
Search-based Planning for Manipulation with Motion Primitives

Benjamin J. Cohen∗, Sachin Chitta†, Maxim Likhachev∗,
∗ Computer and Information Science, GRASP Laboratory, University of Pennsylvania, Philadelphia PA 19104

{bcohen,maximl}@seas.upenn.edu
† Willow Garage Inc., Menlo Park 94025, USA

{sachinc}@willowgarage.com

Abstract— Heuristic searches such as A* search are highly
popular means of finding least-cost plans due to their generality,
strong theoretical guarantees on completeness and optimality
and simplicity in the implementation. In planning for robotic
manipulation however, these techniques are commonly thought
of as impractical due to the high-dimensionality of the plan-
ning problem. In this paper, we present a heuristic search-
based manipulation planner that does deal effectively with the
high-dimensionality of the problem. The planner achieves the
required efficiency due to the following three factors: (a) its
use of informative yet fast-to-compute heuristics; (b) its use of
basic (small) motion primitives as atomic actions; and (c) its
use of ARA* search which is an anytime heuristic search with
provable bounds on solution suboptimality. Our experimental
analysis on a real mobile manipulation platform with a 7-
DOF robotic manipulator shows the ability of the planner to
solve manipulation in cluttered spaces by generating consistent,
low-cost motion trajectories while providing guarantees on
completeness and bounds on suboptimality.

I. INTRODUCTION

Many planning problems in robotics can be represented

as finding a least-cost (or close to least-cost) trajectory in a

graph. Heuristic searches such as A* search [6] have often

been used to find such trajectories. There are a number of

reasons for the popularity of heuristic searches. First, most of

them typically come with strong theoretical guarantees such

as completeness and optimality or bounds on suboptimal-

ity [14]. Second, there exist a number of anytime heuristic

searches that find the best solution they can within the

provided time for planning [5], [18], [19], [12] . Third, there

exist a number of incremental heuristic searches that can re-

use previous search efforts to find new solutions much faster

when previously unknown obstacles are discovered [16], [9].

Finally, treating a planning problem as finding a good quality

path in a graph is advantageous because it allows one to

incorporate complex cost functions, complex constraints and

represent easily arbitrarily shaped obstacles with grid-like

data structures [4], [11]. Consequently, heuristic search-based

planning has been used to successfully solve a wide variety

of planning problems in robotics.

Despite the wide popularity of heuristic searches, they typ-

ically have not been used for motion planning for high-DOF

robotic manipulators [2]. The main reason for this is the high-

dimensionality of the planning problem. In this paper, we

present a heuristic search-based planner for manipulation that

combats effectively this high dimensionality by exploiting

the following three observations. First, the solutions found

in a low-dimensional manifold of the workspace can serve as

highly informative heuristics and can therefore guide search

in the joint angle state-space quite well. Second, the majority

of complex motion plans can be decomposed into a small set

of basic (small) motion primitives. These motion primitives

can be used to construct a graph on which the heuristic

search is executed. The graph is sparser compared with the

N -dimensional grid resulting from the discretization of N

joint angles for an N -DOF manipulator. As explained later,

this motion primitive-based graph also allows us to optimize

for smoothness in actions at a small increase in the size of the

graph. Third, while finding a solution that is provably optimal

is expensive, finding a solution of bounded suboptimality

can often be drastically faster. To this end, we employ an

anytime heuristic search, ARA* [12], that finds solutions

with provable bounds on suboptimality and improves these

solutions until allotted time for planning expires.

The paper is organized as follows. It first briefly describes

some of the existing approaches to planning for manipulators

including the widely popular sampling-based approaches. It

then explains our heuristic search-based planner including

the graph it builds, the heuristic it uses and the search

it employs. Section IV mentions other extensions and op-

timizations we have developed for the planner including

the extension that allows the planner to manipulate objects

while satisfying constraints (e.g., carrying a cup without

turning it upside down). Section V presents the experimental

analysis of the planner in simulation and on a real mobile

manipulation platform with a 7-DOF robotic manipulator

(Figure 1). The experimental results shows the ability of the

planner to solve manipulation in cluttered spaces by generat-

ing consistent, low-cost motion trajectories while providing

guarantees on completeness and bounds on suboptimality.

II. RELATED WORK

Sampling-based motion planners [8], [10], [1] have gained

tremendous popularity in the last decade. They have been

shown to consistently solve impressive high-dimensional

motion planning problems. In addition, these methods are

simple, fast and general enough to solve a variety of motion

planning problems. Sampling-based methods have also been

extended to support motion constraints through rejection

sampling [17].



Fig. 1: The PR2 mobile manipulation platform.

Our approach to motion planning differs from these al-

gorithms in several aspects. First, sampling-based motion

planner are mainly concerned with finding any feasible path

rather than minimizing the cost of the solution. By sacrificing

cost minimization, these approaches gain very fast planning

speeds. Searching for a feasible path however may often re-

sult in the solutions of unpredictable length with superfluous

motions, motions that graze the obstacles, and jerky trajec-

tories that may potentially be hard for the manipulator to

follow. To compensate for this, various smoothing techniques

have been introduced. While often helpful, they may fail

to help in cluttered environments. Second, sampling-based

approaches provide no guarantees on the sub-optimality of

the solution and provide completeness only in the limits of

samples. In contrast, the search-based planning tries to find

the solutions with minimal costs and provides guarantees

on solution suboptimality w.r.t. the constructed graph. These

aspects are valuable when solving motion planning problems

for which the minimization of objective function is important

and when consistent behavior is expected

Several motion planning algorithms have been developed

that also try to find solutions of minimal cost [7], [15].

One of the most recent algorithms in this category is Co-

variant Hamiltonian Optimization and Motion Planning, or

CHOMP [15]. It works by creating a naive initial trajectory

from the start position to the goal, and then running a

modified version of gradient descent on the cost function.

CHOMP offers numerous advantages over sampling-based

approaches such as the ability to optimize trajectories for

smoothness and to stay away from obstacles when possible.

Our approach is similar to CHOMP in that we also recognize

the importance of cost minimization but, in addition, we

provide the guarantees on the global solution suboptimality.

III. ALGORITHM

The operation of our algorithm is based on constructing a

motion primitive-based graph and searching this graph for a

low-cost solution. In the following sections we explain the

construction of the motion primitive-based graph, the cost

function used to assign edgecosts in the graph, the heuristic

function that guides the graph search in finding the solution,

and finally graph search itself. It is important to note that the

actual graph construction is interleaved with graph search

so that only the portion of the graph needed by search is

actually stored in memory. This is important because the

full graph is too large to store in memory and would be too

computationally expensive even to construct.

The task of the graph search itself is to find a path in

the constructed graph from a state that corresponds to the

current configuration of the manipulator to a state for which

the pose of the end-effector satisfies the goal conditions. In

other words, we consider the problem of finding a motion

that gets the manipulator from its current configuration to

any configuration with the end-effector at the desired pose.

A. Graph Construction

The graph structure we use was inspired by the success of

lattice based planners in planning dynamically feasible tra-

jectories [11]. Lattice-based representation is a discretization

of the configuration space into a set of states, and connections

between these states, where every connection represents a

feasible path. As such, lattices provide a method for motion

planning problems to be formulated as graph searches.

However, in contrast to many graph-based representations

(such as 4-connected or 8-connected grids), the feasibility

requirement of lattice connections guarantees that any solu-

tions found using a lattice will also be feasible. This makes

them very well suited to planning for non-holonomic and

highly-constrained robotic systems. Let us use the notation

G = (S, E) to denote the graph G we construct, where

S denotes the set of states of the graph and E is the set

of transitions between the states. The states in S are the

set of possible (discretized) joint configurations. Similary to

lattice-based representations, we confine the transitions in E

to be a predefined set of feasible motion primitives. 1 We

define a state s as n + 1-tuple (θ0, θ1, θ2, ..., θn, m) for a

manipulator with n joints. In this definition, m represents

the index of the motion primitive used to reach the state s.

This additional variable is used for path smoothing and will

be explained later in the paper. The graph is dynamically

constructed by the graph search as it expands states since

pre-allocation of memory for the entire graph would be

infeasible for an n-DOF manipulator with any reasonable n.

Each motion primitive is a single vector of joint velocities,

(v0, v1, v2, ..., vn) for all of the joints in the manipulator.

The set of primitives is the set of the smallest possible

motions that can be performed at any given state. Therefore,

a primitive is the difference in the global joint angles of

neighboring states. This set is the same for any state at

which it is executed which allows us to pre-evaluate and

pre-compute motion primitives offline.

1The term “motion primitive” is sometimes used in planning literature to
represent a higher level action such as opening a door, swinging a tennis
racket, or pushing a button. This is different from our use of the term: we
use “motion primitive” to denote a basic (atomic) feasible motion.



Fig. 2: Four motion primitives are shown here. Each one of

these primitives moves one of the joints. From the top left

to the bottom right, elbow flex, shoulder pan, forearm roll

and wrist pitch.

In our experiments with a 7-DoF manipulator, 14 basic

motion primitives were used along with eight additional

compound primitives. Seven basic motion primitives moved

one joint each a pre-defined amount in the positive direction

and the other seven moved the same amount in the negative

direction. The eight additional motion primitives moved

several joint angles at a time and provided better coverage

of the workspace based on the arm’s kinematics and joint

limitations.

The algorithm we are proposing in this paper constructs

the proper framework needed to use a more complex set

of motion primitives. As stated above, while some of the

primitives used during our experimentation comprised of

multi-dimensional motion, most of them were defined by

a motion in only one joint. This was done for the sake

of simplicity during the research phase. We are currently

researching how to design more complex motion primitives

that explore the workspace of the manipulator with even

coverage and in a more linear fashion.

B. Cost Function

The cost function is designed to minimize the path length,

maximize path smoothness and maximize the distance be-

tween the manipulator and the obstacles around it. The cost

of traversing any transition between states s and s′ in graph

G can therefore be represented as c(s, s′) = ccell(s
′) +

waction ∗ caction(s, s′) + wsmooth ∗ csmooth(s, s′). The latter

cost terms are weighted with waction and wsmooth. The

weights can be chosen by the user to govern the amount of

smoothness desired. A larger wsmooth results in a smoother

path at the expense of optimality in the length of the path.

1) ccell(s
′): The ccell(s

′) term is computed by calculating

the shortest distance between the manipulator at state s′ and

the nearest obstacle. In our experiments, a second process

was dedicated to computing a distance field (a distance to

the nearest obstacle for each 3D voxel) for each updated

collision map that is constructed from sensory data. On a

planning request, the planner would then fetch the most

recent distance field and collision map to use. The distance

between the manipulator at state s′ and the nearest obstacle

can then be computed by iterating over all the 3D voxels

that the manipulator intersects and finding a voxel with the

minimum distance to an obstacle.

2) caction: The action cost is used to assign a fixed cost

for each motion primitive. In our experiments, we assigned

uniform caction costs. In other domains however, one may

assign different motion primitive costs based on various

things such as power consumption, size of the links being

rotated or translated or as a means to favor moving some

joints instead of others if possible.

3) csmooth(s, s′): The smoothness cost is used to penalize

edges in the graph that correspond to choppy motions in

the trajectory. One way to implement this cost would be to

add the velocity of each joint to each state in the graph G.

Then, for a 7 DoF manipulator, instead of planning in a 7

dimensional statespace, (θ1, θ2, ...θ7), we would have to plan

in a 14-dimensional state-space, that is, each state would

be defined as (θ1, v1, θ2, v2, ..., θ7, v7). This is a dramatic

increase in the dimensionality of the problem.

As described in the previous section, our solution to this

is to augment each state with a single variable m which

represents the index of the motion primitives that connects

the previous state with the current. This is possible because

of our use of a fixed motion primitive set. The smoothness

cost, csmooth(s, s′), is a cost applied to the change in veloc-

ities between states s and s′. The magnitude of the change

in velocities can be represented by,
∑n

i=0
(vi(s) − vi(s

′))2

where vi are the joint velocities. The joint velocities of a

state are determined by the motion primitive index m.

C. Heuristic

The purpose of a heuristic function is to improve the

efficiency of the search by guiding it in promising directions.

A common approach for constructing a heuristic is to use the

results from a simplified search problem (e.g. from a lower-

dimensional search problem where some of the original

constraints have been relaxed). For a heuristic function to

be most informative, it must capture the key complexi-

ties associated with the overall search, such as mechanism

constraints or the environment complexities. Heuristic-based

search algorithms require that the heuristic function, h, is

admissible and consistent. This is true when h(sgoal) = 0
and for every pair of states s, s′ such that s′ is an end state

of a single action executed at state s, h(s) ≤ c(s, s′)+h(s′),
where h(s) is a heuristic of state s, sgoal is a goal state (any

state with the end-effector in the desired pose) and c(s, s′) is

the cost of the action that connects s to s′. The planner that

we are proposing performs a graph search in a state-space

defined by the joint angle configurations while the goal pose

is defined by the position and orientation of the end effector.

It is therefore necessary to use a heuristic function that is

informative about the end effector position and orientation,

(x, y, z, r, p, y). To this end, we compute the heuristic of a



heuristic expansions planning solution
time(sec) cost

dijkstra 88,858 13.65 46000

euclidean 432,561 60 -

TABLE I: Planning statistics with an ǫ = 5. The trial with

Euclidean distance as the heuristic function did not return a

solution within 60 seconds so the trial was terminated.

state s as h(s) = hxyz(s)+w∗hrpy(s), where hxyz estimates

the cost to the desired end-effector position, hrpy estimates

the cost to the desired end-effector orientation and w is the

weight of the latter component.

1) hxyz: The ability to plan robustly in cluttered envi-

ronments is the primary motivation of this research, and so

a heuristic function that efficiently circumvents obstacles is

necessary. Simplifying a planning problem by removing its

complexity and removing some dimensionality is a standard

technique in creating an informative heuristic function. In

the same vein, we use a 3D Dijkstra’s search to find the

costs of the least-cost paths from every 3D voxel to the

3D voxel that corresponds to the goal position (x, y, z) of

the end-effector while avoiding obstacles. During the full

planning, the heuristic component hxyz(s) for any state s

is computed as follows: we first compute the coordinates

of the end-effector of the manipulator configuration defined

by state s; we then return the cost-to-goal computed by the

3D Dijkstra’s search for the voxel with these coordinates.

The hxyz heuristic proves to be an informative heuristic in

directing the graph search around obstacles in a cluttered

workspace. It is important to note though that depending on

the configuration of the obstacles in the environment, it is

possible that the path to the goal computed by the Dijkstra’s

search may not be reachable by the manipulator. In these

situations, hxyz can be uninformative. Table I shows some

statistics comparing the effect of Dijkstra’s-based heuristics

and Euclidean distance-based heuristics on a single planning

run through cluttered environment. It shows that the use of

Dijkstra’s search can easily make a drastic impact on the

performance of the planner.

Dijkstra’s algorithm is helpful in guiding the search

through cluttered environments. If the planner is being used

in an application with fairly obstacle free environments,

then using the Euclidean distance between the end effector

position and the goal will suffice as a heuristic. In our

experimentation, we perform a Dijkstra’s algorithm on a

100x100x100 grid before every search. The execution of

Dijkstra’s takes approximately 0.4 seconds to complete.

Single Dijkstra’s search computes the cost-to-goals for all

the cells in the grid and therefore provides all the required

hxyz values.

2) hrpy: In order to achieve the proper end effector

orientation at the goal pose, we use a heuristic function

that computes a cost representing the difference in the

orientation of the end-effector at the state in question and

the desired orientation of the end-effector. One effective

parameterization for describing the difference between the

(a) hDijkstra: bird’s eye view (b) hEuclidean: bird’s eye view

(c) hDijkstra: side view (d) hEuclidean: side view

Fig. 3: In the experiment above, the right arm of the PR2 is

initially stretched out over a table and a path is desired to a

goal pose below the table (represented by the purple sphere

with the blue arrow). The teal spheres represent obstacles in

the perceived collision map and the brown cuboids represent

the end effector position of the expanded states during the

search. The purple pipe represents the heuristic function’s

suggestion for the end effector’s path. Dijkstra’s algorithm is

used as the heuristic in the images on the left and Euclidean

distance is the heuristic function used on the right.

end effector orientation of state s and the orientation of sgoal

is through the axis-angle representation of a rotation [13].

Thus, hrpy(s) is equal to the angle of rotation about a fixed

axis specified by the axis-angle representation of the rotation

between the end effector orientation of state s and sgoal.

D. Search

Any standard graph search algorithm can be used to search

the graph G that we construct. Given its size, however,

optimal graph search algorithms such as A* [6] are infeasible

to use. Instead we employ an anytime version of A* - Any-

time Repairing A* (ARA*) [12].This algorithm generates

an initial, possibly suboptimal solution quickly and then

concentrates on improving this solution while deliberation

time allows. The algorithm guarantees completeness for a

given graph G and provides a bound ǫ on the suboptimality

of the solution at any point of time during the search. ARA*

speeds up the typical A* search by inflating the heuristic

values by a desired inflation factor, ǫ. This is effective at

rushing the graph traversal towards the goal state at the cost

of solution optimality. An ǫ greater than 1.0 will produce a

solution guaranteed to cost no more than ǫ times the cost

of an optimal solution. If the path is found within the time

allotted, then a followup search is executed with a lower ǫ

weight applied to the heuristic. The search is continuously

repeated while decrementing the epsilon with every iteration,

until either the search time is up or ǫ has reached a value

of 1. In doing so, ARA* gains an additional efficiency by



Fig. 4: Visualization of the planning process. The purple

squares represent the collision map, The blue pipe represents

the heuristic function’s suggestion for the end effector’s path.

The green squares represent the end effector position and

orientation of the state expanded during the search.

not re-computing the states that it already computed in its

previous search iterations.

Finding a motion that moves the end-effector precisely

to the 6-DOF cartesian pose can often make the job of the

search very difficult. The looser the tolerance on the desired

end-effector pose, the easier it is for the search to find the

solution. To simplify the job of the search without sacrificing

the precision, we employ inverse kinematics function on the

states with end-effector poses within some region around the

desired end-effector pose. More precisely, suppose search

generates a state s for which the x, y, z coordinates of the

end-effector are within small distance (i.e., 15cm) from the

goal coordinates of the end-effector. We then seed IK with

the full manipulator configuration defined by s and run it

to obtain a full configuration for the desired 6 DOF end-

effector pose. If IK returns a valid solution, we then check for

collisions and joint limits a linearly interpolated path between

the configuration defined by s and the configuration returned

by IK. If the path is valid, then state s is deemed as a goal

state.

IV. EXTENSIONS & OPTIMIZATIONS

A. Features

1) Path Constraints: Many motion planning tasks not

only require that the end effector ultimately finds its way

to the goal pose, but also require that the manipulator

adheres to certain constraints along the way. A common

example of a planning task that requires path constraints is

picking up a glass filled with liquid and putting it elsewhere.

Manipulating a filled glass requires that the end effector

remains upright throughout the whole manipulation so as

to not spill the glass’s contents. Path constraints such as

an upright end effector (roll & pitch angles of zero) can

be taken into consideration when planning with this planner.

Path constraints can be expressed as a bounds on the position

or orientation of a specific joint or link. Path constraints can

also be defined as a desired joint position of a specific joint.

All path constraints are implemented as validity checks on all

expanded nodes. During the expansion of a node, if one of its

successor nodes does not meet the specified constraints, then

it is considered invalid and not placed in the open list. It is

common that path constraints can provide a decent speedup

to the planner by effectively shrinking the statespace.

2) Multiple Goals: Another feature of the motion planner

we are presenting is the ability to handle multiple goal

poses as input and return a path to the goal pose with the

lowest path cost overall. This can prove useful when a grasp

planner finds multiple feasible grasp poses for manipulating

an object. The motion planner will compute a path to the

grasping pose with the least cost path.

B. Additional Path Smoothing

In addition to the smoothing cost mentioned above, where

we apply a cost to change joint velocities along graph edges,

the planned path is passed through a short circuit smoothing

function [3]. The short circuit smoothing function iterates

through the waypoints in the path and tries to connect each

waypoint to the furthest waypoint in the path in which there

is a direct collision free path between them. If a direct path

exists, then the intermediate waypoints are removed from the

path and the algorithm continues with the next waypoint.

Smoothing is performed solely to remove the discretiza-

tion artifacts in the trajectory. The artifacts stem from the

discretization of the joint angles in the motion primitives.

Unlike sampling-based planning, when given enough time

the graph search presented in this paper is guaranteed to find

a least-cost motion with respect to the defined discretization.

Thus, smoothing to remove inefficient and unnecessary mo-

tions is not required. Smoothing however is beneficial for

removing the discretization artifacts in the motion.

C. Optimizations

In our experimentation, we planned on a voxel grid with

one centimeter resolution because we were limited by the res-

olution of the collision map received from the laser scanner.

This accuracy was adequate when planning to objects during

tabletop manipulation. To accelerate our collision checking

function, we used an occupancy grid with 2 cm resolution

to check if a successor state was valid. Thus, two occupancy

grids were maintained at all times, allowing the planner to

use the higher resolution grid to check if the search has

reached the goal, and the lower resolution grid for collision

checking.

Once the planner receives the goal state from the user,

the planner computes online the cost-to-goals for all the 3D

voxels in a discretized 3D obstacle map using Dijkstra’s

search (as explained in the section on heuristics). We can

speed up this operation by using a lower resolution grid

for these heuristics computations. The twice lower resolution

grid finishes in a third of the time demanded by the larger

grid used for planning.



V. EXPERIMENTAL RESULTS

A. Simulation

The algorithm was tested in simulation using an open

source simulator called Gazebo. Gazebo is a three dimen-

sional simulator that can demonstrate the dynamics and limi-

tations of the modeled manipulator using the Open Dynamics

Engine. The robot model used in simulation is a fairly

accurate representation of the PR2, the robot built by Willow

Garage, that we eventually used for our experimentation. The

simulated robot contains all of the sensors used by the actual

robot. An open source software framework called ROS2 was

used for inter-process communication. The PR2 is described

in greater detail in the following section.

avg std conf. int.

expansions 16580.120 32957.950 5406.48

cost 85698.400 25966.624 3516.36

time 3.499 6.986 0.764

TABLE II: Simulation results for randomly generated test

environments. The planner was executed with ǫ =15. The

confidence intervals are for 95 % intervals.

Table II shows one set of experimental results we obtained

in simulation. We generated 470 test environments with

kinematically feasible 6-DOF desired end-effector positions

(goals). In each case, we randomly placed between 3 and 9

cubic obstacles in the workspace of the manipulator. The di-

mensions of the cubic obstacles ranged randomly in between

10cm and 20cm. Of the 470 test cases, in 68% of them,

the planner successfully computed feasible paths within a

40 second time limit. We set a time limit of 40 seconds

for each execution of the planner because it was unknown

whether all of our generated test cases were feasible or not.

The statistics shown in table II were computed based on the

calls to the planner that completed within that time frame.

avg time (sec) % completed

3 DoF 5.06 100

6 DoF 0.32 33

TABLE III: Simulation results for a cluttered tabletop manip-

ulation scenario. Twelve trials with unique start configura-

tions and goal poses were randomly generated and tested for

feasibility prior to the simulation. The planner was executed

with ǫ = 10

In addition to the randomly generated environments, we

also generated twelve test cases representing a tabletop

manipulation scenario. We ran the trials twice. The first set

of tests required the planner to plan a path to a goal state

defined as an x, y, z coordinate of end-effector. We then ran

the same trials again but planned to a full 6-DoF cartesian

pose of an end-effector. The PR2 was placed in front of a

table with clutter on it and without much clearance between

the shoulder and the edge of the table. Seven of the twelve

2http://www.ros.org

test cases required the manipulator to bring the end effector

from above the table to below and vice versa. The results

are given in Table III. They show that the planner is much

more effective in achieving a 3-DOF pose (x, y, z) than in

achieving a 6-DOF pose. We believe that the reason for it is

that our heuristics are not informative enough with respect

to the desired orientation. The design of heuristics that are

informative with respect to the goal end-effector orientation

is one of the promising directions for future work.

B. PR2 Experiments

Experiments were also conducted on a mobile manip-

ulation platform called the PR2. The PR2 is a mobile

robot designed for mobile manipulation, which makes it an

appropriate test bed for our motion planner.

The robot has substantial processing power on board,

with two eight core computers available. For sensing, it has

six cameras as well as two Hokuyo laser scanners, one of

which is mounted on a servo that provides a tilt scanning

ability. In our experiments we decided to use the tilt laser

scanner for perception of the environment. The tilt laser

scanner provided the robot with a dense point cloud of the

environment with 270 degrees of coverage around the sensor.

Since manipulation generally occurs within one meter of the

torso, the accuracy provided by the laser at that distance was

quite good. The only drawback to using the tilt scanner is

that a full scan of the environment takes around four seconds

to complete a full sweep.

The PR2 has two arms with seven degrees of freedom

each. However, the specific robot that we used for testing

is an experimental model with just one arm. Each arm has

a payload of two Kg and enough torque in the wrist to

accomplish household chores. The seven joints in the arm

are shoulder pan, shoulder lift, upper arm roll, elbow flex,

forearm roll, wrist pitch and wrist roll. The gripper has an

additional degree of freedom (a two fingered claw) that we

did not take into account during planning. The wrist roll and

forearm roll joints are continuous joints. The joint limitations

of the arm are taken into account when planning.

ROS was the software framework used for development,

communication and interfacing to the hardware on the PR2.

The software framework for the PR2 includes a controller

library that provides an interface to a set of trajectory

controllers for the different parts of the robot including the

arms. The planner interfaces to the controllers using a ROS

service call3. The motion planner was implemented with an

interface using a service that gets called when a motion plan

for the arm is desired. The experiments conducted on the

robot involved planning from different start positions to a

set of goal positions in relatively cluttered environments.

Snapshots of these experiments are shown in Figure 5.

VI. CONCLUSIONS

We have presented a heuristic search-based manipulation

planner. We have shown that by using a motion primitive-

based graph coupled with informative heuristics and anytime

3A ROS service call is similar to a Remote Procedure Call (RPC)



Fig. 5: Snapshots of the robot planning to a goal position

in a cluttered environment.

graph search, the planner can deal effectively with the high-

dimensionality of the problem. In addition to its explicit cost

minimization, the approach provides strong guarantees on

completeness and suboptimality. Our experimental analysis

on a real mobile manipulation platform with a 7-DOF robotic

manipulator show that the planner can frequently solve

manipulation in cluttered spaces by generating consistent

(i.e., same across different runs), low-cost motion trajectories

while providing guarantees on completeness and bounds on

suboptimality. While the planner still lacks the efficiency of

sampling-based approaches, we believe that our results cou-

pled with the guarantees on sub-optimality are encouraging.

In the future, we intend to explore other, more sophisticated,

approaches to generating and possibly learning online motion

primitives. We would also like to develop other informative

heuristic functions for the mobile manipulation tasks.

VII. ACKNOWLEDGMENTS

This work was supported by Willow Garage. We would

like to thank the members of the Willow Garage development

team for their help.

REFERENCES

[1] R. Bohlin and L. Kavraki. Path planning using lazy prm. In IEEE

International Conference on Robotics and Automation, VOL.1, 2007.
[2] Pang C. Chen and Yong K. Hwang. Sandros: A dynamic graph search

algorithm for motion planning. In IEEE Transactions on Robtics and

Automation, VOL. 14, 1998.
[3] Howard Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor,

Wolfram Burgard, Lydia E. Kavraki, and Sebastian Thrun. In Prin-

ciples of Robot Motion, pages 203–215. Cambridge, MA: MIT Press,
2005.

[4] A. Kanehiro et al. Whole body locomotion planning of humanoid
robots based on a 3d grid map. In Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA), 2005.
[5] D. Furcy. Chapter 5 of Speeding Up the Convergence of Online

Heuristic Search and Scaling Up Offline Heuristic Search. PhD thesis,
Georgia Institute of Technology, 2004.

[6] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE Transactions on

Systems, Science, and Cybernetics, SSC-4(2):100–107, 1968.
[7] Nazareth Bedrossian Jeff M. Phillips and Lydia E. Kavraki. Guided

expansive spaces trees: A search strategy for motion- and cost-
constrained state spaces. In Proceedings of the International Con-

ference on Robotics and Automation (ICRA), 2004.
[8] L. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Proba-

bilistic roadmaps for path planning in high-dimensional configuration
spaces. IEEE Transactions on Robotics and Automation, 12(4):566–
580, 1996.

[9] S. Koenig and M. Likhachev. Incremental A*. In T. G. Dietterich,
S. Becker, and Z. Ghahramani, editors, Advances in Neural Infor-

mation Processing Systems (NIPS) 14. Cambridge, MA: MIT Press,
2002.

[10] J.J. Kuffner and S.M. LaValle. RRT-connect: An efficient approach to
single-query path planning. In Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), 2000.
[11] M. Likhachev and D. Ferguson. Planning long dynamically-feasible

maneuvers for autonomous vehicles. International Journal of Robotics

Research (IJRR), 2009.
[12] M. Likhachev, G. Gordon, and S. Thrun. ARA*: Anytime A* with

provable bounds on sub-optimality. In Advances in Neural Information

Processing Systems (NIPS) 16. Cambridge, MA: MIT Press, 2003.
[13] Richard M. Murray, Zexiang Li, and S. Shankar Sastry. A Mathemat-

ical Introduction to Robotic Manipulation. CRC Press, 1994.
[14] J. Pearl. Heuristics: Intelligent Search Strategies for Computer

Problem Solving. Addison-Wesley, 1984.
[15] Nathan Ratliff, Matt Zucker, J. Andrew Bagnell, and Siddhartha

Srinivasa. Chomp: Gradient optimization techniques for efficient
motion planning. In IEEE International Conference on Robotics and

Automation, 2009.
[16] A. Stentz. The focussed D* algorithm for real-time replanning.

In Proceedings of the International Joint Conference on Artificial

Intelligence (IJCAI), pages 1652–1659, 1995.
[17] Ioan Alexandru Sucan and Lydia E. Kavraki. Kinodynamic motion

planning by interior-exterior cell exploration. In International Work-

shop on the Algorithmic Foundations of Robotics, 2008.
[18] R. Zhou and E. A. Hansen. Multiple sequence alignment using A*.

In Proceedings of the National Conference on Artificial Intelligence

(AAAI), 2002. Student abstract.
[19] R. Zhou and E. A. Hansen. Beam-stack search: Integrating backtrack-

ing with beam search. In Proceedings of the International Conference

on Automated Planning and Scheduling (ICAPS), pages 90–98, 2005.


