Search Based Software Engineering:
A Comprehensive Analysis and Review of
Trends Techniques and Applications

Mark Harman, S. Afshin Mansouri and Yuanyuan Zhang
April 9, 2009

Technical Report TR-09-03

Abstract—In the past five years there has been a dramatic
increase in work on Search Based Software Engineering (SBSE),
an approach to software engineering in which search based
optimisation algorithms are used to address problems in Software
Engineering. SBSE has been applied to problems throughout the
Software Engineering lifecycle, from requirements and project
planning to maintenance and re-engineering. The approach
is attractive because it offers a suite of adaptive automated
and semi-automated solutions in situations typified by large
complex problem spaces with multiple competing and conflicting
objectives.

This paper' provides a review and classification of literature
on SBSE. The paper identifies research trends and relationships
between the techniques applied and the applications to which
they have been applied and highlights gaps in the literature and
avenues for further research.

I. INTRODUCTION

Software Engineering often considers problems that involve
finding a suitable balance between competing and potentially
conflicting goals. There is often a bewilderingly large set of
choices and finding good solutions can be hard. For instance,
the following is an illustrative list of Software Engineering
questions.

1) What is the smallest set of test cases that cover all
branches in this program?

2) What is the best way to structure the architecture of this
system?

3) What is the set of requirements that balances software
development cost and customer satisfaction?

4) What is the best allocation of resources to this software
development project?

5) What is the best sequence of refactoring steps to apply
to this system?

Answers to these questions might be expected from litera-

ture on testing, design, requirements engineering, Software En-
gineering management and refactoring respectively. It would

Mark Harman and Yuanyuam Zhang are with the De-
partment of Computer Science, King’s College London, UK
{(Mark.Harman, Yuanyuan.Zhang) @kcl.ac.uk}. Afshin Mansouri

is with Brunel Business School, Brunel
{Afshin.Mansouri @brunel.ac.uk }
I'The paper is a (significantly) extended version of the recent ICSE ‘Future

of Software Engineering paper’ by Harman, one of the present authors [215].

University, UK

appear at first sight, that these questions involve different
aspects of software engineering, would be covered by different
conferences and specialized journals and would have little in
common.

However, all of these questions are essentially optimisation
questions. As such, they are typical of the kinds of problem
for which Search Based Software Engineering (SBSE) is well
adapted and with which each has been successfully formulated
as a search based optimisation problem. That is, as we shall
see in this survey, SBSE has been applied to testing design,
requirements, project management and refactoring. As this
survey will show, work on SBSE applied to each of these
five areas addresses each of the five questions raised above.
The breadth of applicability is one of the enduring appeals of
SBSE.

In Search Based Software Engineering, the term ‘search’ is
used to refer to the metaheuristic search-based optimisation
techniques that are used. SBSE seeks to reformulate Software
Engineering problems as search-based optimisation problems
(or ‘search problems’ for short). This is not to be confused
with textual or hypertextual searching. Rather, for Search
Based Software Engineering, a search problem is one in which
optimal or near optimal solutions are sought in a search
space of candidate solutions, guided by a fitness function that
distinguishes between better and worse solutions.

This paper aims to provide a comprehensive survey of
SBSE. It presents research activity in categories, drawn from
the ACM subject categories within Software Engineering. For
each, it lists the papers, drawing out common themes, such as
the type of search technique used, the fitness definitions and
the nature of evaluation.

As will be seen, a wide range of different optimisation and
search techniques can and have been used. The most widely
used are local search, simulated annealing, genetic algorithms
and genetic programming. The paper provides a brief overview
of these three most popular search based optimisation tech-
niques in order to make the paper self-contained and to give a
comparative flavour for the kinds of search based optimisation
that have proved useful in Software Engineering.

As the paper reveals, 59% of the overall SBSE literature
are concerned with Software Engineering applications relating
to testing. In 2004, McMinn published an extensive survey

of work on SBSE applications in the general area Software
Testing [340], while in 2009 a more recent survey, focusing
specifically on testing non functional requirements was pre-
sented by Afzal ef al. [6]. Also recently, a survey of SBSE at
the design level was presented by Raiha [385].

Overviews of the more general SBSE area have also been
provided. For example, between 2004 and 2006, Mantere
and Alander [334], Jiang [255] and Rela [392] provided an
overview of Software Engineering by means of evolutionary
algorithms, while Clark et al. [118] provided an early initial
survey and proposal for SBSE development in 2003.

These specific reviews on testing and design aspects of
SBSE and the overviews of the area are a testament to the
growing importance of and interest in the field of SBSE
research. Indeed, as this comprehensive SBSE survey will
show, there has been a considerable increase in the quantity of
SBSE research over the past few years (see Figure 1). Despite
the excellent work in the surveys listed above, there remains,
to date, no comprehensive survey of the whole field of study.

The field is now growing so rapidly that this point in time
may the last at which it is possible to capture the whole
field within a single survey paper. It is, therefore, timely
to review the SBSE literature, the relationships between the
applications to which it has been applied, the techniques
brought to bear, trends and open problems. By seeking to
provide a comprehensive survey, we are able to capture the
trends and relationships between sub areas of SBSE research
and to identify open problems and areas that remain little
explored in the literature to date.

The primary contributions of this survey are as follows:

1) coverage and completeness: The field is sufficiently
mature to warrant a survey paper, but not so large
that it becomes impossible to cover all the important
papers. This survey seeks to gather together all work in
a complete survey covering SBSE from its early origins
to a publication ‘census date’ of December 31st 2008.
This census date is chosen for pragmatic reasons. As
this survey reveals, there is a notably increasing trend
of publication in SBSE. This survey already reports on
the work of just over 500 publications. The growth in
activity in this area makes a survey useful, but it also
means that it may not be feasible to conduct a detailed
survey after this date.

2) classification: The classification of Software Engineer-
ing areas allows us to identify gaps in the literature,
indicating possible areas of Software Engineering that
could, but have yet to, benefit from the application
of SBSE. Similarly, the analysis of search techniques
used, allows us to identify search based optimisation
algorithms that have yet to receive significant attention.
We also apply Formal Concept Analysis (FCA) [439]
in order to explore the relationships between techniques
and the applications to which they have been applied.

3) Trend analysis: The survey presents numeric data con-
cerning trends which give a quantitative assessment of
the growth in the area and the distributions of activity
among the Software Engineering domains that have
received attention. We are also able to identify recent

growth areas.

The rest of the paper is organised as follows: Section II
provides a brief overview of the search based optimisation
algorithms that have been most widely used in SBSE research
areas. Section III describes the publications classification
scheme used in this paper. Section IV, V, VI, VII, VIII,
IX and X present the characteristics of related literature
according to the seven main categories in detail, that is:
Requirements/Specifications; Design Tools and Techniques;
Software/Program Verification and Model Checking; Testing
and Debugging; Distribution, Maintenance and Enhancement;
Metrics and Management. Section XI explores the relationship
between the techniques employed and their applications in
Software Engineering. Section XII shows how the general
nature of SBSE can provide a bridge between apparently
unrelated areas in Software Engineering. Section XIII dis-
cusses overlooked and emerging areas in the literature. Section
XIV reviews the benefits that can be expected from further
development of the field of SBSE. Section XV concludes.

II. BACKGROUND

Although interest in SBSE has witnessed a recent dramatic
rise, its origins can be traced back to early work on optimisa-
tion in software engineering in the 1970s. One of the earliest
attempts to apply optimisation to a Software Engineering
problem was reported by Miller and Spooner [355] in 1976
in the area of software testing. To the best of our knowledge,
Xanthakis et al. [493] were the first apply a metaheuristic
search technique to a software engineering problem in 1992.

The term SBSE was first used by Harman and Jones [218]
in 2001. This was the first time in the literature that it was
suggested that search based optimisation could be applied
right across the spectrum of Software Engineering activity.
The position paper acted as a form of ‘manifesto’ for SBSE.
However, it should also be noted that, much earlier, Carl Chang
has also used his IEEE Software editorial to promote the
more widespread use of Evolutionary Computation in Software
Engineering in 1994 [100].

The UK Engineering and Physical Science Research Coun-
cil (EPSRC) provided funding for a network called SEMINAL:
Software Engineering using Metaheuristic INnovative ALgo-
rithms?. SEMINAL ran from 1999 to 2002. It was instrumental
in the early growth of the SBSE field. SEMINAL held several
workshops and events [220] that helped to draw together a
community of Software Engineers interested in applying meta-
heuristic search techniques to Software Engineering problems.
The network participants published an initial survey of the area
in 2003 [118]. The EPSRC and the EU continue to provide
significant funding for the development of SBSE through
the large EPSRC project SEBASE (Software Engineering by
Automated Search) and the EU Evolutionary Testing (EvoTest)
project.

2The SEMINAL acronym was suggested work of David Corne.

The number of publications® on SBSE shows a dramatically
increasing trend since 2001, not merely because of the work
of these two large multisite projects, but because of the
even larger number of researchers, worldwide, who have
found considerable value in the application of search based
optimisation to an astonishingly wide variety of applications in
Software Engineering. Figure 1 provides a histogram charting
this publication growth over time, while Figure 2 shows
the proportion of papers that fall into each of the different
Software Engineering application area subject categories.

The rest of this section provides a brief overview of the
Search Based optimisation algorithms that have been most
widely used in SBSE research: global search techniques such
as genetic algorithms and simulated annealing and local search
techniques such as hill climbing. This overview is sufficient
to make the paper self-contained. A more detailed treatment
of these algorithms and many others available to practitioners
and researchers in SBSE can be found in the recent survey of
search methodologies edited by Burke and Kendall [93].

A. Key Ingredients

There are only two key ingredients [215, 218] for the appli-
cation of search-based optimisation to Software Engineering
problems:

1) The choice of the representation of the problem.
2) The definition of the fitness function.

This simplicity and ready applicability makes SBSE a very
attractive option. Typically, a software engineer will have a
suitable representation for their problem, because one cannot
do much engineering without a way to represent the problem
in hand. Furthermore, many problems in Software Engineering
have a rich and varied set of software metrics associated with
them that naturally form good initial candidates for fitness
functions [217].

With these two ingredients it becomes possible to implement
search based optimisation algorithms. These algorithms use
different approaches to locate optimal or near optimal solu-
tions. However, they are all essentially a search through many
possible candidate instances of the representation, guided by
the fitness function, which allows the algorithm to compare
candidate solutions according to their effectiveness at solving
the problem in hand (as measured by the fitness function).

1) Hill Climbing: Hill Climbing (HC) starts from a ran-
domly chosen initial candidate solution. At each iteration, the
elements of a set of ‘near neighbours’ to the current solution
are considered. Just what constitutes a ‘near neighbour’ must
be defined for each application to which hill climbing is
applied, because it is problem specific. Typically, the de-
termination of a mechanism for identifying near neighbours
is relatively straightforward; the near neighbours are other
candidate solutions that are a ‘small mutation away’ from the
current solution.

3We have made available a repository of all papers on SBSE cited in this
literature survey. The repository is a searchable resource for the growing
SBSE community that contains full details of papers, abstracts and citation
information and pointers to the Digital Object Identifier (DOI) for the
reference. It can be fount at http://www.sebase.org/sbse/publications/.

At each iteration of the main loop, the hill climbing al-
gorithm considers the set of near neighbours to the current
solution. A move to a new current solution is taken if a near
neighbour can be found with a better fitness value. There are
two choices:

1) In next ascent hill climbing, the move is made to the

first neighbour found to have an improved fitness.

2) In steepest ascent hill climbing, the entire neighbour-
hood set is examined to find the neighbour that gives
the greatest increase in fitness.

If there is no fitter neighbour, then the search terminates
and a (possibly local) maxima has been found. That is, by
definition, since there is no near neighbour with a higher
fitness value, we must be at a maxima. However, it may not
be a global maxima; there may be other maxima with higher
fitness that could have been reached from a different starting
point. Figuratively speaking, a ‘hill’ in the search landscape
close to the random starting point has been climbed.

Clearly, the problem with the hill climbing approach is that
the hill located by the algorithm may be a local maxima,
and may be far poorer than a global maxima in the search
space. For some landscapes, this is not a problem, because
repeatedly restarting the hill climb at a different location may
produce adequate results. This is known as multiple-restart
hill climbing and often when hill climbing is used, it is used
with multiple restarts. Despite the local maxima problem, hill
climbing is a simple technique that is both easy to implement
and surprisingly effective in many SBSE problems [224, 359].

2) Simulated Annealing: Simulated Annealing (SA) [348]
can be thought of as a variation of hill climbing that avoids
the local maxima problem by permitting moves to less fit
individuals. The approach gives more chances to consider
less fit individuals in the earlier stages of the exploration of
the search space. This chance is gradually reduced until the
approach becomes a traditional hill climb in the very final
stages of the exploration of the search space.

Simulated annealing is a simulation of metallurgical an-
nealing, in which a highly heated metal is allowed to reduce
in temperature slowly, thereby increasing its strength. As
the temperature decreases, the atoms have less freedom of
movement. However, the greater freedom in the earlier (hotter)
stages of the process allow the atoms to ‘explore’ different
energy states.

A simulated annealing algorithm will move from some point
271 to a worse point 27 with a probability that is a function of
the drop in fitness and a ‘temperature’ parameter that (loosely
speaking) models the temperature of the metal in metallur-
gical annealing. The effect of ‘cooling’ on the simulation of
annealing is that the probability of following an unfavourable
move is reduced. The earlier ‘warmer’ stages allow productive
exploration of the search space, with the hope that the higher
temperature allows the search to escape local maxima. The
approach has found application in several problems in SBSE
[48, 77, 359, 451]. The algorithm is described in Figure 3.

3) Genetic Algorithms: Genetic Algorithms (GAs) use con-
cepts of population and of recombination [245]. Of all opti-
misation algorithms, genetic algorithms have been the most
widely applied search technique in SBSE, though this may

110

100

Q0

8o

70

60

50

40

30

20

Number of Publications

10

o —_——— T T T T T T T T T I-Il T

9 a0 & ol o o go oft ¥ > ’\%qo@whh%b’\%
S é‘\\@'fb{,;\ SFEE ‘bb‘fb»fb@ éb °9x°9»°|°’ \qq & 09& R SRR

Year

Fig. 1. The trend of publications on SBSE.

= Distribution, Maintenance,
and Enhancement
11%

® Design Tools and Techniques

10%
O Testing and Debugging) _ — = Management

50% S 9%

u Software/Program Verification
4%

= General Aspects
4%

Requirements/Specifications
2%

Others
4%

Percentage of Applications

Fig. 2. Spread of SBSE papers reviewed in this article based on their application areas activities

Initialise x to g and 1" to 1y

loop — Cooling
loop — Local search
Derive a neighbour, x/, of x
AFE = E(ar) — E(x)
if AE <O
then z = z/
else derive random number r € [0, 1]

ifr < e
then x = a/
end if

end if

end loop — Local search
exit if pre-defined stopping condition is satisfied
T:=C(T)

end loop — Cooling

Fig. 3. A Generic Simulated Annealing Algorithm

have largely been for historical or sociological reasons, rather
than scientific or engineering reasons. That is, perhaps genetic
algorithms, with their scientifically nostalgic throw back to
Darwin, simply have more natural appeal to researchers who,
presented with a potentially bewildering array of possible
search based optimisation techniques, have to choose one
with which to begin experimentation on a new Software
Engineering field of application.

Certainly, there have been few studies that seek to establish
the theoretical or practical performance differences between
different search based algorithms for SBSE. This is perhaps a
reflection of the youth of the field; the literature is currently
witnessing what might be termed the ‘gold rush’ phase in the
development of a new sub-discipline. In such an early gold
rush phase, many authors are discovering highly novel ways
of using search based optimisation in Software Engineering
problem domains for the very first time.

A generic genetic algorithm [118] is presented in Figure 4.
An iterative process is executed, initialised by a randomly cho-
sen population. The iterations are called generations and the
members of the population are called chromosomes, because
of their analogs in natural evolution. The process terminates
when a population satisfies some pre-determined condition (or
a certain number of generations have been exceeded). On each
generation, some members of the population are recombined,
crossing over elements of their chromosomes. A fraction of the
offspring of this union are mutated and, from the offspring and
the original population a selection process is used to determine
the new population. Crucially, recombination and selection are
guided by the fitness function; fitter chromosomes having a
greater chance to be selected and recombined.

There are many variations on this overall process, but the
crucial ingredients are the way in which the fitness guides the
search and the recombinatory and the population based nature
of the process. There is an alternative form of evolutionary
algorithms, known as evolution strategies [417], developed
independently of work on Genetic Algorithms. However, evo-

Set generation number, m:= 0
Choose the initial population of candidate solutions, P(0)
Evaluate the fitness for each individual of P(0), F'(P;(0))
loop

Recombine: P(m) := R(P(m))

Mutate : P(m) := M(P(m)

Evaluate: F'(P(m))

Select: P(m + 1) := S(P(m))

m:=m+1

exit when goal or stopping condition is satisfied
end loop;

Fig. 4. A Generic Genetic Algorithm

lution strategies have not been applied often in work on SBSE.
A good example of a topic area for which ES has been applied
can be found is the work of Alba and Chicano [23], who show
that evolution strategies may outperform genetic algorithms for
some test data generation problems.

There is also a variation of genetic algorithms, called
Genetic Programming (GP) [284], in which the chromosome
is not a list, but a tree. The tree is the abstract syntax tree
of a program that is evolved using a similar genetic model to
that employed by a genetic algorithm. Genetic programs are
typically imperfect programs that are, nonetheless, sufficiently
good for purpose. Fitness is usually measured using a testing-
based approach that seeks to find a program best adapted to its
specification (expressed as a set of input/output pairs). Genetic
programming has been used in SBSE to form formule that
capture predictive models of software projects [148, 149] and
in testing [469, 473], where genetic programming is well
adapted to the problem of testing OO code, for which the
test inputs can be sequences of method calls.

III. CLASSIFICATION SCHEME

In this analysis and survey paper, we employ the classifica-
tion scheme which is described in Table I. Our classification of
Software Engineering activities is taken from the ACM Com-
puting Classification System, projected onto those Software
Engineering areas to which SBSE has been applied. The SBSE
literature is categorized using the classification criteria in order
that the current research focus as well as avenues for further
research can be identified.

IV. REQUIREMENTS/SPECIFICATIONS

Requirements engineering is a vital part of the Software
Engineering process [109], to which SBSE has also been
applied in order to optimise choices among requirements, the
prioritization of requirements and the relationships between
requirements and implementations. A summary of the papers
addressing search based Requirements/Specifications (ACM:
D.2.1) are summarized in Table III.

Bagnall et al. [47] formulated the ‘Next Release Problem
(NRP)’ as a search problem. In the NRP, the goal is to find
the ideal set of requirements that balance customer requests,
resource constraints, and requirement interdependencies.

[Classification Criteria [Values]
Network Protocols (C.2.2),
Requirements/Specifications (D.2.1),

Design Tools and Techniques (D.2.2),
Coding Tools and Techniques (D.2.3),
Software/Program Verification (D.2.4),
Testing and Debugging (D.2.5),
Distribution, Maintenance and
Enhancement (D.2.7), Metrics (D.2.8),
Management (D.2.9), Distributed
Artificial Intelligence (I.2.11), Security
and Protection (K.6.5)

Maximum Cohesion, Minimum Cou-
pling, ...

Tree, Graph, String, etc.

Greedy Search, Hill Climbing, Genetic
Algorithms, Simulated Annealing, Tabu
Search, Other Search Techniques

Real World Data, Synthetic Data

Type of activity (ACM coding)

Objectives (or fitness)

Representation method

Search techniques

Problems used for evaluation

TABLE I
THE CLASSIFICATION SCHEME FOR SBSE LITERATURE.

Feather and Menzies [166] applied Simulated Annealing,
building an iterative model to address search based require-
ments analysis as problems of selection and optimisation. The
authors proposed a Defect Detection and Prevention (DDP)
process based on a real-world instance; a NASA pilot study.
The DDP combined the requirements interaction model with
the summarization tool to provide and navigate the near-
optimal solutions in the cost-benefit tradeoff space. The paper
was one of the first to use pareto optimality in SBSE, though
the pareto fronts were not produced using multi objective
optimisation techniques (as with more recent work), but were
produced using the iterative application of a single objective
formulation. Harman et al. [229] also consider requirements
problems as feature subset selection problems, presenting
results on a single objective formulation for a real world data
set from Motorola.

Bagnall et al. applied a variety of techniques, including
greedy algorithms and simulated annealing to a set of synthetic
data created to model features for the next release and the re-
lationships between them. The NRP is an example of a feature
subset selection search problem. Baker ef al. [48] address the
problem of determining the next set of releases of a software
via ranking and selection of candidate software components.
They use greedy and simulated annealing algorithms.

Greer and Ruhe proposed a GA-based approach for planning
software releases [200]. Like many problems in software
engineering, such as project planning, NRP and regression
testing, there is a relationship between feature Subset Selection
problems and Feature Ordering (Prioritization) problems. A
comparison of approaches (both analytical and evolutionary)
for prioritizing software requirements is proposed by Karlsson
et al. [267]. Greer [200] also provides a method for optimally
allocating requirements to increments, based on

1) A means of assessing and optimizing the degree to
which the ordering conflicts with stakeholder priorities
within technical precedence constraints.

2) A means of balancing required and available resources
for all increments.

3) An overall method for continuous planning of incremen-
tal software development based on a genetic algorithm.

Zhang et al. [508] provide a multi-objective formulation
of the next release problem (NRP) to optimise value and
cost. They present the results of an empirical study into the
suitability of multi-objective search techniques.

Early work on integration by Saliu and Ruhe [412] showed
how implementation objectives and requirements objectives
could be simultaneously optimised using a multi-objective
optimisation approach. Like Zhang et al. [508], this work
also formulates the problem as a two-objective pareto optimal
problem, but in this case with implementation level and
requirement level objectives, where as Zhang et al. use cost
and value as their two objectives.

Finkelstein et al. [181] showed how a multi-objective opti-
misation approach can be used to explore fairness of outcomes
in requirements assignments. There are different definitions of
fairness. For example, each customer might wish to receive
equal spend from the developers, or they might prefer that
they receive an equal number of their desired requirements
compared to other customers. Finkelstein et al. show how
these different definitions of fairness can be considered to be
different objectives to be optimised.

Also, with relevance to multi objective pareto optimal for-
mulations, Feather et al. [167, 168] summarize the visualiza-
tion techniques used to present requirements status, including
Pareto fronts plotted by Simulated Annealing. Jalali et al.
[251] also consider the requirements optimisation problem.
They use Greedy Algorithms to reduce risks and increase the
number of requirements achieved.

The application of SBSE optimisation techniques to require-
ments analysis problems provides one example of a Software
Engineering application that is often regarded as inherently
imprecise, qualitative and informal. However, using SBSE it
can be formalized as a quantitive multi-objective optimisation
problem. A position paper on recent trends in requirements
analysis optimisation is provided by Zheng et al. [509].

V. DESIGN TOOLS AND TECHNIQUES

In other engineering disciplines search based optimisation
is widely used as a means of developing better designs.
Where there are widely accepted metrics, such as cohesion
and coupling, there has been much work on optimizing these
[152, 224, 228, 323, 326, 327, 359, 360, 362, 363, 364].
However, this previous work on cohesion and coupling, is not
concerned with design per se. Rather, it is concerned with the
problem of re-constructing the module boundaries of a system
after implementation. Though it uses design criteria, such as
cohesion and coupling, it uses these to re-partition the module
boundaries of existing software. As such, this previous work
is categorized as work on maintenance, rather than work on
design in this survey. Raiha [385] provides a recent detailed
survey of SBSE techniques for both design problems and re-
design (maintenance) problems in Software Engineering.

This section reports on the existing work on SBSE for
Software Engineering design. A summary of the papers ad-
dressing activities related to search based Design Tools and

Techniques (D.2.2) are summarized in Table IV. More work is
required to assess the impact of design choices on down stream
development, testing and maintenance in such a way that
design decisions can be measured and assessed for their impact
on these downstream activities. When this becomes better
understood, it is likely that SBSE will follow with techniques
for design optimisation based on the expected downstream
benefits that will accrue from the available alternatives for
design choices.

Clearly, there is a relationship between re-design (for soft-
ware maintenance) and design (as a part of the initial design
phase of the lifecycle). This relationship is borne out naturally
in the literature on software design, where some of the SBSE
techniques from software maintenance also have been adapted
for software design. Simons and Parmee [434, 435, 436, 437]
propose multi-objective GA to address object-oriented soft-
ware design. Like the previous work on cohesion and coupling
for software maintenance [224, 228, 326, 327, 360, 362], the
fitness function is inspired by similar Software Engineering
goals. However, the goal is upstream software design rather
than more downstream maintenance. O’Keeffe and O Cinnéide
[371, 372] convert object-oriented software design to an op-
timisation problem using SA. A set of metrics is used for
evaluating the design quality. This is a development of work
by the same authors on refactoring OO systems according to
metrics (which is described in Section VIII-B).

It would be natural to suppose that work on design patterns
[185] could and should form a foundation for a strand of
work on SBSE for design. This possibility has recently been
explored in detail by Raiha et al. [383, 384, 386, 387], who
propose a GA-based approach to automatically synthesize
software architectures consisting of several design patterns.

Other authors have proposed new SBSE approaches, specif-
ically targeted at the design phase of the software devel-
opment process. Feldt [174] presents a model to explore
the difficulty in early software development phases by using
GP and also describes a prototype of interactive software
development workbench called WISE that uses biomimetic
algorithms [175]. Several authors have also considered SBSE
techniques for balancing quality of service objectives, such
as Khoshgoftaar er al. Khoshgoftaar et al. [274, 275], who
propose an approach for calibrating a multi-objective module-
order model (MOM) using GP.

The problem of (Quality of Service (QoS) aware web
service composition was introduced by Canfora et al. [95],
who use Genetic Algorithms to solve QoS-aware composition
optimisation problem. This problem, which lies at the heart
of Service Oriented Computing, implemented as web—based
systems, has recently been taken up and studied by other
authors. Jaeger and Miihl [250] discuss the Quality of service-
based web services selection problem using GAs. Ma and
Zhang [319] propose a GA-based method for web service
composition and web service selection which takes account of
QoS constraints. Zhang et al. [446, 504, 505] apply GAs for
web services selection with global QoS constraints.

Several authors have addressed the design problem of
component selection and integration. This component selection
problem is closely related to the requirement assignment prob-

lem. Baker et al. [48] present results on greedy optimisation
and simulated annealing for component selection, while Yang
et al. [498] propose an approach for software integration prob-
lem by using GA to reduce risk. Classical OR techniques have
also been applied to component selection problems: Desnos
et al. [139] combine backtracking and branch-and-bound
techniques for automatic component substitution problem to
optimise software reuse and evolution. Other authors have
considered the component selection problem as a selection
optimisation problem. For example Cortellessa et al. [129]
presented a framework to support the selection of Code Off
The Shelf (COTS) components in order to minimize the system
construction cost, while Vijayalakshmi et al. [459] propose
a GA-based approach to select an optimised combination of
components and Kuperberg et al. [285] propose a GP-based
platform-independent reengineered parametric behaviour mod-
els for black-box components performance prediction.

State based models of design are increasingly popular and
these present opportunities for SBSE research because of
the wealth of research on synthesis of state based models
from examples, using optimisation techniques. Goldsby et al.
[196, 197, 198] present a evolution-based tool for software
behavioral model generation to improve the quality of systems.
The system, Avida-MDE, generates a set of communicating
state-based models of system behaviour using model inference
techniques that allow a finite state machine model to be
synthesized from cases. A related approach is used by Lucas
and Reynolds [317], who present an evolutionary algorithm
for learning deterministic finite automaton (DFA) to optimally
assign state labels and compare its performance with the
Evidence Driven State Merging (EDSM) algorithm.

Feldt, one of the early pioneers of the application of search
based optimisation to Software Engineering showed how fault
tolerance could be designed into systems using GP to evolve
multiple diverse software variants [169, 171, 172]. This is a
novel approach to IN-version computing, in which highly fault
tolerant systems are created several times, in different ways,
to increase robustness. The goal was to increase quality since
the GP evolved versions would be qualitatively different from
any human-generated ‘diverse versions’.

In the traditional N-version computing approach, different
teams of programmers are deployed to develop the different
(and hopefully, therefore, diverse) solutions to the same prob-
lem. Of course, the development of different versions of as
system in this manner is a highly expensive solution to the
problem of robustness and fault tolerance; it can and has only
be used in highly safety-critical situations, where the expense
might be justified. Though it was not directly the intention of
the work, Feldt’s work also showed that, by using GP to evolve
the required diverse solutions to the same problem, there is the
potential to use SBSE techniques to over come the expense
that was previously inherent in N-version computing.

Work on SBSE techniques for design has grown in preva-
lence in the last three years, with many new and interesting
Software Engineering deign problems emerging. Amoui et al.
[29] apply GAs to optimize OO metrics and find the best
sequence of system transformations in order to improve the
quality of the transformed design, in an approach that shares

some similarities with work on refactoring using search based
optimisation to find good sequences of refactoring steps. Bar-
las and El-Fakih [55] present a GA-based method for mapping
client-server problems to optimise the delivery of applications
to multiple clients by multiple servers. Bowman et al. [78]
apply the SPEA2 multi—objective optimisation algorithm to
provide decision support system for the Class Responsibility
Assignment (CRA) problem. Cao et al. [98] and [97] address
the cost-driven web service selection problem by using GA.
Chardigny et al. [107] and [106] propose a search based
approach to the extraction of component-based architectures
of OO systems. As with other work in this section, this work
could be categorized as design or as re-design, highlight-
ing the interplay in Software Engineering between design,
maintenance and evolution of software systems. Sharma and
Jalote [427] propose a heuristic-based approach for deploying
software components that maximises performance.

VI. SOFTWARE/PROGRAM VERIFICATION AND MODEL
CHECKING

A summary of the papers addressing problems related
to Software/Program Verification (D.2.4) are summarized in
Table VI

Godefroind was the first to apply search based optimisation
to explore the state space used in model checking [194].
Where the state space is too large to be fully checked,
search based optimisation can be used to identify isomorphic
sub graphs and to seek out counter examples. Alba ef al.
[19, 20, 21, 25, 112, 112, 113] also show how Ant Colony
Optimisation (ACO) can be used to explore the state space
used in model checking to seek counter examples. Mahanti and
Banerjee [321] also propose an approach for model checking,
using ACO and Particle Swarm Optimisation techniques.

Other authors have also explored the relationship between
SBSE and model checking. For instance Johnson [259] used
model checking to measure fitness in the evolution of finite
state machines, while Katz and Peled [268, 269] provided
a model checking based genetic programming approach for
verification and synthesis from specification. He presents an
approach that combines Hoare—logic—style assertion based
specifications and model checking within a Genetic Program-
ming Framework [237].

VII. TESTING AND DEBUGGING

Software testing is the process used to measure the quality
of developed software. Usually, quality is constrained to such
topics as correctness, completeness, security, but can also
include non-functional requirements, such as those described
under the ISO standard ISO 9126*, including capability, relia-
bility, efficiency, portability, maintainability, compatibility and
usability.

Of all the areas of Software Engineering activity to which
SBSE techniques have been applied, software testing is both
the first area tackled and that which has received the most
widespread study. The relative breakdown of the quantity of

“http://www.issco.unige.ch/projects/ewg96/node13.html

publications in each area was given in Figure 2. Our survey
reveals that 59% of the papers published on SBSE topics are
concerned with software testing.

Indeed, the area was already sufficiently developed that it
merited its own survey (of search based testing) in 2004 [340]
and is now the topic of an annual international workshop on
Search Based Software Testing.

The general idea behind all approaches to search based
test data generation is that the set of test cases (or more
usually, possible inputs to the program) forms a search space
and the test adequacy criterion is coded as a fitness function.
For example, in order to achieve branch coverage, the fitness
function assesses how close a test input comes to executing an
uncovered branch; in order to find worst case execution time,
fitness is simply the duration of execution for the test case in
question.

The first application of optimisation techniques to Software
Engineering problems is typically attributed to Miller and
Spooner [355], who advocated the use of numerical maximiza-
tion as a technique for test data generation for floating point
computations. The first use of a search based optimisation
technique is typically attributed to Xanthakis et al. [493]
who used GAs to generate test data for structural coverage.
Other early advocates of search based techniques for test data
generation (and among the first authors to publish on SBSE)
were Schoenauer and Xanthakis [415] who focussed on the
development of improved techniques for constraint handling
in genetic algorithms, using search based test data generation
as an example application.

Davies et al. [131] were also early pioneers of Search Based
Software Testing. They developed a GA-based approach for
test case generation for an expert system used as part of a
combat pilot’s support system.

Ferguson and Korel [177, 178] were the first authors to
use local search for the problem of test case generation.
They also showed how static analysis techniques and search
based approaches could be combined to seek test inputs that
traverse a hard-to-cover predicate branch. The static analysis
component involved ‘chaining’ backwards to find new data
dependence form so called ‘problem nodes’ (nodes for which
no covering test input has yet been found). Though it can be an
effective way to generate test data, the process of chaining can
be very expensive, because it entails a potential exponential
explosion in the number of paths that need to be considered.
However, the use of local search was inexpensive.

Recently, it has come to be realized that the variation on
local search, originally proposed by Korel [281], called the
‘Alternating Variable Method” (AVM) is highly effective as
well as efficient. In a recent and relatively large-scale empirical
study, AVM was found to be more efficient than population-
based optimisation techniques (as might be expected) but it
was also found to be competitive in terms of test effectiveness
[221].

A wide variety of testing goals have been attacked using
search, including structural testing, functional and non func-
tional testing, safety testing, robustness testing, stress testing,
mutation testing, integration testing and exception testing. A
summary of the papers addressing Testing and Debugging

(ACM: D.2.5) are summarized in Table VII. The rest of this
section considers each area as a subsection. These subsections
consider, in more detail, those subareas of testing that have
received most attention in the literature.

In addition to these, other less thoroughly explored areas
include Functional Testing [91, 479], Safety Testing [53, 161],
Security Testing [133], Robustness Testing [416], Stress Test-
ing [80, 132], Integration Testing [79] and Quality of Service
Testing [143].

It is interesting to note that many of these areas have only
arisen as topic within Search Based Testing in the past few
years, suggesting that the field continues to increase in breadth,
covering an increasing number of topics within testing.

Program and system level transformation has also been
applied to improve the performance and applicability of Search
Based Software Testing in what has come to be known
as ‘Testability Transformation’. Testability Transformation is
used to refer to any technique for transforming systems to
improve their testability. It has been largely applied to Search
Based Testing [54, 225, 226, 227, 242, 345, 347], though it
has also been proposed as a solution to other problems in test
data generation, beyond search based approaches [216].

Most work on SBSE applied to testing has been concerned
with the discovery of faults in software. However, more
recently, authors have also turned their attention to the use of
SBSE to patch software to fix bugs [36, 41] using co-evolution.
Co-evolution has also been used to co-evolve programs and
test data from specifications [38]. Patton et al. [378] describe
a GA approach for software usage testing. The GA generates
additional test cases around those that cause a fault in order
to help guide a debugger.

Most of the work on Software Testing has concerned the
problem of generating inputs that provide a test suite that
meets a test adequacy criterion. The schematic overview of
all such approaches is presented in Figure 5. Often this
problem of test input generation is called ‘Automated Test
Data Generation (ATDG)’ though, strictly speaking, without
an oracle, only the input is generated. Figure 5 illustrates the
generic form of the most common approach in the literature,
in which test inputs are generated according to a test adequacy
criteria. The test adequacy criteria is the human input to the
process. It determines the goal of testing.

The adequacy criteria can be almost any form of testing goal
that can be defined and assessed numerically. For instance, it
can be structural (cover branches, paths, statements) functional
(cover scenarios), temporal (find worst/best case execution
times) etc. This generic nature of Search Based Testing (SBT)
has been a considerable advantage and has been one of the
reasons why many authors have been able to adapt the SBT
approach different formulations.

The adequacy criteria must be captured by a fitness function.
This has to be designed by a human, but once a fitness function
has been defined for a test adequacy criterion, C, then the
generation of C-adequate test inputs can be automated using
SBSE. The SBSE tools that implement different forms of
testing all follow the broad structure outlined in Figure 5.
They code the adequacy as a fitness, using it to assess the
fitness of candidate test inputs. In order to assess fitness, the

ATDG system has to cause the program to be executed for
the candidate inputs. The ATDG system then monitors the
execution to assess fitness (how well does the input meet the
test adequacy criterion?).

A. Structural Testing

The most widely studied area of testing research that has
been addressed using SBSE is structural testing. This was also
the first topic to be addressed using metaheuristic search (by
Xanthakis et al. [493]). The idea is to instrument the program
to measure coverage of some structural criterion. The most
commonly considered criteria is branch coverage, though other
structural criteria have been attacked. For example, Girgis
[193] targets data flow coverage while Xiao ef al. [495] target
decision-coverage.

Early work considered the goal to be the coverage of as
many branches as possible, so the representation was a test
suite and the fitness function sought to Maximise coverage.
However, this was found to produce solutions that achieve
reasonable coverage, but not full coverage because they tended
to avoid the branches that were hard to cover.

Later work has tended to adopt the approach in which the
coverage of each branch is viewed as a test objective in its
own right, for which a fitness function is constructed based
upon the path taken by a test case. The representation is an
individual test case.

More recently, Lakhotia et al. [230] introduced a multi-
objective paradigm for structural test data generation that seeks
to Maximise coverage while also achieving other objectives.
This is the first work to combine non-functional testing goals
with coverage based adequacy criterion as a multi objective
problem.

From 1995 there has been an upsurge in interest in Search
Based test data generation for structural criteria, based on the
achievement of branch coverage [9, 26, 27, 30, 70, 86, 87,
108, 158, 179, 192, 240, 260, 261, 263, 271, 286, 289, 297,
306, 307, 311, 312, 339, 344, 349, 350, 351, 352, 353, 354,
356, 377, 380, 382, 388, 399, 400, 401, 440, 441, 442, 444,
445, 463, 465, 466, 475, 476, 496, 497, 506].

This work focussed on the application of evolutionary
algorithms for structural testing, forming a sub area of ac-
tivity which has come to be known as ‘evolutionary testing’.
The work culminated in a state-of-the-art evolutionary testing
system, used by DaimlerChrysler for automative embedded
software assurance [484]. This work is covered in more detail
in the survey by McMinn [340]. The Evolutionary Testing
approach has also been implemented as a tool by the EU
EvoTest project.

Early work on evolutionary testing considered imperative
programming paradigms, with much work on structural test
data generation for the C programming language. More re-
cently, researchers have adapted these techniques for the OO
paradigm [37, 39, 40, 42, 110, 410, 469, 470].

Tonella [450] was the first to apply Search Based testing
techniques to the problem of testing Object Oriented (OO)
software. He provided a GA-based test case generation tech-
nique for unit testing of classes to maximise given coverage

monitors

Search Based

Optimization Algorithms executes
A

- ¥

uses

creates

Program under Test

executes

“—Ccwv-HCO

-

Fitness Function

=

:1 Test Input

Search Based Test Input Generation

define

Test Adequacy Criteria

-

defines

Software Test Engineer

Fig. 5. A Generic Search Based Test Input Generation Scheme

and minimise test set. For the OO paradigm, the representation
of a test case needs to be changed, because test cases are
typically sequences of method invocations (and their parame-
ters). This makes the testing problem much harder than that
typically addressed for the imperative paradigm, in which the
problem has been so-defined that the inputs are simply vectors
containing numeric input. For the OO paradigm the input has
a program-like structure, within which near neighbours are
harder to determine and for which small changes in the input
can lead to dramatic changes in behaviour.

Since the input to an OO program has a program like struc-
ture itself, this naturally suggest that application of genetic
programming, which treats the individual to be optimised as a
program. This approach has recently been explored by Arcuri
and Yao [38]. Though this GP approach is also possible in the
imperative paradigm, it has not been explored in the published
formulations of the problem.

The OO paradigm also brings with it the state problem,
first identified and addressed within the imperative paradigm
by McMinn [341, 342, 343]. The state problem occurs when
the target branch to be covered is controlled by a predicate,
the value of which depends upon the value of some state
variable. A state variable is a variable whose value is persistent
between different invocations of the function under test. In
the imperative paradigm, this occurs through static and global
variables. The problem is that the target branch may not be
covered by an arbitrary call to the function under test. Rather,
the presence of state variables may mean that the target branch
must be executed multiple times in order to ensure that the
state variable achieves some value.

There has been much other work on structural test data
generation for the OO paradigm. Wappler and Wegener [472]
were the first to propose the use of Strongly-Typed Genetic
Programming for OO test input generation, an approach subse-

quently adopted by other researchers. [418, 419, 420, 421] and
Ribeiro et al. [394, 395, 396] use a GP approach for automated
test generation for object-oriented software. Ribeiro et al.
[393, 397, 398] also apply GP to reduce the size of the search
space for test case generation in object-oriented software.
Arcuri and Yao [40] use and compare the performance of
Genetic Algorithms, Hill Climbing and Memetic.

Algorithms for OO test data generation. Liaskos et al.
[303, 305] use Artificial Immune Systems (AIS) for Definition-
Use (DU) path testing of OO software. Arcuri and Yao [42]
Compare the performance of four search techniques (HC, SA,
GA, MA) and Random Search techniques to generate unit
test data for container classes, in order to maximise program
coverage and minimise the length of test sequences. Gupta and
Rohil [210] present a GA-based test case generation technique
for classes in object-oriented software.

Recently, Harman et al. [232] showed how search based
testing can be adapted to apply to the Aspect Oriented
Paradigm, providing the first search based approach to au-
tomated test input generation for AOP programs written in
Aspect].

The most popular search technique applied to structural
testing problems has been the Genetic Algorithm. However,
other authors have experimented with other search based
optimisers such as parallel EAs [23], evolution strategies [18],
Estimation of Distribution Algorithms (EDAs) [403, 404, 405,
406, 407, 408, 410], Scatter Search [28, 67, 403, 406], Particle
Swarm Optimisation (PSO) [293, 492], Tabu Search [145, 146]
and Local search [282, 283].

The fitness function is vital to the success of the search in
every approach to SBSE. In work on structural testing, several
authors have proposed refinements to the fitness function. For
example, Baresel and Sthamer [50], Bottaci [72] and Liu
et al. [309] develop an Evolutionary Testing (ET) System

for automatic testing in presence of flag conditions, adapting
fitness to cater for flags, while Bottaci [73] reviews fitness
functions used in search based testing proposing alternatives
aimed at partially ameliorating problems with flags. Uyar et al.
[457] propose a fitness evaluation method based on pairwise
sequence comparison used in bioinformatics for evolutionary
structural testing. The flag problem has been studied widely
in its own right, and was the initial motivation for work on
Testability Transformation.

Flag variables pose a problem for attempts to apply search
based techniques to structural testing. Flag variables are either
true or false, and when used in a predicate, they provide
little or no guidance to the search (using standard fitness
functions). Wappler et al. [474] apply a GA-based code trans-
formation approach to address the flag problem in software
testing. The problem was first formulated as a testability
transformation problem by Harman et al. [226, 227] and also
studied by Bottaci [72]. Since then it has been studied by
several other authors, each of whom has proposed a solution
[27, 50, 54, 309, 474].

Research on Search Based Test Data Generation for struc-
tural criteria is now relatively mature, with work on pre-
dictive methods for test effort [288], theoretical analysis of
the problem characteristics [44] and specially tailored search
algorithms that are adapted specifically to the structural test
data generation problem [346]. Harman and McMinn provide
a large scale empirical study to compare Hill Climbing and
Genetic Algorithms for structural test data generation [221].
They analyze the theoretical cases in which the Royal Road
Theory predicts that GAs will perform well. The empirical
results back up the theoretical predictions.

Harman et al. [231] showed how traditional Software Engi-
neering dependence analysis techniques can be used to analyze
dependence for predicates under test in structural testing. The
dependence analysis can be used to reduce the size of the
search space for test data generation, thereby improving the
efficiency of test data generation. This approach has great
promise as a mechanism for combining static and dynamic
analysis to reduce search base size. It was applied to branch
coverage, but could also be applied to any white box ATDG
approach.

B. Model Based Testing

Testing programs specified by models has become increas-
ingly widely studied in the literature on software testing and
search based approaches have also witnessed a recent upsurge
in activity, largely focussed on techniques for generating test
data for state based models. For these models, one frequently
studied problem is the construction of Unique Input Output
(UIO) Sequences. That is, a sequence of input values, 7 is a
UIO for a state s if the output that occurs when a machine in
state s receives ¢ is unique to i.

This allows a tester to know, through black box testing,
that the system must have been in state s. UIOs are important
in forming testing sequences capable of detecting transition
faults (faults where the correct output occurs, but for which
the machine arrives at the wrong state). The UIO is used to

determine whether the state resulting from a transition is the
correct state.

The problem of finding UIOs that are effective and efficient
is a natural optimisation problem that has received much
recent attention, both in terms of practical investigation of
algorithms for optimizing the trade-offs [136, 137, 138, 206,
207, 208, 241] and also in terms of theoretical analysis
and characterization of the underlying optimisation problems
[295].

Li et al. [299, 300] applied an ACO-based approach for
automatic test sequence generation in the state-based software
testing of UML Statechart diagrams for coverage. The use
of ACo targets the problem of shortening the length of the
generated test sequences, a general problem for which ACO
is known to be very well adapted, but which has not been
widely addressed in the literature of test input generation.
Guo et al. [209] propose heuristics to optimise the fault
isolation and identification process in Finite State Machine
testing. Lefticaru and Ipate [292] also apply GAs to state
diagrams for automatic test data generation for state-based
testing. Recent work has also considered test data generation
for state based models expressed in the MATLAB simulink
framework using traditional models of coverage and mutation
testing [500, 501, 502, 503]. Search Based Mutation Testing
itself, is covered in more detail in the next section.

C. Mutation Testing

In mutation testing a set of variants of the original program
are created. Each variant, called a mutant, is created by
inserting a single fault into the original program. A test input
is said to kill a mutant if it distinguishes the behaviour of the
mutant from that of the original program. That is, the input
gives rise to as different output when applied to the mutant and
original program. The quality of a test suite can be assessed
by measuring the number of mutants killed by the test suite.
The more mutants killed, the better the test suite. The idea is
that if a test suite is good at killing (detecting) these artificially
insert faults, then it will be good at detecting real faults too.

Originally, mutation testing was used as a mechanism for
assessing the quality of test suite. However, it was not long
[278] before researchers started to consider the problem of
generating test data that could be used to kill mutants. In this
way, mutation testing became a mechanism for generating test
data, rather than merely assessing its quality.

Several authors have presented search-based approaches to
the generation of test data to kill mutants. Emer and Vergilio
[157] use Genetic Programming to generate and evaluate test
cases for the mutation testing. Shan and Zhu [424] use data
state mutation for test data generation. In data state mutation,
the state of computation is mutated, rather than the program
under test. Ayari et al. [46] propose Ant Colony Optimisation
(ACO) to generate test input data in the automatic mutation
testing.

Adamopoulos et al. [1] apply a GA for co-evolution of
mutants and test cases. This is the first application of co-
evolutionary search in the SBSE literature. The idea is to
generate sets of mutants and sets of test data that can kill

the mutants. Masud et al. [335] also apply GA for test data
generation in mutation testing to kill mutants.

Other authors have considered the application of techniques
closely related to evolutionary approaches. Baudry et al
[58, 59, 60, 61] use Bacteriological Algorithms (BAs) for test
data generation for mutation-based testing. BAs are a variant
of GAs which retain a population, but remove the cross over
operator. May et al. [336] apply Artificial Immune Systems
(AIS) to mutation testing. AIS is a technique, also inspired by
biology, drawing its inspiration from the behaviour of immune
system responses. AlS is also used by Liaskos et al. [303, 305],
though for Definition-Use (DU) path testing of OO software
(not mutation testing). May et al. [337] describe Artificial
Immune System-based test data evolution approach to compare
with GA in mutation testing.

Jia and Harman [253, 254] present a higher order approach
to mutation testing, in which several faults are simultaneously
inserted. There are exponentially more higher order mutants
than first order mutants, but Jia and Harman argue that this
explosion in size can become manageable using SBSE to
search for high quality mutants; those that subsume their first
order constituents.

D. Temporal Testing

A lot of the work on search based testing has considered
structural and functional properties of the software under test,
However, search based optimisation can also be applied to test-
ing non-functional properties, so long as these can be captured
by a fitness function. One of the the most conceptually simple
applications of the approach has been in temporal testing,
where the goal is to search for worst (respectively best) case
execution time. In this application the fitness function for a
given input ¢ is simply the amount of time taken to execute
the program under test for input <. For best case execution
time, the objective is to minimise this value, while for worst
case execution time the goal is to maximise it. This work has
been developed since the mid 1990s, and continues to motivate
new research [13, 14, 15, 16, 201, 449, 482, 483].

Of course, worst case execution time can also be approx-
imated using static analysis. However, such an analysis is
forced to produce a conservative upper bound on worst case
execution time, because the underlying question is undecid-
able. Dynamic techniques, such as search based testing, can be
used to complement approximate static techniques. Wegener
and Mueller [481] compare static analysis with ET for the
verification of timing constraints.

Where the static and dynamic approaches produce the same
answer, we know we have identified the true worst case.
In cases where they do not, the gap between the statically
and dynamically determined values gives measure of the
uncertainly (and thereby the risk) involved. Gross [202, 204]
also presented results for temporal testing using evolutionary
algorithms, and showed [203, 205] how it was possible to
predict the accuracy of these approaches, thereby reducing
the uncertainty involved when static and dynamic techniques
disagree.

The applications of worst case execution time testing, im-
pinge on highly safety critical aspects of software systems.

For instance, Daimler [381, 480, 481] carried out work on the
worst case execution time of air bag controllers in production
code for embedded systems. It is a sign of the success of the
SBSE approach, that it has been used by industrialists such as
Daimler for such a safety critical application.

All of the approaches considered so far in this section
have used evolutionary computation as the primary search
based algorithm for addressing temporal testing. Wegener et al.
[381, 480, 481] argue that the search space is naturally suited
to genetic algorithms. They use three dimensional ‘slices’ of
the N dimensional solution space to show that it is both
multi modal and discontinuous and that it contains many
plateaux. Plateaux are known to raise issues for optimisation,
though there has been recent work addressing this within the
optimisation community [489].

This suggests that hill climbing would perform poorly
on these problems. However, Dillon [147] presents results
which indicate a potential for the use of hybrid approaches
incorporating local search (hill climbing) for the determination
of worst case execution time for embedded systems.

E. Exception Testing

Exceptions are, by their very nature, hard to test. That is,
the conditions for which an exception handler checks are not
likely to occur frequently; they are exceptional. Therefore,
finding inputs that cause the exception to be raised may not be
easy. Indeed, in some systems, there is no input that can raise
the exception though, of course, this cannot always be known
statically, since it is not a decidable property of a program.

Despite the difficulty of exception testing, there has been
work on search based approaches for the problem. At first
sight, an exception would appear to denote a ‘needle in the
haystack’ search problem for which search based approaches
are known to perform badly (degenerating to random search
in the worst case). This is because either a candidate input
raises the exception (the desired value from a testing point
of view) or it fails to do so (the majority of cases). In order
to successfully apply a search based approach, there needs
to be a guidance from the non-exception-raising cases to the
exception-raising cases.

Fortunately, such guidance is typically available, because
the exception raiser itself is typically guarded by a predi-
cate expression that denotes the circumstances under which
the exception is to be raised. This makes the problem of
exception raising similar to that of branch coverage. Tracey
et al. [451, 452] were the first to consider this problem.
They applied simulated annealing to the problem of raising
exceptions (and also to the problems of temporal testing,
considered in Section VII-D and structural testing, considered
in Section VII-A). This work was later extended to also
include genetic algorithms as well as simulated annealing
[453, 454, 455]. Bostrom and Bjorkqvist [71] use Sequential
Quadric Programming (SQP) for the assertion checking prob-
lem in Simulink models to automatically generate test cases.

F. Regression Testing

Many organizations have large pools of test data for the
purpose of regression testing. Their problem may be more one

of reducing the effort required for regression testing, rather
than generating yet more potential test cases for regression
testing. Furthermore, if they can Maximise the value and
impact of the existing test suite by reducing its size, focussing
on those cases with the biggest value, then this may provide
additional time and budgetary space for additional test cases
that are able to add value.

In these situations, the organization requires a technique for
intelligent selection of test cases (test case selection) and for
removing any test cases from their test set that can be shown
to be subsumed by others (test suite minimization). In the
worst case, if the organization runs out of time for regression
testing then they need to be sure that they have achieved the
best possible results achievable with the test cases that have
been used up to the point at which time ran out.

For this regression testing optimisation problem the orga-
nization requires a technique for test suite prioritization. That
is, to find an ordering of test cases that ensures that, should
testing be terminated after some arbitrary prefix of the order
has been applied, then the maximum value will have been
achieved.

These three problems of selection, minimization and pri-
oritization can all be formulated as optimisation problems to
which search based optimisation can be applied. Traditionally,
greedy algorithms have been used for minimization and pri-
oritization and a range of techniques involving static analysis
have been applied to all three problems [49, 302, 329, 331,
499].

Fischer et al. [182, 183] were among the first authors to
apply optimisation techniques to software Engineering prob-
lems. They used a variant of classical Integer Programming to
address the test case selection problem. Their criteria included
coverage, like subsequent work on test data generation for
testing and test case selection for regression testing. however,
they also accounted for connectivity, reachability and date
dependence.

Hartmann et al. [234, 235, 236] overview and extend
strategies for what they term ‘automatic selective revalidation’,
surveying the earlier work of Fischer et al. and proposing
modifications. The term ‘automatic selective revalidation’ cor-
responds roughly to the problem of test case selection in
regression testing using the current nomenclature of regression
testing.

All three regression testing optimisation problems have also
been attacked using search based optimisation. In this work
the value of a test suite is typically measured in terms of the
coverage it achieves (both in terms of covering changed func-
tionality (for selection), in terms of structural coverage (for all
three problems) and in terms of historical fault coverage (for
minimization and selection). The cost, against which this value
must be balanced by the optimisation technique, is typically
measured in terms of the execution time and/or the number of
test cases in the test suite.

Li et al. [302] use HC and GA for regression test case
prioritization. Yoo and Harman [499] introduce a Pareto
optimisation approach to the test case selection to optimise:
code coverage, time and attaining full coverage with empirical
studies of two and three objective formulations using GA and

greedy search. This was the first use of pareto optimal multi
objective search in regression testing. Bryce and Colbourn
[83] propose a hybrid Greedy Algorithm to support test suite
selection for achieving coverage. Walcott er al. [464] also
consider the multi objective problem of balancing coverage
with time taken to achieve it. They treat the problem as a single
objective problem in which the two objectives are combined
into a primary and a secondary objective using weighting.

Several authors [49, 302, 329, 331] have provided com-
parative studies of the performance of several search based
regression testing techniques.

G. Configuration and Interaction Testing

In configuration and interaction testing, the goal is to search
the space of possible software configurations for those that are
likely to reveal faults. Since configuration spaces can be very
large, researchers often focus on levels of coverage of possible
interactions between parameter settings for configurations.

The problem was first addressed using search based tech-
niques by Cohen et al. [121, 122] and (shortly after) by Ghaze
and Ahmed[191]. Cohen has remained active in this field
[85, 123, 124]. The problem of interaction testing has also
been considered by other authors, who have explored the use
of search based solutions [82, 83, 84].

H. Stress Testing

Stress testing consists of finding test cases or scenarios
in which software performance degrades. There has been
comparatively little work on search based approaches to stress
testing. Indeed, non functional test criteria, in general, lag
some way behind functional and structural criteria in their
development of search problems.

The idea of search based stress testing was mentioned by
Alander et al. [14]. Mantere [332] investigated GA-based test
data generation in system and module testing in a doctoral
thesis that considered traditional testing and testing for stress-
ing the SUT and finding bottlenecks. Mantere also suggested
the use of Co-evolution for co-evolving GA parameters as a
form of co-evolutionary parameter tuning.

Briand et al. [80, 81] applied search based optimisation
to stress testing problems in which tasks must be completed
within a given time interval. A GA was used to identify
test scenarios in which deadline misses become more likely.
Garousi [186] developed the idea of search based stress testing
in a PhD thesis that considered stress testing for distributed
real time systems and developed this work with Briand and
Labiche [187, 189]. Joshi et al. [264] also considered stress
testing from the point of view of non functional properties
such as power and temperature.

1. Integration testing

Though very important, integration testing has been largely
overlooked by the SBSE community, with only a few papers
addressing this area of activity. Given the importance of
integration testing to the software testing industry and the
natural optimisation problems that arise from consideration of

test orders, constraints and selection, this seems like a natural
area for further exploration.

If integration order is suboptimal, then there will be a need
for an unnecessarily large amount of stubbing to simulate the
behaviour of as-yet-unwritten procedures. Hanh et al. [212]
compare of integration testing strategies including a GA to
minimise the stubs and optimise testing resources allocation.
Briand et al. [79] also address this issue. They use a GA
to optimise the orders of test cases in order to minimise the
complexity of stubbing in integration testing.

J. Other Testing-Based Applications

Testing is by far the most widely considered area of ap-
plication for SBSE research. This subsection briefly mentions
other work on SBSE applications in testing and debugging that
does not fit into any of the previously discussed categories.

Berndt and Watkins [63] search for long test input sequences
that simulate extended execution and may be equivalent to the
re-execution of a simpler test many times. At the other end of
the spectrum, Liu e al. [310] seek to generate shortest possible
sequences, thereby reducing test effort.

Watkins er al. [477] provide GA-based test case generation
technique to detect failures in system level testing. They use
GA generated test cases to train a decision tree classification
system to classify errors. Del Grosso et al. [133] use evolution-
ary testing and dependence analysis to detect buffer overflows.
Xiao et al. [494] apply EA to generate shortest possible test
sequences in protocol conformance testing. Lam ef al. [287]
formulates FSm testing in terms of the asymmetric travelling
salesman problem to which ACO can be applied, thereby
focussing on the objective of minimizing test sequence length.
Briand et al. [81] propose GA to improve schedulability of
test cases in a real-time system for executing triggered tasks
within time constraints. Regehr [391] apply a GA to improve
the quality of interrupt scheduling for interrupt-driven software
testing. MacNish [320] use a GA to generate test sequences
for detecting errors in student code. Chan et al. [99] use
a GA to detect and identify unwanted behavior of action
sequences in computer games. Bueno and Jino [88] provide
test case selection and coverage identification metrics based
on a GA. Wegener et al. [486] use GA-based approach for
test case design to improve quality of evolutionary testing in
embedded systems. Berndt et al. [64] provide GA-based test
case generation techniques to improve the quality of test cases.
Berndt and Watkins [62] apply GA to automatically generate
large volumes of test cases in complex systems. Hermadi
[239] briefly survey and compare existing GA-based test
data generators. Mayer [338] shows that a reference method
in the field of Adaptive Random Testing is not effective
for higher dimensional input domains and clustered failure-
causing inputs. Feldt [170, 173] uses GP to minimise the
probability of coincident failures for multi-version system.
Cornford et al. [126, 127] extend the Defect Detection and
Prevention (DDP) process by using GA and SA to reduce risk
in spacecraft systems.

Khurshid [277] proposes and evaluates GA-based tech-
niques to generate test suites for maximizing code coverage

and applies it to an implementation of the intentional naming
scheme, finding previously undiscovered errors. In order to
apply GAs to this problem, Khurshid has to model dynamic
data structures, a problem not previously considered.

VIII. DISTRIBUTION, MAINTENANCE AND
ENHANCEMENT

Software maintenance is the process of enhancing and
optimizing deployed software (software release), as well as
remedying defects. It involves changes to the software in order
to correct defects and deficiencies found during field usage
as well as the addition of new functionality to improve the
software’s usability and applicability. A summary of the papers
addressing problems in the areas of Distribution, Maintenance
and Enhancement (ACM: D.2.7) are summarized in Table VIII.

Much of the work on the application of SBSE to these topics
has tended to focus on two strands of research, each of which
has attracted a great deal of interest and around which a body
of work has been produced.

The first topic to be addressed was Search Based Software
Modularization. More recently, there have also been several
developments in search based approaches to the automation of
refactoring. The previous work on Distribution, Maintenance
and Enhancement is discussed in more detail in the following
two subsections, which consider work on Modularization and
Refactoring separately.

Other work on SBSE application in Distribution, Main-
tenance and Enhancement that does not fall into these two
categories of focussed interest has considered the evolution
of programming languages [458], realtime task allocation’
[57, 156], quality prediction based on the classification of
metrics by a GA [461] and legacy systems migration [411].
SBSE has also been applied to the concept assignment prob-
lem. Gold et al. [195] apply GAs and HCs to find overlapping
concept assignments. Traditional techniques (which do not use
SBSE) cannot handle overlapping concept boundaries, because
the space of possible assignments grows too rapidly. The
formulation of this problem as an SBSE problem allows this
large space to be tamed.

A. Modularization

Mancoridis et al. were the first to address the problem
of software modularization using SBSE [326] in 1998. Their
initial work on hill climbing for clustering modules to Max-
imise cohesion and Minimise coupling was developed over the
period from 1998 to 2008 [152, 327, 359, 360, 362, 363, 364].
The pioneering work of Macoridis et al. led to the development
of a tool called Bunch [327] that implements software module
clustering and is available for free for research use.

The problem of module clustering is similar to the problem
of finding near cliques in a graph, the nodes of which denote
modules and the edges of which denote dependence between
modules. Mancoridis et al. [327] call this graph a Module

5This work could equally well be categorised as ‘Real Time SBSE’; a topic
area which is sure to develop in future, given the highly constrained nature
of the real time environment and the many competing objectives that have to
be optimised.

Dependency Graph. The Bunch tool produces a hierarchical
clustering of the graph, allowing the user to select the granu-
larity of cluster size that best suits their application.

Following Macoridis et al., other authors also developed the
idea of module clustering as a problem within the domain of
SBSE. Harman et al. [224], studied the effect of assigning
a particular modularization granularity as part of the fitness
function, while Mahdavi et al. [322, 323] showed that com-
bining the results from multiple hill climbs can improve on
the results for simple hill climbing and genetic algorithms.
Harman et al. also [228] explored the robustness of the MQ
fitness function in comparison with an alternative measure of
cohesion and coupling, EVM, used in work on clustering gene
expression data.

Other authors have also considered search based clustering
problems. Bodhuin et al. [68] apply GAs to group together
class clusters in order to reduce packaging size and the average
downloading times. Huynh and Cai [249] apply GAs to cluster
Design Structure Matrices and check the consistency between
design and source code structures.

Despite several attempts to improve on the basic hill climb-
ing approach [224, 323, 359], this simple search technique has
hitherto been found to be the most effective for this problem.
Mitchell and Mancoridis recently published a survey of the
Bunch project and related work [361].

Clustering is a very general problem to which a number
of algorithms have been applied, not merely search based
algorithms. Clustering is likely to find further applications
in Software Engineering applications, beyond the original
work on software modular structure. For example, Cohen
[120] showed how search based clustering algorithms could
be applied to the problem of heap allocation Java program
optimisation. Memory fragmentation issues have also been
addressed using SBSE: Del Rosso [135] improved internal
memory fragmentation by finding the optimal configuration
of a segregated free lists data structure using GA.

B. Refactoring

In refactoring work, the goal is to change the program,
altering its structure without altering the semantics. Closely
related topics have also been addressed. For example Reformat
et al. [389, 390] explore applications of software clones and
present a method for automatic clone generation using GP.
Clones are also a focus for attention in the work of Di
Penta er al. [140, 142], who propose a language-independent
Software Renovation Framework to remove unused objects,
clones and circular dependencies; cluster large libraries into
more cohesive and smaller ones. Cowan et al. [130] provide
a framework of automatic programming applying GP. Bouktif
et al. [76] use SBSE techniques to schedule refactoring actions
in order to remove duplicated code. Antoniol et al. [32]
propose GA-based refactoring process to reduce size and
minimise coupling of libraries. Bodhuin ez al. [69] introduce
a tool to support refactoring decisions using a GA guided by
software metrics, in a similar manner to work on refectoring,
guided by metrics.

Search Based Refactoring work can be partitioned according
to whether the goal is to optimise the program to a refactored

version of itself [125, 373, 374, 375, 376, 402, 490] or whether
it is to optimise the sequence of refactoring steps to be applied
[222, 490]. The work can also be categorized according
whether the approach followed is single objective (combining
all metrics into a single fitness value) [373, 374, 375, 376,
402, 422, 423, 490] multi objective (using Pareto optimality
to separately optimise each metric) [222]. Bouktif et al. [76]
proposed an approach to schedule refactoring actions under
constraints and priorities in order to remove duplicated code.

This work is closely related to that on statement-level
Search-Based Transformation, which was first explored by
Ryan and Williams in the context of identification of trans-
formations that improve imperative language paralellizability
[402, 490] and by Nisbet [370], who apply a GA to determine
the optimal transformation sequence that Minimises the execu-
tion time of FORTRAN programs for single program multiple
data (SPMD) execution on parallel architectures.

Hoste and Eeckhout [246] use multi-objective optimisation
to search the space of compiler options that control optimisa-
tion levels in gcc. There are about 60 such flags (purely for
optimisation behaviour of the gcc), making for a non-trivial
search space of options, specifically targeted at performance of
the compiled code. The two objectives considered in the paper
are compilation time and code quality (in terms of execution
time), though many other possibilities suggest themselves,
such as the many non-functional properties of the program
being compiled.

Refactoring seeks to restructure a program to improve some
aspect of the structure without affecting the behaviour of
the restructured system. It is an example of a more general
approach: (source-to-source) program transformation, to which
SBSE techniques have also been applied. Fatiregun et al.
[163, 164, 165] and Kessentini et al. [270] to apply to transfor-
mations to reduce programs size and to automatically construct
amorphous slices. The first author considered any form of
source-to-source transformation using a search based approach
was Cooper [125] who applied search based transformation to
find sequences of compiler optimisations. This work used only
whole program transformations. The work of Ryan, Williams
and Fatiregun which followed, focused on the more ‘micro
level’ or statement-level transformations.

By contrast with this previous work on transformation, the
work on refactoring is more concerned with the OO paradigm,
but the principles used in the refactoring work are largely the
same as those that pertain to the statement-level transformation
domain.

IX. METRICS

The fitness function resides at the heart of any approach to
search based optimisation. Work on SBSE has a rich vein of
research on Software Engineering measurement upon which to
draw in order to find fitness functions. It has been argued that
all software metrics can be regarded as fitness functions [217].
This allows metrics to move from being merely a passive
assessment of a system, process or product, to a more active
driver for change. As a fitness function, a metric acquires a
new life; it can be used to drive the search based optimisation

process to find better solutions than those currently available.
A summary of the papers addressing problems related to
Metrics (ACM: D.4.8) can be found in Table IX.

The field of software metrics is not uncontroversial. Many
proposed metrics become the subject of debate and dispute
concerning whether or not the proposed metric meets the
representation condition, that the values assigned by the
software measurement faithfully model the relationship that
pertains in the real world. By treating the metric as a fitness
function, it becomes possible to assess whether the metric
really does capture the property of interest; if it does then the
optimisation process will produce a sequence of increasingly
good solutions. If the solutions do not increase in quality
with increases in metric value, then the optimisation will have
found a counter example to the representation condition for
the metric [217].

Optimisation can also be used to select from among a set
of potential metrics, the optimal set that captures properties
of interest in a predictive manner [460, 461, 462]. Using this
approach a meta metric assesses the accuracy of the prediction,
based on a set of metrics that can be easily measured.
Typically, this approach is applied to problems where the meta
metric can only be measured post production, whereas the
metrics used for prediction can be gathered at the outset or
early stages of development.

Metrics can also be used to identify programmer style.
Lange and Mancoridis [290] applied a GA to identify software
developers based on the style metrics.

X. MANAGEMENT

Software engineering management is concerned with the
management of complex activities being carried out in dif-
ferent stages of the software life cycle, seeking to optimise
both the processes of software production as well as the prod-
ucts produced by this process. Task and resource allocation,
scheduling and cost-effort estimation have been among the
most frequently studied problems studied in this category.
A summary of the papers addressing problems in the area
of Management (ACM: D.2.9) are summarized in Table X.
The papers can be roughly categorized according to whether
they concern project planning activities or whether they create
predictive models to provide decision support to software
project managers. The following two subsections present the
work in each of these two categories.

1) Project planning: Chang et al. [100, 101, 102, 103, 105]
were the first to use SBSE on Software Management problems.
Their early work on search based software project manage-
ment [100, 101, 105] was among the first papers on SBSE.
They introduced the Software Project Management Net (SPM-
Net) approach for project scheduling and resource allocation,
evaluating SPMNet on simulated project data. SPMNet deals
with project scheduling and resource allocation. Other early
work on SBSE for project management was presented by
Aguilar-Ruiz et al. [7, 8] , who also advocated the use of a
Software Project Simulator (SPS) to evaluate fitness, guiding
an evolutionary search for a set of management rules to inform
and assist the project manager.

The allocation of teams to work packages in software
project planing can be thought of as an application of a
bin packing problem [119]. Motivated by this observation,
Antoniol et al. [33, 35] and Chicano and Alba [17, 22] applied
search algorithms to software projects. Antoniol et al. applied
genetic algorithms, hill climbing and simulated annealing
to the problem of staff allocation to work packages. They
also considered problems of re-working and abandonment of
projects, which are clearly important aspects of most Software
Engineering projects. Antoniol et al. applied the algorithms
to real world data from a large Y2K maintenance project.
Chicano and Alba consider the multi objective version of the
problem applied to synthetic data. The multiple objectives are
combined into a single fitness function using weights for each
of the component objectives.

Bouktif et al. have used SBSE to consider the management
problem of determining the expected quality of software sys-
tem as a prediction system. Bouktif ef al. [74] present a GA-
based quality model to improve software quality prediction,
while Bouktif et al. [77] show how the general problem of
combining quality experts, modeled as Bayesian classifiers,
can be tackled via an SA algorithm customization and Bouktif
et al. [75] use GA-based method to improve rule set based
object-oriented software quality prediction.

The application areas of software project management,
scheduling and planning have witnessed a great deal of recent
interest from the research community, with recent contribu-
tions from a number of authors. Alvarez-Valdes et al. [28] used
a Scatter Search algorithm for project scheduling problems
to minimise project completion duration. This is one of the
few applications of scatter search in SBSE. Barreto et al.
[56] propose an optimisation-based project-staffing algorithm
to solve staffing problem. Cortellessa et al. [128] describe
an optimisation framework to provide decision support for
software architects. Hericko et al. [238] use a simple gradient-
based optimisation method to optimise project team size while
minimising project effort. Kapur er al. [266] use a GA to
provide optimal staffing for product release and best quality to
customers under time constraints. Kiper e al. [279] apply GA
and SA to select optimal subset of V&V activities in order
to reduce risk under budget restrictions, thereby linking the
problem domains of testing and management.

It is clear that this application area will continue to draw
interest and activity from the SBSE community. Though
there has been much interest the difficulty of the problem
of software project management, there remain a number of
unresolved challenges, including:

1) Robustness. It may not be sufficient to find a project
plan that leads to early completion time. It may be
more important to find plans that are robust in the
presence of changes. Such a robust plan may be sub-
optimal with respect to the completion time objective.
This may be a worthwhile sacrifice for greater certainty
in the worst case completion time, should circumstances
change. These forms of ‘robustness trade off” have been
widely studied in the optimisation literature [65].

2) Poor Estimates. All work on Software project estima-
tion has had to contend with the problem of notoriously

poor estimates [428]. Much of the work on SBSE for
project management has implicitly assumed that reliable
estimates are available at the start of the project planning
phase. This is a somewhat unrealistic assumption. More
work is required in order to develop techniques for soft-
ware project planning that are able to handle situations
in which estimates are only partly reliable.

3) Integration. Software project management is a top level
activity in the software development lifecycle. It draws
in the other activities such as design, development,
testing, and maintenance. As such, project management
is ideally, not an activity that can be optimised in
isolation. In order to achieve wider applicability for the
SBSE approach to software project management, it will
be necessary to develop techniques that can integrate
management activities with these other engineering ac-
tivities, balancing across many competing objectives,
relating to aspects of each phase that can impact on the
overall objectives of a sound project plan with a realistic
but an attractively early completion date.

Software project management also cannot be conducted
in isolation from requirement engineering, since the
choice of requirements may affect the feasibility of
plans. Therefore, though the requirements gathering and
analysis phases typically precede the formulation of
management planning this is clearly not desirable once
one accepts that the planning phase can be formulated
as an optimisation problem.

Early work on integration by Saliu and Ruhe [412]
showed how implementation objectives and require-
ments objectives could be simultaneously optimised us-
ing a multi objective optimisation approach. More work
is required to integrate other aspects of the software
development process into an optimised software project
management activity.

Figure 6 provides a generic schematic overview of SBSE
approaches to project planning. Essentially, the approach is
guided by a simulation that captures, in abstract form, the con-
duct of the project for a given plan. A project plan is evaluated
for fitness using the simulation. Typically the simulation is a
simple queuing simulation that can deterministically compute
properties of the project (such as completion time), based upon
the plan. The plan involves two aspects: people and tasks. The
tasks (usually called work packages) have to be completed by
teams. There may be dependencies between the work packages
which mean that one cannot start until another is completed.
Work packages may also require certain skills, possessed by
some staff (and not others), while staff may be assigned to
teams.

These details form the basis of the different choices of
formulation of the problem studied in the literature. However,
all are united by the overall approach, which is to assess fitness
of a project plan, using a model of its conduct, with the search
space of possible project plans, taking into account different
aspects of the real world software project management prob-
lem as determined by the problem formulation.

2) Cost Estimation: Software project cost estimation is
known to be a very demanding task [428]. For all forms of

project, not merely those involving software, project estima-
tion activities are hard problems, because of the inability to
‘predict the unpredictable’ and the natural tendency to allocate
either arbitrary (or zero) cost to unforeseen (and unforesee-
able) necessitated activities. The problem of estimation is
arguably more acute for software projects than it is for projects
in general, because of

1) the inherent uncertainties involved in software develop-

ment,

2) the comparative youth of the Software Engineering as a

discipline and

3) the wide variety of disparate tasks to which software

engineering solutions can be applied.

Dolado was the first author to attack software project
estimation problems using SBSE. He applied genetic pro-
gramming to the problem of cost estimation, using a form
of ‘symbolic regression’ [148, 149, 150]. The idea was to
breed simple mathematical functions that fit the observed data
for project effort (measured in function points). This has the
advantage that the result is not merely a prediction system, but
also a function that explains the behaviour of the prediction
system.

Several authors have used GP in cost estimation and quality
prediction systems. Evett et al. [162] use GP for quality
prediction. Liu and Khoshgoftaar [314] also apply GP to
quality prediction, presenting two case studies of the approach.
This GP approach has been extended, refined and further
explored by Khoshgoftaar et al. [272, 273, 276, 313, 315]. In
all these works, GP evolved predictors are used as the basic
for decision support. Other authors have used a combination
of GA and GP techniques for estimation as a decision support
tool for software managers. Huang et al. [248] integrate the
grey relational analysis (GRA) with a GA to improve the
accuracy of software effort estimation. Jarillo ez al. [252] apply
GA and GP to effort estimation for predicting the number
of defects and estimating the reliability of the system. Lokan
[316] investigate the performance of GP-based software effort
estimation models using a number of fitness functions.

Burgess and Lefley also report results from the application
of GP to software project cost estimation [92, 291]. Shan
et al. [425] compare a grammar-guided GP approach with
linear regression in estimation of software development cost.
Sheta [430] present two new model structures to estimate the
effort required for the development of software projects using
GAs and bench-mark them on a NASA software project data
set. Shukla [432] present a neuro-genetic approach using a
genetically trained neural network (NN) predictor trained to
predict resource requirements for a software project based on
historical data.

Kirsopp et al. [280] also used search techniques in software
project cost estimation. Their approach predicts unknown
project attributes in terms of known project attributes by seek-
ing a set of near neighbour projects that share similar values
for the known attributes. This approach is known as ‘Case
Based Reasoning’ and it is widely used in prediction systems.
Case Based Reasoning works well when the existing base of
project data is of consistently good quality, but can perform
badly where some projects and/or attributes are miss-recorded.

Simulator

Fitness Function

Staff Allocation

Work Package

Ordering

~ =

Search Based Optimization Techniques ‘

|

Skills of Staff

Skills Required by
Work Packages

Skills Information

Fig. 6. A Generic Search Based Project Management Scheme

Kirsopp at al. showed that the problem of determining a set of
good predictors can be formulated as a feature subset selection
problem, to which they applied a hill climbing algorithm. This
work was also one of the few in the SBSE literature that has
evaluated the properties of the search landscape.

XI. ANALYSIS OF TECHNIQUES & APPLICATIONS

Figure 1 showed the trend of growth in publications in
SBSE, while Figure 2 showed how the applications areas
within Software Engineering have been covered (with a large
majority of the work focussing on testing). In this section a
further and deeper analysis of the overall area is provided
using bar graphs to show the relative frequency of application
of optimisation techniques, together with a Formal Concept
Analysis to show the relationships between application areas
and techniques applied.

Figures 7 and 8 provide results on the choice of search
based technique to be applied in SBSE. In Figure 7, all Evo-
Iutionary Computation approaches (GA, GP, ES) are grouped
together. Also, it was found that some authors simply state
that they used an ‘Evolutionary Algorithm’ or that they use
‘Evolutionary Computation’ without going into detail. These
are all included in Figure 7 under the heading ‘EA’. This
figure, therefore, covers all the papers in the survey between
the census dates 1976 and 2008 (inclusive).

By contrast, Figure 8 reports the results, splitting the EA
category into its constituent parts: GA, GP and ES. Different
authors mean different things by these terms. By ‘ES’ we
mean an Evolution Strategy approach (with no population

i

Cost Estimates

Duration Estimates

Dependencies
between Work
Packages

Work Packages
Information

—

and no cross over). By ‘GP’ we mean any evolutionary
approach in which the candidate solution is represented as
a program, requiring specific genetic programming operators.
By ‘GA’ we mean any algorithm that the authors described
as a Genetic Algorithm, including both binary encodings and
other encodings that could not be described as programs (so
not GP) and for which there was a population (so not counted
as ES). These terms are somewhat fuzzy in the literature on
optimisation and this is why we explain how the terms are
interpreted in this paper. In particular, there were 54 papers
which claimed to use ‘Evolutionary Algorithms’ but were not
specific about which kind of algorithm was used. These papers
are categorized in Figure 7 (as ‘EA’), but are simply omitted
from Figure 8.

Given these terminological difficulties, the figures can only
be taken as rough guides. However, one or two observations
can be made. The most striking is the prevalence of evo-
lutionary computation (EA, GA, GP, EP) approaches in the
SBSE literature. More papers use some form of evolutionary
computation than all of the other search based techniques
combined. This does not appear to be because of an inherent
superiority of the evolutionary approach (though it is very
adaptable). Rather, this appears to be more an accident of
history and sociology. Much more work is required in order
to determine whether evolutionary approaches are, indeed, the
most favourable for a particular application. There is very little
work on the determination of the most suitable optimisation
approach in the literature.

Another striking aspect of the SBSE literature (from the

optimisation point of view) is the comparatively widespread
use of hill climbing. This simple local search technique is
often derided in the optimisation literature, yet it can be
extremely effective and has a number of advantages over more
sophisticated algorithms:

1) It is extremely efficient: both quick to implement and
fast in execution.

2) Though it may become trapped in a local optima, it can
be re-stated multiple times. As such, for problems in
which a quick answer is required that is merely ‘good
enough’, HC often serves the purpose; the choice of
other techniques may denote something of a ‘sledge
hammer to crack a nut’.

3) It gives a sense of the landscape structure. Because
hill climbing performs a local search and ascends the
‘nearest hill to the start point’, with multiple restarts,
it can be a quick and effective way of obtaining a first
approximation to the structure of the landscape.

These properties of Hill Climbing make it well suited to new
application areas of SBSE (or indeed for any new optimisation
problem). The technique can be used to quickly and reliably
obtain initial results, test out a putative fitness function for-
mulation, and to assess the structure of the search landscape.
In SBSE, where many new application areas are still being
discovered, Hill Climbing denotes a useful tool: providing fast,
reliable and understandable initial results. It should be tried
before more sophisticated algorithms are deployed.

Figure 9 presents a Formal Concept Analysis (FCA) of the
literature on SBSE. FCA [439] is an analysis technique that
can be applied to tabular data that report objects, attributes
and the binary relationships between them. A ‘concept’ is
a maximal rectangle in the adjacency matrix of objects and
attributes. That is, a concept denotes a maximal set of objects
that posses a given (also maximal) set of attributes.

The results of FCA are typically displayed as a concept
lattice, such as that presented in Figure 9. The lattice exploits
certain symmetry properties enjoyed by all concept spaces
(the details of which are beyond the scope of this paper).
These properties have been shown to hold irrespective of the
particular choice of objects and attributes, thereby imbuing
FCA with an enduring appeal. In the case of Figure 9, the
objectives are application areas and the attributes are the
search based optimisation techniques that have been applied
to the corresponding application areas. A concept is thus a set
of Software Engineering application areas to which a set of
search based optimisation techniques have been applied, such
that no larger set of areas can be found for the same set of
techniques and no larger set of techniques can be found for
the same areas.

In the lattice, a concept is denoted by a node. The concepts
are related to one another by edges. If a node n; is related to
a node no (with ny higher up the diagram) then this means, in
the case of the SBSE lattice of Figure 9, that all the application
areas present at concept nj are also present at concept ng
and that all the optimisation techniques present at no are also
present at nj.

It turns out that, for all lattices, there is a unique labeling
of nodes, such that an objective and attribute need appear

only once in the labeling. In the case of the SBSE lattice, the
labels correspond to application areas in Software Engineering
and optimisation techniques. An application area appearing
at node n, also implicitly appears at all the nodes reachable
from n moving up the lattice. By symmetric counter part, an
application area that appears at a node m in the lattice also
implicitly appears at all the nodes reachable from m, traveling
down the lattice.

The lattice for the SBSE literature reveals a few interesting
properties of the clustering of application areas and techniques.
First, it is clear that the testing application area has had every
optimisation technique applied to it in the SBSE literature
(because it appears at the bottom of the lattice), while no
technique has been applied to every area (indicating that there
are still gaps here). Furthermore, four techniques: TS, SQP,
MA and EDA have only been applied so far in Software
Testing. Of those techniques so far explored these are the least
widely applied.

It is also clear that the most widely applied techniques are
SA and EAs, backing up the findings of Figures 7 and 8.
Hill climbing, though popular, has only be applied to Design,
Maintenance, Management and Testing. Only EAs have been
applied to Agents, while Protocols form an interesting link
between PSO and SA (they are the only application areas,
apart from the ubiquitous area of testing) to which both PSO
and SA have been applied.

The figure can also be read a little like a subsumption
diagram. For example, all areas to which IP, HC and ACO
have been applied have also had SA applied to them and all
these have had EAs applied to them. Reading the relationship
in the other direction, all techniques applied to Agents have
also been applied to Coding and all these have been applied to
Requirements. The reader may also find other relationships in
the lattice that are of interest, depending upon the particular
areas and techniques that are of interest to them.

XII. How SBSE REUNITES PREVIOUSLY DIVERGENT
AREAS OF SOFTWARE ENGINEERING

In the early development of the field of Software Engineer-
ing the nascent field split into different topic areas, with many
different disjoint communities focussing on different aspects
of the emerging discipline. Of course, this has been natural and
necessary evolution of the subject and it was to be expected.
However, it has had the draw back of creating silos of activity
with few connections between them.

As well as its advantages within areas of Software Engi-
neering, SBSE can also act as a catalyst to remove barriers
between subareas, thereby combating the disadvantages of
‘silo mentality’. It is interesting to observe how SBSE creates
these linkages and relationship between areas in Software
Engineering that would otherwise appear to be completely
unrelated.

For instance, the problems of Requirements Engineering
and Regression Testing would appear to be entirely unrelated
topics. Indeed, these two areas of Software Engineering soon
developed their own series of conferences, with work on
Requirements Engineering tending to appear in the conference

20

500

450

400

300

250

200

150

100

50

HC ACO GS IP

PSO EDA TS 55 AIS MA SQP

Fig. 7.
optimisation.

Numbers of papers using each of the different types of search based optimisation techniques: EAs is a ‘catch all’ classification for Evolutionary

400

350

300

250

200

150

100

50

GA GP S5A HC ACO G P

PSO EDA TS 55 AIS ES MA S5QP

Fig. 8.

and journal of the same name, while work on regression
testing would tend to appear at conferences such as the ACM
International Symposium on Software Testing and Analysis
and the IEEE International Conference on Software Testing.

However, using SBSE, a clear relationship can be seen be-
tween these two problem domains. As optimisation problems
they are remarkably similar, though they occur at different
phases of the software development process and, typically,
researchers working within each topic will form disjoint
communities.

Figure 10 illustrates the SBSE-inspired relationship between
Requirements Optimisation and Regression Testing. As a
selection problem, the task of selecting requirements is closely
related to the problem of selecting test cases for regression
testing. The difference is that test cases have to cover code
in order to achieve high fitness, whereas requirements have

Numbers of papers using each of the different types of search based optimisation techniques: evolutionary techniques are split into GA, GP and ES.

to cover customer expectations. In the detail, there will be
differences in these two forms of coverage, but as optimisation
problems, the similarity is striking: both can be viewed as
subset selection problems and also as set cover problems.

When one turns to the problem of prioritization, the sim-
ilarity is also most striking. Both regression test cases and
requirements need to be prioritized. In Requirement Analysis,
we seek an order that will ensure that, should development be
interrupted, then maximum benefit will have been achieved for
the customer at the least cost to the developer; a classic multi
objective cost/benefit problem. For test cases, the prioritization
must seek to ensure that, should testing be stopped, then
maximum achievement of test objectives is achieved with
minimum test effort.

This is a very appealing aspect of SBSE. It has the po-
tential to create links and bridges between areas of Software

PsO

(O Concept Node -7

[] Techniques !

() Applications

EAs = Evolutionary Algorithms TS = Tabu Search

(including GA, GP and ES) S8 = Scatter Search Algorithm
ACO = Ant Colony Optimization MA = Memetic Algorithms
PSO = Particle Swarm Optimization SA = Simulated Annealing
EDA = Estimation of Distribution Algorithms HC = Hill Climbing
S5QP = Sequential Quadric Programming GS = Greedy Search
AlS = Artificial Immune Systems IP = Integer Programming

Fig. 9. Formal Concept Analysis for Techniques & Applications. in the SBSE literature 1976-2008

21

Engineering that have grown apart over the years, but which
submit to similar analysis from the optimisation point of view.
Such relationships may lead to exciting new opportunities
for cross fertilization between disjoint research communities.
These opportunities are a compelling reason for there to be
conferences and events that focus on Search Based Software
Engineering. The approach clearly has the potential to cut
across traditional Software Engineering boundaries.

XIII. OVERLOOKED AND EMERGING AREAS

Some areas of SBSE activity have been considered briefly
in the literature and then appear to have been overlooked
by subsequent research. This section highlights these areas.
That is, topics that have been addressed, shown promising
results, but which had attracted neither follow-on studies nor
(relatively speaking) many citations. Given the initially patchy
nature of work on SBSE and the recent upsurge in interest and
activity, these potentially overlooked areas may be worthy of
further study.

Furthermore, this survey comes at a time when SBSE
research is starting to become widespread, but before it has
become mainstream. It is too soon to know whether some
of the areas that have been apparently hitherto overlooked,
might not simply be emerging areas in which there will be
intense activity over the next few years. This section consid-
ers both emergent and overlooked ares together; these areas
denote either Software Engineering subareas or Optimisation
potentialities that remain to be more fully explored.

A. Information Theoretic Fitness

Lutz [318], considered the problem of hierarchical decom-
position of software. The fitness function used by Lutz is
based upon an information-theoretic formulation inspired by
Shannon [426]. The function awards high fitness scores to
hierarchies that can be expressed most simply (in information
theoretic terms), with the aim of rewarding the more ‘under-
standable’ designs. The paper by Lutz is one of the few to
use information theoretic measurement as a fitness mechanism.
This novel and innovative approach to fitness may have wider
SBSE applications.

Recently, Feldt e al. [176] also used an information theo-
retic model, drawing on the observation that the information
content of an object can be assessed by the degree to which is
can be compressed (this is the so-called Kolmogorov complex-
ity). This recent work may be an indication that information
theoretic fitness is not likely to remain an ‘overlooked area’
for much longer. The authors believe that there is tremendous
potential in the use of information theory as a source of
valuable fitness for Software Engineering; after all, Software
Engineering is an information-rich discipline, so an informa-
tion theoretic fitness function would seem to be a natural
choice.

B. Optimisation of Source Code Analysis

Only a few papers appear to concern source code based
SBSE. This is likely to be a growth area, since many source

22

code analysis and manipulation problems are either inherently
undecidable or present scalability issues. The source code
analysis community has long been concerned with a very rigid
model of analysis, in which conservative approximation is the
favoured approach to coping with the underlying undecidabil-
ity of the analysis problem.

However, more recently, Ernst’s seminal work on the de-
tection of likely invariants [159], which spawned the widely-
used and influential Daikon tool [160] demonstrated that
unsound analyses can yield extremely valuable results. The full
potential of this observation has yet to be realized. Through
the application of SBSE, it will be possible to search for
interesting features and to provide probabalistic source code
analyses that, like the Daikon work, may not be sound, but
would nonetheless turn out to be useful.

A summary of the papers addressing problems related to
Coding Tools and Techniques (D.2.3) are summarized in Table
V. All of these papers could be regarded as representing an
emerging area of optimisation for source code analysis using
SBSE. Hart and Shepperd [233] address automatic evolution of
controller programs problem by applying GA to improve the
quality of the output vector, while Di Penta er al. [141, 144]
propose a GA-based approach for grammar inference from
program examples toward suitable grammars. The grammar
captures the subset of the programming language used by the
programmer and can be used to understand and reason about
programming language idioms and styles.

Jiang er al. [257, 258] use search-based algorithms to
decompose the program into slices and to search for useful
dependence structures. The search problem involves the space
of subsets of program slices, seeking those that denote de-
composable but disparate elements of code using metaheuristic
search and also greedy algorithms. The results showed that, as
procedures become larger, there was a statistically significant
trend for them to become also increasingly splitable.

C. SBSE for Software Agents and Distributed Artificial Intel-
ligence

Software agents and the general areas known by the term
‘Distributed Artificial Intelligence’ in the ACM classification
system, would seem to provide a rich source of problems for
SBSE, particularly those approaches that use population based
optimisation. A summary of the papers addressing Distributed
Artificial Intelligence (ACM: 1.2.11) are summarized in Table
XI. As can be seen there is comparatively little work in this
area, despite there being some early work by Sinclair and
Shami [438], who investigate the relative efficiency of GA
and GP to evolve a grid-based food gathering agent. More
recently, Haas et al. [211] used a GA for parameter tuning of
multi-agent systems, while Hodjat et al. [244] apply GAs to
improve agent-oriented natural language interpreters.

This apparent lack of other previous work® is something
of a surprise since the nature of multi agent systems seems

6The work of Simons and Parmee [436, 437] is categorised in this
paper under the topic of ‘design’, since it is primarily concerned with this
application. However, it should be noted that Simons and Parmee [436] also
use intelligent agents as part of their search based approach to software design.

23

Selection Problems

Requirements Assignment

Select

Requirements

Regression Testing

Select

Test Cases

> Covered Items in Code
Customers @ (e.g. statements)
Prioritization Problems
. . Optimal Order of
R, R; | R ‘
Requirements [R; | Ry] | R, | —= Permutation —) ‘ 4 | Ry | Riz Development
. Optimal Order of
T T T
Test Cases ‘ T, | T] | T, | ——= Permutation —) ‘ R LS LF ‘ Re-testing

Fig. 10. Requirements Selection & Regression Testing

very closely aligned and amenable to SBSE. That is, an
agent based system consists of a population of individuals
that interact and share information, seeking to solve common
goal. A population based optimisation algorithm also consists
of a set of individuals that exchange information trough
cross over. Furthermore, co-evolutionary optimisation seems
particularly well suited to the Agent Oriented Paradigm; each
agent could co-evolve its beliefs, desires and intentions in co-
evolutionary co-operation with the others. Alternatively, using
competitive co-evolution, it may be possible to identify good
agent designs by creating an environment in which they are
subjected to evolutionary pressure, using GP to evolve their
internal structure.

The authors believe that the potential for SBSE applications
in the area of Software Agents is enormous. Recent work’
[368] demonstrated how an agent can be tested using SBSE
techniques. We hope to develop this model of Evolutionary
Agents further in future work.

D. Security and Protection

There have been very few papers on the application of SBSE
to problems of security. A summary of the papers addressing
Security and Protection areas (ACM: K.6.5) are summarized
in Table XII. This is sure to change, given the importance of
this area of application. The challenge is often to find a way
to encode a security problem as a fitness function.

Often security aspects have a decidedly boolean character
to them; either there is a security problem is present or it is

7The work is not included in the tables and analysis in this survey since it
is published after the census date.

absent. In order to fully apply SBSE techniques to find security
problems, it will be necessary to find a way to formulate fitness
functions that offer a guiding gradient towards an optimum.

Some authors have managed to do this. Dozier et al. [153]
describe how the design of AIS-based Intrusion Detection
Systems (IDSs) can be improved through the use of evolu-
tionary hackers in the form of GENERTIA red teams (GRTs)
to discover holes found in the immune system. Dozier et al.
[154] compare a hacker with 12 evolutionary hackers based
on Particle Swarm Optimisation (PSO) that have been used as
vulnerability analyzers for AIS-based IDSs. Del Grosso et al.
[133, 134] showed how SBSE can be used to detect buffer
overflow vulnerabilities, thereby helping to guard against
‘stack smash’ attacks.

E. Protocols

Protocol correctness, efficiency, security and cost are all
aspects of protocol definitions that can and have been explored
using SBSE. Alba and Troya [24] present a first attempt in
applying a GA for checking the correctness of communication
protocols (expressed as a pair of communicating FSMs). Clark
and Jacob [115] use GA in the design and development of
Burrows, Abadi and Needham (BAN) protocols optimizing
for the tradeoff between protocol security, efficiency and cost.
This was subsequently extended by Clark and Jacob [116],
who apply GA and SA approaches to the problem addressed
in Clark and Jacob [115]. El-Fakih et al. [155] use the O-
1 integer linear programming and GAs to solve the message
exchange optimisation problem for distributed applications in
order to reduce the communication cost. Ferreira et al. [180]
propose PSO to detect network protocol errors in concurrent

systems. A summary of the papers addressing problems in the
area of Network Protocols (ACM: C.2.2) using search based
approach are summarized in Table II.

E Interactive Optimisation

All of the fitness functions so far considered in the literature
on SBSE have been fully automated. This seems to be a
pre-requisite; fast fitness computation is needed for repeated
evaluation during the progress of the search. However, outside
the SBSE domain of application, there has been extensive work
on fitness functions that incorporate human judgement [184].
This form of search is known as interactive optimisation and
it is clearly relevant in many aspects of Software Engineering,
such as capturing inherently intuitive value judgements about
design preferences [437].

In Software Engineering, interactive optimisation could be
used in a number of ways. Many problems may naturally
benefit from human evaluation of fitness. For example, in
design problems, the constraints that govern the design process
may be ill-defined or subjective. It may also be possible to use
a search based approach to explore the implicit assumptions
in human assessment of solutions. For example, by identifying
the building blocks that make up a good solution according
to a human fitness evaluation, it may be possible to capture
otherwise implicit design constraints and desirable features.

The key problem with any interactive approach to optimisa-
tion lies in the requirement to repeatedly revert to the human
for an assessment of fitness, thereby giving rise to possible
fatigue and learning-effect bias. If this fatigue problem can be
overcome in the Software Engineering domain (as it has in
other application domains) then interactive optimisation offers
great potential benefits to SBSE.

Harman [214] provides an overview of Search Based Soft-
ware Engineering for problems in program comprehension,
which includes ways in which interactive evolution might be
applied in problems relating to code understanding.

G. Hybrid Optimisation Algorithms

Many problems have unpredictable landscapes. These can
respond well to hybrid approaches. Though there has been
work on the combination of existing non-search based algo-
rithms [227], there has been little work on combinations of
search algorithms [134, 323].

A better understanding of search landscapes may suggest
the application of hybrid search techniques, which combine the
best aspects of existing search algorithms. Hybrids are natural
in search. For example, it is well known that, for any search
application, it makes sense to conclude a run of a genetic
algorithm with a simple hill climb from each solution found.
After all, hill climbing is cheap and effective at locating the
nearest local optima; why not apply it to the final population?

There are also other possible combinations of search algo-
rithms that have been studied in applications to other engi-
neering areas, for example simulated annealing and genetic
algorithms have been combined to produce an annealing GA
[448]. Estimation of Distribution Algorithms (EDAs) [367]
are another form of hybrid search, in which the algorithm’s
behaviour is adapted as the search proceeds.

24

H. On Line Optimisation

All applications of SBSE of which the authors are aware
concern what might be termed ‘static’ or ‘offline’ optimisation
problems. That is, problems where the algorithm is executed
off line in order to find a solution to the problem in hand.
This is to be contrasted with ‘dynamic’ or ‘on line’ SBSE, in
which the solutions are repeatedly generated in real time and
applied during the lifetime of the execution of the system to
which the solution applies.

The static nature of the search problems studied in the
existing literature on SBSE has tended to delimit the choice
of algorithms and the methodology within which the use of
search is applied. Particle Swarm Optimisation [507] and Ant
Colony Optimisation [151] techniques have not been widely
used in the SBSE literature. These techniques work well in
situations where the problem is rapidly changing and the
current best solution must be continually adapted.

For example, the paradigm of application for Ant Colony
Optimisation is dynamic network routing, in which paths are
to be found in a network, the topology of which is subject to
continual change. The ants lay and respond to a pheromone
trail that allows them quickly to adapt to network connection
changes.

It seems likely that the ever changing and dynamic nature of
many Software Engineering problems would suggest possible
application areas for Ant Colony Optimisation and Particle
Swarm Optimisation techniques. It is somewhat surprising
that highly adaptive search techniques like Ant Colony Op-
timisation have yet to be applied widely in SBSE. Perhaps
distributed, service oriented and agent oriented Software En-
gineering paradigms will provide additional candidate appli-
cation areas for ant colony and particle swarm optimisation.

1. SBSE for Non Functional Properties

There has been much work on stress testing [14, 80, 81, 186,
187, 189, 332] and temporal tetsing [13, 14, 15, 16, 147, 201,
202, 203, 204, 205, 381, 449, 480, 481, 481, 482, 483], but far
less on other non functional properties such as heat dissipation
and power consumption [264, 488] and thermal properties
such as temperature and heat dissipation [264]. The problem
of (Quality of Service (QoS) introduced by Canfora et al.
[95], also denotes an area of non—functional optimisation in
Software Engineering which has recently witnessed an upsurge
in activity and interest [250, 319, 446, 504, 505].

It seems likely that the drive to ever smaller devices and to
massively networked devices will make these issues far more
pressing in future, thereby engendering more research in this
area. Afzal et al. [6] provide a detailed in—depth survey of
approaches to testing non—functional requirements, to which
the readers is refereed for a more detailed treatment of this
area.

J. Multi Objective Optimisation

Software engineering problems are typically multi objective
problems. The objectives that have to be met are often com-
peting and somewhat contradictory. For example, in project

planning, seeking earliest completion time at the cheapest
overall cost will lead to a conflict of objectives. However,
there does not necessarily exist a simple tradeoff between the
two, making it desirable to find ‘sweet spots’ that optimise
both.

Suppose a problem is to be solved that has n fitness func-
tion, f1,..., f, that take some vector of parameters Z. One
simple-minded way to optimise these multiple objectives is to
combine them into a single aggregated fitness, [, according
to a set of coefficients, c;, ..., cy:

F=> cfi(x)
i=1

This approach works when the values of the coefficients
determine precisely how much each element of fitness matters.
For example, if two fitness functions, f; and f> are combined
using

F=2-fi(Z) + f2(T)

then the coefficients ¢; = 2,co = 1 explicitly capture
the belief that the property denoted by fitness function f; is
twice as important as that denoted by fitness function f,. The
consequence is that the search may be justified in rejecting a
solution that produces a marked improvement in fs, if it also
produces a smaller reduction in the value of f;.

Most work on SBSE uses software metrics in one form or
another as fitness functions [217]. However, the metrics used
are often those that are measured on an ordinal scale [429].
As such, it is not sensible to combine these metrics into an
aggregate fitness in the manner described above.

The use of Pareto optimality is an alternative to aggregated
fitness. It is superior in many ways. Using Pareto optimality,
it is not possible to measure ‘how much’ better one solution
is than another, merely to determine whether one solution is
better than another. In this way, Pareto optimality combines
a set of measurements into a single ordinal scale metrics, as
follows:

F(z1) 2 F(T2) & Vi fi(T1) > fi(T2)
and, for strict inequality:

F(z1) > F(72)
o
Vi.fi(@1) > fi(@2) A Fi.fi(@1) > fi(72)

Thus, under Pareto optimality, one solution is better than
another if it is better according to at least one of the individual
fitness functions and no worse according to all of the others.
Under the Pareto interpretation of combined fitness, no overall
fitness improvement occurs no matter how much almost all of
the fitness functions improve, should they do so at the slightest
expense of any one of their number.

When searching for solutions to a problem using Pareto
optimality, the search yields a set of solutions that are non-
dominated. That is, each member of the non-dominated set is
no worse than any of the others in the set, but also cannot be
said to be better. Any set of non-dominated solutions forms a
Pareto front.

25

f2

Objective 2

1 1 I 1 i i 1 L i L
T T T T L L] Ll L) T

t }
Objective 1 f1

Fig. 11. Pareto Optimality and Pareto Fronts

Consider Figure 11, which depicts the computation of Pareto
optimality for two imaginary fitness functions (objective 1 and
objective 2). The longer the search algorithm is run the better
the approximation becomes to the real Pareto front. In the
figure, points S1, S2 and S3 lie on the pareto front, while S4
and S5 are dominated.

Pareto optimality has many advantages. Should a single
solution be required, then coefficients can be re-introduced
in order to distinguish among the non-dominated set at the
current Pareto front. However, by refusing to conflate the
individual fitness functions into a single aggregate, the search
is less constrained. It can consider solutions that may be
overlooked by search guided by aggregate fitness.

The approximation of the Pareto front is also a useful
analysis tool in itself. For example, it may contain knee points,
where a small change in one fitness is accompanied by a large
change in another. These knee points denote interesting parts
of the solution space that warrant closer investigation.

Recently, research on SBSE has started to move from single
objective formulations to multi objective formulations, with an
increasing focus on Pareto optimal optimisation techniques.
Recent work has produce multi objective formulations of prob-
lems in many application areas within Software Engineering
including requirements [181, 508], testing [133, 161, 230],
quality assurance [275], refactoring [222] and project man-
agement [22].

K. Co-Evolution

In Co-Evolutionary Computation, two or more populations
of solutions evolve simultaneously with the fitness of each
depending upon the current population of the other. The idea,
as so far applied in SBSE work, is to capture a predator-prey
model of evolution, in which both evolving populations are
stimulated to evolve to better (i.e. more fit) solutions.

Adamopoulos et al. [1] were the first to suggest the applica-
tion of co-evolution in Software Engineering, arguing that this
could be used to evolve sets of mutants and sets of test cases,
where the test cases act as predators and the mutants as their
prey. Arcuri et al. use co-evolution to evolve programs and
their test data from specifications [36, 38] using co-evolution.

Arcuri [36], Arcuri and Yao [41] also developed a co-
evolutionary model of bug fixing, in which one population
essentially seeks out patches that are able to pass test cases,
while test cases can be produced from an oracle in an attempt
to find the shortcomings of a current population of proposed
patches. In this way the patch is the prey, while the test
cases, once again, act as predators. The approach assumes the
existence of a specification to act the oracle.

Co-evolution can also be conducted in a co-operative man-
ner, though this remains, hitherto, explored in SBSE work. It
is likely to be productive in finding ways in which aspects of
a system can be co-evolved to work better together and, like
the previously studied competitive co-evolutionary paradigm,
offers great potential for further application in SBSE.

Many aspects of Software Engineering problems lend them-
selves to a co-evolutionary model of optimisation because
software systems are complex and rich in potential populations
that could be productively co-evolved (using both competitive
and co-operative co-evolution). As with traditional SBSE, it
is testing where the analogy is perhaps clearest and most
easily applied, which may be why this area has already
been considered in the literature. However, there are many
other Software Engineering populations that could be evolved,
possibly in co-evolution with others.

For example: components, agents, stakeholder behaviour
models, designs, cognitive models, requirements, test cases,
use cases and management plans are all important aspects
of software systems for which optimisation is an important
concern. Though all of these may not occur in the same
systems, they are all the subject of change, and should a
suitable fitness function be found, can therefore be evolved.
Where two such populations are be evolved in isolation, but
participate in the same overall software system, it would seem
a logical ‘next step’, to seek to evolve these populations
together; the fitness of one is likely to have an impact on
the fitness of another, so evolution in isolation may not be
capable of locating the best solutions. Like the move from
single to multiple objectives, the migration from evolution to
co-evolution offers the chance to bring theory and real world
reality one step closer together.

XIV. FUTURE BENEFITS TO BE EXPECTED FROM
OPTIMISATION IN SOFTWARE ENGINEERING

This section briefly reviews some of the benefits that can
be expected to come from further development of the field
of search based Software Engineering. These benefits are
pervading, though often implicit, themes in SBSE research.
To borrow the nomenclature of Aspect Oriented Software
Development, these are the ‘cross cutting concerns’ of the
SBSE world; advantages that can be derived from almost all
applications at various points in their use.

A. Generality and Applicability

One of the striking features of the SBSE research pro-
gramme that emerges from this survey is the wide variety of
different Software Engineering problems to which SBSE has
been applied. Clearly, testing remains the predominant ‘killer

26

application’, with 59% of all SBSE papers targeting various
aspects of testing. However, as the survey reveals, there are
few areas of Software Engineering activity to which search
based optimisation remains unapplied.

This generality and applicability comes for the very nature
of Software Engineering. The two primary tasks that have to
be undertaken before a search based approach can be applied
to a Software Engineering problem are the definition of a
representation of the problem and the fitness function that
captures the objective or objectives to be optimised. Once
these two tasks are accomplished it is possible to begin to get
results from the application of many search based optimisation
techniques.

In other engineering disciplines, it may not be easy to
represent a problem; the physical properties of the engineering
artifact may mean that simulation is the only economical
option. This puts the optimisation algorithm at one stage
removed from the engineering problem at hand. Furthermore,
for other engineering disciplines, it may not be obvious how
to measure the properties of the engineering artifact to be
optimised. Even where the measurements required may be
obvious, it may not be easy to collect the readings; once again
the physical properties of the engineering materials may be a
barrier to the application of optimisation techniques.

However, software has no physical manifestation. Therefore,
there are fewer problems with the representation of a software
artifact, since almost all software artifacts are, by their very
nature, based on intangible ‘materials’ such as information,
processes and logic. This intangibility has made many prob-
lems for Software Engineering. However, by contrast, within
the realm of SBSE, it is a significant advantage. There are
few Software Engineering problems for which there will be
no representation, and the readily available representations are
often ready to use ‘out of the box’ for SBSE.

Furthermore, measurement is highly prevalent in Software
Engineering, with a whole field of research in software metrics
that has spawned many conferences and journals. Therefore,
it is also unlikely that the would-be search based software
engineer will find him or herself bereft of any putative fitness
function. Indeed, it has been argued that all metrics are also
fitness functions, waiting to be applied in SBSE [217].

For these reasons, it is likely that there will be a rapid
growth in the breadth of SBSE research. The growth trend
revealed by Figure 1 in this survey is very likely to continue
and authors are likely to continue to find ways to bring new
Software Engineering subareas within the remit of SBSE.

B. Scalability

One of the biggest problems facing software engineers is
that of scalability of results. Many approaches that are attrac-
tive and elegant in the laboratory, turn out to be inapplicable
in the field, because they lack scalability.

One of the attractions of the search based model of op-
timisation is that it is naturally parallelizable. Hill climbing
can be performed in parallel, with each climb starting at a
different point [323]. Genetic algorithms, being population
based, are also naturally parallel; the fitness of each individual

can be computed in parallel, with minimal overheads. Search
algorithms in general and SBSE in particular, therefore offer
a ‘killer application’ for the emergent paradigm of ubiquitous
user-level parallel computing.

Notwithstanding a breakthrough in quantum computation
technology, it seems likely that future improvements in pro-
cessing speed are likely to be based on increasing paral-
lelism. Already, limited parallelism is widely used in desktop
computing and the importance of the drive toward super-
fast parallel computers is recognised at the highest levels.
This trend towards greater parallelism, the need for scalable
Software Engineering and the natural parallelism of many
SBSE techniques all point to a likely significant development
of parallel SBSE to address the issue of Software Engineering
scalability.

C. Robustness

In some Software Engineering applications, solution ro-
bustness may be as important as solution functionality. For
example, it may be better to locate an area of the search space
that is rich in fit solutions, rather than identifying an even fitter
solution that is surrounded by a set of far less fit solutions.

In this way, the search seeks stable and fruitful areas of the
landscape, such that near neighbours of the proposed solution
are also highly fit according to the fitness function. This would
have advantages where the solution needs to be not merely
‘good enough’ but also ‘strong enough’ to withstand small
changes in problem character [65].

Hitherto, research on SBSE has tended to focus on the
production of the fittest possible results. However, many
application areas require solutions in a search space that may
be subject to change. This makes robustness a natural property
to which the research community could and should turn its
attention.

D. Feedback and Insight

False intuition is often the cause of major error in software
engineering, leading to misunderstood specifications, poor
communication of requirements and implicit assumptions in
designs. SBSE can address this problem. Unlike human-based
search, automated search techniques carry with them no bias.
They automatically scour the search space for the solutions
that best fit the (stated) human assumptions in the fitness
function.

This is one of the central strengths of the search based
approach. It has been widely observed that search techniques
are good at producing unexpected answers. For example,
evolutionary algorithms have led to patented designs for digital
filters [414] and the discovery of patented antenna designs
[308]. Automated search techniques will effectively work in
tandem with the human, in an iterative process of refinement,
leading to better fitness functions and thereby, better encapsu-
lation of human assumptions and intuition.

XV. SUMMARY

This paper has provided a detailed survey and review of
the area of Software Engineering activity that has come to

27

be known as Search Based Software Engineering (SBSE).
As the survey shows, the past five years have witnessed a
particularly dramatic increase in SBSE activity, with many new
applications being addressed.

The paper has identified trends in SBSE research, providing
data to highlight the growth in papers and the predominance
of Software Testing research. It also indicates that other
areas of activities are starting to receive significant attention:
Requirements, Project Management, Design, Maintenance and
Reverse Engineering, chief among these. The paper also
provides a detailed categorization of papers, tabulating the
techniques used, the problems studied and the results presented
in the literature to date. This detailed analysis has allowed
us to identify some missing areas of activity, some potential
techniques that have yet to be applied and emerging areas.

The future of SBSE is bright; there are many areas to which
the techniques associated with SBSE surely apply, yet have yet
to be considered. In existing areas of application the results are
strongly encouraging. New developments emanating from the
optimisation community will present exciting new possibili-
ties, while developments in Software Engineering will present
interesting new challenges. If Software Engineering really is
an engineering discipline (as the authors strongly believe it to
be), then surely SBSE is a very natural consequence of the
very existence of such an engineering discipline. After all, is
not optimisation what engineering is all about?

XVI. ACKNOWLEDGEMENT

This analysis and survey paper covers over 500 papers and
seeks to capture all work on SBSE up to an including the
31st December 2008. It has been an undertaking requiring
considerable time and effort. The authors are deeply indebted
to numerous colleagues from the growing international SBSE
community who have reviewed and commented upon earlier
drafts of this paper and provided additional details regarding
their work and that of others, as well as highlighting cor-
rections and omissions. The authors are also very grateful
for the support of the collaborators of the EPSRC—funded
project SEBASE and the EU-funded project EvoTest. Funding
from these two large projects (EP/D050863 and IST-33472
respectively) provided part financial support for the work
undertaking in the production of this paper.

28

29

[180]

TABLE II. Papers addressing activities related to Network Protocols
.. s . Representation | Search Test
Authors [Ref] Year | Activity Objective / Fitness method technique | problems
Alba and Troya Checking the correctness Detect deadlock and useless states . Synthetic
1996 | of communication proto- . String GA

[24] cols or transitions & Real

0-1

Minimise communication cost integer
El-Fakih et al. Deriving protocols for dis- L linear .
1999 . L (minimise number of messages to | Vector Synthetic
[155] tributed applications program-
be exchanged) .

ming,

GA
Clarc and Ja- 2000 | Protocol synthesis Optlmlse Correctness, cost and ef- String GA Synthetic
cob [115] ficiency

. .. Integer array

Clark and Ja- 2001 Synthesis of secure proto- (.)ptlmlse. trade-off between secu- (SA), bit string | SA, GA Synthetic
cob [116] cols rity, efficiency and cost (GA)
Ferreira et al. 2008 | Detecting protocol errors Detect deadlock violations Graph PSO Synthetic

30

misation

TABLE III. Papers addressing activities related to Requirements/Specifications
. . Co. . Representation | Search Test
Authors [Ref] Year | Activity Objective / Fitness method technique | problems
Bagnall et al Requirements ~ Selection .. o . o GS, HC, .
[47] 2001 and optimisation Maximise customers’ satisfaction Bit string SA Synthetic
Feathc?r and 2002 Requlrem ents Selection Maximise benefit, Minimise cost ? SA Real
Menzies [166] and optimisation
I[J]eg;}]ler et al 2004 tSiZ;tem design - optimisa- Maximise benefit, Minimise cost Bit string SA Real
. . Minimise total penalty and Max-
Greer and Ruhe 2004 Requlrem ents Selection imise total benefit (weighted sum | Bit string GA Real
[200] and optimisation
of the two)
Baker —eral. | ¢ | Requirements ——Selection [yp iice value Bit string SA,GS | Real
[48] and optimisation
Feather et al Visualization Techniques
[168] " | 2006 | to present Requirements | - - SA Real
status
gz;rgn]lan et al 2006 | Feature subset selection Maximise total value Bit string GS Real
Zhane ef al Requirement satisfaction
[508]g " | 2007b| for the Next Release | Maximise value, Minimise cost Bit string GA Synthetic
Problem (NRP)
. , MOOA .
Finkelstein Fairness analysis in re- | Maximise each stakeholder’s pos- . . Synthetic
2008 . . - . . Bit string (NSGA-
et al. [181] quirements assignments sible satisfaction 10 & Real
Jalali et al 2008 Re(.]ullrem.ents Decisions Max.lmlse the nu.m.ber. of attainable Bit string GS Real
[251] optimisation requirements, Minimise cost
. . . . 1P
Cortellessa Automated selection of | Minimise the cost while assuring .
et al. [129] 2008b COTS components the satisfaction of the requirements Vector g;gjdc)}o Synthetic
overview of existing work MOOA
Zhang et al and challenges on search | _ o Synthetic
[509] 2008 based requirements opti- Bit string %\)ISGA_ & Real

TABLE IV. Papers addressing activities related to Design Tools and Techniques

31

. . Co. . Representation | Search Test
Authors [Ref] Year | Activity Objective / Fitness method technique | problems
Feldt [169] 1998 | Software fault tolerance Develop multiple software variants | Tree GP Real
Feldt [171] 1998 | Software fault tolerance I\?ei\;f(l)zg multiple diverse software Tree GP Real
Feldt [172] N 1998 | Software fault tolerance 1(;2[5:;?“1;6 the software program Tree GP Real
Monnier et al. Development of schedul- Finding a feasible solution within . benchmark
1998 | ing module for a real-time . . String GA
[366] the time constraints problems
system
Knowledge acquirement in Prioritize requirements and ex-
Feldt [174] 1999 | early software develop- . red Tree GP Real
plore design trade-off
ment phases
Lutz [318] 2001 Hlerarchlcla.l architecture Minimise complexity Tree GA Synthetic
decomposition
EA
Feldt [175] 2002 Interactive software devel- qu feature and knowledge ac- Tree (Biomimetiqg Real
opment workbench quirement Algo-
rithms)
. Minimise inter-library dependen- Real
Antoniol and . SR . S . .
. 2003 | Library Miniaturization cies; Minimise the number of ob- | bit-matrix GAs (Open
Di Penta [31] . . .
jects linked by applications Source)
O’Keeffe and O .. | Minimise rejected, duplicated and
Cinnéide [371] | 2003 Automated OO design im unused methods and featureless | ? SA ?
provement -
N classes, Maxmise abstract classes
Stephenson Automatic programming, | Minimise code execution time (the
et al. [443] 2003 compiler optimisation fastest code is the fittest) Tree GP Real
Canfora et al QoS-aware service compo- Maximise QoS affributes (avail-
[94] T | 2004 sition P ability, reliability); Minimise cost | Integer array GA Synthetic
’ and response time
Design and Implementa- | Maximise MOM performance at
Khoshgoftaar 2004 tion (improvement of soft- | four cutoff percentiles; Minimise Tree GP, Real
et al. [275] ware reliability / quality | tree size (bloat control fitness func- MOOA
assurance) tion)
Design and Implementa- | Maximise MOM performance at
Khoshgoftaar 2004 tion (improvement of soft- | four cutoff percentiles; Minimise Tree GP, Real
et al. [274] ware reliability / quality | tree size (bloat control fitness func- MOOA
assurance) tion)
R . . Minimise rejected, duplicated and
8. Ke’etgfe a;l? 20 2004 Arl;l)t\?e?f;f]? 00 Design Im- unused methods and featureless | ? SA Synthetic
innéide [372] p classes, Maxmise abstract classes
. Maximise QoS attributes (avail-
[Cge;rifora et al. 2005 ?igfs:s of Composite Ser- ability, reliability); Minimise cost | Integer array GA, IP Synthetic
and response time
. Maximise QoS attributes (avail-
Canfora et al. | 5 | QoS-aware replanning of | 1y o™ Cpiability): Minimise cost | Integer array | GA Real
[96] Composite Services .
and response time
Cao et al. [98] | 2005b| Web service selection ann}se the overall cost of each Integer vector GA Synthetic
execution path
Cao et al. [97] | 2005a| Web service selection Minimise the overall cost Integer vector GA Synthetic
Lucas and Learning Deterministic Fi- | Maximise correctness of classifica- . . Synthetic
Reynolds [317] 2005 nite Automata tion Binary String HC & Real

Continued on next page

TABLE IV. Papers on Design Tools and Techniques — continued from previous page

32

. Representation | Search Test
Authors [Ref] Year | Activity Objective / Fitness method technique | problems
Amoui et al OO Software architecture | Optimise metrics and find the best
2006 . . ? GA ?
[29] design sequence of transformations
Aversano et al. 2006 D_9s1gn of service compo- Me_lxnmse Rt?call for outputs; Max- Tree GP Real
[45] sition imise Precision
Sheu and Development of scheglul- Find a feasible solution within the . S}{mhe.tlc
2006 | ing module for a real-time | . . String GA (via sim-
Chuang [431] time constraints .
system ulation)
Simons and . . Maximise Cohesion, Minimise . GA, EP,
Parmee [434] 2006 | Design Comprehension Coupling Object-based NSGA-II Real
E:ggg] et dl 2006 | Software integration Minimise software risk Binary string GA Real
[Zslgiag et al 2006 | Web services selection Improve QoS Matrix GA Synthetic
Jaeger and o . .
Miihl [250] 2007 | Web services selection Improve the QoS Vector GA Synthetic
.. . GA
. . . Maximise the Cohesiveness of
Simons and 2007 Ob]ect—orlent.ed conceptual Methods (COM) metric and num- | Binary string MOOA Real
Parmee [435] software design (NSGA-
ber of class 0
Su et al. [446] 2007 | Web services selection Improve QoS Matrix GA Synthetic
éhoasn]g et dl 2007a| Web services selection Improve QoS Matrix GA Synthetic
. . . . GP,
ar;]url et al. 2008 ONOtrilI;fiuSr;fit(l)(r)lnal property lel(;nemr;zf non-functional property Tree MOOA Synthetic
P (SPEA2)
.. . . Synthetic
Barlas and El- | 5058 | pigributed system design | Optimise the delivery to multiple | g . GA (Simula-
Fakih [55] clients by multiple servers tion)
Bhatia er al 2008 Reusable Spftware Com- | Generate rules for classifying com- Graph ACO _
[66] ponent Retrieval ponents
Bowman et al Class responsibilit Maximise Cohesion, Minimise MOGA,
© | 2008 . pons Y . ’ Integer string RS, GA, | Synthetic
[78] assignment (OO design) Coupling HC
. . . Improve the quality and the se-
Chardigny 2008b Architecture extraction for mantic correctness of the architec- | ? ? -
et al. [107] OO systems ture
. . . Improve the quality and the se-
Chardigny 2008a Architecture extraction for mantic correctness of the architec- | ? SA Real
et al. [106] 0O systems ture
Desnos et al. 2008 A}ltomatlc component sub- Optlmlse software reuse and evo- Tree BA, BBA | Synthetic
[139] stitution lution
Identify multiple behavioral mod- digital
Goldsby and Software behavioral model . . _ evolution
2008b . els and satisfy functional proper- . Real
Cheng [197] generation . (Avida-
ties
based)
. . . digital
Goldsby and 2008a Software behavioral model i(li:n;;fg gﬁls?pliuai?;\;lg alrgn(:i: _ evolution Synthetic
Cheng [196] generation . y prop (Avida- y
ties
based)
. . . . digital
Software behavioral model | Identify multiple behavioral mod- .
Goldsby et al. _ evolution
[198] 2008 generation and _ satisfy e'ls and satisfy functional proper- (Avida- Real
functional properties ties
based)
%[2119? nd Zhang 2008 | Web service selection Improve the QoS Matrix GA Synthetic
Riihi [383] 2008a dAut'omated architecture | Improve efﬁ.c1ency, modifiability | a collection of GA Synthetic
esign and complexity supergenes

Continued on next page

TABLE IV. Papers on Design Tools and Techniques — continued from previous page

33

. Representation | Search Test
Authors [Ref] Year | Activity Objective / Fitness method technique | problems
Riiihi [384] 2008b (/?ut.omated architecture | Improve efﬁ.c1ency, modifiability | a collection of GA Synthetic
esign and complexity supergenes
Réihd et al 2008a Aut.omated architecture | Improve efﬁ.c1ency, modifiability | a collection of GA Synthetic
[386] design and complexity supergenes
Réaihd et al Automating CIM-to-PIM | Improve efficiency, modifiability | a collection of
2008b . . ? ?
[387] model transformations and complexity supergenes
Sharma and 2008 Deploying “software com- Maximise performance ? Heuristics | Synthetic
Jalote [427] ponents
Simons and Software design support- | Minimise design coupling, Max- MOOA
2008 | ° gn supp ! o Ping, String (NSGA- | Synthetic
Parmee [436] ing imise cohesion of classes D)
Simons and Conceptual Software De- Maximise cohesion of classes; MOOA
2008 . P Minimise coupling between | Object-based (NSGA- Real
Parmee [437] sign
classes 1)
Vijayalakshmi 2008 Component selection in 9 9 GA 9

et al. [459] N

software development

TABLE V. Papers addressing activities related to Coding Tools and Techniques

34

. . Co. . Representation | Search Test
Authors [Ref] Year | Activity Objective / Fitness method technique | problems
Hart and Shep- 2002 Automatic evolution of | Maximise the quality of the output String GA Real
perd [233] controller programs vector generated
. Maximise code coverage and Min-
Jiang et al. 2007b| Dependence analysis imise the degree of overlap be- | String HC, GA, Real
[257] : GS
tween the slices
Di Penta et al. 2008 | Grammar inference automatic evolution from grammar String GA Real
[144] fragments to target grammar
find a pareto optimal trade—.off MOGA
Hoste and . N among metrics (total execution .
2008 | Compiler optimisation . o . - ? (improved | Benchmark
Eeckhout [246] time, compilation time, code size, SPEA)
energy comsumption)
. . . . Real
Jiang et al 2008 Automatic support for pro- | Minimise the overlap of slices rep- Binary Matrix | GS (open

[258]

cedure splitability analysis

resenting procedure components

source)

35

MODE)

TABLE VI. Papers addressing Software/Program Verification
. . Co. . Representation | Search Test
Authors [Ref] Year | Activity Objective / Fitness method technique | problems
Minohara and Model checking software . o
Tohma [357] 1995 reliability growth models Minimise the errors Bit string GA Real
State-less
. Model checking for state . . search
Godefroid 1997 | space of concurrent sys- Det'ect deadlocks and assertion vi- 9 algorithm | Real
[194] olations .
tems (VeriSoft-
based)
Alba and Chi- 2007 Model Fheckmg for safety | find optimal errors trails in faulty Graph ACO Real
cano [20] properties concurrent system
Alba and Chi- 2007 Model checking for safety | Detect errors w1th1n‘low amount of Graph ACO Real
cano [21] errors memory and CPU time
Alba and Chi- 1, [Model “checking (Refuta- T 4 qeqdiock states Graph ACO Real
cano [19] tion of safety properties)
. Maximise the number of program . .
Johnson [259] 2007 | Model checking statements that are satisfied List ES Synthetic
Kiper ef al 2007 V&V Process for Critical | Maximise the chances of mission 9 SA. GA ~
[279] Systems success
Afzal and Software Reliability | Measure the suitability of GP _
Torkar [3] 2008 Growth Modeling evolved SRGM Tree £
. measure the adaptability and pre-
Afzal and 2008 Software . Reliability dictive accuracy of GP evolved | Tree GP Real
Torkar [2] Growth Modeling model
s Measure the adaptability and pre-
Afzal et al. [5] 2008 Software . Reliability dictive accuracy of GP evolved | Tree GP Real
Growth Modeling model
Model checking for find- .
Alba et al. [25] | 2008 | ing deadlock in concurrent | DEtecting the shortest paths that | ¢ GA Real
lead to deadlocks
program
Chicano and 2008 Model Checking for Live- Dlscover' Tiveness errors; Minimise Graph ACO Real
Alba [112] ness property the required resources
Chicano and Model checking for safety -] S
Alba [111] 2008 property Discover safety property violations | Graph ACO Real
. . . Tmprove the efficacy and efficiency
Chicano ~and 2008 Model checking for Live- of searching for liveness property | Graph ACO Real
Alba [113] ness property L
violations
. . . String of
He et al. [237] | 2008 | Yerification and generation | verified GP Synthetic
of programs
components
Software Reliability . . .
Hsu et al. [247] | 2008 Growth Modeling Maximise LSE and MLE Floating-point GA Real
Katz and Peled Automatic generation of concur-
[269] 2008 | Model checking rent programs to detect the prop- | Tree GP Synthetic
erty violations
Katz and Peled Automatic generation of concur-
[268] 2008 | Model checking rent programs to detect the prop- | Tree GP Synthetic
erty violations
?ilg/;]ng et dl 2008 | Model checking Detect the locating of deadlocks Bit string GA Real
MOOA
Wang et al. . . Maximise software reliability, | . (NSGA- .
[467] 2008 | Testing resource allocation Minimise the cost] e Synthetic

36

[14]

TABLE VII. Papers addressing Testing and Debugging activities
.. s . Representation | Search Test
Authors [Ref] Year | Activity Objective / Fitness method technique | problems
. Integer .
Miller and 1976 | Test data generation Maximise coverage? Input Vector Program- From lit-
Spooner [355] ming erature
Integer
Fischer [182] N | 1977 | Test case selection ? ? Program- ?
ming
. Integer
Fischer “er al. 1981 | regression testing ? ? Program- ?
[183] N .
ming
Hartmann and 1989 Automatic selective revali- | Overview and extensions of cur- | _ P ~
Robson [234] dation rent strategies
Hartmann and 1990 Automatic selective revali- Overview of current strategies - g;toeg:arm- -
Robson [235] dation) gles o8
ming
Hartmann and 1990 Automatic selective revali- Overview of current strategies - gtoegrearm- -
Robson [236] dation g mingg
Korel [281] 1990 | Test data generation
Xanthakis et al. .
? ? ?
[493] N 1992 | Testing ? ? GA]
Schoenauer Maximise coverage of selected
and Xanthakis | 1993 | Test data generation L & ‘ Input Vector GA Synthetic
[415] substructure
[S4c}1 él]ltz et al. 1993 | Test scenario generation Identify maximum faults String GA Real
I[)la;vll]e s et dl 1994 | Test case generation Generating optimum path ? GA Real
Pei ef al. [380] | 1994 | Test data generation 2;{2"”“‘56 the selected path cover- |y i Vector | GA Synthetic
E)gg]s et dl 1995 | Test data generation Maximise branch coverage Input Vector GA Synthetic
g;)giz]s et dl 1995 | Test data generation 1;/;2X1m1se program branch-cover- Input Vector GA Synthetic
ﬁ%pﬁr et dl 1995 | Test data generation Maximise program coverage Input Vector GA Synthetic
Sthamer [445] 1995 | Test data generation Maximise Branch Coverage Input Vector GA ?
;Jatkms [478] 1995 | Test data generation ? Input Vector GA ?
ﬁl;]n der et dl 1996 | Test case generation Minimise the response time ? GA Real
Local
Ferguson and . Improve hard-to-cover predicate Search
Korel [178] 1996 | Test case generation branches coverage Input Vector (Chaining Real
Approach)
gggg]s et al 1996 | Test data generation Maximise branch coverage Input Vector GA Real
Roper [399] N 1996 | Test data generation Maximise code coverage Input Vector GA ?
Alander et al. 1997 Tf:stlng Software Response Minimise the response time 9 GA 9
[15] Times
Alander et al. 1997 | Test case generation Minimise the response time ? GA Synthetic

Continued on next page

TABLE VII. Papers on Testing and Debugging — continued from previous page

37

. Representation | Search Test
Authors [Ref] | Year | Activity Objective / Fitness method technique | problems
. . Minimise execution time and the
. ? -
Baradhi and 1997 Comparatlve. study O.f re number of test cases, Maximise the | - GA, SA ? (20 pro
Mansour [49] gression testing algorithms Precision grams)
Michael and . Maximise condition/decision cov-
McGraw [350] 1997 | Test data generation erage Input Vector SA, GA Real
1[\;[1561}]%1 et al 1997 | Test data generation Maximise CDC coverage Input Vector GA Synthetic
Roper [400] N 1997 | Test data generation Maximise branch coverage Input Vector GA ?
E’ng}ener et dl 1997 | Execution time determine | Minmise execution time String GA Real
Wegener et al. 1997 Test case generation for thlmlse worst/best execution String GA Real
[482] real-time systems time
Alander et al. 1998 Test datg generation for re- Maximise response time Input Vector GA Synthetic
[16] sponse time extremes
Maximise Inverse Path Probability Real (ref-
Borgelt [70] N | 1998 | Test data generation and Last Block Traversal Probabil- | Input Vector GA erenced)
ity with Bonus
minimise the probability of coinci-
Feldt [173] N 1998 | Software Diversity dent failures for multi-version sys- | Tree GP ?
tems
minimise the probability of coinci-
Feldt [170] N 1998 | Software Diversity dent failures for multi-version sys- | Tree GP ?
tems
Jones et al Branch and fault-based | Maximise branch coverage and . . o
[263] 1998 testing fault detection String GA Synthetic?
lgglg(g}]raw et al 1998 | Test data generation Maximise program coverage Input Vector GA Real
Michael and
McGraw [349] 1998 | Test data generation Maximise code coverage Input Vector SA, GA Synthetic
Michael et al 1998 | Test data generation Maximise condition/decision cov- Input Vector GA. SA Real
[352] erage
Optimise worst-case execution |
Tracey et al . time, specification conformance Rea
© | 1998 | Test case generation ’ S ? SA (small
[452] structural coverage and exception
.. . cases)
condition testing
Tracey et al 1998 | Test case generation Optlm 18¢: spe}glﬁcatlon failure, ex- Input Vector SA Real
[451] ception condition
Wegener and]] . L o .
Grochtmann 1998 Test case generation for thlmlse worst/best case execution Tnput Vector EA Real
real-time systems time
[480]
Alander and . .
? ? ?
Mantere [11] N 1999 | Automatic software testing | ?] GA ?
Mansour and . Minimise number of test cases . . SA, GA, .
El-Fakih [329] 1999 | Test case selection needed Binary string BB Synthetic
Moghadampour 9 9 9 9
[365] N 1999 | 7 ? ? GA !
Pargas et al Maximise statement and branch Real
£ © | 1999 | Test data generation Input Vector GA (6 pro-
[377] coverage
grams)
Pohlheim and 1999 Verlfyl_ng Yvorst/best case thlmlse worst/best case execution Input Vector EA Real
Wegener [381] execution time time
Alander and . .
? ? ?
Mantere [12] N 2000 | Automatic software testing | ?] GA ?
Maximise the number of predi- Real (nu-
Bueno and Jino Identification of likely in- | cates traversed on a program path . . merical
[86] 2000 feasible program paths and minimize the data error on the Binary string GA pro-
deviation predicates grams)

Continued on next page

TABLE VII. Papers on Testing and Debugging — continued from previous page

38

. Representation | Search Test
Authors [Ref] | Year | Activity Objective / Fitness method technique | problems
GroB [201] N 2000 | Test case generation anplse or maximise the execu- Input Vector ? ?
tion time
Real
(Sample
GroB et al Predlgtlr_lg accuracy .Of ET Predict accuracy of ET using a modules
2000 | for timing constraint of . Input Vector EA from
[205] . new complexity measure .
complex objects different
applica-
tions)
Lin and Yeh
[306] 2000 | Test case generation Maximise the target path coverage | Bit string GA Synthetic
MacNish [320] | 2000 Uncovermg logical errors Maximise logical error detection String GA Real
in student code
'[I;{;lgi:y et dl 2000 | Test data generation Maximise Exception Conditions Input Vector GA Real
Optimise metrics concerning:
specification falsification,
Tracey [455] 2000 | Test data generation structural, exception condition | Input Vector SA, GA Real
and worst-case execution time
testing
Maximise the number of predi- Real (nu-
Bueno and Jino Test data generation - exe- | cates traversed on a program path . . merical
[87] 2001 cute program paths and minimize the data error on the Binary string GA pro-
deviation predicates grams)
Real (test
objects
GroB [202] 2001 Tlmmg analysis of real- Ma).(lmlse violation of timing con- Tnput Vector GA frhom
time systems straints different
applica-
tions)
Hanh er al 2001 Cor_nparlson o.f integration Op_tlmlsmg testing resources allo- 9 GA Real
[212] testing strategies cation and minimise the stubs
Maximise code coverage with Real
Khurshid [277] | 2001 | Test data generation . rag Input Vector GA (Java
bonus and barrier function INS)
Lin and " Yeh 2001 | Test data generation Maximise the selected branch cov- Input Vector GA Synthetic
[307] erage
Minimise number of selected test
Mansour et al. . . - . . benchmark
2001 | Test case selection cases and execution time, Max- | Binary string SA
[331] S .. programs
imise Precision
Mantere and
Alander [333] | 2001 | Automatic testing ? ? GA ?
N
Michael et al. 1 V.
[353] 2001 | Test data generation Optimise test adequacy criterion nput Vector GA Real
Sthamer et al Test data generation in em- | Maximise the selected structural
[444] 2001 bedded systems coverage Input Vector GA Real
. EA (using
Wegener et al. 2001 Test case generation for Maximise branch coverage Input Vector MAT- Real
[484] structural testing LAB)
Wegener and 2001 Test _data generation for thlmlse worst/best execution Tnput Vector EA Real
Mueller [481] real time systems time
][353‘;]6 sel et al 2002 | Test data generation Maximise coverage Input Vector EA Real
GA
. (Bacteri-
Baudry et al. 2002 Test d ata -generation for Maximise the mutation score Input Vector ological Real
[59] mutation-based testing Algo-
rithms)

Continued on next page

TABLE VII. Papers on Testing and Debugging — continued from previous page

39

. Representation | Search Test
Authors [Ref] | Year | Activity Objective / Fitness method technique | problems
GA
Baudry et al Test data generation for (Bacteri-
Y T 2002 . & . Maximise the mutation score Input Vector ological Real
[58] mutation-based testing Algo-
rithms)
Bottaci [72] 2002 | Boolean flag problem tackle the special and general cases | Input Vector GA -
Briand et al 2002 Intggrgthn test case orders Mlmmlse the complexity of stub- String GA 9
[79] optimisation bing
Test data generation - ex- | Maximize the number of predi- Real (nu-
Bueno and Jino ecute program paths and | cates traversed on a program path S merical
[88] 2002 Identification of Likely In- | and minimize the data error on the Binary string GA pro-
feasible program paths deviation predicates grams)
Cornford et al 2002 Decht detection and pre- Risk reduction 9 GA Real
[126] vention
Emef . and 2002 Test da.ta sets selection and Max1mlse fault detection capabil- Tree GP Real
Vergilio [157] evaluation ity
GroB and Execution time analysis of | Find optimal task input parameter
2002 | component based real-time | combinations within timing con- | Input Vector EA Real
Mayer [203] .
systems straint
Harman er al Improving searchability by .. Real
[226] 2002 flag removal Maximise coverage Input vector EA (simple)
Harman ef al 2002 | Test data generation Max1m1se test data adequacy crite- Input Vector EA _
[225] rion
Mansour and . .
9
Bahsoon [328] 2002 | Test case selection Maximise test code coverage Input Vector SA]
Optimise metrics concerning:
Tracev et al specification falsification,
45 4]y " | 2002 | Test data generation structural, exception condition | Input Vector GA Real
and worst-case execution time
testing
Wegener et al. . Improve quality of evolutionary .
[486] 2002 | Test case design festing in embedded systems Input Vector GA Synthetic
Wegener et al. . N 9 9
[485] N 2002 | Test data generation) Input Vector) !
Baresel er al Automatic sequence test- .. .
[52] 2003 ing Maximise structural coverage String EA Real
Baresel and . .
Sthamer [50] 2003 | Test data generation Maximise coverage Input Vector EA Real
Berndt et al 2003 | Test case generation Ma)qm}se Novelty, Minimise Tnput Vector GA benchmark
[64] proximity program
Defining different cost
Bottaci [73] 2003 | functions for test data | Covering specific branches Input Vector EA Synthetic
generation
[Clozhﬁn et al 2003 | Test suites generation Maximise code coverage Input Vector SA Synthetic
Cohen —eral. 5303 [nteraction Testing Maximise - pair-wise - and - t-way Arrays HC, SA Synthetic
[122] coverage
Cornford et al. 2003 Decht detection and pre- Risk reduction (Minimise risk) Boolean vector | GA, SA Real
[127] vention
][)]1:152] et dl 2003 | Test case generation Maximise branch coverage Input Vector TS Synthetic
Emer and Test data selection and .. .
Vergilio [158] 2003 evaluation Maximise code coverage Tree GP Synthetic
Ghazi and 2003 | Interaction testin, Maximise pairwise test coverage Arra GA Synthetic
Ahmed [191] g P g Y Y
GroB and Component testing of real- | Maximise worst-case execution | _ _
2003 | © . GA
Mayer [204] time systems time

Continued on next page

TABLE VII. Papers on Testing and Debugging — continued from previous page

40

. Representation | Search Test
Authors [Ref] Year | Activity Objective / Fitness method technique | problems
Conformance testing of Maximise the number of discrete
Guo et al. [207] | 2003 UIO sequences f(;r F§Ms units; Minimise the length of se- | String GA Synthetic
quence
Hermadi and
Ahmed [240] 2003 | Test data generation Maximise path coverage Input Vector GA Synthetic
Korel et al . . Road-Map
[282] " | 2003 | Test data generation Cover desired part of code Input Vector Based Real
Search
Goal-
. S Oriented
Li and Lam 2003 | State-based Test Suites Optlmlsatlon of State-based Test String Evolution Benchmark
[298] Suites Strategy example
(GOES)
Mantere [332] 2003 | Automatic software testing | - - GA -
1[\;,1%] et al 2003 | Mutation testing Fault detection Bit string AIS -
McMinn and .. .
Holcombe 2003 | State problem for ET Maximise coverage (by generating | ., p ACO Small ex-
[341] sequence of inputs) ample
Patton er al . Maximise likelihood of occurring, . .
[378] 2003 | Software usage testing Maximise failure intensity String GA Synthetic
Sagarna and . .. From Tit-
Lozano [404] 2003 | Test data generation Maximise coverage Input Vector EDA erature
Adamopoulos 2004 Test. daa and mufant gen- Minimise test set Input Vector GA Synthetic
et al. [1] eration
][S’Sezr]e sel et al 2004 | Test data generation Maximise coverage Input Vector GA Real
][3"5?]6 sl et al. 2004 | Test case generation detect critical defects Input Vector EA ?
Berndt and . . Maximise Novelty, Minimise
Watkins [62] 2004 | Test suite generation proximity Input Vector GA Real
Chan ef al. [99] | 2004 I1)\uctt61:;)r{1g as;cilslences in com- lll)ae\fiegrt and identify unwanted be- String GA Real
Ferreira and . .. GA & Hy- |,
Vergilio [179] 2004 | Test data generation Maximise code coverage Input Vector brid GA !
Harman et al Improve evolutionary test data 4 small
" | 2004 | Testability transformation generation in presence of flag vari- | Input Vector EA
[227] ables programs
Hermadi [239] 2004 | Test data generation Maximise program coverage Input Vector GA -
Hierons et al Input sequence generation | Minimise the cost of reaching the . _
[241] 2004 for CFSMs transition String GA
Lammermann . ..
? ?
et al. [289] 2004 | Test case design Maximise code coverage] ? Real
Li and Wu 2004 | Software test automation Minimal multiple-condition cover- Input Vector EAs Real
[301] N age test
] Input Vector
Mansour ~ and 2004 | Test case generation Maximise path coverage (Integer and | SA, GA benchmark
Salame [330] real value) programs
McMinn —and g/{brlgvith From lit-
Holcombe 2004 | Test data generation Maximise branch coverage Input Vector .
[342] chaining erature
approach)
Tonella [450] 2004 | Test case generation Xl?s(:rtléssft: Sgtlven coverage, Min- Input Vector GA Real
leappler (4681 [2004 | Test of 0O system ? ? EAs ?

Continued on next page

TABLE VII. Papers on Testing and Debugging — continued from previous page

41

. Representation | Search Test
Authors [Ref] | Year | Activity Objective / Fitness method technique | problems
Watkins et al Test case generation in .. .
[476] 2004 system testing Maximise the targeted coverage Input Vector GA Synthetic
Weeener and Maximise functional errors using
°8 2004 | Test case generation two fitness function based on dis- | Input Vector EA Real
Biihler [479] .
tance and area criteria
[Z;gg]] and Clark 2004 | Test data generation Maximise structural coverage Input Vector SA Synthetic
Zhang [506] N [2004 | Test data generation ? Input Vector GA ?
. .. o . IT bench-
Albaand Chi- | 5055 | g data generation Maximise condition-decision cov- Input Vector ES, GA mark test
cano [18] erage
programs
GA
Baudry et al Test data generation for (Bacteri-
© | 2005 . . Maximise the mutation score Input Vector ological Real
[60] mutation-based testing Algo-
rithms)
GA
Baudr t al Test data generation for (Bacteri-
Y€ ak 2005 . & . Maximise the mutation score Input Vector ological Real
[61] mutation-based testing Algo-
rithms)
Berndt and . . Maximise Novelty, Minimise
Watkins [63] 2005 | Test suite generation proximity Input Vector GA Real
Bostrom and . Maximise the number of assertion .
Bjorkqvist [71] 2005 | Test case generation get Input Vector SQP Synthenic
Briand et al 2005 | - Maximise the chances of critical | String (of GA Synthetic
[80] deadline misses within the system | pairs) & Real
Bryce and Col- 2005 Test suite construction for | Covering al! t-tuples with mini- Array GS Synthetic
bourn [82] interaction testing mum test suite
Bryce et al 2005 'Iest suite construction for Mmlmlse size Qf the covering test Array GS Real
[85] interaction testing suite for pair-wise coverage
Del Grosso Input Vector Real
2005 | Stress test data generation | Minimise Buffer Overflow threat P GA (open
et al. [133] array
source)
. Input sequences and tran- . . .
Derderian et al. 2005 | sition paths generation for Optlr_n'lse the generation of feasible 9 GA Real
[136] transition paths (FTPs)
EFSM
Determination of worst . .
Dillon [147] 2005 | case execution time of | Wrtme of the test data exercised Input Vector HC benchmark
on the code programs
embedded systems
Girgis [193] 2005 | Test data generation Maximise path-coverage Input Vector GA iiillm)
Unique /O sequence oen- Maximise number of discrete units Small
Guo et al. [208] | 2005 d d g and Minimise length of the se- | String GA, SA | example
eration for FSMs
quence (FSMs)
EA
(implicitly
Hierons et al Program restructuring . using
[242] 2005 transformation Maximise branch coverage Input Vector testability examples
transfor-
mation)
Korel et al .- . .. HC .
[283] 2005 | Testability transformation Maximise branch coverage Input Vector (AVM) Synthetic
Lammermann
and Wappler | 2005 | Test effort estimation - - EA -
[288]

Continued on next page

TABLE VII. Papers on Testing and Debugging — continued from previous page

42

. Representation | Search Test
Authors [Ref] | Year | Activity Objective / Fitness method technique | problems
Li and Lam Test threads generation | improve the quality of test threads improved
[300] 2005 from UML diagrams generation Graph ACO Real
Li and Lam 2005 Automa}tlc test sequence Max.lrm_se all-state coverage and Graph ACO Benchmark
[299] generation feasibility example
Liu ef al. [309] | 2005 | Test data generation fitness function development Input Vector EA Real?
Ant
PathFinder | Real
Liu et al. [310] | 2005 | Test data generation Maximise code coverage Input Vector Algorithm | (open
(ACO, source)
GA)
Masud et al. 2005 Te'st data generatlon MU= poult detection Input Vector GA -
[335] tation testing
McMinn et al. Testability transformation .. Real (two
[345] 2005 for test data generation Maximise coverage Input Vector EA cases)
McMinn — and gj};brl((ivith Real and
Holcombe 2005 | Test data generation Maximise branch coverage Input Vector .. .
chaining Literature
[343]
approach)
Regehr [391] 2005 Intqnupt—dnven software | Improve the quality of interrupt List of vectors | GA Real
testing schedule
Sagarna and . .
Lozano [405] 2005 | Test data generation Maximise branch coverage Input Vector EDA Real
Tsai et al. [456] | 2005 Clu_stermg for WS group | Find the cluster of the correct WS Input Vector SA Synthetic
testing outputs & Real
Wappler and Test case generation for .. Real
Lammermann 2005 | the unit testing of OO soft- Max1mls§ . the statement,branch Input Vector EA (simple
and condition coverage
[470] ware cases)
Xie et al. [497] | 2005 | Test case generation Maximise code coverage Input Vector GA, SA -
Xie et al. [496] | 2005 | Test case generation lg/ézmmlse statement/branch cover- Input Vector GA Synthetic
Test data generation for .. .
Zhan and Clark | 5305 | \ATLAB Simulink mod- | Maximise test adequacy in muta- | o veeor | SA Real?
[501] els tion testing
Alshra.ldeh and 2006 | Test data generation Maximise program branch cover- Input Vector GA Real
Bottaci [26] age
Alshraideh and . ..
Bottaci [27] 2006 | Test data generation Maximise code coverage Input Vector GA Real
Briand er al 2006 _Schedulgblhty of test cases Executmg tr'1ggered tasks within Matrix GA Synthetic
[81] in real-time system time constraints
Cheon and Kim Evolutionary testing for | o .
[110] 2006 00 programs]] EA Synthetic
Derderian Test sequence generation | generate feasible transition paths . . benchmark
[138] 2006 1 for Finite State Machines | (FTPs) Binary string | GA FSM
Derderian et al Generating UIO sequences
[137] " | 2006 | for FSM conformance test- | Maximise FSM non-conformance? | String GA benchmark
ing
Everson and Tunin arameters of a Minimise false positive%s, Max-
. 2006 e p) imise true positive% Minimise | String MOES Real
Fieldsend [161] safety related system o .
mean additional warning time
Garousi [186] 2006 Test datq generation in | Maximise the traffic on a specified Tnput Vector GA Real
stress testing network or node
Garousi et al. 2006 Stress testing in real-time | Maximise the traffic on a specified Tnput Vector GA Real
[188] systems network or node
Maximise discrete units and Min-
Fault identification in FSM | imise the solution length (Min- . .
Guo [206] 2006 testing imise the cost of fault identifica- String GA, SA Synthetic
tion)

Continued on next page

TABLE VII. Papers on Testing and Debugging — continued from previous page

43

. . L. . Representation | Search Test
Authors [Ref] Year | Activity Objective / Fitness method technique | problems
ACO,
. Self Reg-
1];4;?;?; [3; ?]d 2006 | Model checking Maximise error detection Graph? ulating Synthetic
Swarm
Agents
Mayer [338] 2006 | Test data generation Maximise failure rate Input Vector l;:;(i(})lm -
McMinn et al. 2006 | Test data generation Maximise .branch coverage (via Tnput Vector EA Real (two
[346] transformation) cases)
McMinn and .
Holcombe 2006 | Test data generation Find test data missed tree hi’:;:i " | Real
[344] P
Miller et al 2006 | Test data generation Maximise condition-decision cov- Enumerated GA Synthetic
[354] erage
Sagarna and . Maximise branch coverage (of From Lit-
Lozano [406] 2006 | Test data generation C/C4+ programmes Input Vector SS, EDA erature
Seesing [418] 2006 | Test data generation Maximise branch coverage Tree GP Real
E;fjsm[%lw] and 2006 | Test data generation Maximise branch coverage Tree GP Real
E}ieo;m[%lZO] and 2006 | Test data generation Maximise branch coverage Tree GP Real
f}izzn[im] and 2006 | Test data generation Maximise branch coverage Tree GP Real
Shan and Zhu 2006 | Test data generation Max1mlse fault detection capabil- Input Vector Dqta Mu- Real
[424] ity tation
Tlili et al. [449] | 2006 | Test data generation Sﬁzmlse worst/best case execution Input Vector EA Real
Eé%r] et al 2006 tSi:)rrlllctural test data genera- Maximise matching pattern Input Vector EA S:;:}s)le
Walcott et al. 2006 Re gression test suite prior- Maximise code coverage String GA Real
[464] itization
Wang [465] 2006 | Test data generation Maximise branch coverage Input Vector GA Real
Real
Wappler and 2006 Test case generation for | Maximise branch coverage using Tree GP .(g]c;m
Wegener [473] unit testing of OO software | three distance metrics Jg tandard
classes)
Wappler and Test cases generation for . hybrid GP .
Wegener [472] 2006 object-oriented software Maximise branch coverage tree & GA Synthetic
Watkins and
Hufnagel [475] | 2006 | Test data generation fitness functions comparison Input Vector GA ?
N
FZ?%H;\? et dl. 2006 | Test suites generation Detect the system failures Input Vector GA ?
. Test sequences generation . .
éll;lé(l)] et al 2006 | in protocol conformance g:?iggﬁ:gc(;f the shortest possible Graph - Synthetic
testing
Test data generation for
imulink mod- aximise coverage nput Vector ea
é%azn] and Clark | 5506 | MATLAB Simulink mod- | Maximi g Input Vi SA Real
els
Andreou et al. . Maximise code coverage of gener- .
[30] 2007 | Test data generation ated data flow paths Input Vector GA Synthetic
Arcuri and Yao Test data generation for | Maximise code coverage; Min- HC, SA,
[40] 2007 Java Containers imise input sequence length Tnput Vector GA Real
rcuri and Yao est data generation for aximise the coverage; Minimise , ,
A dy 2007 Test d & f M h ge; M Input Vector HC, GA Real
[37] container classes the branch distance and the length p MA

Continued on next page

TABLE VII. Papers on Testing and Debugging — continued from previous page

44

. Representation | Search Test
Authors [Ref] | Year | Activity Objective / Fitness method technique | problems
grgc]url and Yao 2007 | Test data generation Maximise the coverage - - -
Arcuri and Yao Coevolve programs and | Maximise the ability to pass the | _ Real
2007 . . GP (open
[38] unit tests unit tests
source)
Real
. Test input data generation | Maximise the mutation score RS, HC, | (bench-
Ayari et al. [46] | 2007 for mutation testing (MScore) Input Vector GA, ACO | mark:
triangle)
Blanco et al Triangle
(67] ¢ " | 2007 | Test suite generation Maximise branch coverage Input Vector SS bench-
mark
Egj:ﬁ [a;;d] Col- 2007 {:éfirggnon Test suite se- Maximise t-way coverage Array Si’ TSH C, Synthetic
Brvee and Col- Minimise the size of test suites
Y 2007 | Interaction testing and execution time for pairwise | Array GS Synthetic
bourn [84]
coverage
Improving Random Test GA. SA Real (nu-
Bueno et al. 2007 Sets Using the Diversity | Optimize the diversity among the Input vector Sirr;ulate d’ merical
[89] Oriented Test Data Gener- | test data on a test data set P . pro-
. Repulsion
ation grams)
Cohen et al 2007 Corpblnatorlal interaction produc.e the smallest subset of con- Array SA Synthetic
[123] testing figurations for t-way coverage
Generalized
de Abreu ef al Test data generation for Extermal 7 bench-
[132] " | 2007 | programs having paths | Maximise path coverage Input Vector Optimi- mark pro-
with loops sation grams
(GEO)
Di Penta et al Test inputs generation and GA,
T 2007 puts & Maximise code coverage Input Vector Random Real
[143] configurations
Search
ﬁglgluk et al 2007 | Test data generation Maximise data-flow coverage Input Vector GA 2yr;{t£1;tlc
Fault diagnosis in Finite | Minimise the conflict set; Isolate . .
Guo et al. [209] | 2007 State Machines Testing and identify the faults String U-method | Synthetic
Harman “eral. 2007 | Test data generation Theoretical and empirical support Input Vector HC, GA Real
[231] for ET
. MOOA
Harman et al. 2007 | Test data generation Max.l mise branch coverage and dy- Input Vector (NSGA- Synthetic
[230] namic memory allocation 0
;I/Iirll\j[]f;ln o 2aln]d 2007 tSiz)rllllctural test data genera- zp%(z;etlcal and empirical analysis Tnput Vector HC Real
ming Hsu [356] 2007 Test data generation for Ma}x1mlse program coverage, Min- Tnput Vector GA 9
N program changes imise cost
g;ir]mlfl et al 2007 | Test data generation Maximise spanning sets coverage | Input Vector GA ?
Lefticaru and Test data generation for | Maximise the closeness to a given .
Ipate [292] 2007 state-based testing path Input Vector GA Synthetic
Lehre and Yao Run-time analysis of
[205] 2007 | (1+1)ES in finding UIO | Minimise the length of UIOs String ES Synthetic
sequences for FSMs
I{{:;lllundai [29%@ 2007 | Test data generation Maximise branch coverage Input Vector GA Synthetic
Li et al. [302] | 2007 | FSBIESSION fest case priot- | v yimise block coverage String? HC, GA | Real?
Liaskos and 2007 | Test data generation Maximise data-flow (d-u) coverage | Input Vector GA, AIS

Roper [303]

Continued on next page

TABLE VII. Papers on Testing and Debugging — continued from previous page

45

. Representation | Search Test
Authors [Ref] | Year | Activity Objective / Fitness method technique | problems
Real
Liaskos et al. Test data generation for e (standard
[305] 2007 00 software Maximise data-flow (d-u) coverage | Input Vector GA Java
library)
Liu er al. [311] | 2007 Flt_ness calcu!atlon in evo- [improve the fitness calculation | _ ~ ~
lutionary testing quality
Liu er al. [312] | 2007 gj;ltuaijt?(t)i generation and Optimise fitness function Input Vector GA Synthetic
Ma ot dl Minimise the time taken to gen-
[33%’] " | 2007 | Mutation testing erate test set, Maximise mutation | String GA, AIS Synthetic
score
Ribeiro et al. 2007 TesF Qatq generation and Maximise code coverage Tree GP -
[396] optimisation
I[{;;)Z]lrgl et dl 2007 | Test data generation Maximise code coverage Tree GP ?
}[glgg]lr; et al 2007 | Test data generation Maximise structural code coverage | Input Vector ?
Sagarna [403] 2007 | Test data generation Maximise branch coverage Input Vector EDA, SS Real
Sacarna et al Test data generation for
[41gO] " | 2007 | containers in the context of | Maximise branch coverage Input Vector EDA Real
0O software
Sagarna and Test data generation to ful- o Data Min- .
Lozano [407] 2007 fill branch coverage Measure suitability of EDA Input Vector ing, EDA Synthetic
Sofokleous and . .. Hybrid Synthetic
Andreou [440] 2007 | Test case generation Maximise selected coverage Input Vector GA & Real
Waeselvnck Robustness testing of | Search for dangerous scenarios
et al [4}1/63] 2007 | cyclic real-time control | and yield a violation of system- | Input Vector SA Real?
) system level safety requirements
Fﬁzﬁ) ler et al. 2007 | Code transformation Maximise code coverage Input Vector GA Real
Wappler and . .
Schieferdecker 2007 tCe}:tngeratlon of 00 unit Maximise structural coverage EAs g)lfm Vec-
[471] o
Windisch et al. . .. Synthetic
[492] 2007 | Test data generation Maximise structural code coverage | Input Vector GA, PSO & Real
. . Real
Xiao et al. 2007 Goal—or.lented test data Maximise decision-coverage Input Vector GA, SA (6 pro-
[495] generation
grams)
GS,
Yoo and Har- 2007 | Test case selection Maximise coverage, Minimise ex- Strin MOOA Real
man [499] ecution time, Minimise cost & (NSGA- (small?)
1I)
Ahmed and
Hermadi [9] 2008 | Test data generation Maximise path coverage Input Vector GA Synthetic
. Real (12
Alba and Chi- 2008 | Test data generation Maximise coverage Input Vector GA, ES test prob-
cano [23] Jems)
Arcuri [36] 2008 | Automatic bug fixing distance function Tree GP Synthetic
Random
Real?
Search, (Triangle
Arcuri et al. 2008 | Test data generation Minimise runtime Input Vector HC, . Al- Classi-
[44] ternating .
. fication
Variable Problem)
Method

Continued on next page

TABLE VII. Papers on Testing and Debugging — continued from previous page

46

. Representation | Search Test
Authors [Ref] | Year | Activity Objective / Fitness method technique | problems
arlc]url and Yao 2008 | Automatic bug fixing distance function Tree GP Synthetic
RS, HC,
. . . - L SA, GA,
Arcuri and Yao Unit tests generation for | Maximise coverage and Minimise -
2008 . Input Vector Memetic Real
[42] container classes the length of the test sequences Algo-
rithms
Bueno et al Autf)matlc‘ Test D?ta Gen- Optimize the diversity among the G.A’ SA, Synthetlc
2008 | eration Using Particle Sys- Input vector Simulated | (simula-
[90] test data on a test data set . .
tems Repulsion | tion)
Biihler and We- 2008 | Functional testing automatic finding faults - - Real
gener [91]
Chen and . .
Zhong [108] 2008 | Test data generation Maximise target path coverage Input Vector GA Benchmark
Cohen et al. 2008 Corpbmatorlal interaction | generate Fhe smallest subset of Array Greedy Real
[124] testing configuration for t-way coverage
Del Grosso 2008 | Buffer overflows detection Maximise (vulnerable) statement String GA Real
et al. [134] coverage
Diaz et al. . . . Tabu .
[146] 2008 | Test case generation Optimise cost function Graph Search Synthetic
. . Real
Feldt et al 2008 | Fitness function evaluation Seargh for universal test diversity | _ _ (open
[176] metrics
source)
Garousi [187] 2008 | Test data generation meet evaluation criteria Input Vector GA Real
Garousi et al. 2008 Stress testing in real-time | Increasing chances of discovering Binary String GA Real
[189] systems faults
. Real
Ghani and 2008 Specification mfe;rence and improve Fhe accuracy of inferred Tnput Vector SA (open
Clark [190] test data generation specifications
source)
S(;t;]eb et al. 2008 | Test data generation - Input Vector HC, SA -
Gupta and Ro- Real
hil IEZI 0] 2008 | Test data generation Maximise program coverage Input Vector GA (open
source)
Harman [216] 2008 | Testability Transformation | Maximise branch coverage Input Vector EA -
Hla ef al. [243] | 2008 | Test case prioritization Maximise the statement, branch | 1, vecor | pso Real
and functional coverage
. . . Real
Jia and Harman . Search for subsuming Higher Or- GA, HC,
[253] 2008 | Mutant generation der Mutant Input Vector GS (open
source)
Jia and Harman Higher-Order mutation . . .] . GA, HC,
[254] 2008 testing Generating High-quality mutants String GS Real
Kalaji et al. . Maximise transition coverage in .
[265] 2008 | Test data generation EFSM Input Vector ET-based Synthetic
. Test data generation (Dy- .
Lakhotia er al. 2008 | namic data structures in | Maximise code coverage Input Vector HC Synthetic
[286] . & Real
testing)
Lefticaru and . .. SA, GA,
Ipate [293] 2008 | Test data generation Maximise target path coverage Input Vector PSO Real
Lefticaru and 2008 Measurement of fitness | Optimise general form of fitness | _ SA _
Ipate [294] function in testing function
Lehre and Yao Construction of UIO se- | Minimise the length of input se- . .
[296] 2008 quences for FSMs quence String EAs Synthetic
Liaskos and . .
Roper [304] 2008 | Test data generation Maximise dataflow coverage Input Vector GA Real
Makai [325] N | 2008 | Test case generation Maximise branch and statement 9 Input Vec- 9
coverage tor GA

Continued on next page

TABLE VII. Papers on Testing and Debugging — continued from previous page

47

.. .. . Representation | Search Test
Authors [Ref] Year | Activity Objective / Fitness method technique | problems
IE;IZI;/]IIHNH et al. 2008 | Test data generation Maximise branch coverage Input Vector GA, HC Real
. random &
Nguyen et al 2008 Autonomous Dlstrlbuted Improv; the process of test cases Tnput Vector evolutionary- Real
[369] Systems (ADS) testing generation .
mutation
Prutkina and . . _
Windisch [382] 2008 | Test data generation Maximise structural coverage Input Vector EA
l{l;g;ﬁ)pa et al 2008 | Test case generation Maximise code coverage Input Vector GA Synthetic
Ribeiro [393] 2008 | Test case generation Maximise structural coverage Tree GP Real
l[glgg]lm et al 2008b| Test case generation Maximise code coverage Tree GP Real
}[2313;]“0 et dl 2008a| Test case generation Maximise code coverage Tree GP Real
Sagarna and . ..
Lozano [408] 2008 | Test data generation Maximise code coverage Input Vector EDA Real
single and Real
Sagarna and 2008 | Test data generation Me_mnnse code coverage and Min- Input Vector ml%ltl_. (open
Yao [409] imise the constraints (penalty) objective
GA source)
Schneckenburger P-measure (probability of a given
and . 2008 | Test data generation test set to detect a failure) and].5' Input Vector HC Real
Schweiggert measure (average number of fail-
[413] ures detected by the test set)
Sofokleous and . .. o .
Andreou [441] 2008 | Test data generation Maximise edge/condition coverage | Input Vector GA Synthetic
Sofokleous and Maximise code coverage of gener-
Andreou [442] | 2008 | Test data generation & & Input Vector GA Synthetic
N ated data flow paths
Wang et al Real
[466% " | 2008 | Fitness function design Maximise branch coverage Input Vector EA (Open
Source)
Wappler [469] 2008 t(é:tnseratlon of OO unit Maximise code coverage Tree GP, GA Real
Introduction of evolution-
Windisch [491] | 2008 | ary structural testing in | - - EA -
system models
Zhan and Clark 2008 Test _data generation and Mgmm'lse branch coverage, Min- Tnput Vector SA Synthetic
[503] selection imise time cost
Zhong et al 2008 | Test suite reduction Minimise the number of selected Bit string GA, IP Real

[510]

test cases

48

TABLE VIIL. Papers addressing Distribution, Maintenance and Enhancement activities
. . Co. . Representation | Search Test
Authors [Ref] Year | Activity Objective / Fitness method technique | problems
. Maximise Inter-connectivity
Mancoridis 1998 Software structure cluster- (High cohesion): Minimise Arra.\y of. mod- HC. GA Synthetic
et al. [326] ing ule identifiers
intra-connectivity (Low coupling)
Compiler optimisation
Nisbet [370] 1998 | via determining program | Minimise execution time String GA Synthetic
transformation sequence
Ayiliams 5901 11998 | Automatic parallelization | ? ? EAs ?
Benchmark
Coover et al Find customized compiler opti- programs
[25% * | 1999 | Compiler optimisation misation sequences; Minimise the | String GA in FOR-
size of the object code TRAN
and C
Maximise inter-connectivity
Doval et al 1999 Software module cluster- (High cohesion): Minimise Arra.\y of. mod- GA Real
[152] ing ule identifiers
intra-connectivity (Low coupling)
- . . - | Maximise inter-connectivity .
Mancoridis 1999 Automatic clustering of (High cohesion): Minimise Arra'ly ot. mod- GA Synthetic
et al. [327] system structure ule identifiers
intra-connectivity (Low coupling)
Ryan [402] N 2000 Automatic re-engineering 9 9 GP Real
of software
Harman er al 2002 Software module cluster- Optlmlse gran}llarlty, cohesion and Arra'ly of. mod- GA Synthetic
[224] ing coupling metrics ule identifiers
.. . .. HC
Maximise inter-connectivity ’
Mitchell [358] | 2002 | Software structure cluster- | o= (opecion). Minimise | AT Of mod- | GA, Ex- 1 p g
ing . . . ule identifiers haustive
intra-connectivity (Low coupling)
Search
Mitchell and Software module Array of mod-
Mancoridis 2002 | clustering via improved | Optimise MQ metric ule igenti fiers HC Real
[359] Hill Climbing
HC, Real
Mitchell et al. 2002 Reverse Engineering from Extract Design Structure Arra.\y of. mod- | GA, . Ex- (open
[363] source code ule identifiers haustive
source)
Search
Array of sets
Sahraoui et al. 2002 Object identification in Mmlrmse coupling and Maximise | of Qata repre- | < x Real
[411] N legacy code cohesion senting candi-
date objects
Van Belle and . Performance on a randomly chang- .
Ackley [458] 2002 | Code factoring ing symbolic regression problem Tree GP Synthetic
Antoniol et al Minimise the Dependency Factor
[32] " | 2003 | Libraries refactoring (DF), Linking Factor (LF) and | Bit-matrix GA Real
Standard Deviation Factor (SF)
. . . Sequence of
Fatiregun et al. 2003 | Program transformation Find the oplimum sequence of transformation | HC -
[163] transformation rules . .
identifiers
Mahdavi et al. Software module cluster- Max1mlse.the .number of internal Array of mod- | HC, GA,
2003 | . edges; Minimise the number of . . Real
[324] ing ule identifiers SA
external edges
. Maximise the number of internal
Mahdavi et al. Software module cluster- RS Array of mod-
2003 | . edges; Minimise the number of . . HC Real
[323] ing ule identifiers
external edges

Continued on next page

TABLE VIII. Papers on Distribution, Maintenance and Enhancement — continued from previous page

49

.. .. . Representation | Search Test
Authors [Ref] | Year | Activity Objective / Fitness method technique | problems
Mitchell — and Maximise inter-connectivity Arrav of mod- gi Ex-
Mancoridis 2003 | Software Clustering (High cohesion); Minimise y O ” Real
[360] intra-connectivity (Low coupling) ule identifiers gaustlﬁle
earc
. . s . Real
Reformat et al. 2003 Automatic generation of | Measure feasﬂ)lllty of using GP for Parse tree GP (open
[389] clones clone generation source)
Cowan et al . .
? ? ?
[130] N 2004 | Evolutionary programming | ?] GP]
. Sequence of
l[:f éj]e gun et al. 2004 | Program transformation Minimise program size transformation SSA’ HC, Synthetic
identifiers
. Maximise inter-connectivity
Mitchell et al. | 5, | Software module cluster- | (ppop ™ (opegion). Minimise | A7 Of mod- | e ga | Synthetic
[364] ing using Bunch tool) .. . ule identifiers
intra-connectivity (Low coupling)
Software svstem renova- Tradeoff among Dependency Fac-
Di Penta [140] 2005 tion y tor (DF), Partitioning Ratio (PR), | bit-matrix GA Real
Standard Deviation Factor (SDF)
Tradeoff among Dependency Fac-
Di Penta et al. Software system renova- | tor (DF), Partitioning Ratio (PR), . .
[142] 2005 tion Standard Deviation Factor (SDF) Bit-matrix GA, HC Real
and Feedback Factor (FF)
. . Optimise the percentage of posi-
Di Penta and 2005 Automatlc grammar evolu- tive examples and negative exam- Array of sym- GA Real
Taneja [141] tion ples bols
. e Sequence of Real
Fatiregun et al. 2005 | Amorphous slicing Mlmmlse size of the amorphous transformation | GA, HC (6 pro-
[165] slice computed . r
identifiers grams)
Harman ef al 2005 Software module cluster- | Optimise MQ and EVM (compar- | Array of mod- GA Synthetic
[228] ing ison of two fitness) ule identifiers & Real
Comprehension via mod- Maximise Modularization Qual- Array of mod-
Mahdavi [322] 2005 P . ity (Maximise Cohesion and Min- Y ol GA, HC Real
ule clustering imise Coupling) ule identifiers
Sen et al Optimise weighted sum of: Cou-
& " | 2005 | System re-structuring pling, Cohesion, Complexity, Cy- | String GA Real
[422]
cles, Bottlenecks
Minimizing number of individu- . . Real
[Sr f;]n et al 2005 | Clone detection als and Maximizing similarity of \\/lscr;gtr)ie-sued EA (small
clones in each individual case)
Bate and Em- Allocation and scheduling
2006 | tasks in real-time embed- | Improve the flexibility String SA Synthetic
berson [57]
ded systems
Bouktif er al Mutation and Coverage . . . GA, ACO,
[76] 2006 testing Clone refactoring String (binary) TS Real
Cohen et al . .. o . Array of mod- benchmark
[120] 2006 | Thread clustering Maximise modularization quality ule identifiers HC example
. Improve memory efficiency (find
Del Rosso 2006 Dypamlc memory configu- the optimal configuration for the | String GA Simulator
[135] ration .
segregated free lists)
Gold et al 2006 Qverlappmg concept as- Max1mlse quality of concept bind- | String (a set of GA, HC Real
[195] signment ing segment pairs)
Harman [213] 2006 SBSE for Mamtenance and | _ _ ~ _
Reengineering
Mitchell and Software module cluster- Maximise Modularization Qual- Array of mod-
Mancoridis 2006 | .) ity (Maximise Cohesion and Min- 1y of HC, SA Real
ing L7 . ule identifiers
[361] imise Coupling)

Continued on next page

TABLE VIII. Papers on Distribution, Maintenance and Enhancement — continued from previous page

50

.. .. . Representation | Search Test
Authors [Ref] | Year | Activity Objective / Fitness method technique | problems
O’Keeffe and O Refactoring of object- | Maximise design quality metric N
Cinnéide [373] 2006 oriented programmes (three metrics were examined)) HC, SA Real
Sen ot al Optimise weighted sum of: Cou-
[423g] " | 2006 | Refactoring pling, Cohesion, Complexity, Sta- | String EA Real
bility
Bodhuin e al. 2007b| Model refactoring Maxnplse cohesion and minimise Bit string GA Synthetic
[69] coupling
. Re-packaging . . .
Bodhuin et al. 2007a| downloadable applications Minimise the packagmg' s1e and Integer array GA Real
[68] - the average of downloading times
(Software clustering)
Emberson and Task allocation and
2007 | scheduling in mode | Minimise changes in allocation ? SA Synthetic
Bate [156] .
transitions
Maximise coupling between ob-
Harman and . jects (CBO) and Minimise STDV | Sequence of
Tratt [222] 2007 | Refactoring of the number of methods in | method moves HC Real
classes
Huynh and Cai Software modularity anal- | check the consistency between de- | .
[249] 2007 ysis (Clustering) sign and source code ’ GA Synthetic
; p . . . Real
O. Ke’e%ffe and O 2007 | Software refactoring .QMOOD hierarchical design qual- Binary string HC, 54, (Open
Cinnéide [374] ity model GA source)
Reformat ef al. 2007 | Software Cloning .Produce. a system from its external Tree GP Synthetic
[390] interactions
Kessentini Maximise completeness and con- M-dimensional
) 2008 | Model transformation sistency of source model transfor-) PSO Synthetic
et al. [270] mation vector
Ruperberg 2008 | Performance prediction Crea.te platform-independent para- Tree GP Synthetic
et al. [285] metric performance models
Mitchell and Sequence of
Mancoridis 2008 | Software clustering Improve modularization quality transformation | SA -
[362] identifiers
A Real
O. Kefffe and O | 5008 | Software re factoring QMOOD hierarchical design qual- Binary string SA, GA, (Open
Cinnéide [375] ity model HC source)
. Real
O. Ke}e.ffe and O | 2008 | Software refactoring .QMOOD hierarchical design qual- Binary string HC, SA (Open
Cinnéide [376] ity model source)
. . . GP,
White et al Non-functional properties | Tradeoffs between power con- . ’ .
[488] 2008 satisfaction sumption and functionality Binary MOOA Synthetic

(SPEA2)

TABLE IX. Papers addressing activities related to Metrics

51

.. . . . Representation | Search Test
Authors [Ref] Year | Activity Objective / Fitness method technique | problems
Overview of Search-based .
Harman and . Guidelines to define good fitness | _ HC, SA, | _
2004 | approaches and metrics to .
Clark [217] SBSE functions GA
Ylvapco and 2004 Software Metrics classifi- Improve th@ prediction of software Bit string GA Real
Pizzi [461] cation object quality
Metrics classification
Lange and (Identif’ software Real
Mancoridis 2007 y Maximise the correct classification | String GA (Open
developer based on
[290] . source)
style metrics)
Vivanco and Jin 2007 00 source code metrics LDA classifier bit-mask GA Real
[462] selection
Vivanco and Jin 2008 | Software metrics selection Tmprove the prediction of software Bit string GA Real

[460]

object quality

TABLE X. Papers addressing Management activities

52

. . Co. . Representation | Search Test
Authors [Ref] Year | Activity Objective / Fitness method technique | problems
Chao er al Software Project Manage- | , o N
[105] N 1993 ment ? ? GA ?
Chang [100] 1994 rSnoefrtlrvare Project Manage- | _ _ GA _
[C]I(l)alrig et al 1994 rSn(;frtlzvare Project Manage- Determine the resource allocation | ? GA -
Chang et al. 1998 Project schedgllng and re- Mlmrmse total cost and finishing String GA Synthetic
[102] source allocation time
Dolado and .
Fernandez 1998 Softwal'*e djcvelopment ef- Optimise effort estimation Tree GP, NN Synthetic
[150] fort estimation & Real
Evett —er —al 1999 Software Quality Model- Predict software quality Tree GP Real
[162] ing
Real?
Dolado [148] 2000 | Software size estimation Optimise software size estimation | Tree? GP, NN (from
literature)
NN and
Shukla [432] 2000 Dev.elopment effort esti- Ma)lilmlse precision of effort esti- String GA (GA Real
mation mation to train
NN)
Aguilar-Ruiz . maximizing classification percent- .
et al. [7] 2001 | Project Management age and coverage of the rules String EA Real
Real
Burgess ~and 2001 | Software effort estimation | Maximise accuracy of estimation Tree GP (frF) m an
Lefley [92] existing
database)
. . Minimise duration and cost of
Chang et al. Project scheduling and re-
[103] 2001 source allocation EZ(t)JeCt, Maximise quality of prod- | graph GA Synthetic
Dolado [149] 2001 | Cost estimation Optimise cost estimation Tree GP Real
Jarillo et al Software development ef- Predict the number of defects, esti-
! e 412001 ware develop mate the reliability in terms of time | ? GA, GP Real
[252] fort estimation .
and failure
Liu and Khosh- Software Quality Classifi- | Minimise the cost of misclassifica-
goftaar [314] 2001 cation Model tion Tree GP Real
Acuilar-Ruiz Software development’s Real?
etgal 8] 2002 | effort, time and quality | Maximise accuracy of estimation Float string EA (from
’ estimation literature)
Boukdif eral. 2002 Spftware Quality - predic- Improve correctness Binary tree GA Real
[74] tion
HC,
Kirsopp et al . L . . - . Forward .
[280] 2002 | project effort estimation Optimise effort estimate precision | String Sequential Synthetic
Selection
Determine metric sets and improve
Shan et al. 2002 Softwar‘e djcvelopment ef- the prediction of development ef- | Tree GP Real
[425] fort estimation fort
Bouktif er al . . .
[75] 2004 | Software quality prediction | Improve correctness Binary tree GA Real
. .‘ Minimise the cost misclassifica-
Khoshgoftaar 2003 Software Quality Classifi- tion; Minimise the size of decision | Tree GP Real
et al. [273] cation

tree

Continued on next page

TABLE X. Papers on Management — continued from previous page

53

. Representation | Search Test
Authors [Ref] | Year | Activity Objective / Fitness method technique | problems
Lefley and Software development ef- . o
Shepperd [291] 2003 fort estimation Maximise accuracy of estimation Tree GP Real
. . . Minimise the cost of misclassifica-
Llu_ and Khosh- 2003 Software Quality Classifi- tion; Minimise the size of decision | Tree GP Real
goftaar [315] cation tree
GA,
. Queuing
Antoniol et al. 2004 | Project Planning Minimise Project Duration String Theory, Real
(33] .
Simula-
tion
Antoniol et al. String (two | HC, SA,
[34] 2004 | Project Planning Minimise project duration types) GA Real
. . . Minimise the cost of misclassifica-
Liu and Khosh- |, | Software Quality Classifi- tion; Minimise the size of decision | Tree GP Real
goftaar [313] cation tree
Alba and Chi- Project management of the | Minimise project duration and cost o .
cano [17] 2005 whole SE activities (conflicting objectives) Bit string GA Synthetic
GA,
Antoniol et al. HC, SA,
135] 2005 | Project Planning Minimise Project Duration String Random Real
Search
L symbolic
Lokan [316] 2005 | Software effort estimation | MSE, LAD, MRE, MER and Z, expression GP Real
ftl‘a’?reé'g]'aldes 2006 | Project scheduling Minimise finish time String SSA Synthetic
%(;l]lktlf et al. 2006 | Quality planning Maximise the predictive accuracy tsri;l’r; g or Ma- SA Real
Sheta [430] 2006 Dev.elopment effort esti- Ma)flmlse precision of effort pre- 9 GA Real
mation diction
Alba and Chi- Project management of the | Minimise project duration and cost . .
cano [22] 2007 whole SE activities (conflicting objectives) String GA Synthetic
Minimise the modified expected
.) . o cost of misclassification, optimise
Khoshgoftaar 2007 Software Quality Classifi- the number of predicted fault- | Tree GP Real
and Liu [272] cation Model ...
prone modules and minimise the
size of the decision tree model
Barreto et al. 2008 | Staffing software project Ma?ilmlse the value creation for | _ BB Synthetic
[56] project
Chang et al 2008 Software project schedul- er}lmlse the input (overload, 9 GA Synthetic
[104] ing project costs, and time)
Cortellessa 20084 Decision support for soft- Mlnlmlse? cost unde.r delivery time 9 (LINGO Synthetic
et al. [128] ware architecture and quality constraints based)
Hericko et al. Define team size with minimal | _ gradient
[238] 2008 | Team size optimisation project effort method Real
Huang er al L Minimise the mean magnitude rel- .
[248] 2008 | Software effort estimation ative error (MMRE) String GA Real
Kapur ef al Provide best quality to customers . .
[266] 2008 | Staffing for product release under time constraint Binary GA Synthetic
. . Minimise the cost misclassifica-
Khoshgoftaar 2008 Software nghty Classifi- tion; Minimise the size of decision Integer or real GA Real
et al. [276] cation Modeling tree values string
. Improved
Wen and Lin Multistage human resource | Minimise the project duration; . .
[487] 2008 allocation Minimise the project cost Fixed-length GA Synthetic

Encoding

54

TABLE XI. Papers addressing Distributed Artificial Intelligence
.. s . Representation | Search Test
Authors [Ref] Year | Activity Objective / Fitness method technique | problems
. . Design and Implementa- .
Slnclqlr and 1997 | tion (evolution of simple Max1m1§e the number of accumu- String, Tree GA, GP Synthetic
Shami [438] lated units
software agents)
. Adaptive Agent Oriented
g(j&]]at et al 2004 | Software Architecture ilillp;?\tfﬁglgoiiliciz:ss rate and qual- ? GA Synthetic
(AAOSA) Y
ga;a]s] et al 2005 Parameter tuning for | Improve the quality of composi- Tnteger string GA Synthetic

multi-agent systems

tion for software configuration

55

TABLE XII. Papers addressing Security and Protection
.. s . Representation | Search Test
Authors [Ref] Year | Activity Objective / Fitness method technique | problems
. Real
Dozier et al. | 5, | Holediscovery inintrusion |y 0 ico fritled detections String EA, PSO | (Simu-
[153] detection systems (IDS) Jated)
Dozier et al Hole discovery in intrusion S . . . Rgal
T 2007 Minimise failed detections String EA, PSO (Simu-

[154]

detection systems (IDS)

lated)

56

TABLE XIII. Papers addressing General aspects of SBSE

[Authors [Ref] | Year | Content \
Clarke et al. [117] N 2000 | Describing several applications of metaheuristic search techniques in Software Engineering
Harman and Jones [218] 2001 Introduction of SBSE
Harman and Jones [219] 2001 SEMINAL: Software Engineering using Metaheuristic INovative Algorithms
Harman and Jones [220] 2001 | Outlining the papers presented at the SEMINAL Workshop and the discussions
Pedrycz [379] 2002 | Application of Computational Intelligence in different stages of SE
Clark [114] 2003 | Cryptography using nature-inspired search techniques
Clarke et al. [T18] 2003 | Reformulating SE as a search problem
Harman and Wegener [223] | 2004 | On application of search techniques in Software Engineering
McMinn [340] 2004 Survey of Search-Based Test Data Generation
Rela [392] 2004 A review of EC in all SE activities
Mantere and Alander [334] | 2005 | A review of Evolutionary Software Engineering
Jiang [255] 2006 | A review of applying GAs to Software Engineering problems
Harman [215] 2007 | Introducing 8 specific application areas
Harman [214] 2007 | A introduction of search based Software Engineering for program comprehension
Jiang et al. [256] 2007a | A measure to predict the hardness of GAs to the optimisation problem in SE
Afzal et al. [4] 2008 A Review of the articles based on non-functional Search-Based Software Testing in 1996-2007
Alander [10] 2008 | A bibliography and collection of GA papers applying to testing problems

REFERENCES

[1] Adamopoulos, K., Harman, M., and Hierons, R. M.
(2004). How to Overcome the Equivalent Mutant Prob-
lem and Achieve Tailored Selective Mutation using Co-
Evolution. In Proceedings of the 2004 Conference on Ge-
netic and Evolutionary Computation (GECCO ’04), volume
3103/2004 of Lecture Notes in Computer Science, pages
1338-1349, Seattle, Washington, USA. Springer Berlin /
Heidelberg.

[2] Afzal, W. and Torkar, R. (2008a). A Comparative Eval-
uation of Using Genetic Programming for Predicting Fault
Count Data. In Proceedings of the 3rd International Con-
ference on Software Engineering Advances (ICSEA °08),
pages 407—414, Sliema, Malta. IEEE Computer Society.

[3] Afzal, W. and Torkar, R. (2008b). Suitability of Genetic
Programming for Software Reliability Growth Modeling. In
Proceedings of the International Symposium on Computer
Science and its Applications (CSA ’08), pages 114-117,
Hobart, Australia. IEEE Computer Society.

[4] Afzal, W., Torkar, R., and Feldt, R. (2008a). A Systematic
Mapping Study on Non-Functional Search-Based Software
Testing. In Proceedings of the 20th International Confer-
ence on Software Engineering and Knowledge Engineering
(SEKE ’08), pages 488-493, San Francisco, USA. Knowl-
edge Systems Institute Graduate School.

[5] Afzal, W., Torkar, R., and Feldt, R. (2008b). Prediction of
Fault Count Data using Genetic Programming. In Proceed-
ings of the 12th IEEE International Multitopic Conference
(INMIC °08), pages 349-356, Karachi, Pakistan. IEEE.

[6] Afzal, W., Torkar, R., and Feldt, R. (2009). A systematic
review of search-based testing for non-functional system
properties. Information and Software Technology. To
appear.

[7] Aguilar-Ruiz, J. S., Ramos, 1., Santos, J. C. R., and
Toro, M. (2001). An Evolutionary Approach to Estimating
Software Development Projects. Information and Software
Technology, 43(14), 875-882.

[8] Aguilar-Ruiz, J. S., Santos, J. C. R., and Ramos, 1. (2002).
Natural Evolutionary Coding: An Application to Estimating
Software Development Projects. In Proceedings of the
2002 Conference on Genetic and Evolutionary Computation
(GECCO °02), pages 1-8, New York, USA.

[9] Ahmed, M. A. and Hermadi, I. (2008). GA-based Multiple
Paths Test Data Generator. Computers & Operations
Research, 35(10), 3107-3124.

[10] Alander, J. T. (2008). An Indexed Bibliography of
Genetic Algorithms in Testing. Technical Report 94-1-
TEST, University of Vaasa, Vaasa, Finland.

[11] Alander, J. T. and Mantere, T. (1999). Automatic Soft-
ware Testing by Genetic Algorithm Optimization, A Case
Study. In Proceedings of the 1st International Workshop on
Soft Computing Applied to Software Engineering (SCASE
’99), pages 1-9, Limerick, Ireland.

[12] Alander, J. T. and Mantere, T. (2000). Genetic Algo-
rithms in Automatic Software Testing - Analysing a Faulty
Bubble Sort Routine. In H. Hytyniemi, editor, Proceed-
ings of the 9th Finnish Artificial Intelligence Conference,

57

volume 2, pages 23-32, Espoo, Finland. Finnish Artificial
Intelligence Society.

[13] Alander, J. T., Mantere, T., Turunen, P., and Virolainen,
J. (1996). GA in Program Testing. In Proceedings of
the 2nd Nordic Workshop on Genetic Algorithms and their
Applications (2NWGA), pages 205-210, Vaasa, Finland.

[14] Alander, J. T., Mantere, T., and Turunen, P. (1997a).
Genetic Algorithm based Software Testing. In Proceedings
of the 3rd International Conference on Artificial Neural
Networks and Genetic Algorithms (ICANNGA ’97), pages
325-328, Norwich, UK. Springer-Verlag.

[15] Alander, J. T., Mantere, T., and Moghadampour, G.
(1997b). Testing Software Response Times using a Genetic
Algorithm. In Proceedings of the 3rd Nordic Workshop on
Genetic Algorithms and their Applications (3NWGA), pages
293-298, Helsinki, Finland.

[16] Alander, J. T., Mantere, T., Moghadampour, G., and
Matila, J. (1998). Searching Protection Relay Response
Time Extremes using Genetic Algorithm-Software Quality
by Optimization. Electric Power Systems Research, 46(3),
229-233.

[17] Alba, E. and Chicano, F. (2005a). Management of
Software Projects with GAs. In Proceedings of the 6th
Metaheuristics International Conference (MIC 05), pages
13-18, Vienna, Austria. Elsevier Science Inc.

[18] Alba, E. and Chicano, F. (2005b). Software Testing
with Evolutionary Strategies. In Proceedings of the 2nd
Workshop on Rapid Integration of Software Engineering
Techniques (RISE ’05), volume 3943 of Lecture Notes in
Computer Science, pages 50-65, Heraklion, Crete, Greece.
Springer.

[19] Alba, E. and Chicano, F. (2007a). ACOhg: Dealing with
Huge Graphs. In Proceedings of the 9th annual Conference
on Genetic and Evolutionary Computation (GECCO °07),
pages 10-17, London, England. ACM.

[20] Alba, E. and Chicano, F. (2007b). Ant Colony Optimiza-
tion for Model Checking. In R. Moreno-Diaz, F. Pichler,
and A. Quesada-Arencibia, editors, Proceedings of the
11th International Conference on Computer Aided Systems
Theory (EUROCAST 2007), volume 4739 of Lecture Notes
in Computer Science, pages 523-530, Las Palmas de Gran
Canaria, Spain. Springer.

[21] Alba, E. and Chicano, F. (2007c). Finding Safety Errors
with ACO. In Proceedings of the 9th annual Conference
on Genetic and Evolutionary Computation (GECCO ’07),
pages 1066-1073, London, England. ACM.

[22] Alba, E. and Chicano, F. (2007d). Software Project
Management with GAs. Information Sciences, 177(11),
2380-2401.

[23] Alba, E. and Chicano, F. (2008). Observations in using
Parallel and Sequential Evolutionary Algorithms for Auto-
matic Software Testing. Computers & Operations Research,
35(10), 3161-3183.

[24] Alba, E. and Troya, J. M. (1996). Genetic Algorithms
for Protocol Validation. In Proceedings of the 4th Interna-
tional Conference on Parallel Problem Solving from Nature
(PPSN °96), pages 870-879, Berlin, Germany. Springer.

[25] Alba, E., Chicano, F., Ferreira, M., and Gémez-Pulido,

J. A. (2008). Finding Deadlocks in Large Concurrent Java
Programs using Genetic Algorithms. In M. Keijzer, editor,
Proceedings of the 10th Annual Conference on Genetic
and Evolutionary Computation (GECCO ’08), pages 1735—
1742, Atlanta, GA, USA. ACM.

[26] Alshraideh, M. and Bottaci, L. (2006a). Search-based
Software Test Data Generation for String Data using
Program-Specific Search Operators. Software Testing, Ver-
ification and Reliability, 16(3), 175-203.

[27] Alshraideh, M. and Bottaci, L. (2006b). Using Program
Data-State Diversity in Test Data Search. In Proceedings
of the Ist Testing: Academic & Industrial Conference -
Practice and Research Techniques (TAICPART °06), pages
107-114, Cumberland Lodge, Windsor, UK. IEEE.

[28] Alvarez-Valdes, R., Crespo, E., Tamarit, J. M., and
Villa, F. (2006). A Scatter Search Algorithm for Project
Scheduling under Partially Renewable Resources. Journal
of Heuristics, 12(1-2), 95-113.

[29] Amoui, M., Mirarab, S., Ansari, S., and Lucas, C. (2006).
A Genetic Algorithm Approach to Design Evolution using
Design Pattern Transformation. International Journal of
Information Technology and Intelligent Computing, 1(2),
235-244.

[30] Andreou, A. S., Economides, K. A., and Sofokleous,
A. A. (2007). An Automatic Software Test-Data Gener-
ation Scheme Based on Data Flow Criteria and Genetic
Algorithms. In Proceedings of the 7th IEEE International
Conference on Computer and Information Technology (CIT
'07), pages 867-872, Fukushima, Japan. IEEE Computer
Society.

[31] Antoniol, G. and Di Penta, M. (2003). Library Minia-
turization using Static and Dynamic Information. In Pro-
ceedings of the 19th International Conference on Software
Maintenance (ICSM ’03), pages 235-244, Amsterdam,
Netherlands. IEEE Computer Society.

[32] Antoniol, G., Di Penta, M., and Neteler, M. (2003).
Moving to Smaller Libraries via Clustering and Genetic
Algorithms. In Proceedings of the 7th European Conference
on Software Maintenance and Reengineering (CSMR ’03),
pages 307-316, Benevento, Italy. IEEE.

[33] Antoniol, G., Di Penta, M., and Harman, M. (2004a). A
Robust Search-based Approach to Project Management in
the Presence of Abandonment, Rework, Error and Uncer-
tainty. In Proceedings of the 10th International Symposium
on the Software Metrics (METRICS °04), pages 172-183,
Chicago, USA. IEEE Computer Society.

[34] Antoniol, G., Di Penta, M., and Harman, M. (2004b).
Search-based Techniques for Optimizing Software Project
Resource Allocation. In Proceedings of the 2004 Confer-
ence on Genetic and Evolutionary Computation (GECCO
'04), volume 3103/2004 of Lecture Notes in Computer
Science, pages 1425-1426, Seattle, Washington, USA.
Springer Berlin / Heidelberg.

[35] Antoniol, G., Di Penta, M., and Harman, M. (2005).
Search-based Techniques Applied to Optimization of
Project Planning for a Massive Maintenance Project. In
Proceedings of the 21st IEEE International Conference
on Software Maintenance, pages 240-249, Los Alamitos,

58

California, USA. IEEE Computer Society.

[36] Arcuri, A. (2008). On the Automation of Fixing Software
Bugs. In Proceedings of the Doctoral Symposium of the
IEEE International Conference on Software Engineering
(ICSE °08), pages 1003-1006, Leipzig, Germany. ACM.

[37] Arcuri, A. and Yao, X. (2007a). A Memetic Algorithm
for Test Data Generation of Object-Oriented Software. In
Proceedings of the 2007 IEEE Congress on Evolutionary
Computation (CEC), pages 2048-2055, Singapore. IEEE.

[38] Arcuri, A. and Yao, X. (2007b). Coevolving Programs
and Unit Tests from their Specification. In Proceedings
of the twenty-second IEEE/ACM International Conference
on Automated Software Engineering (ASE ’07), pages 397—
400, Atlanta, Georgia, USA. ACM.

[39] Arcuri, A. and Yao, X. (2007¢). On Test Data Generation
of Object-Oriented Software. In Testing: Academic and
Industrial Conference, Practice and Research Techniques
(TAIC PART), pages 72—76, Cumberland Lodge, Windsor,
UK. IEEE Computer Society.

[40] Arcuri, A. and Yao, X. (2007d). Search Based Testing of
Containers for Object-Oriented Software. Technical Report
CSR-07-3, University of Birmingham.

[41] Arcuri, A. and Yao, X. (2008a). A Novel Co-evolutionary
Approach to Automatic Software Bug Fixing. In Proceed-
ings of the IEEE Congress on Evolutionary Computation
(CEC ’08), pages 162—168, Hongkong, China. IEEE Com-
puter Society.

[42] Arcuri, A. and Yao, X. (2008b). Search Based Soft-
ware Testing of Object-Oriented Containers. Information
Sciences, 178(15), 3075-3095.

[43] Arcuri, A., White, D. R., Clark, J., and Yao, X.
(2008a). Multi-Objective Improvement of Software using
Co-Evolution and Smart Seeding. In Proceedings of the
7th International Conference on Simulated Evolution And
Learning (SEAL °08), pages 61-70, Melbourne, Australia.
Springer.

[44] Arcuri, A., Lehre, P. K., and Yao, X. (2008b). Theoretical
Runtime Analyses of Search Algorithms on the Test Data
Generation for the Triangle Classification Problem. In
Proceedings of the IEEE International Workshop on Search-
Based Software Testing (SBST), pages 161-169, Lilleham-
mer, Norway. IEEE Computer Society.

[45] Aversano, L., Di Penta, M., and Taneja, K. (2006). A
Genetic Programming Approach to Support the Design
Of Service Compositions. Computer Systems Science &
Engineering, 21(4), 247-254.

[46] Ayari, K., Bouktif, S., and Antoniol, G. (2007). Auto-
matic Mutation Test Input Data Generation via Ant Colony.
In Proceedings of the 9th annual Conference on Genetic
and Evolutionary Computation (GECCO ’07), pages 1074—
1081, London, England. ACM.

[47] Bagnall, A. J., Rayward-Smith, V. J., and Whittley, I. M.
(2001). The Next Release Problem. Information and
Software Technology, 43(14), 883-890.

[48] Baker, P., Harman, M., Steinhofel, K., and Skaliotis, A.
(2006). Search Based Approaches to Component Selec-
tion and Prioritization for the Next Release Problem. In
Proceedings of the 22nd IEEE International Conference

on Software Maintenance (ICSM °’06), pages 176-185,
Philadelphia, Pennsylvania. IEEE Computer Society.

[49] Baradhi, G. and Mansour, N. (1997). A Comparative
Study of Five Regression Testing Algorithms. In Proceed-
ings of the Australian Software Engineering Conference
(ASWEC °97), pages 174-182, Sydney, NSW, Australia.
IEEE Computer Society.

[50] Baresel, A. and Sthamer, H. (2003). Evolutionary Testing
of Flag Conditions. In Proceedings of the 2003 Conference
on Genetic and Evolutionary Computation (GECCO ’03),
volume 2724 of LNCS, pages 2442-2454, Chicago, Illinois,
USA. Springer.

[51] Baresel, A., Sthamer, H., and Schmidt, M. (2002). Fitness
Function Design to Improve Evolutionary Structural Test-
ing. In W. B. Langdon, E. Canti-Paz, K. Mathias, R. Roy,
D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph,
J. Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller,
E. Burke, and N. Jonoska, editors, Proceedings of the
2002 Conference on Genetic and Evolutionary Computation
(GECCO °02), pages 1329-1336, New York, USA. Morgan
Kaufmann Publishers.

[52] Baresel, A., Pohlheim, H., and Sadeghipour, S. (2003).
Structural and Functional Sequence Test of Dynamic and
State-based Software with Evolutionary Algorithms. In
Proceedings of the 2003 Conference on Genetic and Evolu-
tionary Computation (GECCO ’03), volume 2724 of LNCS,
pages 2428-2441, Chicago, Illinois, USA. Springer.

[53] Baresel, A., Sthamer, H., and Wegener, J. (2004a). Ap-
plying Evolutionary Testing to Search for Critical Defects.
In Proceedings of the 2004 Conference on Genetic and
Evolutionary Computation (GECCO ’04), volume 3103
of Lecture Notes in Computer Science, pages 1427-1428,
Seattle, Washington, USA. Springer Berlin / Heidelberg.

[54] Baresel, A., Binkley, D., Harman, M., and Korel, B.
(2004b). Evolutionary Testing in the Presence of Loop-
Assigned Flags: A Testability Transformation Approach.
In Proceedings of the 2004 ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA "04),
pages 108—118, Boston, Massachusetts, USA. ACM.

[55] Barlas, G. and El-Fakih, K. (2008). A GA-based Movie-
On-Demand Platform using Multiple Distributed Servers.
Multimedia Tools and Applications, 40(3), 361-383.

[56] Barreto, A., de O. Barros, M., and Werner, C. M. (2008).
Staffing a Software Project: a Constraint Satisfaction and
Optimization-based Approach. Computers & Operations
Research, 35(10), 3073-3089.

[57] Bate, I. and Emberson, P. (2006). Incorporating Sce-
narios And Heuristics To Improve Flexibility In Real-Time
Embedded Systems. In Proceedings of the 12th IEEE Real-
Time And Embedded Technology And Applications Sym-
posium (RTAS °06), pages 221-230, San Jose, California,
USA. IEEE.

[58] Baudry, B., Fleurey, F., Jézéquel, J.-M., and Traon,
Y. L. (2002a). Automatic Test Cases Optimization using
a Bacteriological Adaptation Model: Application to .NET
Components. In Proceedings of the 17th IEEE International
Conference on Automated Software Engineering (ASE °02),
pages 253-256, Edimburgh, UK. IEEE.

59

[59] Baudry, B., Fleurey, F., Jézéquel, J.-M., and Traon, Y. L.
(2002b). Genes and Bacteria for Automatic Test Cases
Optimization in the .NET Environment. In Proceedings of
the 13th International Symposium on Software Reliability
Engineering (ISSRE ’02), pages 195-206, Annapolis, MD,
USA. IEEE Computer Society.

[60] Baudry, B., Fleurey, F., Jézéquel, J.-M., and Traon, Y. L.
(2005a). Automatic Test Cases Optimization: a Bacterio-
logic Algorithm. IEEE Software, 22(2), 76-82.

[61] Baudry, B., Fleurey, F., Jézéquel, J.-M., and Traon, Y. L.
(2005b). From genetic to bacteriological algorithms for
mutation-based testing: Research Articles. Software Testing,
Verification & Reliability, 15(2), 73-96.

[62] Berndt, D. J. and Watkins, A. (2004). Investigating
the Performance of Genetic Algorithm-based Software Test
Case Generation. In Proceedings of the Sth IEEE Interna-
tional Symposium on High Assurance Systems Engineering,
pages 261-262, Tampa, Florida, USA. IEEE Computer
Society.

[63] Berndt, D. J. and Watkins, A. (2005). High Volume
Software Testing using Genetic Algorithms. In Proceedings
of the 38th Hawaii International Conference on System
Sciences, page 318b, Big Island, Hawaii. IEEE Computer
Society.

[64] Berndt, D. J., Fisher, J., Johnson, L., Pinglikar, J., and
Watkins, A. (2003). Breeding Software Test Cases with
Genetic Algorithms. In Proceedings of the 36th Hawaii
International Conference on System Sciences, pages 338—
348, Big Island, Hawaii. IEEE Computer Society.

[65] Beyer, H. G. and Sendhoff, B. (2007). Robustness op-
timization — a comprehensive survey. Computer Methods
in Applied Mechanics and Engineering, 196, 3190-3218.

[66] Bhatia, R. K., Dave, M., and Joshi, R. C. (2008). Ant
Colony based Rule Generation for Reusable Software Com-
ponent Retrieval. In Proceedings of the 1st Conference on
India Software Engineering Conference (ISEC '08), pages
129-130, Hyderabad, India. ACM.

[67] Blanco, R., Tuya, J., Daz, E., and Daz, B. A. (2007). A
Scatter Search Approach for Automated Branch Coverage
in Software Testing. International Journal of Engineering
Intelligent Systems (EIS), 15(3), 135-142.

[68] Bodhuin, T., Di Penta, M., and Troiano, L. (2007a).
A Search-based Approach for Dynamically Re-packaging
Downloadable Applications. In Proceedings of the 2007
Conference of the IBM Center for Advanced Studies on
Collaborative Research, pages 27-41, Richmond Hill, On-
tario, Canada. ACM.

[69] Bodhuin, T., Canfora, G., and Troiano, L. (2007b). SOR-
MASA: A Tool for Suggesting Model Refactoring Actions
by Metrics-Led Genetic Algorithm. In Proceedings of the
1st Workshop on Refactoring Tools (WRT ’07 - in conjunc-
tion with ECOOP’07), pages 23-24, Berlin, Germany. TU
Berlin.

[70] Borgelt, K. (1998). Software Test Data Generation
from a Genetic Algorithm, chapter Chapter 4 (Industrial
Applications of Genetic Algorithms), pages 49-68. CRC
Press.

[71] Bostrom, P. and Bjorkqvist, J. (2005). Optimisation-

based Black-Box Testing of Assertions in Simulink Models.
Technical Report 711, bo Akademi University, Department
of Computer Science, Turku Centre for Computer Science
(TUCS), Turku, Finland.

[72] Bottaci, L. (2002). Instrumenting Programs with Flag
Variables for Test Data Search by Genetic Algorithms.
In W. B. Langdon, E. Cantd-Paz, K. Mathias, R. Roy,
D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph,
J. Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller,
E. Burke, and N. Jonoska, editors, Proceedings of the
2002 Conference on Genetic and Evolutionary Computation
(GECCO °02), pages 1337-1342, New York, USA. Morgan
Kaufmann Publishers.

[73] Bottaci, L. (2003). Predicate Expression Cost Functions
to Guide Evolutionary Search for Test Data. In E. Cant-Paz,
J. A. Foster, K. Deb, D. Davis, R. Roy, U.-M. O’Reilly, H.-
G. Beyer, R. Standish, G. Kendall, S. Wilson, M. Harman,
J. Wegener, D. Dasgupta, M. A. Potter, A. C. Schultz,
K. Dowsland, N. Jonoska, and J. Miller, editors, Proceed-
ings of the 2003 Conference on Genetic and Evolutionary
Computation (GECCO ’03), volume 2724 of LNCS, pages
2455-2464, Chicago, Illinois, USA. Springer.

[74] Bouktif, S., Kégl, B., and Sahraoui, H. (2002). Combin-
ing Software Quality Predictive Models: An Evolutionary
Approach. In Proceedings of the International Conference
on Software Maintenance (ICSM °02), pages 385-392,
Montral, Canada. IEEE Computer Society.

[75] Bouktif, S., Azar, D., Precup, D., Sahraoui, H., and Kégl,
B. (2004). Improving Rule Set Based Software Quality
Prediction: A Genetic Algorithm-based Approach. Journal
of Object Technology, 3(4), 227-241.

[76] Bouktif, S., Antoniol, G., Merlo, E., and Neteler, M.
(2006a). A Novel Approach to Optimize Clone Refactoring
Activity. In Proceedings of the Sth annual Conference
on Genetic and Evolutionary Computation (GECCO ’06),
pages 1885-1892, Seattle, Washington, USA. ACM.

[77] Bouktif, S., Sahraoui, H., and Antoniol, G. (2006Db).
Simulated Annealing for Improving Software Quality Pre-
diction. In Proceedings of the 8th annual Conference
on Genetic and Evolutionary Computation (GECCO ’06),
pages 1893-1900, Seattle, Washington, USA. ACM.

[78] Bowman, M., Briand, L. C., and Labiche, Y. (2008).
Solving the Class Responsibility Assignment Problem in
Object-Oriented Analysis with Multi-Objective Genetic Al-
gorithms. Technical Report SCE-07-02, Carleton Univer-
sity.

[79] Briand, L. C., Feng, J., and Labiche, Y. (2002). Using
Genetic Algorithms and Coupling Measures to Devise
Optimal Integration Test Orders. In Proceedings of the
14th International Conference on Software Engineering and
Knowledge Engineering (SEKE ’02), pages 43-50, Ischia,
Italy. ACM.

[80] Briand, L. C., Labiche, Y., and Shousha, M. (2005).
Stress Testing Real-Time Systems with Genetic Algorithms.
In Proceedings of the 2005 Conference on Genetic and
Evolutionary Computation (GECCO °05), pages 1021-
1028, Washington, D.C., USA. ACM.

[81] Briand, L. C., Labiche, Y., and Shousha, M. (2006).

60

Using Genetic Algorithms for Early Schedulability Anal-
ysis and Stress Testing in Real-Time Systems. Genetic
Programming and Evolvable Machines, 7(2), 145-170.

[82] Bryce, R. C. and Colbourn, C. J. (2005). Constructing
Interaction Test Suites with Greedy Algorithms. In D. F.
Redmiles, T. Ellman, and A. Zisman, editors, Proceedings
of the 20th IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE ’05), pages 440443,
Long Beach, CA, USA. ACM.

[83] Bryce, R. C. and Colbourn, C. J. (2007a). One-Test-
at-a-Time Heuristic Search for Interaction Test Suites. In
Proceedings of the 9th annual Conference on Genetic
and Evolutionary Computation (GECCO ’07), pages 1082—
1089, London, England. ACM.

[84] Bryce, R. C. and Colbourn, C. J. (2007b). The Den-
sity Algorithm for Pairwise Interaction Testing. Software
Testing, Verification and Reliability, 17(3), 159-182.

[85] Bryce, R. C., Colbourn, C. J., and Cohen, M. B. (2005).
A Framework of Greedy Methods for Constructing Inter-
action Test Suites. In G.-C. Roman, W. G. Griswold, and
B. Nuseibeh, editors, Proceedings of the 27th International
Conference on Software Engineering (ICSE ’05), pages
146-155, St. Louis, MO, USA. ACM.

[86] Bueno, P. M. S. and Jino, M. (2000). Identification
of Potentially Infeasible Program Paths by Monitoring the
Search for Test Data. In Proceedings of the 15th IEEE
international conference on Automated software engineer-
ing (ASE ’00), pages 209-218, Grenoble, France. IEEE
Computer Society.

[87] Bueno, P. M. S. and Jino, M. (2001). Automatic Test
Data Generation for Program Paths Using Genetic Algo-
rithms. In Proceedings of the 13th International Conference
on Software Engineering & Knowledge Engineering (SEKE
'01), pages 2-9, Buenos Aires, Argentina.

[88] Bueno, P. M. S. and Jino, M. (2002). Automatic Test
Data Generation for Program Paths using Genetic Algo-
rithms. International Journal of Software Engineering and
Knowledge Engineering (IJSEKE), 12(6), 691-709.

[89] Bueno, P. M. S., Wong, W. E., and Jino, M. (2007).
Improving Random Test Sets using the Diversity Oriented
Test Data Generation. In Proceedings of the 2nd Interna-
tional Workshop on Random Testing, pages 10-17, Atlanta,
Georgia, USA. ACM.

[90] Bueno, P. M. S., Wong, W. E., and Jino, M. (2008).
Automatic Test Data Generation using Particle Systems.
In Proceedings of the 2008 ACM Symposium on Applied
Computing, pages 809-814, Fortaleza, Ceara, Brazil. ACM.

[91] Biihler, O. and Wegener, J. (2008). Evolutionary Func-
tional Testing. Computers & Operations Research, 35(10),
3144-3160.

[92] Burgess, C. J. and Lefley, M. (2001). Can Genetic
Programming Improve Software Effort Estimation? A Com-
parative Evaluation. Information & Software Technology,
43(14), 863-873.

[93] Burke, E. and Kendall, G. (2005). Search Methodologies.
Introductory tutorials in optimization and decision support
techniques. Springer.

[94] Canfora, G., Di Penta, M., Esposito, R., and Villani,

M. L. (2004). A Lightweight Approach for QoS-Aware
Service Composition. In Proceedings of the 2nd Interna-
tional Conference on Service Oriented Computing (ICSOC
'04), New York, USA. ACM.

[95] Canfora, G., Di Penta, M., Esposito, R., and Villani,
M. L. (2005a). An Approach for QoS-aware Service
Composition based on Genetic Algorithms. In H.-G.
Beyer and U.-M. O’Reilly, editors, Proceedings of the
2005 Conference on Genetic and Evolutionary Computation
(GECCO °05), pages 1069—1075, Washington, D.C., USA.
ACM.

[96] Canfora, G., Di Penta, M., Esposito, R., and Villani,
M. L. (2005b). QoS-Aware Replanning of Composite
Web Services. In Proceedings of 2005 IEEE International
Conference on Web Services (ICWS ’05), pages 121-129,
Orlando, FL, USA. IEEE Computer Society.

[97] Cao, L., Li, M., and Cao, J. (2005a). Cost-Driven Web
Service Selection Using Genetic Algorithm. In Proceedings
of the Ist International Workshop on Internet and Network
Economics (WINE °05), pages 906-915, Hong Kong, China.
Springer.

[98] Cao, L., Cao, J., and Li, M. (2005b). Genetic Algorithm
Utilized in Cost-Reduction Driven Web Service Selection.
In Proceedings of the International Conference on Compu-
tational Intelligence and Security (CIS "05), pages 679-686,
Xi’an, China. Springer.

[99] Chan, B., Denzinger, J., Gates, D., Loose, K., and
Buchanan, J. (2004). Evolutionary Behavior Testing of
Commercial Computer Games. In Proceedings of the 2004
Congress on Evolutionary Computation, volume 1, pages
125-132, Portland, Oregon. IEEE.

[100] Chang, C. K. (1994). Changing Face of Software
Engineering. IEEE Software, 11(1), 4-5.

[101] Chang, C. K., Chao, C., Hsieh, S.-Y., and Alsalgan,
Y. (1994). SPMNet: a Formal Methodology for Software
Management. In Proceedings of the 18th Annual Inter-
national Computer Software and Applications Conference
(COMPSAC °94), pages 57-57, Taipei, Taiwan. IEEE.

[102] Chang, C. K., Chao, C., Nguyen, T. T., and Christensen,
M. (1998). Software Project Management Net: a new
Methodology on Software Management. In Proceedings
of the 22nd Annual International Computer Software and
Applications Conference (COMPSAC ’98), pages 534-539,
Vienna, Austria. [IEEE Computer Science.

[103] Chang, C. K., Christensen, M. J., and Zhang, T. (2001).
Genetic Algorithms for Project Management. Annals of
Software Engineering, 11(1), 107-139.

[104] Chang, C. K., yi Jiang, H., Di, Y., Zhu, D., and Ge,
Y. (2008). Time-Line based Model for Software Project
Scheduling with Genetic Algorithms. Information and
Software Technology, 50(11), 1142-1154.

[105] Chao, C., Komada, J., Liu, Q., Muteja, M., Alsalgan,
Y., and Chang, C. (1993). An Application of Genetic Al-
gorithms to Software Project Management. In Proceedings
of the 9th International Advanced Science and Technology,
pages 247-252, Chicago, Illinois, USA.

[106] Chardigny, S., Seriai, A., Tamzalit, D., and Oussalah,
M. (2008a). Quality-Driven Extraction of a Component-

61

based Architecture from an Object-Oriented System. In
Proceedings of the 12th European Conference on Software
Maintenance and Reengineering (CSMR '08), pages 269—
273, Athens, Greece. IEEE Computer Society.

[107] Chardigny, S., Seriai, A., Oussalah, M., and Tamzalit,
D. (2008b). Search-based Extraction of Component-Based
Architecture from Object-Oriented Systems. In Proceedings
of the 2nd European conference on Software Architecture,
volume 5292 of LNCS, pages 322-325, Paphos, Cyprus.
Springer.

[108] Chen, Y. and Zhong, Y. (2008). Automatic Path-
Oriented Test Data Generation Using a Multi-population
Genetic Algorithm. In Proceedings of the 4th International
Conference on Natural Computation (ICNC ’08), pages
565-570, Jinan, China. IEEE.

[109] Cheng, B. and Atlee, J. (2007). From state of the art to
the future of requirements engineering. In L. Briand and
A. Wolf, editors, Future of Software Engineering 2007, Los
Alamitos, California, USA. IEEE Computer Society Press.
This volume.

[110] Cheon, Y. and Kim, M. (2006). A Specification-
based Fitness Function for Evolutionary Testing of Object-
oriented Programs. In Proceedings of the 8th annual
Conference on Genetic and Evolutionary Computation
(GECCO °06), pages 1953-1954, Seattle, Washington,
USA. ACM.

[111] Chicano, F. and Alba, E. (2008a). Ant Colony Optimiza-
tion with Partial Order Reduction for Discovering Safety
Property Violations in Concurrent Models. Information
Processing Letters, 106(6), 221-231.

[112] Chicano, F. and Alba, E. (2008b). Finding Liveness
Errors with ACO. 1In Proceedings of the IEEE World
Congress on Computational Intelligence (WCCI *08), pages
3002-3009, Hong Kong, China. IEEE Computer Society.

[113] Chicano, F. and Alba, E. (2008c). Searching for
Liveness Property Violations in Concurrent Systems with
ACO. In M. Keijzer, editor, Proceedings of the 10th An-
nual Conference on Genetic and Evolutionary Computation
(GECCO °08), pages 1727-1734, Atlanta, GA, USA. ACM.

[114] Clark, J. A. (2003). Nature-Inspired Cryptography:
Past, Present and Future. In R. Sarker, R. Reynolds,
H. Abbass, K. C. Tan, B. McKay, D. Essam, and T. Gedeon,
editors, Proceedings of the 2003 Congress on Evolutionary
Computation (CEC 2003), volume 3, pages 1647-1654,
Canberra, Australia. IEEE.

[115] Clark, J. A. and Jacob, J. L. (2000). Searching for
a Solution: Engineering Tradeoffs and the Evolution of
Provably Secure Protocols. In Proceedings of the 2000
IEEE Symposium on Security and Privacy, pages 82-95,
Berkeley, California, USA. IEEE Computer Society.

[116] Clark, J. A. and Jacob, J. L. (2001). Protocols are
Programs too: the Meta-Heuristic Search for Security Proto-
cols. Information & Software Technology, 43(14), 891-904.

[117] Clarke, J., Harman, M., Hierons, R. M., Jones, B.,
Lumkin, M., Rees, K., Roper, M., and Shepperd, M. J.
(2000). The Application of Metaheuristic Search Tech-
niques to Problems in Software Engineering. Technical
Report TR-01-2000, University of York, Brunel University,

University of Glamorgan, British Telecom, Strathclyde Uni-
versity, Bournemouth University.

[118] Clarke, J., Dolado, J. J., Harman, M., Hierons, R. M.,
Jones, B., Lumkin, M., Mitchell, B., Mancoridis, S., Rees,
K., Roper, M., and Shepperd, M. J. (2003). Reformulating
Software Engineering as A Search Problem. IEE Proceed-
ings - Software, 150(3), 161-175.

[119] Coffman, E. J., Garey, M., and Johnson, D. (1984).
Approximation algorithms for bin-packing. In Algorithm
Design for Computer System Design.

[120] Cohen, M., Kooi, S. B., and Srisa-an, W. (2006).
Clustering the Heap in Multi-Threaded Applications for
Improved Garbage Collection. In Proceedings of the 8th
annual Conference on Genetic and Evolutionary Computa-
tion (GECCO ’06), pages 1901-1908, Seattle, Washington,
USA. ACM.

[121] Cohen, M. B., Colbourn, C. J., and Ling, A. C. H.
(2003a). Augmenting Simulated Annealing to Build In-
teraction Test Suites. In Proceedings of the 14th Inter-
national Symposium on Software Reliability Engineering,
pages 394405, Denver, Colorado, USA. IEEE.

[122] Cohen, M. B., Gibbons, P. B., Mugridge, W. B., and
Colbourn, C. J. (2003b). Constructing Test Suites for
Interaction Testing. In Proceedings of the 25th International
Conference on Software Engineering (ICSE ’03), pages 38—
48, Portland, Oregon. IEEE Computer Society.

[123] Cohen, M. B., Dwyer, M. B., and Shi, J. (2007).
Interaction Testing of Highly-Configurable Systems in the
Presence of Constraints. In Proceedings of the 2007
International Symposium on Software Testing and Analysis
(ISSTA °07), pages 129-139, London, United Kingdom.
ACM.

[124] Cohen, M. B., Dwyer, M. B., and Shi, J. (2008). Con-
structing Interaction Test Suites for Highly-Configurable
Systems in the Presence of Constraints: A Greedy Ap-
proach. IEEE Transactions on Software Engineering, 34(5),
633-650.

[125] Cooper, K. D., Schielke, P. J., and Subramanian, D.
(1999). Optimizing for Reduced Code Space using Genetic
Algorithms. In Proceedings of the ACM Sigplan 1999 Work-
shop on Languages, Compilers and Tools for Embedded
Systems (LCTES '99), ACM Sigplan Notices, pages 1-9,
Atlanta, Georgia, United States. ACM.

[126] Cornford, S. L., Dunphy, J., and Feather, M. S. (2002).
Optimizing the Design of end-to-end Spacecraft Systems
using Risk as a Currency. In Proceedings of the IEEE
Aerospace Conference, pages 3361-3367, Big Sky, MT,
USA. IEEE Computer Society.

[127] Cornford, S. L., Feather, M. S., Dunphy, J. R., Salcedo,
J., and Menzies, T. (2003). Optimizing Spacecraft Design
- Optimization Engine Development: Progress and Plans.
In Proceedings of the IEEE Aerospace Conference, pages
3681-3690, Big Sky, Montana.

[128] Cortellessa, V., Marinelli, F., and Potena, P. (2008a). An
Optimization Framework for "Build-Or-Buy” Decisions in
Software Architecture. Computers & Operations Research,
35(10), 3090-3106.

[129] Cortellessa, V., Crnkovic, 1., Marinelli, F., and Potena, P.

62

(2008b). Experimenting the Automated Selection of COTS
Components Based on Cost and System Requirements.
Journal of Universal Computer Science, 14(8), 1228-1255.

[130] Cowan, G. S., Reynolds, R. G., and Cowan, G. J.
(2004). Acquisition of Software Engineering Knowledge
SWEEP: An Automatic Programming System Based on Ge-
netic Programming and Cultural Algorithms, volume 14 of
Software Engineering and Knowledge Engineering. World
Scientific.

[131] Davies, E., McMaster, J., and Stark, M. (1994). The
Use of Genetic Algorithms for Flight Test and Evaluation
of Artificial Intelligence and Complex Software Systems.
Technical Report AD-A284824, Naval Air Warfare Center,
Patuxent River.

[132] de Abreu, B. T., Martins, E., and de Sousa, F. L.
(2007). Generalized Extremal Optimization: An Attractive
Alternative for Test Data Generation. In Proceedings of
the 9th annual Conference on Genetic and Evolutionary
Computation (GECCO °07), pages 1138-1138, London,
England. ACM.

[133] Del Grosso, C., Antoniol, G., Di Penta, M., Galinier,
P., and Merlo, E. (2005). Improving Network Applications
Security: A New Heuristic to Generate Stress Testing Data.
In Proceedings of the 2005 Conference on Genetic and
Evolutionary Computation (GECCO °05), pages 1037-
1043, Washington, D.C., USA. ACM.

[134] Del Grosso, C., Antoniol, G., Merlo, E., and Galin-
ier, P. (2008). Detecting Buffer Overflow via Automatic
Test Input Data Generation. Computers and Operations
Research (COR) focused issue on Search Based Software
Engineeering, 35(10), 3125-3143.

[135] Del Rosso, C. (2006). Reducing Internal Fragmentation
in Segregated Free Lists using Genetic Algorithms. In
Proceedings of the 2006 International workshop on Work-
shop on Interdisciplinary Software Engineering Research
(WISER °06), pages 57-60, Shanghai, China. ACM.

[136] Derderian, K., Hierons, R. M., Harman, M., and Guo, Q.
(2005). Generating Feasible Input Sequences for Extended
Finite State Machines (EFSMs) using Genetic Algorithms.
In Proceedings of the 2005 Conference on Genetic and
Evolutionary Computation (GECCO °05), pages 1081 —
1082, Washington, D.C., USA. ACM.

[137] Derderian, K., Hierons, R., Harman, M., and Guo, Q.
(2006). Automated Unique Input Output Sequence Gen-
eration for Conformance Testing of FSMs. The Computer
Journal, 49(3), 331-344.

[138] Derderian, K. A. (2006). Automated Test Sequence Gen-
eration for Finite State Machines using Genetic Algorithms.
Ph.D. thesis, School of Information Systems, Computing
and Mathematics, Brunel University.

[139] Desnos, N., Huchard, M., Tremblay, G., Urtado, C., and
Vauttier, S. (2008). Search-based Many-to-One Component
Substitution. Journal of Software Maintenance and Evolu-
tion: Research and Practice (Special Issue Search Based
Software Engineering), 20(5), 321-344.

[140] Di Penta, M. (2005). Evolution Doctor: A Framework
to Control Software System Evolution. In Proceedings of
the 9th European Conference on Software Maintenance and

Reengineering (CSMR 05), pages 280-283, Manchester,
UK. IEEE Computer Society.

[141] Di Penta, M. and Taneja, K. (2005). Towards the Auto-
matic Evolution of Reengineering Tools. In Proceedings of
the 9th European Conference on Software Maintenance and
Reengineering (CSMR °05),, pages 241-244, Manchester,
UK. IEEE Computer Society.

[142] Di Penta, M., Neteler, M., Antoniol, G., and Merlo,
E. (2005). A Language-Independent Software Renovation
Framework. Journal of Systems and Software, 77(3), 225—
240.

[143] Di Penta, M., Canfora, G., Esposito, G., Mazza, V., and
Bruno, M. (2007). Search-based Testing of Service Level
Agreements. In Proceedings of the 9th annual Conference
on Genetic and Evolutionary Computation (GECCO ’07),
pages 1090-1097, London, England. ACM.

[144] Di Penta, M., Lombardi, P., Taneja, K., and Troiano, L.
(2008). Search-based Inference of Dialect Grammars. Soft
Computing - A Fusion of Foundations, Methodologies and
Applications, 12(1), 51-66.

[145] Diaz, E., Tuya, J., and Blanco, R. (2003). Automated
Software Testing using a Metaheuristic Technique based on
Tabu Search. In Proceedings of the 18th IEEE International
Conference on Automated Software Engineering (ASE "03),
pages 310-313, Montreal, Canada. IEEE.

[146] Diaz, E., Tuya, J., Blanco, R., and Dolado, J. J. (2008).
A Tabu Search Algorithm for Structural Software Testing.
Computers & Operations Research, 35(10), 3052-3072.

[147] Dillon, E. (2005). Hybrid Approach for the Automatic
Determination of Worst Case Execution Time for Embedded
Systems Written in C. Master’s thesis, Institute of Technol-
ogy, Carlow.

[148] Dolado, J. J. (2000). A Validation of the Component-
based Method for Software Size Estimation. IEEE Trans-
actions on Software Engineering, 26(10), 1006-1021.

[149] Dolado, J. J. (2001). On the Problem of the Software
Cost Function. Information and Software Technology,
43(1), 61-72.

[150] Dolado, J. J. and Fernandez, L. (1998). Genetic
Programming, Neural Networks and Linear Regression in
Software Project Estimation. In C. Hawkins, M. Ross,
G. Staples, and J. B. Thompson, editors, Proceedings of In-
ternational Conference on Software Process Improvement,
Research, Education and Training (INSPIRE III), pages
157-171, London, UK. British Computer Society.

[151] Dorigo, M. and Blum, C. (2005). Ant colony opti-
mization theory: A survey. Theoretical Computer Science,
344(2-3), 243-278.

[152] Doval, D., Mancoridis, S., and Mitchell, B. S. (1999).
Automatic Clustering of Software Systems using a Genetic
Algorithm. In Proceedings of International Conference on
Software Tools and Engineering Practice (STEP °99), pages
73-81, Pittsburgh, PA. IEEE.

[153] Dozier, G., Brown, D., Hurley, J., and Cain, K. (2004).
Vulnerability Analysis of Immunity-based Intrusion Detec-
tion Systems using Evolutionary Hackers. In Proceedings
of the 2004 Conference on Genetic and Evolutionary Com-
putation (GECCO ’'04), volume 3102 of Lecture Notes in

63

Computer Science, pages 263-274, Seattle, Washington,
USA. Springer Berlin / Heidelberg.

[154] Dozier, G., Brown, D., Hou, H., and Hurley, J. (2007).
Vulnerability Analysis of Immunity-based Intrusion Detec-
tion Systems using Evolutionary Hackers. Applied Soft
Computing, 7(2), 547-553.

[155] El-Fakih, K., Yamaguchi, H., and v. Bochmann, G.
(1999). A Method and a Genetic Algorithm for Deriving
Protocols for Distributed Applications with Minimum Com-
munication Cost. In Proceedings of the 11th International
Conference on Parallel and Distributed Computing and
Systems (PDCS ’99), Boston, USA.

[156] Emberson, P. and Bate, 1. (2007). Minimising Task
Migration and Priority Changes In Mode Transitions. In
Proceedings of the 13th IEEE Real-Time And Embedded
Technology And Applications Symposium (RTAS °07), pages
158-167, Bellevue, Washington, USA. IEEE Computer
Society.

[157] Emer, M. C. F. P. and Vergilio, S. R. (2002). GPTesT:
A Testing Tool Based On Genetic Programming. In W. B.
Langdon, E. Cantd-Paz, K. Mathias, R. Roy, D. Davis,
R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J. We-
gener, L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller,
E. Burke, and N. Jonoska, editors, Proceedings of the
2002 Conference on Genetic and Evolutionary Computation
(GECCO °02), pages 1343—-1350, New York, USA. Morgan
Kaufmann Publishers.

[158] Emer, M. C. E. P. and Vergilio, S. R. (2003). Selection
and Evaluation of Test Data Based on Genetic Program-
ming. Software Quality Journal, 11(2), 167-186.

[159] Ernst, M. D. (2000). Dynamically Discovering Likely
Program Invariants. PhD Thesis, University of Washington.

[160] Ernst, M. D., Cockrell, J., Griswold, W. G., and Notkin,
D. (2001). Dynamically discovering likely program invari-
ants to support program evolution. IEEE Transactions on
Software Engineering, 27(2), 1-25.

[161] Everson, R. M. and Fieldsend, J. E. (2006). Multiob-
jective Optimization of Safety Related Systems: An Appli-
cation to Short-Term Conflict Alert. IEEE Transactions on
Evolutionary Computation, 10(2), 187-198.

[162] Evett, M. P., Khoshgoftaar, T. M., der Chien, P., and
Allen, E. B. (1999). Using Genetic Programming to
Determine Software Quality. In Proceedings of the 12th
International Florida Artificial Intelligence Research Soci-
ety Conference (FLAIRS ’99), pages 113—117, Orlando, FL,
USA. Florida Research Society.

[163] Fatiregun, D., Harman, M., and Hierons, R. (2003).
Search Based Transformations. In Proceedings of the
2003 Conference on Genetic and Evolutionary Computation
(GECCO °03), volume 2724 of LNCS, pages 2511-2512,
Chicago, Illinois, USA. Springer.

[164] Fatiregun, D., Harman, M., and Hierons, R. M. (2004).
Evolving Transformation Sequences using Genetic Algo-
rithms. In Proceedings of the Source Code Analysis and
Manipulation, Fourth IEEE International Workshop, pages
65-74, Chicago, Illinois, USA. IEEE Computer Society.

[165] Fatiregun, D., Harman, M., and Hierons, R. (2005).
Search-based Amorphous Slicing. In Proceedings of the

12th International Working Conference on Reverse Engi-
neering (WCRE ’05), pages 3—12, Carnegie Mellon Uni-
versity, Pittsburgh, Pennsylvania, USA. IEEE Computer
Society.

[166] Feather, M. S. and Menzies, T. (2002). Converging on
the Optimal Attainment of Requirements. In Proceedings
of the 10th IEEE International Conference on Requirements
Engineering (RE ’02), pages 263-270, Essen, Germany.
IEEE.

[167] Feather, M. S., Kiper, J. D., and Kalafat, S. (2004).
Combining Heuristic Search, Visualization and Data Min-
ing for Exploration of System Design Space. In The Inter-
national Council on Systems Engineering (INCOSE ’04) -
Proceedings of the 14th Annual International Symposium,
Toulouse, France.

[168] Feather, M. S., Cornford, S. L., Kiper, J. D., and Men-
zies, T. (2006). Experiences using Visualization Techniques
to Present Requirements, Risks to Them, and Options
for Risk Mitigation. In Proceedings of the International
Workshop on Requirements Engineering Visualization (REV
’06), pages 10-10, Minnesota, USA. IEEE.

[169] Feldt, R. (1998a). An Experiment on using Genetic
Programming to Develop Multiple Diverse Software Vari-
ants. Technical Report 98-13, Chalmers University of
Technology, Gothenburg, Sweden.

[170] Feldt, R. (1998b). Forcing Software Diversity by
Making Diverse Design Decisions - an Experimental In-
vestigation. Technical Report 98-46, Chalmers University
of Technology, Gothenburg, Sweden.

[171] Feldt, R. (1998c). Generating Multiple Diverse Soft-
ware Versions with Genetic Programming. In Proceedings
of the 24th EUROMICRO Conference (EUROMICRO ’98),
volume 1, pages 387-394, Vesteras, Sweden. IEEE Com-
puter Society.

[172] Feldt, R. (1998d). Generating Multiple Diverse Soft-
ware Versions with Genetic Programming - an Experimen-
tal Study. IEE Proceedings - Software Engineering, 145(6),
228-236.

[173] Feldt, R. (1998e). Using Genetic Programming to
Systematically Force Software Diversity. Technical Report
296L, Department of Computer Engineering, Chalmers
University of Technology, Goteborg, Sweden.

[174] Feldt, R. (1999). Genetic Programming as an Explo-
rative Tool in Early Software Development Phases. In
C. Ryan and J. Buckley, editors, Proceedings of the Ist
International Workshop on Soft Computing Applied to Soft-
ware Engineering, pages 11-20, University of Limerick,
Ireland. Limerick University Press.

[175] Feldt, R. (2002). An Interactive Software Development
Workbench based on Biomimetic Algorithms. Technical
Report 02-16, Chalmers University of Technology, Gothen-
burg, Sweden.

[176] Feldt, R., Torkar, R., Gorschek, T., and Afzal, W.
(2008). Searching for Cognitively Diverse Tests: Test
Variability and Test Diversity Metrics. In Proceedings of 1st
International Workshop on Search-Based Software Testing
(SBST) in conjunction with ICST 2008, pages 178-186,
Lillehammer, Norway. IEEE Computer Society.

64

[177] Ferguson, R. and Korel, B. (1995). Software Test Data
Generation Using the Chaining Approach. In Proceedings
of the IEEE International Test Conference on Driving Down
the Cost of Test, pages 703—709. IEEE Computer Society.

[178] Ferguson, R. and Korel, B. (1996). The Chaining Ap-
proach for Software Test Data Generation. ACM Transac-
tions on Software Engineering and Methodology (TOSEM),
5(1), 63-86.

[179] Ferreira, L. P. and Vergilio, S. R. (2004). TDSGen:
An Environment Based on Hybrid Genetic Algorithms
for Generation of Test Data. In Proceedings of the
2004 Conference on Genetic and Evolutionary Computation
(GECCO °’04), volume 3103/2004 of Lecture Notes in
Computer Science, pages 1431-1432, Seattle, Washington,
USA. Springer Berlin / Heidelberg.

[180] Ferreira, M., Chicano, F., Alba, E., and Gémez-Pulido,
J. A. (2008). Detecting Protocol Errors using Particle
Swarm Optimization with Java Pathfinder. In W. W. Smari,
editor, Proceedings of the High Performance Computing
& Simulation Conference (HPCS ’08), pages 319-325,
Nicosia, Cyprus.

[181] Finkelstein, A., Harman, M., Mansouri, S. A., Ren, J.,
and Zhang, Y. (2008). “Fairness Analysis” in Require-
ments Assignments. In Proceedings of the 16th IEEE
International Requirements Engineering Conference (RE
'08), pages 115-124, Barcelona, Catalunya, Spain. IEEE
Computer Society.

[182] Fischer, K. (1977). A Test Case Selection Method
for the Validation of Software Maintenance Modifications.
In Proceedings of International Computer Software and
Applications Conference (COMPSAC ’77), pages 421-426,
Chicago, USA.

[183] Fischer, K. F., Raji, F,, and Chruscicki, A. (1981). A
Methodology for Retesting Modified Software. In Proceed-
ings of the National Telecommunications Conference (NTC
’81), pages 1-6, New Orleans, LA, USA.

[184] Funes, P., Bonabeau, E., Herve, J., and Morieux, Y.
(2004). Interactive multi-participant task allocation. In
Proceedings of the 2004 IEEE Congress on Evolutionary
Computation, pages 1699-1705, Portland, Oregon. IEEE
Press.

[185] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1995). Design Patterns. Addison-Wesley.

[186] Garousi, V. (2006). Traffic-aware Stress Testing of
Distributed Real-Time Systems based on UML Models using
Genetic Algorithms. Ph.D. thesis, Department of Systems
and Computer Engineering, Carleton University.

[187] Garousi, V. (2008). Empirical Analysis of a Genetic
Algorithm-based Stress Test Technique. In M. Keijzer, ed-
itor, Proceedings of the 10th Annual Conference on Genetic
and Evolutionary Computation (GECCO ’08), pages 1743—
1750, Atlanta, GA, USA. ACM.

[188] Garousi, V., Briand, L. C., and Labiche, Y. (20006).
Traffic-aware Stress Testing of Distributed Real-Time Sys-
tems Based on UML Models using Genetic Algorithms.
Technical Report TR SCE-06-09, Department of Sys-
tems and Computer Engineering, Carleton University, 1125
Colonel By Drive, Ottawa, ON K1S5B6, Canada.

[189] Garousi, V., Briand, L. C., and Labiche, Y. (2008).
Traffic-aware Stress Testing of Distributed Real-Time Sys-
tems based on UML Models using Genetic Algorithms.
Journal of Systems and Software, 81(2), 161-185.

[190] Ghani, K. and Clark, J. A. (2008). Strengthening
Inferred Specification using Search Based Testing. In
Proceedings of 1st International Workshop on Search-Based
Software Testing (SBST) in conjunction with ICST 2008,
pages 187-194, Lillehammer, Norway. IEEE.

[191] Ghazi, S. and Ahmed, M. A. (2003). Pair-wise Test
Coverage using Genetic Algorithms. In Proceedings of the
IEEE Congress on Evolutionary Computation (CEC '03),
pages 1420-1424, Canberra, Australia. IEEE.

[192] Ghiduk, A. S., Harrold, M. J., and Girgis, M. R. (2007).
Using Genetic Algorithms to Aid Test-Data Generation for
Data-Flow Coverage. In Proceedings of the 14th Asia-
Pacific Software Engineering Conference (APSEC ’07),
pages 41-48, Nagoya, Japan. IEEE.

[193] Girgis, M. R. (2005). Automatic Test Data Generation
for Data Flow Testing using a Genetic Algorithm. Journal
of Universal Computer Science, 11(6), 898-915.

[194] Godefroid, P. (1997). Model Checking for Programming
Languages using Verisoft. In Proceedings of the 24th ACM
SIGPLAN-SIGACT symposium on Principles of Program-
ming Languages, pages 174—186, Paris, France. ACM.

[195] Gold, N., Harman, M., Li, Z., and Mahdavi, K. (2006).
Allowing Overlapping Boundaries in Source Code us-
ing a Search Based Approach to Concept Binding. In
Proceedings of the 22nd IEEE International Conference
on Software Maintenance (ICSM ’06), pages 310-319,
Philadelphia, USA. IEEE Computer Society.

[196] Goldsby, H. J. and Cheng, B. H. (2008a). Automatically
Generating Behavioral Models of Adaptive Systems to Ad-
dress Uncertainty. In Proceedings of the 11th International
conference on Model Driven Engineering Languages and
Systems (MoDELS ’08), pages 568-583, Toulouse, France.
Springer.

[197] Goldsby, H. J. and Cheng, B. H. (2008b). Avida-
MDE: a digital evolution approach to generating models
of adaptive software behavior. In M. Keijzer, editor,
Proceedings of the 10th Annual Conference on Genetic
and Evolutionary Computation (GECCO ’08), pages 1751—
1758, Atlanta, GA, USA. ACM.

[198] Goldsby, H. J., Cheng, B. H., McKinley, P. K., Knoester,
D. B., and Ofria, C. A. (2008). Digital Evolution of Behav-
ioral Models for Autonomic Systems. In Proceedings of the
2008 International Conference on Autonomic Computing,
pages 87-96, Chicago, IL, USA. IEEE Computer Society.

[199] Gotlieb, A., Lazaar, N., and Lebbah, Y. (2008). Towards
Constraint-based Local Search for Automatic Test Data
Generation. In Proceedings of 1st International Workshop
on Search-Based Software Testing (SBST) in conjunction
with ICST 2008, pages 195-195, Lillehammer, Norway.
IEEE.

[200] Greer, D. and Ruhe, G. (2004). Software Release Plan-
ning: An Evolutionary and Iterative Approach. Information
& Software Technology, 46(4), 243-253.

[201] GroB, H.-G. (2000). Measuring Evolutionary Testability

65

of Real-Time Software. Ph.D. thesis, University of Glam-
organ.

[202] GroB, H.-G. (2001). A Prediction System for Evo-
lutionary Testability applied to Dynamic Execution Time
Analysis. Information & Software Technology, 43(14), 855—
862.

[203] GroB, H.-G. and Mayer, N. (2002). Evolutionary Testing
in Component-based Real-Time System Construction. In
E. Cantu-Paz, editor, Proceedings of the 2002 Conference
on Genetic and Evolutionary Computation (GECCO ’02),
pages 207-214, New York, USA. Morgan Kaufmann Pub-
lishers.

[204] GroB, H.-G. and Mayer, N. (2003). Search-
based Execution-Time Verification in Object-Oriented and
Component-Based Real-Time System Development. In
Proceedings of the Sth IEEE International Workshop on
Object-Oriented Real-Time Dependable Systems (WORDS
'03), pages 113-120, Guadalajara, Mexico. IEEE Computer
Society.

[205] GroB, H.-G., Jones, B. F., and Eyres, D. E. (2000).
Structural Performance Measure of Evolutionary Testing
applied to Worst-Case Timing of Real-Time Systems. IEE
Proceedings - Software, 147(2), 25-30.

[206] Guo, Q. (2006). Improving Fault Coverage and Min-
imising the Cost of Fault Ildentification When Testing from
Finite State Machines. Ph.D. thesis, School of Information
Systems, Computing and Mathematics, Brunel University.

[207] Guo, Q., Harman, M., Hierons, R., and Derderian,
K. (2003). Computing Unique Input/Output Sequences
using Genetic Algorithms. In Proceedings of the 3rd
International Workshop on Formal Approaches to Testing
of Software (FATES ’03), volume 2931, pages 164-177,
Montreal, Quebec, Canada. Springer.

[208] Guo, Q., Hierons, R. M., Harman, M., and Derderian,
K. (2005). Constructing Multiple Unique Input/Output
Sequences using Evolutionary Optimisation Techniques.
IEE Proceedings - Software, 152(3), 127-140.

[209] Guo, Q., Hierons, R. M., Harman, M., and Derderian,
K. (2007). Heuristics for Fault Diagnosis when Testing
from Finite State Machines. Software Testing, Verification
& Reliability, 17(1), 41-57.

[210] Gupta, N. K. and Rohil, M. K. (2008). Using Genetic
Algorithm for Unit Testing of Object Oriented Software.
In Proceedings of the Ist International Conference on
Emerging Trends in Engineering and Technology (ICETET
"08), pages 308-313, Nagpur, India. IEEE.

[211] Haas, J., Peysakhov, M., and Mancoridis, S. (2005).
GA-based Parameter Tuning for Multi-Agent Systems. In
Proceedings of the 2005 Conference on Genetic and Evo-
lutionary Computation (GECCO ’05), pages 1085-1086,
Washington, D.C., USA. ACM.

[212] Hanh, V. L., Akif, K., Traon, Y. L., and Jézéque, J.-M.
(2001). Selecting an Efficient OO Integration Testing Strat-
egy: An Experimental Comparison of Actual Strategies. In
Proceedings of the 15th European Conference on Object-
Oriented Programming (ECOOP 2001), volume 2072/2001,
pages 381401, Budapest, Hungary. Springer.

[213] Harman, M. (2006). Search-based Software Engineer-

ing for Maintenance and Reengineering. In Proceedings
of the 10th European Conference on Software Maintenance
and Reengineering (CSMR ’06), page 311, Bari, Italy. IEEE
Computer Society.

[214] Harman, M. (2007a). Search Based Software Engineer-
ing for Program Comprehension. In Proceedings of the 15th
IEEE International Conference on Program Comprehension
(ICPC ’07), pages 3—13, Banff, Alberta, Canada. IEEE.

[215] Harman, M. (2007b). The Current State and Future
of Search Based Software Engineering. In L. Briand and
A. Wolf, editors, Proceedings of International Conference
on Software Engineering / Future of Software Engineer-
ing 2007 (ICSE/FOSE °07), pages 342-357, Minneapolis,
Minnesota, USA. IEEE Computer Society.

[216] Harman, M. (2008). Testability Transformation for
Search-Based Testing. In Keynote of the Ist International
Workshop on Search-Based Software Testing (SBST) in
conjunction with ICST 2008, Lillehammer, Norway.

[217] Harman, M. and Clark, J. A. (2004). Metrics Are
Fitness Functions Too. In Proceedings of the 10th IEEE
International Symposium on Software Metrics (METRICS
'04), pages 58—69, Chicago, USA. IEEE Computer Society.

[218] Harman, M. and Jones, B. F. (2001a). Search-based
Software Engineering. Information & Software Technology,
43(14), 833-839.

[219] Harman, M. and Jones, B. F. (2001b). Software
Engineering using Metaheuristic Innovative Algorithms:
Workshop Report. Information and Software Technology,
43(14), 762-763.

[220] Harman, M. and Jones, B. F. (2001c). The SEMI-
NAL Workshop: Reformulating Software Engineering as
a Metaheuristic Search Problem. ACM SIGSOFT Software
Engineering Notes, 26(6), 62—66.

[221] Harman, M. and McMinn, P. (2007). A Theoretical &
Empirical Analysis of Evolutionary Testing and Hill Climb-
ing for Structural Test Data Generation. In Proceedings
of the International Symposium on Software Testing and
Analysis (ISSTA 2007), pages 73-83, London, England.
ACM.

[222] Harman, M. and Tratt, L. (2007). Pareto Optimal Search
Based Refactoring at the Design Level. In Proceedings of
the 9th annual Conference on Genetic and Evolutionary
Computation (GECCO ’07), pages 11061113, London,
England. ACM.

[223] Harman, M. and Wegener, J. (2004). Getting Results
from Search-Based Approaches to Software Engineering. In
Proceedings of the 26th International Conference on Soft-
ware Engineering (ICSE *04), pages 728-729, Edinburgh,
Scotland, UK. IEEE Computer Society.

[224] Harman, M., Hierons, R., and Proctor, M. (2002a). A
New Representation and Crossover Operator for Search-
based Optimization of Software Modularization. In Pro-
ceedings of the 2002 Conference on Genetic and Evolu-
tionary Computation (GECCO ’02), pages 1351-1358, New
York, USA. Morgan Kaufmann Publishers.

[225] Harman, M., Hu, L., Hierons, R. M., Fox, C., Danicic,
S., Baresel, A., Sthamer, H., and Wegener, J. (2002b).
Evolutionary Testing Supported by Slicing and Transfor-

66

mation. In Proceedings of IEEE International Conference
on Software Maintenance (ICSM ’02), pages 285-285,
Montreal, Canada. IEEE.

[226] Harman, M., Hu, L., Hierons, R., Baresel, A., and
Sthamer, H. (2002¢). Improving Evolutionary Testing by
Flag Removal. In Proceedings of the 2002 Conference
on Genetic and Evolutionary Computation (GECCO °02),
pages 1359-1366, New York, USA. Morgan Kaufmann
Publishers.

[227] Harman, M., Hu, L., Hierons, R. M., Wegener, J.,
Sthamer, H., Baresel, A., and Roper, M. (2004). Testability
Transformation. IEEE Transaction on Software Engineer-
ing, 30(1), 3-16.

[228] Harman, M., Swift, S., and Mahdavi, K. (2005). An
Empirical Study of the Robustness of Two Module Cluster-
ing Fitness Functions. In Proceedings of the 2005 Confer-
ence on Genetic and Evolutionary Computation (GECCO
’05), volume 1, pages 1029-1036, Washington, D.C., USA.
ACM.

[229] Harman, M., Skaliotis, A., and Steinhfel, K. (20006).
Search-based Approaches to the Component Selection and
Prioritization Problem. In Proceedings of the 8th an-
nual Conference on Genetic and Evolutionary Computa-
tion (GECCO °06), pages 1951-1952, Seattle, Washington,
USA. ACM.

[230] Harman, M., Lakhotia, K., and McMinn, P. (2007a).
A Multi-Objective Approach to Search-based Test Data
Generation. In Proceedings of the 9th annual Conference
on Genetic and Evolutionary Computation (GECCO ’07),
pages 1098-1105, London, England. ACM.

[231] Harman, M., Hassoun, Y., Lakhotia, K., McMinn, P,
and Wegener, J. (2007b). The Impact of Input Domain
Reduction on Search-based Test Data Generation. In
Proceedings of the the 6th joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering,
pages 155-164, Dubrovnik, Croatia. ACM.

[232] Harman, M., Islam, F., Xie, T., and Wappler, S. (2009).
Automated Test Data Generation for Aspect-Oriented Pro-
grams. In Proceedings of the 8th International Conference
on Aspect-Oriented Software Development (AOSD °09),
pages 185-196, Charlottesville, Virginia, USA. ACM.

[233] Hart, J. and Shepperd, M. J. (2002). Evolving Soft-
ware with Multiple Outputs and Multiple Populations. In
Proceedings of the 2002 Conference on Genetic and Evolu-
tionary Computation (GECCO ’02), pages 223-227, New
York, USA. Morgan Kaufmann Publishers.

[234] Hartmann, J. and Robson, D. J. (1989). Revalidation
during the Software Maintenance Phase. In Proceedings
of the 1989 Conference on Software Maintenance, pages
70-80, Miami, Florida, USA. IEEE.

[235] Hartmann, J. and Robson, D. J. (1990a). Retest-
Development of A Selective Revalidation Prototype Envi-
ronment for Use In Software Maintenance. In Proceedings
of the 23rd Annual Hawaii International Conference on
System Sciences, volume 2, pages 92-101, Kailua-Kona,
HI, USA. IEEE.

[236] Hartmann, J. and Robson, D. J. (1990b). Techniques

for Selective Revalidation. IEEE Software, 7(1), 31-36.

[237] He, P, Kang, L., and Fu, M. (2008). Formality
Based Genetic Programming. In Proceedings of the IEEE
Congress on Evolutionary Computation (CEC '08) (IEEE
World Congress on Computational Intelligence), pages
4080-4087, Hong Kong, China. IEEE Press.

[238] Hericko, M., Zivkovic, A., and Rozman, 1. (2008). An
Approach to Optimizing Software Development Team Size.
Information Processing Letters, 108(3), 101-106.

[239] Hermadi, I. (2004). Genetic Algorithm based Test
Data Generator. Master’s thesis, King Fahd University of
Petroleum & Minerals, Information & Computer Science
Department, Dhahran, Saudi Arabia.

[240] Hermadi, I. and Ahmed, M. A. (2003). Genetic Algo-
rithm based Test Data Generator. In Proceedings of the
2003 Congress on Evolutionary Computation (CEC ’03),
pages 85-91, Canberra, Australia. IEEE Press.

[241] Hierons, R. M., Harman, M., Guo, Q., and Dederian, K.
(2004). Input Sequence Generation for Testing of Commu-
nicating Finite State Machines (CFSMs). In Proceedings of
the 2004 Conference on Genetic and Evolutionary Compu-
tation (GECCO ’04), volume 3103/2004 of Lecture Notes in
Computer Science, pages 1429-1430, Seattle, Washington,
USA. Springer Berlin / Heidelberg.

[242] Hierons, R. M., Harman, M., and Fox, C. (2005).
Branch-Coverage Testability Transformation for Unstruc-
tured Programs. Computer Journal, 48(4), 421-436.

[243] Hla, K. H. S., Choi, Y., and Park, J. S. (2008). Applying
Particle Swarm Optimization to Prioritizing Test Cases
for Embedded Real Time Software. In Proceedings of
the 2008 IEEE 8th International Conference on Computer
and Information Technology Workshops, pages 527-532,
Sydney, Australia. [EEE Computer Society.

[244] Hodjat, B., Ito, J., and Amamiya, M. (2004). A Genetic
Algorithm to Improve Agent-Oriented Natural Language
Interpreters. In Proceedings of the 2004 Conference on
Genetic and Evolutionary Computation (GECCO ’04), vol-
ume 3103 of Lecture Notes in Computer Science, pages
1307-1309, Seattle, Washington, USA. Springer Berlin /
Heidelberg.

[245] Holland, J. H. (1975). Adaption in Natural and Artificial
Systems. MIT Press, Ann Arbor.

[246] Hoste, K. and Eeckhout, L. (2008). COLE: Compiler
Optimization Level Exploration. In Proceedings of the
6th Annual IEEE/ACM International Symposium on Code
Generation and Optimization, pages 165-174, Boston, MA,
USA. ACM.

[247] Hsu, C.-J., Huang, C.-Y., and Chen, T.-Y. (2008). A
Modified Genetic Algorithm for Parameter Estimation of
Software Reliability Growth Models. In Proceedings of the
19th International Symposium on Software Reliability En-
gineering (ISSRE ’08), pages 281-282, Seattle/Redmond,
WA, USA. IEEE.

[248] Huang, S.-J., Chiu, N.-H., and Chen, L.-W. (2008).
Integration of the Grey Relational Analysis with Genetic
Algorithm for Software Effort Estimation. European Jour-
nal of Operational Research, 188(3), 898-909.

[249] Huynh, S. and Cai, Y. (2007). An Evolutionary Ap-

67

proach to Software Modularity Analysis. In Proceedings of
the Ist International Workshop on Assessment of Contem-
porary Modularization Techniques (ACoM’07), pages 1-6,
Minneapolis, USA. ACM.

[250] Jaeger, M. C. and Miihl, G. (2007). QoS-based Se-
lection of Services: The Implementation of a Genetic Al-
gorithm. In Proceedings of Kommunikation in Verteilten
Systemen (KiVS) 2007 Workshop: Service-Oriented Archi-
tectures and Service-Oriented Computing.

[251] Jalali, O., Menzies, T., and Feather, M. (2008). Optimiz-
ing Requirements Decisions With KEYS. In PROMISE 08,
pages 79-86, Leipzig, Germany. ACM.

[252] Jarillo, G., Succi, G., Pedrycz, W., and Reformat, M.
(2001). Analysis of Software Engineering Data using
Computational Intelligence Techniques. In Proceedings
of the 7th International Conference on Object Oriented
Information Systems (OOIS '01), pages 133-142, Calgary,
Canada. Springer.

[253] Jia, Y. and Harman, M. (2008a). Constructing Subtle
Faults Using Higher Order Mutation Testing. In Proceed-
ings of the 8th International Working Conference on Source
Code Analysis and Manipulation (SCAM 08), pages 249—
258, Beijing, China. IEEE.

[254] Jia, Y. and Harman, M. (2008b). MILU : A Customiz-
able, Runtime-Optimized Higher Order Mutation Testing
Tool for the Full C Language. In Proceedings of the 3rd
Testing: Academic and Industrial Conference - Practice
and Research Techniques (TAIC PART ’08), pages 94-98,
Windsor, UK. IEEE.

[255] Jiang, H. (2006). Can the Genetic Algorithm Be a Good
Tool for Software Engineering Searching Problems? In
Proceedings of the 30th Annual International Computer
Software and Applications Conference (COMPSAC ’06),
pages 362-366, Chicago, USA. IEEE Computer Society.

[256] Jiang, H., Chang, C. K., Zhu, D., and Cheng, S. (2007a).
A Foundational Study on the Applicability of Genetic Al-
gorithm to Software Engineering Problems. In Proceedings
of IEEE Congress on Evolutionary Computation (CEC 07),
pages 2210-2219, Singapore. IEEE.

[257] Jiang, T., Gold, N., Harman, M., and Li, Z. (2007b). Lo-
cating Dependence Structures using Search-based Slicing.
Information and Software Technology, 50(12), 1189-1209.

[258] Jiang, T., Harman, M., and Hassoun, Y. (2008). Anal-
ysis of Procedure Splitability. In Proceedings of the
15th Working Conference on Reverse Engineering (WCRE
'08), pages 247-256, Antwerp, Belgium. IEEE Computer
Society.

[259] Johnson, C. (2007). Genetic Programming with Fitness
based on Model Checking. In Proceedings of the 10th
European Conference on Genetic Programming, volume
4445 of LNCS, pages 114-124, Valencia, Spain. Springer.

[260] Jones, B. F., Sthamer, H.-H., and Eyres, D. E. (1995a).
Generating Test Data for Ada Procedures using Genetic
Algorithms. In Proceedings of the Ist International Con-
ference on Genetic Algorithms in Engineering Systems:
Innovations and Applications (GALESIA ’95), pages 65—
70, London, UK. IEE.

[261] Jones, B. F., Sthamer, H.-H., Yang, X., and Eyres, D. E.

(1995b). The Automatic Generation of Software Test Data
Sets using Adaptive Search Techniques. Transactions on
Information and Communications Technologies: Software
Quality Management, 11, 435-444.,

[262] Jones, B. F., Sthamer, H.-H., and Eyres, D. E. (1996).
Automatic Structural Testing using Genetic Algorithms.
Software Engineering Journal, 11(5), 299-306.

[263] Jones, B. E,, Eyres, D. E., and Sthamer, H.-H. (1998). A
Strategy for using Genetic Algorithms to Automate Branch
and Fault-based Testing. Computer Journal, 41(2), 98-107.

[264] Joshi, A. M., Eeckhout, L., John, L. K., and Isen, C.
(2008). Automated Microprocessor Stressmark Generation.
In Proceedings of the 14th IEEE International Symposium
on High Performance Computer Architecture (HPCA ’08),
pages 229-239, Salt Lake City, UT, USA. IEEE.

[265] Kalaji, A., Hierons, R. M., and Swift, S. (2008). Au-
tomatic Generation of Test Sequences form EFSM Models
using Evolutionary Algorithms. Technical report, School of
Information Systems, Computing and Mathematics, Brunel
University.

[266] Kapur, P, Ngo-The, A., Ruhe, G., and Smith, A. (2008).
Optimized staffing for product releases and its application
at Chartwell Technology. Journal of Software Maintenance
and Evolution: Research and Practice (Special Issue Search
Based Software Engineering), 20(5), 365-386.

[267] Karlsson, J., Wohlin, C., and Regnell, B. (1998). An
evaluation of methods for priorizing software requirements.
Information and Software Technology, 39, 939-947.

[268] Katz, G. and Peled, D. (2008a). Genetic Programming
and Model Checking: Synthesizing New Mutual Exclusion
Algorithms. In Proceedings of the 6th International Sympo-
sium on Automated Technology for Verification and Analysis
(ATVA °08), volume 5311 of LNCS, pages 33—47, Seoul,
Korea. Springer.

[269] Katz, G. and Peled, D. (2008b). Model Checking-
Based Genetic Programming with an Application to Mu-
tual Exclusion. In Proceedings of the I14th International
Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS ’'08), pages 141-156,
Budapest, Hungary. Springer.

[270] Kessentini, M., Sahraoui, H., and Boukadoum, M.
(2008). Model Transformation as an Optimization Prob-
lem. In Proceedings of the ACM/IEEE 1lth International
Conference on Model Driven Engineering Languages and
Systems (MODELS ’08), volume 5301 of Lecture Notes
in Computer Science, pages 159-173, Toulouse, France.
Springer.

[271] Khamis, A. M., Girgis, M. R., and Ghiduk, A. S. (2007).
Automatic Software Test Data Generation for Spanning
Sets Coverage using Genetic Algorithms. Computing and
Informatics, 26(4), 383-401.

[272] Khoshgoftaar, T. M. and Liu, Y. (2007). A Multi-
Objective Software Quality Classification Model Using
Genetic Programming. [EEE Transactions On Reliability,
56(2), 237-245.

[273] Khoshgoftaar, T. M., Liu, Y., and Seliya, N. (2003).
Genetic Programming-based Decision Trees for Software
Quality Classification. In Proceedings of the 15th Inter-

68

national Conference on Tools with Artificial Intelligence
(ICTAI 03), pages 374-383, Sacramento, California, USA.
IEEE Computer Society.

[274] Khoshgoftaar, T. M., Liu, Y., and Seliya, N. (2004a). A
Multiobjective Module-Order Model for Software Quality
Enhancement. IEEE Transactions on Evolutionary Compu-
tation, 8(6), 593-608.

[275] Khoshgoftaar, T. M., Liu, Y., and Seliya, N. (2004b).
Module-Order Modeling using an Evolutionary Multi-
Objective Optimization Approach. In Proceedings of the
10th IEEE International Symposium on Software Metrics
(METRICS °04), pages 159-169, Chicago, USA. IEEE
Computer Society.

[276] Khoshgoftaar, T. M., Seliya, N., and Drown, D. J.
(2008). On the Rarity of Fault-prone Modules in
Knowledge-based Software Quality Modeling. In Pro-
ceedings of the 20th International Conference on Software
Engineering and Knowledge Engineering, pages 279-284,
San Francisco, CA, USA. Knowledge Systems Institute
Graduate School.

[277] Khurshid, S. (2001). Testing an Intentional Naming
Scheme using Genetic Algorithms. In Proceedings of the
7th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS ’01),
volume 2031 of Lecture Notes In Computer Science, pages
358-372, Genova, Italy. Springer.

[278] King, K. N. and Offutt, A. J. (1991). A FORTRAN lan-
guage system for mutation-based software testing. Software
Practice and Experience, 21, 686-718.

[279] Kiper, J. D., Feather, M. S., and Richardson, J. (2007).
Optimizing the V&V Process for Critical Systems. In
Proceedings of the 9th annual Conference on Genetic
and Evolutionary Computation (GECCO ’07), pages 1139—
1139, London, England. ACM.

[280] Kirsopp, C., Shepperd, M., and Hart, J. (2002). Search
Heuristics, Case-based Reasoning And Software Project
Effort Prediction. In W. B. Langdon, E. Canti-Paz,
K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan,
V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter,
A. C. Schultz, J. F. Miller, E. Burke, and N. Jonoska,
editors, Proceedings of the 2002 Conference on Genetic
and Evolutionary Computation (GECCO ’02), pages 1367—
1374, New York. Morgan Kaufmann Publishers.

[281] Korel, B. (1990). Automated Software Test Data
Generation. Transactions on Software Engineering, SE-
16(8), 870-879.

[282] Korel, B., Chung, S., and Apirukvorapinit, P. (2003).
Data Dependence Analysis in Automated Test Generation.
In M. Hamza, editor, Proceedings of International Con-
ference on Software Engineering and Applications (SEA
2003), pages 476-481, Marina del Rey, USA. ACTA.

[283] Korel, B., Harman, M., Chung, S., Apirukvorapinit, P.,
Gupta, R., and Zhang, Q. (2005). Data Dependence Based
Testability Transformation in Automated Test Generation.
In Proceedings of the 16th IEEE International Symposium
on Software Reliability Engineering (ISSRE ’05), pages
245-254, Chicago, Illinios, USA. IEEE Computer Society.

[284] Koza, J. R. (1992). Genetic Programming: On the

Programming of Computers by Means of Natural Selection.
MIT Press, Cambridge, MA.

[285] Kuperberg, M., Krogmann, K., and Reussner, R. (2008).
Performance Prediction for Black-Box Components Using
Reengineered Parametric Behaviour Models. In Proceed-
ings of the 11th International Symposium on Component-
Based Software Engineering (CBSE ’08), volume 5282 of
LNCS, pages 48-63, Karlsruhe, Germany. Springer.

[286] Lakhotia, K., Harman, M., and McMinn, P. (2008).
Handling Dynamic Data Structures in Search Based Test-
ing. In M. Keijzer, editor, Proceedings of the 10th An-
nual Conference on Genetic and Evolutionary Computation
(GECCO ’08), pages 1759-1766, Atlanta, GA, USA. ACM.

[287] Lam, C. P, Xiao, J., and Li, H. (2007). Ant Colony
Optimisation for Generation of Conformance Testing Se-
quences using a Characterising Set. In Proceedings of the
3rd IASTED Conference on Advances in Computer Science
and Technology, pages 140-146, Phuket, Thailand. ACTA
Press.

[288] Lammermann, F. and Wappler, S. (2005). Benefits of
Software Measures for Evolutionary White-Box Testing.
In Proceedings of the 2005 Conference on Genetic and
Evolutionary Computation (GECCO ’05), pages 1083—
1084, Washington, D.C., USA. ACM.

[289] Lammermann, F., Baresel, A., and Wegener, J.
(2004). Evaluating Evolutionary Testability with Software-
Measurements. In Proceedings of the 2004 Conference
on Genetic and Evolutionary Computation (GECCO ’04),
volume 3103 of Lecture Notes in Computer Science, pages
1350-1362, Seattle, Washington, USA. Springer Berlin /
Heidelberg.

[290] Lange, R. and Mancoridis, S. (2007). Using Code Met-
ric Histograms and Genetic Algorithms to Perform Author
Identification for Software Forensics. In Proceedings of
the 9th annual Conference on Genetic and Evolutionary
Computation (GECCO °07), pages 2082-2089, London,
England. ACM.

[291] Lefley, M. and Shepperd, M. J. (2003). Using Genetic
Programming to Improve Software Effort Estimation Based
on General Data Sets. In E. Canti-Paz, J. A. Foster,
K. Deb, D. Davis, R. Roy, U.-M. O’Reilly, H.-G. Beyer,
R. Standish, G. Kendall, S. Wilson, M. Harman, J. Wegener,
D. Dasgupta, M. A. Potter, A. C. Schultz, K. Dowsland,
N. Jonoska, and J. Miller, editors, Proceedings of the
2003 Conference on Genetic and Evolutionary Computation
(GECCO ’03), volume 2724 of LNCS, pages 2477-2487,
Chicago, Illinois, USA. Springer.

[292] Lefticaru, R. and Ipate, F. (2007). Automatic State-
based Test Generation using Genetic Algorithms. In Pro-
ceedings of the 9th International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing (SYNASC
'07), pages 188—195, Timisoara, Romania. IEEE Computer
Society.

[293] Lefticaru, R. and Ipate, F. (2008a). Functional Search-
based Testing from State Machines. In Proceedings of
the First International Conference on Software Testing,
Verfication and Validation (ICST 2008), pages 525-528,
Lillehammer, Norway. IEEE Computer Society.

69

[294] Lefticaru, R. and Ipate, F. (2008b). Search-based
Testing using State-based Fitness. In Proceedings of st
International Workshop on Search-Based Software Testing
(SBST) in conjunction with ICST 2008, pages 210-210,
Lillehammer, Norway. IEEE.

[295] Lehre, P. K. and Yao, X. (2007). Runtime Analysis of
(1+1) EA on Computing Unique Input Output Sequences.
In Proceedings of 2007 IEEE Congress on Evolutionary
Computation (CEC ’07), pages 1882-1889, Singapore.
IEEE.

[296] Lehre, P. K. and Yao, X. (2008). Crossover can be Con-
structive when Computing Unique Input Output Sequences.
In Proceedings of the 7th International Conference on Sim-
ulated Evolution and Learning (SEAL '08), volume 5361
of LNCS, pages 595-604, Melbourne, Australia. Springer.

[297] Levin, S. and Yehudai, A. (2007). Evolutionary Testing:
A Case Study. Hardware and Software, Verification and
Testing, 4383/2007, 155-165.

[298] Li, H. and Lam, C. P. (2003). An Evolutionary
Approach for Optimisation of State-based Test Suites for
Software Systems. In W. Dosch and R. Y. Lee, editors,
Proceedings of the 4th International Conference on Soft-
ware Engineering, Artificial Intelligence, Networking and
Farallel/Distributed Computing (SNPD ’03), pages 226—
233, Liibeck, Germany. ACIS.

[299] Li, H. and Lam, C. P. (2005a). An Ant Colony
Optimization Approach to Test Sequence Generation for
Statebased Software Testing. In Proceedings of the 5Sth
International Conference on Quality Software (QSIC ’05),
pages 255-264, Melbourne, Australia. [IEEE Computer So-
ciety.

[300] Li, H. and Lam, C. P. (2005b). Using Anti-Ant-like
Agents to Generate Test Threads from the UML Diagrams.
In F. Khendek and R. Dssouli, editors, Proceedings of
Testing of Communicating Systems, 17th IFIP TC6/WG 6.1
International Conference (TestCom ’'05), volume 3502 of
Lecture Notes in Computer Science, pages 69—-80, Montreal,
Canada. Springer.

[301] Li, K. and Wu, M. (2004). Effective Software Test
Automation: Developing an Automated Software Testing
Tool. Sybex.

[302] Li, Z., Harman, M., and Hierons, R. M. (2007). Search
Algorithms for Regression Test Case Prioritization. IEEE
Transactions on Software Engineering, 33(4), 225-237.

[303] Liaskos, K. and Roper, M. (2007). Automatic Test-Data
Generation: An Immunological Approach. In Proceedings
of Testing: Accademic and Industrial Conference - Practice
and Research Techniques (TAIC PART °07), pages 77-81,
Windsor, UK. IEEE.

[304] Liaskos, K. and Roper, M. (2008). Hybridizing Evolu-
tionary Testing with Artificial Immune Systems and Local
Search. In Proceedings of Ist International Workshop on
Search-Based Software Testing (SBST) in conjunction with
ICST 2008, pages 211-220, Lillehammer, Norway. IEEE.

[305] Liaskos, K., Roper, M., and Wood, M. (2007). Investi-
gating Data-Flow Coverage of Classes Using Evolutionary
Algorithms. In Proceedings of the 9th annual Conference
on Genetic and Evolutionary Computation (GECCO ’07),

pages 1140-1140, London, England. ACM.

[306] Lin, J.-C. and Yeh, P.-L. (2000). Using Genetic Al-
gorithms for Test Case Generation in Path Testing. In
Proceedings of the 9th Asian Test Symposium (ATS ’00),
pages 241-246, Taipei, Taiwan. IEEE.

[307] Lin, J.-C. and Yeh, P.-L. (2001). Automatic Test
Data Generation for Path Testing using GAs. Information
Sciences, 131(1-4), 47-64.

[308] Linden, D. S. (2002). Innovative antenna design using
genetic algorithms. In D. W. Corne and P. J. Bentley, ed-
itors, Creative Evolutionary Systems, chapter 20. Elsevier,
Amsterdam, The Netherland.

[309] Liu, X., Liu, H.,, Wang, B., Chen, P, and Cai, X.
(2005a). A Unified Fitness Function Calculation Rule for
Flag Conditions to Improve Evolutionary Testing. In Pro-
ceedings of the 20th IEEE/ACM International Conference
on Automated Software Engineering (ASE "05), pages 337—
341, Long Beach, CA, USA. ACM.

[310] Liu, X., Wang, B., and Liu, H. (2005b). Evolutionary
Search in the context of Object-Oriented Programs. In Pro-
ceedings of the 6th Metaheuristics International Conference
(MIC ’05), Vienna, Austria.

[311] Liu, X., Wang, L., Zhu, X., Bai, Z., Zhang, M., and
Liu, H. (2007a). Fitness Calculation Approach for Nested
If-else Construct in Evolutionary Testing. In Proceedings
of the 9th annual Conference on Genetic and Evolutionary
Computation (GECCO ’07), pages 1141-1141, London,
England. ACM.

[312] Liu, X., Zhang, M., Bai, Z., Wang, L., Du, W., and
Wang, Y. (2007b). Function Call Flow based Fitness
Function Design in Evolutionary Testing. In Proceedings
of the 14th Asia-Pacific Software Engineering Conference
(APSEC ’07), pages 57-64, Nagoya, Japan. IEEE Computer
Society.

[313] Liu, Y. and Khoshgoftaar, T. (2004). Reducing Overfit-
ting in Genetic Programming Models for Software Quality
Classification. In Proceedings of the 8th IEEE International
Symposium on High Assurance Systems Engineering (HASE
'04), pages 56—65, Tampa, Florida, USA. IEEE Computer
Society.

[314] Liu, Y. and Khoshgoftaar, T. M. (2001). Genetic
Programming Model for Software Quality Classification.
In Proceedings of the 6th IEEE International Symposium
on High-Assurance Systems Engineering: Special Topic:
Impact of Networking (HASE ’01), pages 127-136, Boco
Raton, FL, USA. IEEE Computer Society.

[315] Liu, Y. and Khoshgoftaar, T. M. (2003). Building
Decision Tree Software Quality Classification Models Us-
ing Genetic Programming. In Proccedings of the Genetic
and Evolutionary Computation Conference (GECCO ’03),
volume 2724 of LNCS, pages 1808—1809, Chicago, Illinois,
USA. Springer.

[316] Lokan, C. (2005). What Should You Optimize When
Building an Estimation Model? In Proceedings of the 11th
IEEE International Software Metrics Symposium (MET-
RICS °05), pages 34-44, Como, Italy. IEEE Computer
Society.

[317] Lucas, S. M. and Reynolds, T. J. (2005). Learning

70

Deterministic Finite Automata with a Smart State Labeling
Evolutionary Algorithm. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 27(7), 1063—-1074.

[318] Lutz, R. (2001). Evolving Good Hierarchical De-
compositions of Complex Systems. Journal of Systems
Architecture, 47(7), 613-634.

[319] Ma, Y. and Zhang, C. (2008). Quick Convergence of
Genetic Algorithm for QoS-driven Web Service Selection.
Computer Networks, 52(5), 1093—-1104.

[320] MacNish, C. (2000). Evolutionary Programming Tech-
niques for Testing Students’ Code. In Proceedings of the 4th
Australasian Conference on Computer Science Education
(ACSE ’00), pages 170-173, Melbourne, Australia. ACM.

[321] Mahanti, P. K. and Banerjee, S. (2006). Automated
Testing in Software Engineering: using Ant Colony and
Self-Regulated Swarms. In Proceedings of the 17th IASTED
international conference on Modelling and simulation (MS
'06), pages 443-448, Montreal, Canada. ACTA Press.

[322] Mahdavi, K. (2005). A Clustering Genetic Algorithm
for Software Modularisation with Multiple Hill Climbing
Approach. Ph.D. thesis, Brunel University West London.

[323] Mahdavi, K., Harman, M., and Hierons, R. M. (2003a).
A Multiple Hill Climbing Approach to Software Module
Clustering. In Proceedings of the International Conference
on Software Maintenance (ICSM ’03), pages 315-324,
Amsterdam, Holland. IEEE Computer Society.

[324] Mahdavi, K., Harman, M., and Hierons, R. (2003b).
Finding Building Blocks for Software Clustering. In Pro-
ceedings of the 2003 Conference on Genetic and Evolu-
tionary Computation (GECCO ’03), volume 2724 of LNCS,
pages 2513-2514, Chicago, Illinois, USA. Springer.

[325] Makai, M. C. (2008). Incorporating Design Knowledge
into Genetic Algorithm-based White-Box Software Test
Case Generators. Master’s thesis, Virginia Tech.

[326] Mancoridis, S., Mitchell, B. S., Rorres, C., Chen, Y.,
and Gansner, E. R. (1998). Using Automatic Clustering
to Produce High-Level System Organizations of Source
Code. In Proceedings of the 6th International Workshop on
Program Comprehension (IWPC ’98), pages 45-52, Ischia,
Italy. IEEE Computer Society Press.

[327] Mancoridis, S., Mitchell, B. S., Chen, Y., and Gansner,
E. R. (1999). Bunch: A Clustering Tool for the Recovery
and Maintenance of Software System Structures. In Pro-
ceedings of the IEEE International Conference on Software
Maintenance (ICSM ’99), pages 50-59, Oxford, England,
UK. IEEE.

[328] Mansour, N. and Bahsoon, R. (2002). Reduction-based
Methods and Metrics for Selective Regression Testing.
Information and Software Technology, 44(7), 431-443.

[329] Mansour, N. and El-Fakih, K. (1999). Simulated An-
nealing and Genetic Algorithms for Optimal Regression
Testing. Journal of Software Maintenance: Research and
Practice, 11(1), 19-34.

[330] Mansour, N. and Salame, M. (2004). Data Generation
for Path Testing. Software Quality Control, 12(2), 121-136.

[331] Mansour, N., Bahsoon, R., and Baradhi, G. (2001).
Empirical Comparison of Regression Test Selection Algo-
rithms. Journal of Systems and Software, 57(1), 79-90.

[332] Mantere, T. (2003). Automatic Software Testing by
Genetic Algorithms. Ph.D. thesis, University of Vaasa.
[333] Mantere, T. and Alander, J. T. (2001). Automatic
Software Testing by Genetic Algorithms - Introduction
to Method and Consideration of Possible Pitfalls. In
Proceedings of the 7th International Mendel Conferennce
on Soft Computing (MENDEL ’01), pages 19-23, Brno,

Czech Republic. Kuncik, Brno, Check Republic.

[334] Mantere, T. and Alander, J. T. (2005). Evolutionary
Software Engineering, A Review. Applied Soft Computing,
5(3), 315-331.

[335] Masud, M. M., Nayak, A., Zaman, M., and Bansal,
N. (2005). Strategy for Mutation Testing using Genetic
Algorithms. In Proceedings of 2005 Canadian Conference
on Electrical and Computer Engineering, pages 1049—
1052, Saskatoon, Saskatchewan Canada. IEEE.

[336] May, P, Mander, K., and Timmis, J. (2003). Software
Vaccination: An Artificial Immune System Approach to
Mutation Testing. In Proceedings of the 2nd International
Conference on Artificial Immune Systems (ICARIS ’03),
volume 2787 of Lecture Notes in Computer Science, pages
81-92, Edinburgh, UK. Springer.

[337] May, P., Timmis, J., and Mander, K. (2007). Immune
and Evolutionary Approaches to Software Mutation Testing.
In Proceedings of the 6th International Conference on
Artificial Immune Systems (ICARIS "07), pages 336-347,
Santos, Brazil. Springer.

[338] Mayer, J. (2006). Towards Effective Adaptive Ran-
dom Testing for Higher-Dimensional Input Domains. In
Proceedings of the 8th annual Conference on Genetic
and Evolutionary Computation (GECCO ’06), pages 1955—
1956, Seattle, Washington, USA. ACM.

[339] McGraw, G., Michael, C., and Schatz, M. (1998).
Generating Software Test Data by Evolution. Technical
Report RSTR-018-97-01, Reliable Software Technologies,
Sterling, VA.

[340] McMinn, P. (2004). Search-based Software Test Data
Generation: A Survey. Software Testing, Verification and
Reliability, 14(2), 105-156.

[341] McMinn, P. and Holcombe, M. (2003). The State
Problem for Evolutionary Testing. In Proceedings of the
2003 Conference on Genetic and Evolutionary Computation
(GECCO ’03), volume 2724 of LNCS, pages 2488-2498,
Chicago, Illinois, USA. Springer.

[342] McMinn, P. and Holcombe, M. (2004). Hybridizing
Evolutionary Testing with the Chaining Approach. In
Proceedings of the 2004 Conference on Genetic and Evolu-
tionary Computation (GECCO ’04), volume 3103 of Lec-
ture Notes in Computer Science, pages 1363—1374, Seattle,
Washington, USA. Springer Berlin / Heidelberg.

[343] McMinn, P. and Holcombe, M. (2005). Evolutionary
Testing of State-based Programs. In Proceedings of the
2005 Conference on Genetic and Evolutionary Computation
(GECCO °05), pages 1013-1020, Washington, D.C., USA.
ACM.

[344] McMinn, P. and Holcombe, M. (2006). Evolutionary
Testing using an Extended Chaining Approach. Evolution-
ary Computation, 14(1), 41-64.

71

[345] McMinn, P., Binkley, D., and Harman, M. (2005).
Testability Transformation for Efficient Automated Test
Data Search in the Presence of Nesting. In Proceedings of
the 3rd UK Software Testing Research Workshop (UKTest
2005), pages 165-182, Sheffield, UK. ACM.

[346] McMinn, P., Harman, M., Binkley, D., and Tonella,
P. (2006). The Species per Path Approach to Search-
based Test Data Generation. In Proceedings of the 2006
International Symposium on Software Testing and Analysis
(ISSTA °06), pages 13-24, Portland, Maine, USA. ACM.

[347] McMinn, P., Binkley, D., and Harman, M. (2008). Em-
pirical Evaluation of a Nesting Testability Transformation
for Evolutionary Testing. ACM Transactions on Software
Engineering Methodology.

[348] Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller,
A., and Teller, E. (1953). Equation of state calculations by
fast computing machines. Journal of Chemical Physics, 21,
1087-1092.

[349] Michael, C. and McGraw, G. (1998). Automated
Software Test Data Generation for Complex Programs. In
Proceedings of the 13th IEEE international conference on
Automated software engineering (ASE '98), pages 136-146,
Honolulu, Hawaii, USA. IEEE.

[350] Michael, C. C. and McGraw, G. E. (1997). Opportunism
and Diversity in Automated Software Test Data Genera-
tion. Technical Report RSTR-003-97-13, Reliable Software
Technologies.

[351] Michael, C. C., McGraw, G. E., Schatz, M. A., and
Walton, C. C. (1997). Genetic Algorithms for Dynamic Test
Data Generation. In Proceedings of the 12th IEEE Inter-
national Conference on Automated Software Engineering,
pages 307-308, Incline Village, NV, USA. IEEE Computer
Society.

[352] Michael, C. C., McGraw, G. E., and Schatz, M. A.
(1998). Opportunism and Diversity in Automated Software
Test Data Generation. In Proceedings of the 13th IEEE In-
ternational Conference on Automated Software Engineering
(ASE ’98), pages 136—146, Hawaii, USA.

[353] Michael, C. C., McGraw, G., and Schatz, M. A. (2001).
Generating Software Test Data by Evolution. /IEEE Tran-
sations on Software Engineering, 27(12), 1085-1110.

[354] Miller, J., Reformat, M., and Zhang, H. (2006). Auto-
matic Test Data Generation using Genetic Algorithm and
Program Dependence Graphs. Information and Software
Technology, 48(7), 586-605.

[355] Miller, W. and Spooner, D. L. (1976). Automatic
Generation of Floating-Point Test Data. IEEE Transactions
on Software Engineering, 2(3), 223-226.

[356] ming Hsu, C. (2007). A Test Data Evolution Strategy
under Program Changes. Master’s thesis, National Sun Yat-
sen University, Department of Information Management,
Taiwan, China.

[357] Minohara, T. and Tohma, Y. (1995). Parameter Estima-
tion of Hyper-Geometric Distribution Software Reliability
Growth Model by Genetic Algorithms. In Proceedings of
the 6th International Symposium on Software Reliability
Engineering, pages 324-329, Toulouse, France. IEEE Com-
puter Society.

[358] Mitchell, B. S. (2002). A Heuristic Search Approach
to Solving the Software Clustering Problem. Ph.D. thesis,
Drexel University.

[359] Mitchell, B. S. and Mancoridis, S. (2002). Using
Heuristic Search Techniques to Extract Design Abstractions
from Source Code. In Proceedings of the 2002 Conference
on Genetic and Evolutionary Computation (GECCO °02),
pages 1375-1382, New York, USA. Morgan Kaufmann
Publishers.

[360] Mitchell, B. S. and Mancoridis, S. (2003). Modeling the
Search Landscape of Metaheuristic Software Clustering Al-
gorithms. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO °03), pages 2499-2510,
Chicago, IL, USA. Springer.

[361] Mitchell, B. S. and Mancoridis, S. (2006). On the
Automatic Modularization of Software Systems using the
Bunch Tool. IEEE Transactions on Software Engineering,
32(3), 193-208.

[362] Mitchell, B. S. and Mancoridis, S. (2008). On the Eval-
uation of the Bunch Search-based Software Modularization
Algorithm. Soft Computing - A Fusion of Foundations,
Methodologies and Applications, 12(1), 77-93.

[363] Mitchell, B. S., Mancoridis, S., and Traverso, M.
(2002). Search Based Reverse Engineering. In Proceedings
of the 14th International Conference on Software Engineer-
ing and Knowledge Engineering, pages 431-438, Ischia,
Italy. ACM.

[364] Mitchell, B. S., Mancoridis, S., and Traverso, M.
(2004). Using Interconnection Style Rules to Infer Software
Architecture Relations. In Proceedings of the 2004 Confer-
ence on Genetic and Evolutionary Computation (GECCO
'04), volume 3103 of Lecture Notes in Computer Science,
pages 1375-1387, Seattle, Washington, USA. Springer
Berlin / Heidelberg.

[365] Moghadampour, G. (1999). Using Genetic Algorithms
in Testing a Distribution Protection Relay Software - A
Statistical Analysis. Ph.D. thesis, University of Vaasa,
Department of Information Technology and Production
Economics.

[366] Monnier, Y., Beauvais, J.-P., and Déplanche, A.-M.
(1998). A Genetic Algorithm for Scheduling Tasks in a
Real-Time Distributed System. In Proceedings of the 24th
EUROMICRO Conference (EUROMICRO ’98), volume 2,
pages 20708-20714, Vaesteraas, Sweden. IEEE Computer
Society.

[367] Miihlenbein, H. and PaaB, G. (1996). From recombi-
nation of genes to the estimation of distributions: I. Binary
parameters. In H.-M. Voigt, W. Ebeling, I. Rechenberg,
and H.-P. Schwefel, editors, Parallel Problem Solving from
Nature — PPSN 1V, pages 178-187, Berlin. Springer.

[368] Nguyen, C., Miles, S., Perini, A., Tonella, P., Har-
man, M., and Luck, M. (2009). Evolutionary Testing
of Autonomous Software Agents. In Proceedings of the
8th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS ’09), Budapest, Hungary.

[369] Nguyen, C. D., Perini, A., and Tonella, P. (2008).
Constraint-based Evolutionary Testing of Autonomous Dis-
tributed Systems. In Proceedings of Ist International

72

Workshop on Search-Based Software Testing (SBST) in
conjunction with ICST 2008, pages 221-230, Lillehammer,
Norway. IEEE.

[370] Nisbet, A. (1998). GAPS: A Compiler Framework
for Genetic Algorithm (GA) Optimised Parallelisation. In
P. M. A. Sloot, M. Bubak, and L. O. Hertzberger, editors,
Proceedings of the International Conference and Exhibition
on High-Performance Computing and Networking (HPCN
’98), volume 1401 of Lecture Notes In Computer Science,
pages 987-989, Amsterdam, Netherlands. Springer.

[371] O’Keeffe, M. and o) Cinnéide, M. (2003). A Stochastic
Approach to Automated Design Improvement. In Proceed-
ings of the 2nd International Conference on Principles and
Practice of Programming in Java, pages 59-62, Kilkenny
City, Ireland. Computer Science Press, Inc.

[372] O’Keeffe, M. and o) Cinnéide, M. (2004). Towards
Automated Design Improvement Through Combinatorial
Optimisation. In Proceedings of the 26th International
Conference on Software Engineering and Workshop on Di-
rections in Software Engineering Environments (WoDiSEE
'04), pages 75-82, Edinburgh, UK. ACM.

[373] O’Keeffe, M. and O Cinnéide, M. (2006). Search-based
Software Maintenance. In Proceedings of the Conference
on Software Maintenance and Reengineering (CSMR ’06),
pages 249-260, Bari, Italy. IEEE Computer Society.

[374] O’Keeffe, M. and o) Cinnéide, M. (2007). Getting the
Most from Search-based Refactoring. In Proceedings of
the 9th annual Conference on Genetic and Evolutionary
Computation (GECCO °07), pages 1114-1120, London,
England. ACM.

[375] O’Keeffe, M. and o) Cinnéide, M. (2008a). Search-
based Refactoring: An Empirical Study. Journal of Soft-
ware Maintenance and Evolution: Research and Practice
(Special Issue Search Based Software Engineering), 20(5),
345-364.

[376] O’Keeffe, M. and o) Cinnéide, M. (2008b). Search-
based Refactoring for Software Maintenance. Journal of
Systems and Software, 81(4), 502-516.

[377] Pargas, R. P., Harrold, M. J., and Peck, R. R. (1999).
Test-Data Generation using Genetic Algorithms. The Jour-
nal of Software Testing, Verification and Reliability, 9(4),
263-282.

[378] Patton, R. M., Wu, A. S., and Walton, G. H. (2003).
A Genetic Algorithm Approach to Focused Software Usage
Testing, pages 259-286. Springer.

[379] Pedrycz, W. (2002). Computational Intelligence as an
Emerging Paradigm of Software Engineering. In Proceed-
ings of the 14th International Conference on Software En-
gineering and Knowledge Engineering (SEKE ’02), pages
7-14, Ischia, Italy. ACM.

[380] Pei, M., Goodman, E. D., Gao, Z., and Zhong, K.
(1994). Automated Software Test Data Generation using
a Genetic Algorithm. Technical report, Beijing University
of Aeronautics and Astronautics.

[381] Pohlheim, H. and Wegener, J. (1999). Testing the Tem-
poral Behavior of Real-Time Software Modules using Ex-
tended Evolutionary Algorithms. In W. Banzhaf, J. Daida,
A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and

R. E. Smith, editors, Proceedings of the Genetic and Evolu-
tionary Computation Conference (GECCO ’99), volume 2,
page 1795, Orlando, Florida, USA. Morgan Kaufmann.

[382] Prutkina, M. and Windisch, A. (2008). Evolutionary
Structural Testing of Software with Pointers. In Pro-
ceedings of Ist International Workshop on Search-Based
Software Testing (SBST) in conjunction with ICST 2008,
pages 231-231, Lillehammer, Norway. IEEE.

[383] Riihd, O. (2008a). Applying Genetic Algorithms in
Software Architecture Design. Master’s thesis, Department
of Computer Sciences, University of Tampere.

[384] Réihd, O. (2008b). Genetic Synthesis of Software
Architecture. Ph.D. thesis, University of Tampere.

[385] Riihid, O. (2009). A Survey on Search-Based Software
Design. Technical Report D-2009-1, Department of Com-
puter Sciences University of Tampere.

[386] Riihd, O., Koskimies, K., and Mikinen, E. (2008a).
Genetic Synthesis of Software Architecture. In Proceedings
of the 7th International Conference on Simulated Evolution
and Learning (SEAL ’08), LNCS 5361, pages 565-574,
Melbourne, Australia. Springer.

[387] Riihd, O., Koskimies, K., Mikinen, E., and Systi,
T. (2008b). Pattern-Based Genetic Model Refinements
in MDA. In Proceedings of the Nordic Workshop on
Model-Driven Engineering (NW-MoDE °08), pages 129-
144, Reykjavik, Iceland. University of Iceland.

[388] Rajappa, V., Biradar, A., and Panda, S. (2008). Efficient
Software Test Case Generation Using Genetic Algorithm
Based Graph Theory. In Proceedings of the Ist Interna-
tional Conference on Emerging Trends in Engineering and
Technology (ICETET ’08), pages 298-303, Nagpur, India.
IEEE.

[389] Reformat, M., Chai, X., and Miller, J. (2003). Experi-
ments in Automatic Programming for General Purposes. In
Proceedings of the 15th IEEE International Conference on
Tools with Artificial Intelligence (ICTAI ’03), pages 366—
373, Sacramento, California, USA. IEEE Computer Society.

[390] Reformat, M., Chai, X., and Miller, J. (2007). On the
Possibilities of (Pseudo-) Software Cloning from External
Interactions. Soft Computing - A Fusion of Foundations,
Methodologies and Applications, 12(1), 29-49.

[391] Regehr, J. (2005). Random Testing of Interrupt-Driven
Software. In Proceedings of the 5th ACM International
Conference on Embedded software, pages 290-298, Jersey
City, NJ, USA. ACM.

[392] Rela, L. (2004). Evolutionary Computing in Search-
based Software Engineering. Master’s thesis, Lappeenranta
University of Technology.

[393] Ribeiro, J. C. B. (2008). Search-based Test Case Gen-
eration for Object-Oriented Java Software using Strongly-
Typed Genetic Programming. In Proceedings of the 10th
Annual Conference on Genetic and Evolutionary Compu-
tation (GECCO °08) Workshop session: Graduate student
workshops, pages 1819-1822, Atlanta, GA, USA. ACM.

[394] Ribeiro, J. C. B., Zenha-Rela, M., and de Vega, F. F.
(2007a). An Evolutionary Approach for Performing Struc-
tural Unit-Testing on Third-Party Object-Oriented Java
Software. In Proceedings of International Workshop on

73

Nature Inspired Cooperative Strategies for Optimization
(NICSO °07), pages 379-388, Acireale, Italy. Springer.
[395] Ribeiro, J. C. B., Zenha-Rela, M., and de Vega, F. F.
(2007b). eCrash: a Framework for Performing Evolutionary
Testing on Third-Party Java Components. In Proceedings of
the I Jornadas sobre Algoritmos Evolutivos y Metaheuris-

ticas (JAEM °07), pages 137-144, Zaragoza, Spain.

[396] Ribeiro, J. C. B., de Vega, F. F., and Zenha-Rela, M.
(2007¢). Using Dynamic Analysis of Java Bytecode for
Evolutionary Object-Oriented Unit Testing. In Proceedings
of the 8th Workshop on Testing and Fault Tolerance (WTF
'07), pages 143-156, Belm, Brazil.

[397] Ribeiro, J. C. B., Zenha-Rela, M. A., and de Vega, F. F.
(2008a). A Strategy for Evaluating Feasible and Unfeasible
Test Cases for the Evolutionary Testing of Object-Oriented
Software. In Proceedings of the 3rd international workshop
on Automation of Software Test (AST ’08), pages 85-92,
Leipzig, Germany. ACM.

[398] Ribeiro, J. C. B., Zenha-Rela, M. A., and de Vega,
F. F. (2008b). Strongly-Typed Genetic Programming and
Purity Analysis: Input Domain Reduction for Evolutionary
Testing Problems. In M. Keijzer, editor, Proceedings of
the 10th Annual Conference on Genetic and Evolutionary
Computation (GECCO ’08), pages 1783-1784, Atlanta,
GA, USA. ACM.

[399] Roper, M. (1996). CAST with GAs - Automatic Test
Data Generation via. Evolutionary Computation. In Pro-
ceedings of IEE Colloquium on Computer Aided Software
Testing Tools, page 7, London, UK. IEE.

[400] Roper, M. (1997). Computer Aided Software Testing
using Genetic Algorithms. In Proceedings of the 10th
International Software Quality Week, pages 9T1-1-17, San
Francisco, California, USA. Software Research Institute.

[401] Roper, M., Maclean, 1., Brooks, A., Miller, J., and
Wood, M. (1995). Genetic Algorithms and the Automatic
Generation of Test Data. Technical report, Semin. Arthr.
Rheum.

[402] Ryan, C. (2000). Automatic Re-Engineering of Software
using Genetic Programming, volume 2. Kluwer Academic
Publishers.

[403] Sagarna, R. (2007). An Optimization Approach for
Software Test Data Generation: Applications of Estimation
of Distribution Algorithms and Scatter Search. Ph.D. thesis,
University of the Basque Country, San Sebastian, Spain.

[404] Sagarna, R. and Lozano, J. A. (2003). Variable Search
Space for Software Testing. In Proceedings of the IEEE
International Conference on Neural Networks and Signal
Processing (ICNNSP 2003), volume 1, pages 575-578,
Nanjing, China. IEEE CS Press.

[405] Sagarna, R. and Lozano, J. A. (2005). On the Per-
formance of Estimation of Distribution Algorithms applied
to Software Testing. Applied Artificial Intelligence, 19(5),
457-489.

[406] Sagarna, R. and Lozano, J. A. (2006). Scatter Search
in Software Testing, Comparison and Collaboration with
Estimation of Distribution Algorithms. European Journal
of Operational Research, 169(2), 392-412.

[407] Sagarna, R. and Lozano, J. A. (2007). Software Met-

rics Mining to Predict the Performance of Estimation of
Distribution Algorithms in Test Data Generation. In A. L.
C. Cotta, S. Reich and R. Schaefer, editors, Knowledge-
Driven Computing. Knowledge Engineering and Intelligent
Computations, volume 102/2008 of Studies in Computa-
tional Intelligence, pages 235-254. Springer-Verlag.

[408] Sagarna, R. and Lozano, J. A. (2008). Dynamic Search
Space Transformations for Software Test Data Generation.
Computational Intelligence, 24(1), 23-61.

[409] Sagarna, R. and Yao, X. (2008). Handling Constraints
for Search Based Software Test Data Generation. In
Proceedings of the Ist International Workshop on Search
Based Software Testing (SBST), pages 232-240, Lilleham-
mer, Norway. IEEE Computer Society.

[410] Sagarna, R., Arcuri, A., and Yao, X. (2007). Estimation
of Distribution Algorithms for Testing Object Oriented
Software. In Proceedings of the IEEE Congress on Evolu-
tionary Computation (CEC 07), pages 438—444, Singapore.
IEEE.

[411] Sahraoui, H. A., Valtchev, P., Konkobo, I., and Shen,
S. (2002). Object Identification in Legacy Code as a
Grouping Problem. In Proceedings of the 26th Interna-
tional Computer Software and Applications Conference on
Prolonging Software Life: Development and Redevelopment
(COMPSAC °02), pages 689-696, Oxford, UK. IEEE.

[412] Saliu, M. O. and Ruhe, G. (2007). Bi-Objective Release
Planning for Evolving Software Systems. In Proceedings of
the 6th Joint Meeting of the European Software Engineering
Conference and the Acm Sigsoft Symposium on the Founda-
tions of Software Engineering, pages 105-114, Dubrovnik,
Croatia. ACM.

[413] Schneckenburger, C. and Schweiggert, F. (2008). Inves-
tigating the Dimensionality Problem of Adaptive Random
Testing Incorporating a Search-based Testing Technique. In
Proceedings of 1st International Workshop on Search-Based
Software Testing (SBST) in conjunction with ICST 2008,
pages 241-250, Lillehammer, Norway. IEEE Computer
Society.

[414] Schnier, T., Yao, X., and Liu, P. (2004). Digital filter
design using multiple pareto fronts. Soft Computing, 8(5),
332-343.

[415] Schoenauer, M. and Xanthakis, S. (1993). Constrained
GA Optimization. In Proceedings of the 5th International
Conference on Genetic Algorithms (ICGA ’93), pages 573—
580, San Mateo, CA, USA. Morgan Kauffmann.

[416] Schultz, A. C., Grefenstette, J. J., and De Jong, K. A.
(1993). Test and Evaluation by Genetic Algorithms. IEEE
Expert (also IEEE Intelligent Systems and Their Applica-
tions), 8(5), 9-14.

[417] Schwefel, H. and Bick, T. (1998). Artificial evolution:
How and why? In D. Quagliarella, J. Périaux, C. Poloni,
and G. Winter, editors, Genetic Algorithms and Evolution
Strategy in Engineering and Computer Science, pages 1-19.
John Wiley and Sons.

[418] Seesing, A. (2006). EvoTest: Test Case Generation
using Genetic Programming and Software Analysis. Mas-
ter’s thesis, Delft University of Technology, Delft, The
Netherlands.

74

[419] Seesing, A. and GroB, H.-G. (2006a). A Genetic
Programming Approach to Automated Test Generation for
Object-Oriented Software. International Transactions on
System Science and Applications, 1(2), 127-134.

[420] Seesing, A. and Grof, H.-G. (2006b). A Genetic
Programming Approach to Automated Test Generation for
Object-Oriented Software. Technical Report TUD-SERG-
2006-017, Delft University of Technology.

[421] Seesing, A. and GroB, H.-G. (2006c). A Genetic
Programming Approach to Automated Test Generation
for Object-Oriented Software. In Proceedings of the Ist
International Workshop on Evaluation of Novel Approaches
to Software Engineering, Erfurt, Germany. NetObject Days
2006.

[422] Seng, O., Bauer, M., Biehl, M., and Pache, G. (2005).
Search-based Improvement of Subsystem Decompositions.
In Proceedings of the 2005 Conference on Genetic and
Evolutionary Computation (GECCO ’05), pages 1045—
1051, Washington, D.C., USA. ACM.

[423] Seng, O., Stammel, J., and Burkhart, D. (2006). Search-
based Determination of Refactorings for Improving the
Class Structure of Object-Oriented Systems. In Proceedings
of the 8th annual Conference on Genetic and Evolutionary
Computation (GECCO ’06), pages 1909-1916, Seattle,
Washington, USA. ACM.

[424] Shan, L. and Zhu, H. (2006). Testing Software Mod-
elling Tools using Data Mutation. In Proceedings of the
2006 International workshop on Automation of Software
Test (AST °06), pages 43-49, Shanghai, China. ACM.

[425] Shan, Y., McKay, R. I., Lokan, C. J.,, and Essam,
D. L. (2002). Software Project Effort Estimation Using
Genetic Programming. In Proceedings of the 2002 IEEE
International Conference on Communications, Circuits and
Systems and West Sino Expositions, volume 2, pages 1108—
1112, Chengdu, China. IEEE.

[426] Shannon, C. E. (1948). A mathematical theory of
communication. Bell System Technical Journal, 27, 379—
423 and 623-656.

[427] Sharma, V. S. and Jalote, P. (2008). Deploying Soft-
ware Components for Performance. In Proceedings of
the 11th International Symposium on Component-Based
Software Engineering (CBSE ’08), pages 32—47, Karlsruhe,
Germany. Springer.

[428] Shepperd, M. (2007). Software economics. In L. Briand
and A. Wolf, editors, Future of Software Engineering 2007,
Los Alamitos, California, USA. IEEE Computer Society
Press. This volume.

[429] Shepperd, M. J. (1995). Foundations of software mea-
surement. Prentice Hall.

[430] Sheta, A. F. (2006). Estimation of the COCOMO Model
Parameters Using Genetic Algorithms for NASA Software
Projects. Journal of Computer Science, 2(2), 118—123.

[431] Sheu, S.-T. and Chuang, Y.-R. (2006). A Pipeline-based
Genetic Algorithm Accelerator for Time-Critical Processes
in Real-Time Systems. IEEE Transactions on Computers,
55(11), 1435-1448.

[432] Shukla, K. K. (2000). Neuro-Genetic Prediction of
Software Development Effort. Information and Software

Technology, 42(10), 701-713.

[433] Shyang, W., Lakos, C., Michalewicz, Z., and Schellen-
berg, S. (2008). Experiments in Applying Evolutionary
Algorithms to Software Verification. In Proceedings of
IEEE Congress on Evolutionary Computation (CEC '08),
pages 3531-3536, Hong Kong, China. IEEE.

[434] Simons, C. L. and Parmee, I. C. (2006). Single
and Multi-objective Genetic Operators in Object-oriented
Conceptual Software Design. In Proceedings of the 8th
annual Conference on Genetic and Evolutionary Computa-
tion (GECCO ’06), pages 1957-1958, Seattle, Washington,
USA. ACM.

[435] Simons, C. L. and Parmee, I. C. (2007). A Cross-
Disciplinary Technology Transfer for Search-based Evolu-
tionary Computing: from Engineering Design to Software
Engineering Design. Engineering Optimization, 39(5), 631-
648.

[436] Simons, C. L. and Parmee, 1. C. (2008a). Agent-based
Support for Interactive Search in Conceptual Software
Engineering Design. In M. Keijzer, editor, Proceedings of
the 10th Annual Conference on Genetic and Evolutionary
Computation (GECCO °08), pages 1785-1786, Atlanta,
GA, USA. ACM.

[437] Simons, C. L. and Parmee, 1. C. (2008b). User-centered,
Evolutionary Search in Conceptual Software Design. In
Proceedings of the IEEE Congress on Evolutionary Com-
putation (CEC ’08) (World Congress on Computational
Inteligence), pages 869-876, Hong Kong, China. IEEE.

[438] Sinclair, M. C. and Shami, S. H. (1997). Evolving
Simple Software Agents: Comparing Genetic Algorithm
and Genetic Programming Performance. In Proceedings
of the Second International Conference on Genetic Al-
gorithms in Engineering Systems: Innovations and Ap-
plications (GALESIA ’97), pages 421-426, University of
Strathclyde, Glasgow, UK. IEE.

[439] Snelting, G. (1998). Concept analysis — a new frame-
work for program understanding. In ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering (PASTE’98), pages 1-10. Appears
in SIGPLAN Notices 33(7):1-10.

[440] Sofokleous, A. A. and Andreou, A. S. (2007). Batch-
Optimistic Test-Cases Generation Using Genetic Algo-
rithms. In Proceedings of the 19th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI
2007), volume 1, pages 157-164, Patras, Greece. IEEE
Computer Society.

[441] Sofokleous, A. A. and Andreou, A. S. (2008a). Au-
tomatic, Evolutionary Test Data Generation for Dynamic
Software Testing. Journal of Systems and Software, 81(11),
1883-1898.

[442] Sofokleous, A. A. and Andreou, A. S. (2008b). Dy-
namic Search-based Test Data Generation Focused on Data
Flow Paths. In Proceedings of the 10th International
Conference on Enterprise Information Systems (ICELS ’08),
pages 27-35, Barcelona, Spain.

[443] Stephenson, M., Amarasinghe, S., Martin, M., and
O’Reilly, U.-M. (2003). Meta Optimization: Improving
Compiler Heuristics with Machine Learning. In Proceed-

75

ings of the ACM SIGPLAN 2003 conference on Program-
ming Language Design and Implementation (PLDI ’03),
pages 77-90, San Diego, California, USA. ACM.

[444] Sthamer, H., Baresel, A., and Wegener, J. (2001). Evo-
lutionary Testing of Embedded Systems. In Proceedings
of the 14th International Internet & Software Quality Week
(QW ’01), pages 1-34, San Francisco, California, USA.

[445] Sthamer, H.-H. (1995). The Automatic Generation of
Software Test Data Using Genetic Algorithms. Ph.D. thesis,
University of Glamorgan.

[446] Su, S., Zhang, C., and Chen, J. (2007). An Improved
Genetic Algorithm for Web Services Selection. In Proceed-
ings of the 7th IFIP WG 6.1 International Conference on
Distributed Applications and Interoperable Systems (DAIS
'07), volume 4531 of LNCS, pages 284-295, Paphos,
Cyprus. Springer.

[447] Sutton, A., Kagdi, H., Maletic, J. 1., and Volkert,
L. G. (2005). Hybridizing Evolutionary Algorithms and
Clustering Algorithms to Find Source-Code Clones. In
Proceedings of the 2005 Conference on Genetic and Evo-
lutionary Computation (GECCO ’05), pages 1079-1080,
Washington, D.C., USA. ACM.

[448] Tang, M. and Dong, J. (2005). Simulated annealing
genetic algorithm for surface intersection. In Advances
in Natural Computation, volume 3612 of Lecture Notes in
Computer Science, pages 48—56. Springer.

[449] TIili, M., Wappler, S., and Sthamer, H. (2006). Im-
proving Evolutionary Real-Time Testing. In Proceedings
of the 8th annual Conference on Genetic and Evolutionary
Computation (GECCO ’06), pages 1917-1924, Seattle,
Washington, USA. ACM.

[450] Tonella, P. (2004). Evolutionary Testing of Classes.
In Proceedings of the 2004 ACM SIGSOFT linternational
Symposium on Software Testing and Analysis (ISSTA *04),
pages 119-128, Boston, Massachusetts, USA. ACM.

[451] Tracey, N., Clark, J., and Mander, K. (1998a). Auto-
mated Program Flaw Finding using Simulated Annealing.
In Proceedings of the 1998 ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 98),
pages 73-81, Clearwater Beach, Florida, USA. ACM.

[452] Tracey, N., Clark, J., and Mander, K. (1998b). The Way
Forward for Unifying Dynamic Test-Case Generation: the
Optimisation-based Approach. In Proceedings of the IFIP
International Workshop on Dependable Computing and Its
Applications (DCIA ’98), pages 169-180, Johannesburg,
South Africa. University of the Witwatersrand.

[453] Tracey, N., Clark, J., Mander, K., and McDermid, J.
(2000). Automated Test-Data Generation for Exception
Conditions. Software Practice and Experience, 30(1), 61—
79.

[454] Tracey, N., Clark, J., McDermid, J., and Mander, K.
(2002). A Search-based Automated Test-Data Generation
Framework for Safety-Critical Systems. In P. Henderson,
editor, Systems engineering for business process change:
new directions, pages 174-213. Springer-Verlag New York,
Inc., New York, NY, USA.

[455] Tracey, N. J. (2000). A Search-based Automated Test-
Data Generation Framework for Safety-Critical Software.

Ph.D. thesis, University of York.

[456] Tsai, W., Zhang, D., Paul, R., and Chen, Y. (2005).
Stochastic Voting Algorithms for Web Services Group
Testing. In Proceedings of the 5th International Conference
on Quality Software (QSIC °05), pages 99-108, Melbourne,
Australia. IEEE Computer Society.

[457] Uyar, H. T., Uyar, A. S., and Harmanci, E. (2006).
Pairwise Sequence Comparison for Fitness Evaluation in
Evolutionary Structural Software Testing. In Proceedings
of the 8th annual Conference on Genetic and Evolutionary
Computation (GECCO °06), pages 1959-1960, Seattle,
Washington, USA. ACM.

[458] Van Belle, T. and Ackley, D. H. (2002). Code Factoring
and the Evolution of Evolvability. In Proceedings of the
2002 Conference on Genetic and Evolutionary Computation
(GECCO °02), pages 1383-1390, New York, USA. Morgan
Kaufmann Publishers.

[459] Vijayalakshmi, K., Ramaraj, N., and Amuthakkannan,
R. (2008). Improvement of Component Selection Process
using Genetic Algorithm for Component-Based Software
Development. International Journal of Information Systems
and Change Management, 3(1), 63-80.

[460] Vivanco, R. and Jin, D. (2008). Enhancing Predictive
Models using Principal Component Analysis and Search
Based Metric Selection: A Comparative Study. In Proceed-
ings of the Second ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM
'08), pages 273-275, Kaiserslautern, Germany. ACM.

[461] Vivanco, R. and Pizzi, N. (2004). Finding Effective
Software Metrics to Classify Maintainability Using a Par-
allel Genetic Algorithm. In Proceedings of the 2004 Confer-
ence on Genetic and Evolutionary Computation (GECCO
'04), volume 3103 of Lecture Notes in Computer Science,
pages 1388-1399, Seattle, Washington, USA. Springer
Berlin / Heidelberg.

[462] Vivanco, R. A. and Jin, D. (2007). Selecting Object-
Oriented Source Code Metrics to Improve Predictive Mod-
els using a Parallel Genetic Algorithm. In Proceedings
of Conference on Object Oriented Programming Systems
Languages and Applications Companion to the 22nd ACM
SIGPLAN conference on Object-oriented programming sys-
tems and applications companion, pages 769-770, Mon-
treal, Quebec, Canada. ACM.

[463] Waeselynck, H., Thévenod-Fosse, P., and Abdellatif-
Kaddour, O. (2007). Simulated Annealing Applied to
Test Generation: Landscape Characterization and Stopping
Criteria. Empirical Software Engineering, 12(1), 35-63.

[464] Walcott, K. R., Soffa, M. L., Kapfhammer, G. M., and
Roos, R. S. (2006). Time-Aware Test Suite Prioritization.
In Proceedings of the 2006 International Symposium on
Software Testing and Analysis (ISSTA ’06), pages 1-12,
Portland, Maine, USA. ACM.

[465] Wang, H.-C. (2006). A Hybrid Genetic Algorithm for
Automatic Test Data Generation. Master’s thesis, National
Sun Yat-sen University, Department of Information Man-
agement, Taiwan, China.

[466] Wang, Y., Bai, Z., Zhang, M., Du, W., Qin, Y., and Liu,
X. (2008a). Fitness calculation approach for the switch-

76

case construct in evolutionary testing. In M. Keijzer, editor,
Proceedings of the 10th Annual Conference on Genetic
and Evolutionary Computation (GECCO ’08), pages 1767—
1774, Atlanta, GA, USA. ACM.

[467] Wang, Z., Tang, K., and Yao, X. (2008b). A Multi-
Objective Approach to Testing Resource Allocation in
Modular Software Systems. In Proceedings of the 2008
IEEE Congress on Evolutionary Computation (CEC '08),
pages 1148-1153, Hong Kong, China. IEEE.

[468] Wappler, S. (2004). Using Evolutionary Algorithms
for the Test of Object-Oriented Systems. Master’s thesis,
University of Potsdam.

[469] Wappler, S. (2008). Automatic Generation of Object-
Oriented Unit Tests using Genetic Programming. Ph.D.
thesis, Technical University of Berlin.

[470] Wappler, S. and Lammermann, F. (2005). Using
Evolutionary Algorithms for the Unit Testing of Object-
Oriented Software. In Proceedings of the 2005 Conference
on Genetic and Evolutionary Computation (GECCO °05),
pages 1053-1060, Washington, D.C., USA. ACM.

[471] Wappler, S. and Schieferdecker, 1. (2007). Improving
Evolutionary Class Testing in the Presence of Non-Public
Methods. In Proceedings of the 22nd IEEE/ACM Inter-
national Conference on Automated Software Engineering
(ASE ’07), pages 381-384, Atlanta, Georgia, USA. IEEE.

[472] Wappler, S. and Wegener, J. (2006a). Evolutionary
Unit Testing Of Object-Oriented Software Using A Hybrid
Evolutionary Algorithm. In Proceedings of the 2006 IEEE
Congress on Evolutionary Computation (CEC ’06), pages
851-858, Vancouver, BC, Canada. IEEE.

[473] Wappler, S. and Wegener, J. (2006b). Evolutionary
Unit Testing of Object-Oriented Software using Strongly-
Typed Genetic Programming. In Proceedings of the 8th
annual Conference on Genetic and Evolutionary Computa-
tion (GECCO ’06), pages 1925-1932, Seattle, Washington,
USA. ACM.

[474] Wappler, S., Baresel, A., and Wegener, J. (2007). Im-
proving Evolutionary Testing in the Presence of Function-
Assigned Flags. In Proceedings of 2nd Testing: Academic &
Industrial Conference - Practice and Research Techniques
(TAICPART-MUTATION °07), pages 23-34, Windsor, UK.
IEEE.

[475] Watkins, A. and Hufnagel, E. M. (2006). Evolutionary
Test Data Generation: A Comparison of Fitness Functions.
Software: Practice and Experience, 36(1), 95-116.

[476] Watkins, A., Berndt, D. J., Aebischer, K., Fisher, J. W.,
and Johnson, L. (2004). Breeding Software Test Cases
for Complex Systems. In Proceedings of the 37th An-
nual Hawaii International Conference on System Sciences
(HICSS ’04), Hawaii, USA. IEEE Computer Society.

[477] Watkins, A., Hufnagel, E. M., Berndt, D. J., and John-
son, L. (2006). Using Genetic Algorithms and Decision
Tree Induction to Classify Software Failures. International
Journal of Software Engineering and Knowledge Engineer-
ing (IJSEKE), 16(2), 269-291.

[478] Watkins, A. L. (1995). The Automatic Generation of
Test Data using Genetic Algorithms. In Proceedings of the
4th Software Quality Conference, volume 2, pages 300-309,

Dundee, UK. ACM.

[479] Wegener, J. and Biihler, O. (2004). Evaluation of
Different Fitness Functions for the Evolutionary Testing
of an Autonomous Parking System. In Proceedings of
the 2004 Conference on Genetic and Evolutionary Com-
putation (GECCO ’'04), volume 3103 of Lecture Notes in
Computer Science, pages 1400-1412, Seattle, Washington,
USA. Springer Berlin / Heidelberg.

[480] Wegener, J. and Grochtmann, M. (1998). Verifying
Timing Constraints of Real-Time Systems by means of
Evolutionary Testing. Real-Time Systems, 15(3), 275-298.

[481] Wegener, J. and Mueller, F. (2001). A Comparison of
Static Analysis and Evolutionary Testing for the Verification
of Timing Constraints. Real-Time Systems, 21(3), 241-268.

[482] Wegener, J., Sthamer, H., Jones, B. F., and Eyres,
D. E. (1997a). Testing Real-Time Systems using Genetic
Algorithms. Software Quality, 6(2), 127-135.

[483] Wegener, J., Grochtmann, M., and Jones, B. (1997b).
Testing Temporal Correctness of Real-Time Systems by
Means of Genetic Algorithms. In Proceedings of the
10th International Software Quality Week (QW ’97), San
Francisco, California, USA.

[484] Wegener, J., Baresel, A., and Sthamer, H. (2001).
Evolutionary Test Environment for Automatic Structural
Testing. Information and Software Technology Special Issue
on Software Engineering using Metaheuristic Innovative
Algorithms, 43(14), 841-854.

[485] Wegener, J., Buhr, K., and Pohlheim, H. (2002a). Au-
tomatic Test Data Generation for Structural Testing of
Embedded Software Systems by Evolutionary Testing. In
Proceedings of the 2002 Genetic and Evolutionary Compu-
tation Conference (GECCO ’02), pages 1233-1240, New
York, USA. Morgan Kaufmann Publishers Inc.

[486] Wegener, J., Baresel, A., and Sthamer, H. (2002b).
Suitability of Evolutionary Algorithms for Evolutionary
Testing. In Proceedings of the 26th International Computer
Software and Applications Conference on Prolonging Soft-
ware Life: Development and Redevelopment (COMPSAC
'02), pages 287 — 289, Oxford, UK. IEEE Computer
Society.

[487] Wen, F. and Lin, C.-M. (2008). Multistage Human
Resource Allocation for Software Development by Multiob-
jective Genetic Algorithm. The Open Applied Mathematics
Journal, 2, 95-103.

[488] White, D. R., Clark, J., Jacob, J., and Poulding, S. M.
(2008). Searching for Resource-Efficient Programs: Low-
Power Pseudorandom Number Generators. In M. Keijzer,
editor, Proceedings of the 10th Annual Conference on Ge-
netic and Evolutionary Computation (GECCO ’08), pages
1775-1782, Atlanta, GA, USA. ACM.

[489] Whitley, D., Sutton, A. M., and Howe, A. E. (2008).
Understanding elementary landscapes. In Proceedings of
the 10th annual conference on Genetic and evolutionary
computation (GECCO 2008), pages 585-592, New York,
NY, USA. ACM.

[490] Williams, K. P. (1998). Evolutionary Algorithms for Au-
tomatic Parallelization. Phd thesis, University of Reading,
UK, Department of Computer Science.

77

[491] Windisch, A. (2008). Search-based Testing of Complex
Simulink Models Containing Stateflow Diagrams. In Pro-
ceedings of Ist International Workshop on Search-Based
Software Testing (SBST) in conjunction with ICST 2008,
pages 251-251, Lillehammer, Norway. IEEE Computer
Society.

[492] Windisch, A., Wappler, S., and Wegener, J. (2007).
Applying Particle Swarm Optimization to Software Testing.
In Proceedings of the 9th annual Conference on Genetic
and Evolutionary Computation (GECCO ’07), pages 1121—
1128, London, England. ACM.

[493] Xanthakis, S., Ellis, C., Skourlas, C., Le Gall, A.,
Katsikas, S., and Karapoulios, K. (1992). Application of
Genetic Algorithms to Software Testing. In Proceedings of
the 5th International Conference on Software Engineering
and Applications, pages 625—636, Toulouse, France.

[494] Xiao, J., Lam, C. P, Li, H., and Wang, J. (2006).
Reformulation of the Generation of Conformance Test-
ing Sequences to the Asymmetric Travelling Salesman
Problem. In Proceedings of the 8th annual Conference
on Genetic and Evolutionary Computation (GECCO ’06),
pages 1933-1940, Seattle, Washington, USA. ACM.

[495] Xiao, M., El-Attar, M., Reformat, M., and Miller, J.
(2007). Empirical Evaluation of Optimization Algorithms
when used in Goal-oriented Automated Test Data Gener-
ation Techniques. Empirical Software Engineering, 12(2),
183-239.

[496] Xie, X., Xu, B., Shi, L., Nie, C., and He, Y. (2005a). A
Dynamic Optimization Strategy for Evolutionary Testing.
In Proceedings of the 12th Asia-Pacific Software Engi-
neering Conference (APSEC ’05), pages 568-575, Taibei,
Taiwan. IEEE Computer Society.

[497] Xie, X., Xu, B., Nie, C., Shi, L., and Xu, L. (2005b).
Configuration Strategies for Evolutionary Testing. In
Proceedings of the 29th Annual International Computer
Software and Applications Conference (COMPSAC °05),
pages 13—14, Edinburgh, UK. IEEE Computer Society.

[498] Yang, L., Jones, B. F., and Yang, S.-H. (2006). Genetic
Algorithm based Software Integration with Minimum Soft-
ware Risk. Information and Software Technology, 48(3),
133-141.

[499] Yoo, S. and Harman, M. (2007). Pareto Efficient Multi-
Objective Test Case Selection. In Proceedings of the 2007
International Symposium on Software Testing and Analysis
(ISSTA °07), pages 140-150, London, England. ACM.

[500] Zhan, Y. and Clark, J. A. (2004). Search Based
Automatic Test-Data Generation at an Architectural Level.
In Proceedings of the 2004 Conference on Genetic and Evo-
lutionary Computation (GECCO ’'04), volume 3103/2004
of Lecture Notes in Computer Science, pages 1413-1424,
Seattle, Washington, USA. Springer Berlin / Heidelberg.

[501] Zhan, Y. and Clark, J. A. (2005). Search-based Muta-
tion Testing for Simulink Models. In Proceedings of the
2005 Conference on Genetic and Evolutionary Computation
(GECCO °05), pages 1061-1068, Washington, D.C., USA.
ACM.

[502] Zhan, Y. and Clark, J. A. (2006). The State Problem
for Test Generation in Simulink. In Proceedings of the Sth

annual Conference on Genetic and Evolutionary Computa-
tion (GECCO ’06), pages 1941-1948, Seattle, Washington,
USA. ACM.

[503] Zhan, Y. and Clark, J. A. (2008). A Search-based
Framework for Automatic Testing of MATLAB/Simulink
Models. Journal of Systems and Software, 81(2), 262-285.

[504] Zhang, C., Su, S., and Chen, J. (2006). A Novel Genetic
Algorithm for QoS-Aware Web Services Selection. In
Proceedings of the 2nd International Workshop on Data
Engineering Issues in E-Commerce and Services (DEECS
’06), volume 4055 of LNCS, pages 224-235, San Francisco,
CA, USA. Springer.

[505] Zhang, C., Su, S., and Chen, J. (2007a). DiGA:
Population diversity handling genetic algorithm for QoS-
aware web services selection. Computer Communications,
30(5), 1082-1090.

[506] Zhang, H. (2004). Automatic Test Data Generation
using Genetic Algorithm and Program Dependence Graphs.
Master’s thesis, University of Alberta (Canada).

[507] Zhang, X., Meng, H., and Jiao, L. (2005). Intelligent
particle swarm optimization in multiobjective optimization.
In Proceedings of the 2005 IEEE Congress on Evolutionary
Computation, volume 1, pages 714-719, Edinburgh, UK.
IEEE Press.

[508] Zhang, Y., Harman, M., and Mansouri, S. A. (2007b).
The Multi-Objective Next Release Problem. In Proceedings
of the 9th annual Conference on Genetic and Evolutionary
Computation (GECCO ’07), pages 1129-1137, London,
UK. ACM.

[509] Zhang, Y., Finkelstein, A., and Harman, M. (2008).
Search Based Requirements Optimisation: Existing Work
& Challenges. In Proceedings of the 14th International
Working Conference, Requirements Engineering: Founda-
tion for Software Quality (REFSQ ’'08), volume 5025 of
LNCS, pages 88-94, Montpellier, France. Springer.

[510] Zhong, H., Zhang, L., and Mei, H. (2008). An Ex-
perimental Study of Four Typical Test Suite Reduction
Techniques. Information and Software Technology, 50(6),
534-546.

78

