.

Iterated Unit An iterated unit is composed of one sub-unit that is executed as often as explicitly
specified.

Conditional Unit This unit enables the expression of an if-then-else condition. It consists of at least two
sub-units (if, then) and an optional third sub-unit (else). The then-unit is only executed if
the if -unit can be successfully matched, otherwise the else-unit is executed if possible.

Placeholder Unit This unit acts as a placeholder within the transformation without modifying the given
input model.
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Decision Variables (Transformation Units) Objectives Constraints 

unit       = createModule 

moduleName = 'ModuleZrldp' 

unit   = assignClass 

module = ModuleZrldp 

class  = FreeInode 
Placeholder ... 

Coupling   = 66.0 

Cohesion   = -24.0 

MQ         = -1.964 

MinMaxDiff = 4.0  

NrModules  = -6.0 

Length     = 33.0 

UnassignedClasses = 0 

EmptyModules      = 0 

Figure 6. One solution with the first two transformation units and one placeholder

that need to be fulfilled in order for the unit to be applicable. As typical for graph transformation
systems, there are two kinds of application conditions, positive application conditions (PACs) and
negative application conditions (NACs). The former require the presence of certain elements or
relationships in the model, whereas the latter forbid their presence. Besides using model elements
and relationships in the PACs and NACs, it is also possible to formulate these conditions using
parameter values or attributes of elements. In such a case JavaScript or OCL may be used. As
a special case, we also allow the use of transformation unit placeholders, i.e., units that are not
actually executed and do not have any effect on the output model. This enables the actual solution
length to vary in cases where the solution length must be fixed in advance. Besides the decision
variables, the objective and constraint values, we also provide attributes of a solution which serve
as a key-value storage for additional information relating to the evaluation or to the search process.

In summary, one solution consists of an ordered sequence of applicable transformation units
(decision variables) that creates a valid output model when executed on the specified input model.
An example of a solution for the modularization problem with the first two transformation units and
one placeholder is depicted in Figure 6.

Transformation Unit Parameters. Parameters allow to change the behavior of transformation
units with variable information that is typically not present before execution time. When dealing
with model transformations, we can distinguish between two kinds of parameters: those that are
matched by the graph transformation engine (matched parameters), and those that need to be set
by the user (user parameters). The former are often nodes within the graph, whereas the latter are
typically values of newly created or modified properties. In the rules provided for the modularization
problem (cf. Figure 4), the class and module of the assignClass rule are matched parameters,
whereas the moduleName parameter of the createModule rule is a user parameter.

Values for the matched parameters can be retrieved from the respective transformation engine
through a matching procedure. In our approach, we use non-deterministic matching, i.e., for a
given model a different transformation unit with different parameters may be selected each time the
matching is executed. This leads to a non-deterministic optimization, where we produce different
results every time the search is executed. However, during the search, the matching parameters
within a solution are fixed, unless otherwise modified, i.e., a solution always produces the same
output model for the given input model. Values for the user parameters need to be handled
differently, as a user usually can provide a value for these programmatically or via a dedicated
user interface when the unit is applied manually. In an automated approach, however, we need a
way to generate those values when needed. This is also necessary in order to facilitate the creation
of random solutions and populations, what is needed by most search algorithms. Usually, a high
variance of parameter values are preferred to cover as much area of the search space as possible.
By default, we use random parameter value generators for most primitive values. The range of these
value generators is the range of the data type of the respective parameter, e.g., for Integer in Java
the value can range from −231 to 231 − 1. Although an efficient search algorithm should quickly
remove values that are not beneficial in a specific scenario, the user may restrict this range as part
of the configuration to prune such unfruitful areas of the search space in advance. Additionally, we
provide a hook where a user can integrate how values should be generated for specific parameters.
Furthermore, the user may define which parameters should be retained as part of the solution. By
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default all parameters are kept, any other parameters are re-matched by the graph transformation
engine when the respective unit is executed again.

Solution Repair. Even though constraints can be used to specify the validity or feasibility of
solutions, a solution that is the product of re-combining two other solutions (such as needed in
evolutionary algorithms) might have unit applications that are no longer executable. By default,
units that cannot be executed are ignored. However, this behavior might not be satisfactory in some
cases as the process of establishing that a transformation unit cannot be executed is quite expensive
due to unnecessary match finding done by the transformation engine. Therefore we consider two
repair strategies in our approach.

The first strategy replaces all non-executable transformation units with transformation
placeholders and the second strategy replaces each non-executable transformation unit with a
random, executable transformation unit. Which strategy is the best depends on the problem at hand.
Replacing a non-executable unit application with a placeholder effectively shortens the solution
length and has the risk of removing useful applications from the search space which may cause the
search to converge too early. On the other hand, replacing a non-executable unit application with
a random executable unit application may have an impact on the overall solution quality as other
transformation units might become non-executable due to the new transformation unit and may
also need to be replaced. The resulting solution may be a solution that is quite different from the
original solution, which may negate the positive effect of selection and recombination. Therefore,
this strategy should be used with caution, especially when many different transformation rules are
given and the risk of producing a very different solution is higher.

In the ideal case, no solution repair strategy is necessary as non-executable unit applications are
not produced. Of course this depends on the chosen algorithm and the actual constraints of the
solutions. A user can also select a dedicated re-combination operator that is able to consider some
constraints, e.g., the partially matched crossover (PMX) [48] can preserve the order of variables
within a solution.

3.5. Solution Fitness: Objectives and Constraints

As described in Section 2.1, the quality of each solution candidate is defined by a fitness function
that evaluates multiple objective and constraint dimensions. Each objective dimension refers to a
specific value that should be either minimized or maximized for a solution to be considered “better”
than another solution. In our approach, we can distinguish between objectives that are problem
domain-specific, e.g., minimizing the coupling of modularization models, and objectives that relate
to the solution encoding, e.g, minimizing the number of transformations that should be applied to
reach a solution. Additionally, a solution candidate may be subject to a number of constraints in
order for the solution to be valid. Depending on the algorithm, invalid solutions may be filtered out
completely or may receive a low ranking in relation to the magnitude of the constraint violation.
As with objectives, we distinguish between domain-specific constraints, e.g., all classes must be
assigned to a module, and solution-specific constraints, e.g., a specific transformation rule needs to
be applied at least once.

Objectives and constraints can be defined either by providing a direct implementation of the
respective objective value or by specifying model queries in OCL. In our approach, the support
for OCL is crucial as model engineers are typically proficient in OCL and therefore can provide
the necessary input in a language they are familiar with. Alternatively, users may also provide
objectives and constraints in a Java-like expression language in case they are not familiar with OCL.
Constraints may also be defined as NACs directly in the transformation units as we are building upon
the expressive power of a graph transformation system. By doing so, we can effectively avoid the
generation of invalid solution candidates, resulting in a potentially smaller search space. However,
due to the cost of graph pattern matching, the application of NACs may also introduce an additional
overhead, depending on the NACs complexity and the number of pruned solutions.

In summary, the problem domain is represented as a meta-model, from which a concrete problem
instance model can be created. Transformation units defined upon concepts of the meta-model are
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then used to modify the model instances. The objectives that should be optimized in order to create
the desired output model may be defined directly or via model queries in OCL. The constraints that
a possible solution must fulfil in order to be valid can also be specified in OCL, but may also be
encoded as NACs directly in the rules.

3.6. Exploration Configuration

In order to search for good solutions to the given search problem, the user must select and configure
at least one algorithm and specify the parameters of the experiment configuration.

Algorithm Selection. As mentioned previously, our proposed approach is independent from
specific search algorithms. Nevertheless, additional algorithm-specific exploration options need to
be configured by the user. These options depend on whether an evolutionary algorithm or a local
search algorithm is used.

Evolutionary search algorithms are a subset of population-based search algorithms that deploy
selection, crossover, and mutation operators to improve the fitness of the solutions in the population
in each iteration (the first population is usually generated randomly). The selection operators can
be defined generically and choose which solutions of the population should be considered for re-
combination. An example for a selection operator would be deterministic tournament selection,
which takes k random candidate solutions from the population and allows the best one to be
considered for re-combination. The crossover operator is responsible for creating new solutions
based on already existing ones, i.e., re-combining solutions into new ones. Presumably, traits
which make the selected solutions fitter than other solutions will be inherited by the newly created
solutions. In our case, each solution is represented as a sequence of transformation application units
for which many generic operators already exist, e.g., the one-point crossover operator that splits
two solutions at a random point and merges them crosswise. The mutation operators are used to
introduce slight, random changes into solution candidates. This guides the algorithm into areas of the
search space that would not be reachable through recombination alone and avoids the convergence
of the population towards a few elite solutions. To take the semantics of transformation units into
account, we have introduced three dedicated mutation operators. The first operator replaces random
transformation units by placeholders, reducing the actual solution length. The second operator varies
the user parameters of a transformation unit based on the parameters values (cf. Section 3.4). The
third operator selects a random position within a solution and replaces all transformation units after
that position with a random, executable transformation unit.

Local search algorithms maintain one solution at a time and try to improve that solution in
each iteration. Improvement depends on the solution comparison method the user selects, e.g.,
comparison based on objective, constraint or attribute values. The initial solution may be given
by the user or can be generated randomly. In each iteration, the algorithm may take a step to a
neighbor solution, i.e., a solution that is a slight variation of the current solution. The calculation
of neighbors from the current solution can be done generically using a neighborhood function.
How many neighbors are evaluated and whether only fitter neighbors are accepted as the next
solution depends on the respective algorithm. In our approach, we support two neighborhood
functions. Following the principle of reuse, the first function uses one of the previously defined
mutation operators to introduce slight changes into the current solution. Depending on the operator,
this function may produce an infinite number of neighbors, e.g., when varying floating point rule
parameter values. Therefore, an upper bound on the number of calculated neighbors can be specified.
The second neighborhood function adds an additional, random transformation unit to the current
solution, increasing its solution length. Here, an upper bound on the solution length can be specified.

If multiple algorithms are configured by the user, each algorithm is executed individually and
their results can be used separately or in combination (see Section 3.7).

Experiment. In order to execute the search for the selected and configured algorithms, the user
needs to provide additional experiment parameters. The first parameter is the population size, i.e.,
the number of solutions in each iteration for evolutionary algorithms. Second, the user must specify
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Figure 7. Example graph of modularization quality convergence for local search

a stopping criterion for the algorithms, i.e., the maximum number of fitness evaluations that are
performed by each algorithm. The number of iterations of an algorithm is implicitly calculated by
dividing the maximum number of fitness evaluations by the population size. Finally, the user needs
to specify the number of times each algorithm should be executed (number of runs). As explained
by Harman et al. [49], experiments are typically repeated 30-50 times in order to draw statistically
valid conclusions from the results.

As part of the optional configuration parameters, a user may specify a reference set of Pareto-
optimal solutions, i.e., a set of known, good solutions, to enable the analysis of the search process
(cf. Section 3.7). Additionally, a user may configure our approach to print detailed information
about the on-going search process on the console or terminate a single run of an algorithm based on
different criteria, e.g., after a certain time limit has been reached or a given solution has been found.

As our target audience are model engineers, we aim to make the configuration of the exploration
easy and provide support with respect to their configuration options (cf. Section 3.8).

3.7. Result Analysis

Solutions. Finally, after the experiment with the configured search algorithms has been executed,
the user can process the results. As results we have (i) the set of orchestrated transformation
sequences leading to (ii) the set of Pareto-optimal output models with (iii) their respective objective
values. Since the results are on the level of the provided input, i.e., transformation rules, the
set of orchestrated transformation sequences can be inspected by the model engineer to get an
understanding of the produced results. The set of output models produced by these transformations
conform to the same meta-model as the given input model and can be inspected or processed further
by MDE tools. The objective values may give an overview of how well the objectives are optimized
by the different algorithms. All results of the experiment can be retrieved for each algorithm
individually or combined into one set of Pareto-optimal solutions. Especially, the objectives of the
combined solutions may be of interest, as they can be used as a reference set for future experiments
if the Pareto set of optimal solutions is not known a priori, which is the case for many real-
world problems. Individual algorithms results may be of interest if different algorithms or different
configurations of one algorithm need to be compared.

Statistical Analysis. Collected runtime data of the search process can be used to plot graphs
in order to give a better overview about the algorithm executions and performance. For example,
Figure 7 depicts the convergence of the modularization quality objective over time for multiple runs
of two local search algorithms, Hill Climbing and Random Descent. Each line corresponds to one
run of the respective algorithm.

If the user provides a reference set of solutions, we can also calculate several indicators during
the search. These indicators are used to gain insight into the search performance of the different
algorithms. As an example, we describe two common indicators, Hypervolume and inverted

Copyright © 2015 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2015)
Prepared using smrauth.cls DOI: 10.1002/smr



SEARCH-BASED MODEL TRANSFORMATIONS 15

generational distance. Hypervolume corresponds to the proportion of the objective space that is
dominated by the Pareto front approximation returned by the algorithm and delimited by a reference
point. The larger the proportion, the better the algorithm performs. Hypervolume can capture both
the convergence and the diversity of the solutions. Inverted generational distance is a convergence
measure that corresponds to the average Euclidean distance between the Pareto set produced by the
algorithm and the given reference set. We can calculate the distance between these two fronts in an
M -objective space as the average M -dimensional Euclidean distance between each solution in the
approximation and its nearest neighbor in the reference front. Better convergence is indicated by
lower values. For each run of an algorithm, we can calculate one value per indicator.

In order to draw valid conclusions from these values, we need to perform a statistical analysis,
e.g., using the Mann-Whitney U test [50]. The Mann-Whitney U test, equivalent to the Wilcoxon
rank-sum test, is a non-parametric test that allows two solution sets to be compared without making
the assumption that values are normally distributed. Specifically, we test under a given significance
level α the null hypothesis (H0) that two sets have the same median against the alternative
hypothesis (H1) that they have different medians. If the resulting p-value is less than or equal to
α, we accept H1 and we reject H0; if the p-value is strictly greater than α we do the opposite.
Usually, a significance level of 95% (α = 0.05) or 99% (α = 0.01) are used. Alternatively, in our
approach, the user may choose another test like Kruskal-Wallis One-Way Analysis of Variance by
Ranks test [51, 52].

Using these statistical tests, we can determine whether two algorithms are interchangeable with
respect to a certain indicator. However, it is not possible to show the magnitude of how much one
algorithm is better than another, i.e., the effect size. In our approach, we support parametric effect
size measures with Cohen’s d statistic [53] and non-parametric effect size estimates with Vargha
and Delaney’s A measure [54] and Cliff’s delta [55]. For the non-parametric Mann-Whitney U
test, we may use a non-parametric effect size measure such as Cliff’s delta. Cliff’s delta makes
no assumption about the distribution or spread of the compared value vectors. The calculation of
Cliff’s delta d is based on the average number of times (#) a value xi of a vector of size n is larger
or smaller than a value xj of a vector of size m, as depicted in Equation 6. The resulting effect size
ranges between −1 and +1 or between 0 and 1, if we consider the absolute value, whereas a value
of 0 represents a complete overlap of both vectors and a value towards 1 represents an increasing
difference between the two vectors. The effect size can be considered (i) small if 0.147 ≤ d < 0.33,
(ii) medium if 0.33 ≤ d < 0.474, and (iii) large if d ≥ 0.474 [56].

d =
#(xi > xj)−#(xi < xj)

mn
(6)

As an example experiment, we use three algorithms, ε-MOEA algorithm, NSGA-III and Random
Search (RS), and execute each algorithm 30 times on the mtunis system with a population size of
100 and for 200 iterations. We use tournament selection with k = 2, a one-point crossover operator
and a placeholder mutation operator with p = 0.1. The results of the analysis are shown in Table II,
in which the best values for each indicator are highlighted in bold, and depicted in Figure 8. Each
box plot in the figure shows the minimum value of the indicator (shown by the lower whisker),

Table II. Excerpt of indicator statistic for different multi-objective algorithms

Hypervolume Inverted Generational Distance

ε-MOEA NSGA-III RandomSearch ε-MOEA NSGA-III RandomSearch

Min 0.089 0.078 0.065 0.097 0.114 0.139
Median 0.097 0.084 0.072 0.108 0.135 0.172

Max 0.102 0.093 0.079 0.121 0.165 0.196
Mean 0.097 0.084 0.072 0.108 0.136 0.172

StdDev 0.003 0.004 0.004 0.006 0.011 0.011
Count 30 30 30 30 30 30

Indifferent {} {} {} {} {} {}
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Figure 8. Hypervolume and Inverted Generational Distance box plots for the modularization problem

the maximum value of the indicator (shown by the upper whisker), the second quantile (lower
box), the third quantile (upper box), the median value (horizontal line separating the boxes) and
the mean value of the indicator (marked by an 'x') for each algorithm. We can clearly see that
for the Hypervolume indicator, Random Search has lowest and therefore worst value while ε-
MOEA has the highest value. A similar result is produced for the inverted generational distance
where lower values are considered better. In order to investigate the results further, we deploy the
Mann-Whitney U test with a significance level of 99% as described above. Based on this statistical
analysis we determine that the results of all algorithms are statistically different from each other,
i.e., no two algorithms perform equally well. This is also indicated in Table II (row indifferent) as
empty set. Finally, we calculate the effect size and find the magnitude of the differences between
the algorithms using Cliffs’s delta measure. From the results, we can see that all differences are
considered large. The effect size for Hypervolume between ε-MOEA and NSGA-III is d = 0.9867,
between NSGA-III and RandomSearch it is d = 0.98, and between ε-MOEA and Random Search it
is d = 1.0. A similar effect size is calculated for the inverted generational distance. As a conclusion,
we can state that for the settings we have chosen and based on our selected performance indicators,
ε-MOEA performs the best, NSGA-III performs second best, and Random Search has the worst
performance. The fact that a sophisticated meta-heuristic search outperforms Random Search is
also a good indicator that the problem is suitable for SBSE techniques.

3.8. Support System

Configuration Language. To support the model engineer in specifying the search problem,
the necessary input and the experiment configurations, we provide a dedicated configuration
language with MOMoT. Conceptually, this domain-specific language (DSL) is defined platform-
independently using a meta-model and an expression language. Thus, the specified configurations
are represented as models in MOMoT. In fact, all configurations can be made in a single file with
a few lines of mandatory configuration parameters and some optional configuration parameters.
In general, the textual notation of the language uses ‘=’ to assign values, ‘{}’ to define objects,
‘[]’ to denote lists and ‘:’ to separate key-value pairs. Content-Assist provides the next allowed
configuration parameters and guides the users when they need to provide their own input.
Furthermore, when the user is required to implement specific behavior, we provide helper objects
with additional convenience methods. An excerpt of a configuration is depicted in Listing 1. Using
such configuration, we can either generate code or interpret the configuration directly to execute the
search.

Static Checks. One advantage of providing a DSL over providing just an API is that we
can statically check the given configurations before we compile and execute them. These static
checks can be used to inform the user about certain aspects of the search, warn about uncommon
configurations and prohibit the execution in case any errors can be detected. These checks are
integrated in the editor of the DSL providing the details on the respective positions in the text.
Additionally, an overview is used to show all information in a list. A summary of all provided checks
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is shown in Table III. The upper part of the table shows checks related to the search, while the lower
part shows consistency checks. Dependencies between the individual configurations are considered
by the editor and invalid configurations are marked and prevent execution. Please note that some of
these checks are more complex than others, e.g., checking if any of the given transformation units
can be applied can only be answered if we actually load the model and transformations and try it
out. Therefore, not all checks are done on the fly and the user needs to explicitly trigger the more
complex validation process.

Listing 1: Excerpt of an experiment configuration in the textual notation of our DSL
1 model = "modularization_model.xmi" // has a reference to the meta-model

2 transformations = { modules = [ "modularization.henshin" ] }

3 fitness = {

4 objectives = { ...

5 NrModules : maximize "self.modules->size()" // OCL-specification

6 Length : minimize new TransformationLengthDimension // generic objective

7 }

8 constraints = { ...

9 UnassignedFeatures : minimize { // Java-like syntax, direct calculation

10 (root as ModularizationModel).classes.filter[c|c.module == null].size }

11 }

12 }

13 algorithms = { ... // moea is an auto-injected object

14 Random : moea.createRandomSearch()

15 NSGAIII : moea.createNSGAIII(

16 new TournamentSelection(2), // k == 2

17 new OnePointCrossover(1.0), // 1.0 == 100%, always do crossover

18 new TransformationPlaceholderMutation(0.15)) // 15% mutation

19 }

20 experiment = {

21 populationSize = 300

22 maxEvaluations = 21000

23 nrRuns = 30

24 referenceSet = "reference_objectives.pf" // if available (optional)

25 collectors = [ hypervolume ] // collect during search, needs referenceSet

26 }

27 results = {

28 objectives = { outputFile = "data/output/all/modularization_model.pf" }

29 models {

30 algorithms = [ NSGAIII ]

31 outputDirectory = "data/output/nsgaiii/modularization_model/" }

32 }

3.9. Implementation

In order to show the feasibility of our approach, we provide an implementation of MOMoT as
a Java-based framework. While it is possible to implement the approach from scratch, reusing
the functionality of existing frameworks as much as possible is the central principle of our
implementation. Reuse avoids the necessity for users to learn new formalisms and reduces the risk
of introducing additional errors through re-implementation. Furthermore, there is little to no delay
in receiving updates for bug-fixes, new functions, algorithms, or optimizations from the existing
frameworks. Specifically, to unify the MDE and SBSE worlds in a single framework, we bridge the
Eclipse Modeling Framework (EMF), the Henshin graph transformation system, and the MOEA
Framework. The complete code with further explanations as well as the examples presented in this
paper can be found on our project website [57].

EMF. EMF is an open-source, Eclipse-based framework that supports the creation of modeling
and meta-modeling tools. At the core of EMF is Ecore which enables the definition of meta-
models. Ecore is the de-facto reference implementation of the Essential MOF standard in Java.
By basing our implementation of MOMoT on EMF, we can use a multitude of existing frameworks.
Particularly, we use Eclipse OCL to evaluate OCL queries and constraints on Ecore-based models,
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Table III. List of static checks in the configuration DSL

Name Type Description

Unit Applicability Error Check if any of the given transformation units can be applied.
User Parameters Error Check if values are provided for user parameters.
Algorithm Runs Warning Warn if the number of runs is smaller than the recommended minimum

(< 30) [49].
Number of Iterations Warning Warn if the resulting number of iterations is very small (≤ 10).
Many-Objective Warning Warn if we have many-objective search (> 3 objectives) [25] but a

multi-objective or local search algorithm has been chosen.
Object Identity Warning Warn about missing equals implementation for parameters.
Population Size Warning Warn if the population size is very small (≤ 10).
Algorithm Parameters Info Inform about the relevance of different algorithm parameters, e.g., about

specific evolutionary operators.
Loop Unit Info Inform the user about the possibility of a potential infinite search space

created through a loop unit.
Single-Objective Info Inform about local search algorithms if only a single objective is used.

Algorithm Name Error Check if every algorithm name is unique.
Input Model Error Check if the specified input model exists.
OCL Dimension Error Check if the given dimension are valid OCL queries.
Parameter Value Error Check if parameter values are defined for existing parameters.
Parameter Value Name Error Check if parameter values are not defined twice for the same paramter.
Reference Set Error Check if the given reference set file exists.
Transformations Error Check if the specified transformations exist.
Save Analysis Warning Warn if analysis should be saved but has not been defined.
Result Analysis Info Inform when an existing analysis file will be overridden.
Result Objectives Info Inform when an existing objectives file will be overridden.

Xbase|| as a base language for our configuration language which already provides code generation
and interpretation capabilities, and the EMF Validation Framework to implement the configuration
checks for our configuration DSL.

Henshin. As graph transformation language and engine in our implementation, we use
Henshin [16], since it offers a rich language and associated tool set for in-place transformations
of Ecore-based models. In Henshin, graphs are attributed, and nodes, edges, and attributes refer to
EClass, EReference and EAttribute of Ecore, respectively. Henshin comes along with a powerful
declarative model transformation language that has its roots in attributed graph transformations and
offers the possibility for formal reasoning. An example of the visual notation of that language has
been shown in Figure 4. Besides rules, Henshin provides control-flow units to orchestrate these
rules, e.g., sequential units, priority units or amalgamation units [58]. In order to tackle the graph
pattern matching problem, Henshin uses a technique of constraint solving [59] where each node in
the graph is considered a variable with a corresponding domain slot that is the solution space for that
variable. Impossible solutions for each variable are then removed according to the given constraints.
The constraints are extracted from the provided patterns and the meta-model and are categorized into
different groups, e.g., type constraints, reference constraints or containment constraints. To improve
performance, the order in which variables and constraints are processed is determined heuristically
on-the-fly based on the current graph. The final matches are constructed by locking variables to
specific solutions after the impossible solutions have been removed.

MOEA Framework. The MOEA framework is an open-source Java library which provides a
set of multi-objective evolutionary algorithms with additional analytical performance measures and
which can be easily extended with new algorithms. By reusing the MOEA framework, we can use
the following evolutionary algorithms out of the box: NSGA-II, eNSGA-II, NSGA-III, eMOEA,
and Random Search. Furthermore a set of selection and crossover operators are provided, which

||Eclipse Xbase. Available at https://wiki.eclipse.org/Xbase
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can also be reused. A user may choose to develop further algorithms or integrate existing ones from
the jMetal library**, the PISA library†† and the BORG MOEA Framework‡‡, for which adapters or
specific plug-ins are already provided by MOEA. In order to support also local search algorithms,
we provide a base interface and implementation as well as the described neighborhood functions.
We show the use of our local search hooks by implementing the Random Descent and Hill Climbing
algorithms as proof-of-concept.

4. EVALUATION

In this section we present an evaluation of our approach based on four case studies. In particular, we
are interested in answering the following research questions (RQs).

RQ1. Applicability: Is our approach applicable to challenging problems in model-based software
engineering?

RQ2. Overhead: How much runtime overhead is introduced by our approach compared to a native
encoded solution?

RQ3. Search Features: What are the additional search features offered by MOMoT w.r.t. pure
transformation approaches?

In order to answer RQ1 and RQ2, we use four case studies that target different problem areas and
differ in their level of complexity with regard to the transformation implementation. The answer to
RQ3 is given by argumentation based on the analysis of the default Henshin transformation engine
compared to the MOMoT extension. Thus, this discussion is valid for all case studies.

4.1. Case Study Setup

This section explains the four case studies used to evaluate our approach and framework with respect
to the RQs. The first case study is known as the stack balancing example, and is used to exemplify a
simple problem domain and to show that our approach is not only applicable to software systems, but
to any system where MDE is used in its construction process. The remaining case studies represent
classical problems of model-based software engineering.

Stack Load Balancing. The problem domain is a set of stacks that are inter-connected in a circular
way, where each stack can have a different number of boxes referred to as load. The main goal of this
study is to find a good load balance. The two objectives that should be minimized are the standard

deviation of the loads and the solution length.

Class Modularization. This is a classic problem in software architecture design that is used as
running example in this paper (cf. Section 2.4). The goal is to group a number of classes that have
inter-dependencies into modules in order to optimize five objectives described previously. Among
these objectives, coupling and cohesion are two well-known conflicting objectives. A problem
instance of this case study consists of a set of classes and their inter-dependencies, as shown in
Figure 3 for the mtunis system [43]. To manipulate instances of this kind we need to (i) create new
modules and (ii) assign classes to existing modules. A valid solution assigns each class to exactly
one module and has no empty modules.

Many formulations of this problem have been tackled using search-based optimization methods.
For instance, Mancoridis et al. [60] presented the first search-based approach to address the problem

**http://jmetal.sourceforge.net
††http://www.tik.ee.ethz.ch/pisa
‡‡http://borgmoea.org
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of software modularization using a single-objective approach. The same technique has also been
used by Mitchell and Mancoridis [61, 62] using coupling and cohesion as objectives. Harman et
al. [63] use a genetic algorithm to improve the subsystem decomposition of a software system by
considering a combination of quality metrics, e.g., coupling, cohesion, and complexity, in the fitness
function. Abdeen et al. [64] proposed a heuristic search-based approach to automatically reduce the
dependencies between packages of a software system using simulated annealing based on moving
classes between packages. In [39], Praditwong et al. formulated the software clustering problem as
a multi-objective optimization problem. Their work aims at maximizing the modularization quality
measurement, minimizing the inter-package dependencies, increasing intra-package dependencies,
maximizing the number of clusters having similar sizes and minimizing the number of isolated
clusters. Following a similar idea, Mkaouer et al. [65] proposed to remodularize object-oriented
software systems using many-objective optimization with seven objectives based on structural
metrics and history of changes at the code level.

Class Diagram Restructuring. Refactoring is a technique tailored at enhancing object-oriented
software designs through the application of behavior-preserving operations [66]. However, there
can be a high number of choices and complex dependencies and conflicts between them that makes
it difficult to choose an optimal sequence of refactoring steps that would maximize the quality of
the resulting design and minimize the cost of the transformation [67]. Refactoring can become very
complex when we deal with large systems because existing tools offer only limited support for their
automated application [68]. Therefore, search-based approaches have been suggested in order to
provide automation in discovering appropriate refactoring sequences [40, 69–71]. Thereby, the idea
is to see the design process as a combinatorial optimization problem attempting to derive the best
solution, with respect to a given objective function, from a given initial design [67, 72].

Our third case study is taken from the Transformation Tool Contest (TTC) of 2013 [73]. The
aim of the TTC series is to compare the expressiveness, the usability, and the performance of graph
transformation tools along a number of selected software engineering case studies. Specifically, we
use the class diagram restructuring case study [74, 75], which consists of an in-place refactoring
transformation on UML class diagrams realized in the design or maintenance phase of a system.
A problem instance consists of a set of entities, e.g., classes, and their properties, e.g., attributes or
methods, as well as possible inheritance relationships between the entities (we only consider single
inheritance in this case study). The goal is to remove duplicate properties from the overall class
diagram, and to identify new entities which abstract data features shared in a group of entities in
order to minimize the number of elements in the class diagram, i.e., entities and properties. The three
ways used to achieve this objective are (a) pulling up common properties of all direct sub-entities
into a super-entity, (b) extracting a super-entity for duplicated properties of entities that already
have a super-entity, and (c) creating a root entity for duplicated properties of entities that have no
super-entity. They are graphically shown in Figure 9.

In this case study, the order in which the three rules are executed has a direct effect on the quality
of the resulting model. In fact, considering only the number of elements in the class diagram as
objective and the three rules, we can give a canonical solution that always yields the best result. First,
properties need to be pulled up (rule a), then super entities should be extracted (rule b), and then new
root entities should be created (rule c). If the same rule can be applied on more than one property, it
must be applied in the one that has more occurrences first. The way the approaches described in [75]
deal with the rule execution ordering problem is by implementing a rule prioritization mechanism
when writing the transformations. In our approach, this can be done using the Priority Unit (cf.
Table I). Therefore, we can express the class diagram restructuring case study without any problem.

However, if such a clear ordering of rule applications can be given in advance, a search-based
approach is not suitable and the problem should be solved as indicated. In order to make the
case study interesting for meta-heuristic search, we extend it with an additional domain-specific
objective: the minimization of the maximal depth of the inheritance tree (DIT) [76], i.e., we aim to
minimize the longest path from an entity to the root of the hierarchy. The DIT is a metric that can
be used to measure the structural complexity of class diagrams [77] and the deeper the hierarchy,
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Figure 9. Transformations of the class diagram restructuring case study (from [75])

the greater the number of properties an entity is likely to inherit, and thus, making it more complex
to predict its behavior yielding a higher design complexity. However, the deeper a particular entity
is in the hierarchy, the greater the potential reuse of inherited entities [76]. Therefore, we have a
conflict between the DIT and the objective to minimize the overall number of elements in the class
diagram.

EMF Refactor. EMF Refactor is an open-source Eclipse project [78,79] that supports a structured
model quality assurance process for Ecore and UML models. In particular, EMF Refactor builds
upon the following three concepts:

Metrics: Several metrics can be calculated on model-level to gain insight into the model, e.g.,
average number of parameters of an operation of a class or the depth of the inheritance tree.

Smells: Smells are anti-patterns that may be an indicator for insufficient quality in the models.
These smells can be generally defined, e.g., the model contains an abstract class without
any concrete subclasses, or based on the detected model metrics, e.g., the model contains an
operation with more input parameters than the specified limit (Long Parameter List).

Refactorings: Refactorings are changes made on model-level with the aim of improving the
quality of that model. For example, to remove the smell of the Long Parameter List we can
group a set of parameters together to introduce a separate parameter object which is used
instead of the list of parameters.

4.2. Measures

To assess the applicability of our approach (RQ1), we use all four case studies as they are known
problems that have been extensively discussed in the literature. In particular, we consider our
approach to be applicable for a specific case study if the respective problem domain can be
represented using our approach. This will indicate whether the formalisms used in our approach, i.e.,
using meta-models and graph transformation rules, are expressive enough for real-world problems.
Then, to assess the overhead of our approach (RQ2), we compare the time it takes to obtain the
solutions for a particular problem (total runtime performance) of both our approach and a native
implementation in the MOEA framework. The overhead of our approach will be evaluated for
the modularization and the stack case studies as representatives of differently sized problems by
varying the population size parameter. Finally, in order to demonstrate how our approach advances
the current state of research w.r.t. search features offered by existing MDE frameworks (RQ3), we
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compare the search features of the pure Henshin transformation engine with the search features
contributed by MOMoT.

4.3. Results

This section describes the experiments conducted with the four case studies. Based on the obtained
results we discuss the answers to our research questions. All results are based on 30 runs of
the NSGA-III algorithm, which we deem sufficient for our overhead analysis since it is also the
recommended minimum to deal with the stochastic nature of meta-heuristic search [49]. To ensure
the sanity of the solutions found during these runs, we manually inspected the solutions for any
constraint violations or contradicting objective values. Additionally, we selected one solution for
each case study selected using a kneepoint strategy [80] to evaluate the quality of the solutions. The
artifacts created for this evaluation are described in the following sections and are available on our
project website [57].

RQ1. In order to answer the first research question about whether our approach is applicable to
challenging problems in model-based software engineering, we modeled the problem domains of all
case studies as Ecore meta-models and developed transformations rules that manipulate instances
of these meta-models in Henshin.

The Stack Load Balancing case study has been modeled as shown in Figure 10. The meta-model
that represents the system is depicted in Figure 10a. Every stack in the system has a unique identifier,
a number that indicates its load, and is connected to a left and right neighbor in a circular manner.
A concrete instance of this meta-model composed of five stacks with different loads is shown in
Figure 10b. To manipulate instance models such as the one shown, we propose two basic rules to
shift part of the load from one stack either to the left or to the right neighbor. The ShiftLeft rule is
shown in Figure 10c, and an analogous rule is used to shift parts to the right. The rule contains a
precondition, which ensures that the amount that is shifted is not larger than the load of the source
stack, avoiding a negative load in the source stack. This attribute condition is shown as an annotation
in the figure, although it has been expressed using JavaScript. Applying our approach on the input
model shown in Figure 10b, we quickly find the shortest sequence of three rule applications that
leaves five pieces in each stack.

The Class Modularization case study has been shown throughout the two previous sections.
Thus, we keep the discussion in this section short. Section 2 describes how the problem is modeled
and represented in Henshin, while Section 3 explains how it can be solved with MOMoT, and an
excerpt of the necessary configuration is shown. We have applied our approach to the mtunis system
instance consisting of 20 classes, as depicted in Figure 3. As result, we have retrieved many Pareto-
optimal solutions. One of these solutions is illustrated in Figure 11, showing the respective fitness
values for coupling, cohesion, the modularization quality, the difference between the minimum and
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(b) Instance model in abstract syntax

Rule shiftLeft(fromId: EString, toId: EString, amount: EInt, fromLoad: EInt, toLoad: EInt) @StackModel

«preserve»
to: Stack

id = toId
load = toLoad->toLoad + amount

«preserve»
from: Stack

id = fromId
load = fromLoad->fromLoad – amount

«preserve»
left

SufficientLoadPrecondition:
amount <= fromLoad

(c) ShiftLeft rule to shift load

Figure 10. Realizing the Stack Load Balancing case study
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maximum number of classes in a module, and the number of modules. To foster the readability of
the figure, arrows inside the same module are green while arrows targeting a different module are
colored according to their source module.
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Figure 11. Modularization model: sample output instance for the mtunis system

The Class Diagram Restructuring case study is the most complex one with regard to rule
complexity. Figure 12 depicts the meta-model to which problem instances have to conform [75]. In
this meta-model, the inheritance relationship among entities is modeled by using the Generalization

concept. This way, if an entity has a super type, then the entity has a generalization that, in turns,
points to a general entity. In the same way, if an entity has a child, then it has a specialization that,
in turns, points to a specific entity. Please note that we deal with single inheritance, what is modeled
by the cardinality 0..1 of relationship generalization. In fact, the problem with multiple inheritance
is not considered a search problem and has been solved. For instance, Godin and Mili [81] use
formal concept analysis and pruned lattices to solve the problem. These techniques are able to reach
a unique canonical solution in a polynomial time [82].

Generalization

NamedElement

name: EString

Entity Property Type
type
1..10..*

ownedAttribute
0..*0..1

general

specific

generalization

specialization

0..1

0..*

1..1

1..1

Figure 12. Metamodel of the Class Diagram Restructuring case study

In order to tackle the class diagram restructuring case study with single inheritance, we translate
all three operations (cf. Figure 9) into graph transformation rules. Each rule needs at least one NAC
and contains at least one nested rule. To give an estimate of the complexity to develop such a rule,
we depict the rule for creating root classes in Figure 13. A nested rule (indicated by a ‘∗’ in the
action name in Figure 13) is executed as often as possible if the outer rule matches. Therefore
nested rules can lead to a large set of overall rule matches, making the application of such rules
more expensive. The NACs have been implemented both directly as graph patterns (indicated as
forbid action in Figure 13) and as OCL constraints. For instance, the NAC of pulling up attributes
shown in Listing 2 ensures that all sub-classes of the class with the name eName have an attribute
with name pName before that attribute is pulled up. Both parameters, eName and pName, are
matched by the graph transformation engine automatically.
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Rule createRootClass(pName: EString, e1: EString, e2: EString) @model

«preserve»
: Entity

name = e1

«forbid#1»
: Generalization

«create»
: Entity

name = 'Entity_' + pName + '_' + e1 + '_' + e2

«delete»
: Property

name = pName

«create»
: Generalization

«create»
: Generalization

«create*»
: Generalization

«preserve»
: Entity

name = e2

«create»
: Property

name = pName

«preserve*»
: Entity

«delete»
: Property

name = pName

«delete*»
: Property

name = pName

«preserve»
: Type

«forbid#2»
: Generalization

«forbid*#3»
: Generalization

Figure 13. Create a root class for a common attribute with three NACs (forbid) and one nested rule (’∗’)

Listing 2: OCL-NAC for pulling up attributes specified in the context of the class diagram
1 self.entities->select(e | e.name = eName).specialization

2 ->collect(g | g.specific)

3 ->forAll(e | e.ownedAttribute->exists(p | p.name = pName))

The two objectives for the fitness functions can be translated to OCL or simply calculated in Java.
The calculation of the first objective, i.e., the number of elements in the class diagram, is depicted
in Listing 3. For the calculation of the maximum hierarchy depth, we simply traverse the paths from
all leaf entities to their root entity with a derived property called allSuperEntities and determine the
maximum length as also shown in Listing 3.

Listing 3: OCL expressions needed for the Class Diagram Refactoring case study
1 -- computing the number of elements

2 self.properties->size() + self.entities->size()

3 -- computing the maximum hierarchy depth

4 self.entities -> collect(e|e.allSuperEntities -> size()) -> max()

Concluding, we can state, that we represent the class diagram restructuring as described in
[74, 75]. In addition, we can easily handle the extension with the additional objective which would
require a redesign of the other solutions for this case study as presented in [75].

In the EMF Refactor case study, the quality assurance process is partly realized with Henshin
to detect metrics by counting how often a given rule can be matched, detecting smells through
matching and executing refactorings realized as transformation units. In particular, EMF Refactor
uses control-flow units to check whether all pre-conditions of a refactoring are fulfilled before it
is actually executed. An example of this is depicted in Figure 14, which demonstrates removal of
empty subclasses.
In the initial check we evaluate whether the selected class is not the super class of another class
(check_superetypes), whether it is truly empty (check_empty_eclass) and whether it is the sub-
class of another class (check_subetypes). Only then the actual execution units (cf. Figure 14b) are
executed which remove the class from the containing package.
In this case study we can re-use the most, since EMF Refactor works on Ecore and UML, two
meta-models which already have been defined. The refactoring rules are also provided, however,
since they are split up into an initial check and an actual execution, we have to first combine them
into one transformation unit. Here, we make use of the Conditional Unit without the else-unit. An
example for such a combination is depicted in Figure 15, which uses the initial check as the if -unit
and the actual execution as the then-unit. Please note that, we renamed the rules in Figure 14b since
EMF Refactor uses the name "mainUnit" for the combined initial check and the actual execution.
Only if the initial check is matched successfully, the actual change will be executed.
The metrics in EMF Refactor can also be re-used by selecting the elements they can be applied upon
from the model (getDomain) and calculating the respective metric. Listing 4 depicts an example
of how we can use the metric calculator that returns the number of all child EClasses of a given
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(a) Initial check for Remove Empty Sub-Class refactoring

(b) Execution for Remove Empty Sub-Class refactoring

Figure 14. Remove Empty Sub-Class refactoring from EMF Refactor

initialCheck(?) execute(?)

Figure 15. Combination of the initial check and the execution of the Remove Empty Sub-Class refactoring

EClass by first selecting all EClasses and then calculating the individual values for each class. Re-
using available metric calculators from EMF Refactor avoids potential implementation errors and
can save time when working with UML or Ecore models.

Listing 4: Using EMF Refactor metric calculator in MOMoT objective
1 SubClasses : minimize {

2 val subClassCalculator = new NSUPEC2() // number of all sub-classes

3 val eClasses = graph.getDomain(EcorePackage.Literals.ECLASS.eClass, true)

4 var subClasses = 0.0

5 for(eClass : eClasses) {

6 subClassCalculator.context = #[ eClass ] // eClass as list

7 subClasses += subClassCalculator.calculate // reuse EMF Refactor metric

8 }

9 return subClasses

10 }

Answering RQ1: Summarizing, we have been able to demonstrate the applicability of our
approach in different scenarios with different complexity. In this regard, the rules of the different
case studies contain varying features in the different examples, and all of them can be integrated in
our approach. For instance, the rules in the stack load balancing case study present a prerequisite
that is implemented with JavaScript. The class diagram restructuring case study is modeled with
complex rules that use the nesting mechanism provided by Henshin, and have also complex NACs,
while the use of Henshin units has been exemplified in the EMF Refactor example. Finally, the
modularization problem requires the optimization of five objectives in order to obtain proper
solutions. This is feasible with the use of many-objective algorithms [25], such as NSGA-III, also
included in MOMoT.

RQ2. To evaluate the overhead of our approach, we compare the runtime performance of MOMoT
with the performance of a native implementation in the MOEA framework for the modularization
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and the stack case studies. A native implementation only uses classes from the MOEA framework.
In order to provide such an implementation the following steps need to be performed.

1. Choose an appropriate representation (encoding) for the decision variables and solution.

2. Map the modularization concepts (classes, modules and their relationships) to that
representation.

3. Provide or select a mechanism to produce new and random solutions.

4. Evaluate the fitness objectives and constraints based on that encoding.

5. Decode the representation into a human-understandable form.

By default, MOEA provides binary variables, grammars, permutations, programs, and real
variables as well as a set of selection, crossover, and mutation operators that can work on these
variables. For the modularization case study, we use the following strategy. First, all classes are
given a unique, consecutive index. Second, we encode the assignments of classes to modules as a
sequence of binary variables so that each position in that sequence corresponds to one class and
the value of the binary variable indicates the module to which the class is assigned. Therefore we
have as many binary variables as there are classes in the model, e.g., for the mtunis model (cf.
Figure 3) a sequence of twenty binary variables would be used. The length of the binary variable is
set to represent at most the number of classes in the model, i.e., the case in which all classes are in
their own module. Since this is not exactly possible with binary variables, we need to use the next
possible value. For instance, to represent twenty modules we need five bits in a variable enabling an
actual range from 0 (00000) to 31 (11111). A representation for the described encoding using the
mtunis model is depicted in Figure 16.
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Figure 16. Native encoding for the Modularization case study

By choosing binary variables, we can re-use the operators and random solution generators
provided by MOEA. However, the evaluation of the fitness of a solution on binary variables is
very challenging. We therefore decode the solutions to an internal representation which makes
the concepts of classes, modules and dependencies explicit in order to evaluate the objectives and
constraints. This representation can then also be used to present the solutions to the user.

To compare the native encoding with the MOMoT encoding, both approaches are run on the same
machine with the same algorithm configuration. The machine is a Lenovo T430S with an Intel Core
i5-3320M CPU2.60GHz using 8GB RAM and running a 64 bit version of Windows 7 Professional.
As algorithm we use the NSGA-III with a maximum of 32768 evaluations, tournament selection
with k = 2 and the one-point crossover operator with p = 1.0. However, due to the differences in
the encoding, we cannot use the exact same mutation operators. In the MOMoT approach we mutate
parts of the solution sequences by substituting them with applicable, random sequences as explained
in Section 3.6. In the native approach, we apply a bit-flip mutation which flips each bit of a binary
variable, i.e., switches a 0 to a 1 and vice versa. Both mutation operators are used with p = 0.1.
To gain insight into the performance, we vary the population size resulting in a different number
of iterations, starting with a population size of one and doubling it until we reach the maximum of
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Table IV. Average runtime and standard deviations in milliseconds for the Modularization case study: Native
encoding vs. MOMoT

MOMoT Native
PopulationSize Avg StdDev Avg StdDev

1 27,178 1,141 3,207 833
2 28,394 1,375 4,807 401
4 27,713 846 3,486 317
8 27,082 989 2,658 414

16 25,151 920 2,013 420
32 26,843 1,011 1,753 554
64 25,477 862 1,827 538

128 25,631 968 1,970 570
256 26,249 937 2,734 280
512 27,987 872 2,363 246

1,024 27,396 1,156 2,869 256
2,048 31,065 1,276 3,829 462
4,096 33,967 1,733 5,935 348
8,192 40,233 1,926 10,463 662

16,384 50,472 1,818 16,383 964
32,768 61,282 3,868 12,264 3,220

32768. Each population size is executed 30 times. A comparison with local search is not possible
since MOEA does not provide local search by default.

The results of the NSGA-III comparison are depicted in Figure 17. The solid lines represent the
average runtime of all runs while the vertical lines through each point indicate the minimum and
the maximum runtime encountered. Table IV depicts the average values and standard deviations for
each of the 30 runs. From these experiments we can observe that the native encoding has a stable
runtime performance between 1.5 and 20 seconds, while the runtime performance of our approach
has a bit more variation, since in each execution it varies between 24 and 69 seconds. Furthermore,
our approach performs slower in all execution scenarios.

In a similar manner, we can encode the stack case study where we need to encode the shifting of
load parameters between stacks [22]. The stack system (StackModel in Figure 10) is represented
as a sequence of binary variables. While the integer value of the binary variable indicates how much
load is shifted, the position of the binary variable in the sequence indicates from which stack the
load is shifted. Therefore we have as many binary variables as there are stacks in the model. In
addition, one bit in each binary variable is added as a discriminator for indicating whether the load
is shifted to the left or to the right. This bit is not considered to be part of the variables integer value.
The number of bits to represent the load value is based on the highest load in the provided stack
instance, e.g., to represent 15 we need 4 bits (1111) and to represent 16 we need 5 bits (10000).
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Figure 17. Comparison of total runtime for the Modularization case study: Native encoding vs. MOMoT
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Since we deal with only two objectives, we use the NSGA-II algorithm for the comparison of
MOMoT and a native encoding. To execute the experiment, we fix the problem complexity with
100 stacks having a load between 0 and 200 and stop after 10,000 evaluations. To gain insight
into the performance, we vary the population size and the number of iterations, respectively. The
results of the experiments are depicted in Figure 18 and are similar to what we have seen for the
modularization case study. In all cases, our approach performs worse than the opposing native
encoding.
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Figure 18. Comparison of total runtime for the Stack Load Balancing case study: Native encoding vs.
MOMoT

This observed loss in performance can be explained two-fold. First, there is a slight difference
in the performance of the applied mutation operators. While the bit-flip operator is really fast, the
creation of a random transformation sequence is more expensive. Second and more importantly,
by using graph transformation rules instead of a native encoding, we inherit the complexity of
graph pattern matching and match application, which are expensive tasks on their own. In the worst
case, the graph pattern matching problem in Henshin is equivalent to the subgraph isomorphism
problem [59], which is NP-complete [83].

To further investigate this behavior we use the JVM Monitor§§ profiler for Java for tracking which
operations are the most expensive to execute in MOMoT. The profiling is executed on the same
machine as the performance evaluation above and samples the runtime every 50ms. The results
obtained from this profiling show that over 90% of the execution time is spent on finding new
matches by evaluating all constraints (NACs, PACs, implicit containment and reference constraints
as well as explicit attribute constraints) in the graph and then creating the changes that are applied
on that graph. These operations are followed by the graph copy operation, the evaluation of the
fitness function and the updating of the population set maintained by the algorithm. The graph copy
operation is called whenever a new solution is calculated based on the input graph, i.e., the input
graph is copied and then the transformation is applied upon that copy resulting in the output graph
which is used for the fitness evaluation. The fitness evaluation is called for every created solution
and the population set gets updated any time a new solution is added to it, e.g., it needs to check
whether the solution is dominated by another solution and how the solution relates to the reference
points maintained by NSGA-III.

Answering RQ2: Although Henshin uses constraint solving to tackle the problem of finding
pattern matches more efficiently, it seems that a certain loss in performance cannot be avoided.
This performance loss is also evident when creating a large initial population in the first iteration,
where we have to find and apply a lot of random matches to create solutions, which takes a large
proportion of the overall execution time, as discussed in [22]. In fact, when profiling the stack
case study, where the performance difference between the native encoding and MOMoT was even
larger [22], we can see that the larger difference stems from the use of attribute NACs written in
JavaScript, which takes a long time to match as it involves the matching of nodes and attributes
and the interpretation of JavaScript. Therefore, the performance of MOMoT strongly depends on
the complexity of the rules. This has also been observed by Arendt and Taentzer [79] for the EMF

§§JVM Monitor, version 3.8.1, available from http://jvmmonitor.org
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Refactor case study, where the time of applying different refactorings can vary from 17ms (Inline

Class refactoring) to 236ms (Extract Subclass refactoring).

RQ3. In order to evaluate how our approach contributes and integrates search capabilities to
existing MDE frameworks, we compare what search features our approach offers with respect to
what is currently available in Henshin. This is done by investigating what search capabilities are
integrated in Henshin and what problems they can solve. Then, we discuss the delta introduced with
our approach in order to estimate the effort that is reduced through MOMoT.

In general, with Henshin you need to specify explicitly which transformation unit you want
to apply and you need to provide all necessary parameters. The rule engine then tries to find a
match for the parameterized transformation unit in the underlying graph. If no matches are found,
an error message is displayed. Otherwise, one match is selected either deterministically or non-
deterministically, depending on your settings in the rule engine. Multiple units can be applied either
manually one after the other or explicitly through a different transformation unit, for instance, the
sequential unit. Additionally, Henshin provides the so-called Henshin State Space Tools to execute
search. These tools are used to verify the correctness of transformations and can generate and
analyze a state space given some initial state and the transformation rules. The automatic exploration
of Henshin uses a breadth-first search strategy that creates the state space and keeps track of all states
that have been visited. Starting from an initial model, all matches for all applicable rules are used to
generate a set of new states. Two states are connected through one concrete rule application. In each
step of the exploration, a newly created state is checked if it is valid according to a given criteria
and if it is a final state (goal state) given some other criteria. These criteria can be formulated
using OCL or given as a Java class through the configuration. Goal states and states where no
transformation rule can be applied are not explored any further (closed states). If an invalid state
is found, the exploration ends. This is used to evaluate whether the given transformation rules can
lead to invalid states by finding counter examples. The automatic explorer stops if all states have
been generated and no invalid state has been found. After the exploration process, Henshin provides
analysis capabilities to investigate the states space for certain criteria, e.g., finding the shortest path
from the initial state to some goal state. Summarized, Henshin provides an exhaustive approach to
find paths in an explicitly enumerated state space for specified criteria. More complex behaviour,
such as different search heuristics or an optimization procedure where the concrete criteria cannot
be specified in advance, needs to be implemented by the user through the API of Henshin.

MOMoT, on the other hand, does not provide an exhaustive approach, but local search and
population-based meta-heuristic approaches. Therefore, without using MOMoT, one can (i) use the
Henshin rules manually to derive a solution, (ii) implement another approach which is able to apply
the rules and check the resulting model or (iii) adapt the existing State Space Tools. However, due
to the complexity of the problems we are dealing with, i.e., problems that warrant a meta-heuristic
search, a manual approach is clearly not feasible for larger examples. A search-and-check-approach
must be able to take back applied transformations in form of backtracking and in most cases more
than one possible solution exists, as also observed by Schätz et al. [84]. Therefore we would at least
need to provide rules which are able to negate the effects of another rule. For the modularization
case study, this would mean that we need a rule for deleting a class, and another one for removing a
feature from a class. For the class diagram restructuring case study, we would need rules to remove
root classes and distribute attributes among classes by considering the current class hierarchy in
the model. Similar rules need to be implemented for the other case studies. Discarding a manual
approach and an approach where we would need to modify the user-provided input, we would aim
to adapt the existing functionality in Henshin.

In order to implement local search into Henshin, at least the following aspects need to be
implemented:

• The state space explorer must be able to deal with very large or infinite search spaces as
they are often created by transformation rules, e.g., the rule which creates modules in the
modularization case study. Currently, the explorer would traverse the search space until it
runs out of memory.
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• The evaluation of the quality criteria needs to be implemented and should be executed every
time a new state is created. Therefore, a concept of fitness function needs to be integrated into
the existing state space tools. Invalid states (according to the specified constraints) should be
marked and the evaluated quality criteria should be saved with each state.

• Currently the tools only derive new states from rules through matching. An extension which
allows the use of other transformation units needs to be developed as otherwise the power of
control-flow semantics in units cannot be used.

• Additional search strategies besides breadth-first search need to implemented, e.g., depth-first
search or A*-search. If possible, the fitness function should guide the direction of the search,
similar to what is done in MOMoT.

• In case multiple quality criteria need to be optimized, the search needs a way to compare
different solutions, e.g., through the use of the Pareto optimality concept.

In order to implement population-based search, model engineers need to start from scratch.
Listing the aspects that need to be considered and implemented in order to provide a similar
functionality than MOMoT, it should be clear that this task requires a lot of knowledge and time.

Answering RQ3: Henshin focuses on model-checking and therefore offers an exhaustive search
in a bounded, explicitly enumerated search space. However, for the case studies we investigated,
such an approach would not yield satisfactory results. First of all it lacks the capabilities to
define optimization goals and second it cannot deal with large search spaces. Furthermore, only
transformation rules may be applied, which means that the expressive power of control-flow units
is lost. Therefore a lot of effort needs to be invested in order to solve the given case studies with the
default Henshin transformation engine. This was also one of our motivations to propose MOMoT.

Summary. Our approach is consequently applicable for model-based software engineering
problems. However, due to the complexity of graph pattern matching, there is a clear trade-off
between the expressiveness provided by MDE through meta-modeling and model transformations
and the performance of a more dedicated encoding. Inventing such a dedicated encoding is a creative
process and is in most cases not as straight forward as in the Modularization case study. Furthermore,
once a dedicated encoding has been defined, integrating changes may become quite expensive. The
complexity of finding a good, dedicated encoding becomes even more evident when many diverse
manipulations with a varying number of parameters of different data types need to be represented
in the solution. Additionally, a dedicated encoding may make assumptions about the deployed
search algorithm, hampering the switch between different algorithms. Both of these drawbacks are
mitigated in our approach, where the parameters and their data types are part of a transformation
rule and where the switch to a different algorithm can be done by changing one line in the search
configuration. Indeed, this ease of use is especially important for modeling engineers, who are
familiar with MDE technologies such as meta-models, model transformations, and OCL, but may
find it challenging to express their problem with a dedicated encoding, corresponding operators and
a fitness function as well as converting the obtained solutions back to model level, where they can
be further processed. The use of dedicated encodings is further complicated by the fact that there
is often no common consensus how to solve a specific problem. For instance, whereas the works
in [40, 41] both address the problem of refactoring at design level using a modeling approach, each
of them proposes a different encoding.

Summing up, we conclude that while our approach is applicable for many problems, it introduces
an overhead that depends on the complexity of the transformations used in the generic encoding.
Nevertheless, our approach enables and guides model engineers to use meta-heuristic search to
tackle problems which may not be solvable through an exhaustive approach.

4.4. Threats to Validity

In this subsection, we elaborate on several factors that may jeopardize the validity of our results.
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Internal validity — Are there factors which might affect the results of this case study? First,
a prerequisite of our approach is for the user to be able to create class diagrams (meta-models)
and define rule-based systems. While this task was simple for us as model engineers, people from
other domains may find these tasks more challenging. Nonetheless, the aim of this approach is to
be used in the software engineering process, where models are used as first-class citizens in the
design phase, so designers are likely to be knowledgeable about models and model transformations.
Second, although we have sanity-checked all solutions, we only had a reference set of optimal
solutions for one example (the modularization case study). Further investigation may be needed
to ensure that our approach does not introduce problems hindering the algorithm from finding the
optimal solutions. In any case, to alleviate this threat, we have implemented native encodings using
the MOEA framework for both the stack and modularization case studies. These implementations
have yielded similar solutions as the ones obtained with our approach.

External validity — To what extent is it possible to generalize the findings? Even though we have
selected four case studies from different areas with varying degrees of complexity, the number of
case studies may still not be representative enough to argue that our approach can be applied on any
model-based software engineering problem. Therefore, additional case studies need to be conducted
to mitigate this threat. Furthermore, we have used Henshin as model transformation language to
express in-place model transformations. This means that additional studies are needed in order to
know how integrable other model transformation languages are in our approach and to consider
out-place model transformations. As part of our future work, we plan to investigate these issues and
try to define a minimal set of requirements on the kinds of notations and transformation languages
that are amenable to be directly addressed by our approach.

5. RELATED WORK

With respect to the contribution of this paper, we discuss three main threads of related work. First,
we elaborate on the application of search-based techniques for generating model transformations
from examples which has been the first application target of search-based techniques concerning
model transformations. Second, we discuss approaches which apply search-based techniques to
optimize models. Finally, we survey work of applying search-based techniques done in the related
field of program transformation.

An alternative approach to develop model transformations from scratch is to learn model
transformations from existing transformation examples, i.e., input/output model pairs. This
approach is called model transformation by example (MTBE) [85–87] and several dedicated
approaches have been presented in the past. Because of the huge search space when searching for
possible model transformations for a given set of input/output model pairs, search-based techniques
have been applied to automate this complex task [88–93]. While MTBE approaches do not foresee
the existence of model transformation rules, on the contrary, the goal is to produce such rules, we
discussed in this paper the orthogonal problem of finding the best sequence of rule applications for
a given set of transformation rules in combination with transformation goals. Furthermore, MTBE
approaches are mostly concerned with out-place transformations, i.e., generating a new model from
scratch based on input models, while we focussed in this paper on in-place transformations, i.e.,
rewriting input models to output models. Finally, the authors in [94] propose the use of SBSE in
MDE for optimizing regression tests for model transformations. In particular, they use a multi-
objective approach to generate test cases, in the form of models that are the input for testing updated
transformations. In our work we assume to have correct model transformation rules available as
a prerequisite but foresee as a possible future work the inclusion of oracle functions for model
transformations in the search process.

Searching for transformation rule applications with search-based optimization techniques for
high-level change detection has been presented in [95]. In the scenario of high-level change
detection, the input model and the output model are given as well as the possible transformation
rules. The goal is to find the best sequence of rule applications which give the most similar output
model when applying the rule application sequence to the input model. In other words, the high-level
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change detection we have investigated previously is a special case which is now more generalized in
the proposed framework by having the possibility to specify arbitrary goals for the search. Another
combination of model engineering and SBSE is presented in [96], however, in this framework the
possible changes to the models are not defined as transformation rules, but are generally defined
directly on the generic genotype representations of the models.

Searching for model transformation results is currently supported by approaches using some kind
of constraint solver. For instance, Kleiner et al. [97] introduce an approach they call transformation

as search where they use constraint programming to search and produce a set of target models
from a given source model. Another approach is proposed by Gogolla et al. [98] where so-called
transformation models are defined with OCL and then translated to a constraint solver to find valid
output models for given input models. Compared to MOMoT, these approaches aim for a full
enumerative approach where concrete bounds for constraining the search space have to be given.
Furthermore, these approaches search for models fulfilling some correctness constraints, but finding
optimal models based on some objectives is not natively supported in such approaches. In [99, 100]
an approach extending the QVT Relations language is presented which also foresees the inclusion of
transformation goals in the transformation specifications including different transformation variants.
However, the search for finding the most suitable transformation variant is not based on meta-
heuristics but is delegated to the model engineers who have to make decisions for guiding the search
process.

Another very recent line of research concerning the search of transformation results is already
applying search-based techniques to orchestrate the transformation rules to find models fulfilling
some given objectives. The authors in [19] propose a strategy for integrating multiple single-solution
search techniques directly into a model transformation approach. In particular, they apply exhaustive
search, randomized search, Hill Climbing, and Simulated Annealing. Their goal is to explicitly
model the search algorithms as graph transformations. Compared to this approach, our approach is
going into the opposite direction. We are reusing already existing search algorithms provided by
dedicated frameworks from the search-based optimization domain. The most related approach to
MOMoT is presented by Abdeen et al. [18]. They also address the problem of finding optimal
sequences of rule applications, but they focus on population-based search techniques. Thereby,
they consider the multi-objective exploration of graph transformation systems, where they apply
NSGA-II [24] to drive rule-based design space explorations of models. For this purpose, they have
directly extended a model transformation engine to provide the necessary search capabilities. Our
presented work has the same spirit as the previous mentioned two approaches, however, our aim is
to provide a loosely coupled framework which is not targeted to a single optimization algorithm,
but allows to (re)use the most appropriate one for a given transformation problem. Additionally,
we aim to support the model engineer in using these algorithms through a dedicated configuration
DSL and provide analysis capabilities to evaluate the performance of different algorithms. As an
interesting line of future research we consider the evaluation of the flexibility and performance of the
different approaches we have now for combining MDE and SBSE: modeling the search algorithms
as transformations [19], integrating the search algorithms into transformation engines [18], or
combining transformation engines with search algorithm frameworks as we are doing with MOMoT.

Program transformation is a field closely related to model transformation [101], thus, similar
problems are occurring in both fields. One challenging program transformation scenario is to
enhance the readability of source code given certain metrics. In this context, we are aware of
a related approach that discusses the search-based transformation of programs [102, 103]. In
particular, a set of rewriting rules is presented to optimize the readability of the code and dedicated
metrics are proposed and used as fitness function. As search techniques random search, Hill
Climbing, and genetic algorithms are used. Our approach follows a similar idea of finding optimal
sequences of rule applications, but in our case we are focussing on model structures and model
transformations instead of source code. However, we consider the instantiation of our framework
for the problem of program transformation in combination with model-driven reverse engineering
tools [5] as an interesting subject for future work to further evaluate our approach.
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6. CONCLUSION AND FUTURE WORK

In MDE, model engineers represent problem domains by means of meta-models, and model
transformations are used to manipulate their instances, i.e., models. MDE has gained importance in
software engineering and beyond. Indeed, models are used throughout the system lifecycle to focus
on the important aspects for specific purposes. In order to optimize these models, something that is
crucial for the system’s success, the models are improved by applying model transformations. Most
model transformation approaches are rule-based and require a form of rule orchestration, i.e., the
specification of the rules ordering and the specification of rule parameters if necessary. Depending
on the number of rules, the number of parameters, and the objectives that should be achieved by the
transformation, finding a desired rule orchestration can be a complex task.

Therefore, in this paper we have proposed to apply SBSE techniques to support the model
engineer in this task. More specifically, we have presented an algorithm-agnostic approach that
is able to support various optimization techniques while remaining in the model engineering
technical space. Furthermore, we have shown that our approach produces correct and sound
solutions w.r.t. the constraints and the objectives, and that it can be applied for typical model-based
software engineering problems. By staying in the model engineering technical space and using the
transformation rules directly in the encoding for the search process, we produce solutions that can be
easily understood by model engineers. Besides, we have demonstrated that the use and orchestration
of other transformation units, such as control-flow units, is also compatible with our approach, which
can reduce the search space and allows us to model more complex problems. Another strong point
of our approach is that the user does not need to be an expert in SBSE techniques. In fact, we have
implemented an easy-to-use user interface where the user can configure different options for the
search process and a static analysis produces warning, errors and advice when the entered values
are not the expected ones.

Although the results presented seem promising, our approach faces some limitations which we
plan to address in the future. In fact, when we consider models as graphs and transformation rules
and units as graph patterns that must be matched, the problem of finding and applying matches
is computationally expensive and reduces the runtime performance. Therefore, first of all, we will
further investigate the limitations of our approach with respect to runtime performance. In particular,
we foresee working on speeding-up the graph pattern matching by applying parallelization
techniques [104] specially in the presence of NACs, as it was identified in Section 4.3 that they
worsen the performance, and we will investigate other performance measures such as memory
consumption. Second, we have instantiated our approach of merging the MDE and SBSE domains
by using Henshin and the MOEA framework, respectively. For this reason, we would like to do
experiments with different model transformation approaches and different search engines to see
what results we get and study if there are improvements in terms of performance, ease of use, or
optimization of the solutions. Third, we aim to improve the support of SBSE for novice SBSE
users. Therefore, we aim to add additional checks to our support system such as an estimation of the
search space based on the input model and the model transformations and we want to evaluate how
we can provide additional information about individual solutions to the user. In addition, we would
like to study the applicability of our approach in larger contexts, such as the proper selection of
cloud patterns when moving a legacy application to the cloud in order to improve its non-functional
properties [105] and to support approximate model transformations [106], i.e., trading precision
for performance. Finally, we would like to compare our approach with other emerging approaches
combining MDE and SBSE such as those presented in [18, 19, 96].
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