
Mach Learn (2009) 75: 297–325
DOI 10.1007/s10994-009-5106-x

Search-based structured prediction

Hal Daumé III · John Langford · Daniel Marcu

Received: 22 September 2006 / Revised: 15 May 2008 / Accepted: 16 January 2009 /
Published online: 14 March 2009
Springer Science+Business Media, LLC 2009

Abstract We present SEARN, an algorithm for integrating SEARch and lEARNing to solve
complex structured prediction problems such as those that occur in natural language, speech,
computational biology, and vision. SEARN is a meta-algorithm that transforms these com-
plex problems into simple classification problems to which any binary classifier may be ap-
plied. Unlike current algorithms for structured learning that require decomposition of both
the loss function and the feature functions over the predicted structure, SEARN is able to
learn prediction functions for any loss function and any class of features. Moreover, SEARN

comes with a strong, natural theoretical guarantee: good performance on the derived classi-
fication problems implies good performance on the structured prediction problem.

Keywords Structured prediction · Search · Reductions

1 Introduction

Prediction is the task of learning a function f that maps inputs x in an input domain X to
outputs y in an output domain Y . Standard algorithms—support vector machines, decision
trees, neural networks, etc.—focus on “simple” output domains such as Y = {−1,+1} (in
the case of binary classification) or Y = R (in the case of univariate regression).

We are interested in problems for which elements y ∈ Y have complex internal structure.
The simplest and best studied such output domain is that of labeled sequences. However,
we are interested in even more complex domains, such as the space of English sentences

Editor: Dan Roth.

H. Daumé III (�)
School of Computing, University of Utah, Salt Lake City, UT 84112, USA
e-mail: me@hal3.name

J. Langford
Yahoo! Research Labs, New York, NY 10011, USA

D. Marcu
Information Sciences Institute, Marina del Rey, CA 90292, USA

mailto:me@hal3.name

298 Mach Learn (2009) 75: 297–325

(for instance in a machine translation application), the space of short documents (perhaps in
an automatic document summarization application), or the space of possible assignments of
elements in a database (in an information extraction/data mining application). The structured
complexity of features and loss functions in these problems significantly exceeds that of
sequence labeling problems.

From a high level, there are four dimensions along which structured prediction algo-
rithms vary: structure (varieties of structure for which efficient learning is possible), loss
(different loss functions for which learning is possible), features (generality of feature func-
tions for which learning is possible) and data (ability of algorithm to cope with imperfect
data sources such as missing data, etc.). An in-depth discussion of alternative structured
prediction algorithms is given in Sect. 5. However, to give a flavor, the popular conditional
random field algorithm (Lafferty et al. 2001) is viewed along these dimensions as follows.
Structure: inference for a CRF is tractable for any graphical model with bounded tree width;
Loss: the CRF typically optimizes a log-loss approximation to 0/1 loss over the entire struc-
ture; Features: any feature of the input is possible but only output features that obey the
graphical model structure are allowed; Data: EM can cope with hidden variables.

We prefer a structured prediction algorithm that is not limited to models with bounded
treewidth, is applicable to any loss function, can handle arbitrary features and can cope
with imperfect data. Somewhat surprisingly, SEARN meets nearly all of these requirements
by transforming structured prediction problems into binary prediction problems to which
a vanilla binary classifier can be applied. SEARN comes with a strong theoretical guar-
antee: good binary classification performance implies good structured prediction perfor-
mance. Simple applications of SEARN to standard structured prediction problems yield
tractable state-of-the-art performance. Moreover, we can apply SEARN to more complex,
non-standard structured prediction problems and achieve excellent empirical performance.

This paper has the following outline:

1. Introduction.
2. Core Definitions.
3. The SEARN Algorithm.
4. Theoretical Analysis.
5. A Comparison to Alternative Techniques.
6. Experimental results.
7. Discussion.

2 Core definitions

In order to proceed, it is useful to formally define a structured prediction problem in terms
of a state space.

Definition 1 A structured prediction problem D is a cost-sensitive classification prob-
lem where Y has structure: elements y ∈ Y decompose into variable-length vectors
(y1, y2, . . . , yT).1 D is a distribution over inputs x ∈ X and cost vectors c, where |c| is a
variable in 2T .

1Treating y as a vector is simply a useful encoding; we are not interested only in sequence labeling problems.

Mach Learn (2009) 75: 297–325 299

As a simple example, consider a parsing problem under F1 (balanced precision/recall)
loss. In this case, D is a distribution over (x, c) where x is an input sequence and for all
trees y with |x|-many leaves, cy is the F1 loss of y against the “true” output.

The goal of structured prediction is to find a function h : X → Y that minimizes the loss
given in (1):

L(D, h) = E(x,c)∼D{ch(x)}. (1)

The algorithm we present is based on the view that a vector y ∈ Y can be produced by
predicting each component (y1, . . . , yT) in turn, allowing for dependent predictions. This is
important for coping with general loss functions.

For a data set (x1, c1), . . . , (xN , cN) of structured prediction examples, we write Tn for
the length of the longest search path on example n, and Tmax = maxn Tn.

3 The SEARN algorithm

The core idea behind SEARN is as follows. We are given a set of structured prediction ex-
amples of the form (x, c). We view the production of a structured output as a search process
over the decomposition of y into y1, . . . , yT . We train a (cost-sensitive) classifier to predict
each of the yt components in turn; this is akin to a greedy search process (an extension to
non-greedy search is considered in Sect. 3.4.3). The t th decision may be dependent on any
of the preceding t −1 decisions. The cost-sensitive classifier that makes each of these search
decisions should be trained to do will (with respect to c) for any prefix of t − 1 decisions
that it might encounter. This introduces a chicken-and-egg problem: how to best train the
classifier depends on the classifier itself. We solve this using an iterative scheme.

We formulate the SEARN algorithm in terms of a policy, a notion borrowed from rein-
forcement learning. A policy tells us: for a given “node” in the search space, what is the best
action to take? It is important to keep in mind, however, the separation between training
data and test data in the structured prediction setting. In particular, what we desire is a good
policy for the test data. We assume that we already have a good policy for the training data:
this policy can be constructed on the basis of the known loss vector c for any particular
training example.

For example, consider a simple sequence labeling task (for instance, part-of-speech tag-
ging on natural language sentences). Here, the output is a vector of labels and for simplicity
we assume that the loss is Hamming loss (number of incorrectly predicted labels). Given a
test example, we wish to predict each label in the sequence incrementally. For instance, we
may tag the sequence left-to-right, labeling the t word only after the previous t − 1 words
have been labeled. In this case, we associate a node in a search space to be any labeling of a
prefix of the sentence. An action in this space corresponds to labeling one additional word.
The learned policy predict, for a given node (i.e., prefix of labels) and the sentence itself,
what is the best action to take. That is, how should we label the next word. In the case of
Hamming loss over sequences, it is trivial to construct a good policy when the correct label
sequence is known: the best thing to do is to always predict the correct tag. The learning
problem is, essentially, to transfer this policy that works when we observe the true label
sequence to examples where we do not observe the true label sequence.

More formally, there are several vital ingredients in any application of SEARN: a search
space for decomposing the prediction problem; a cost sensitive learning algorithm; labeled
structured prediction training data; a known loss function for the structured prediction prob-
lem; and a good initial policy. These aspects are described in more detail below.

300 Mach Learn (2009) 75: 297–325

A search space S . The choice of search space plays a role similar to the choice of struc-
tured decomposition in other algorithms. Final elements of the search space can always be
referenced by a sequence of choices ŷ. In simple applications of SEARN the search space
is concrete. For example, it might consist of the parts of speech of each individual word
in a sentence. In general, the search space can be abstract, and we show this can be ben-
eficial experimentally (Sect. 3.4.3). An abstract search space comes with an (unlearned)
function f (ŷ) which turns any sequence of predictions in the abstract search space into an
output of the correct form. (For a concrete search space, f is just the identity function. To
minimize confusion, we will leave off f in future notation unless its presence is specifi-
cally important.) We discuss the effect of the search space on experimental performance in
Sect. 6.1.8.

A cost sensitive learning algorithm A. The learning algorithm returns a multiclass classifier
h(s) given cost sensitive training data. Here s is a description of the location in the search
space. A reduction of cost sensitive classification to binary classification (Beygelzimer et
al. 2005) reduces the requirement to an importance-weighted binary learning algorithm.
SEARN relies upon this learning algorithm to form good generalizations. Nothing else in
the SEARN algorithm attempts to achieve generalization or estimation. The performance
of SEARN is strongly dependent upon how capable the learned classifier is. We call the
learned classifier a policy because it is used multiple times on inputs which it effects, just
as in reinforcement learning.

Labeled structured prediction training data. SEARN digests the labeled training data for the
structured prediction problem into cost-sensitive training data which is fed into the cost-
sensitive learning algorithm.2

A known loss function. A loss function L(y, f (ŷ)) must be known and be computable for
any sequence of predictions.

A good initial policy. This policy should achieve low loss when applied to the training data.
This can (but need not always) be defined using a search algorithm.

3.1 SEARN at test time

SEARN at test time is a very simple algorithm. It uses the policy returned by the learning
algorithm to construct a sequence of decisions ŷ and makes a final prediction f (ŷ). First,
one uses the learned policy to compute y0 on the basis of just the input x. One then computes
y1 on the basis of x and y0, followed by predicting y2 on the basis of x, y0 and y1, etc. Finally,
one predicts yT on the basis of the input x and all previous decisions.

3.2 SEARN at train time

SEARN operates in an iterative fashion. At each iteration it uses a known policy to create
new cost-sensitive classification examples. These examples are essentially the classification
decisions that a policy would need to get right in order to perform search well. These are used
to learn a new classifier, which is interpreted as a new policy. This new policy is interpolated
with the old policy and the process repeats.

2A k-class cost-sensitive example is given by an input X and a vector of costs c ∈ (R+)k . Each class i

has an associated cost ci and the goal is a function h : X �→ i that minimizes the expected value of ci . See
(Beygelzimer et al. 2005).

Mach Learn (2009) 75: 297–325 301

3.2.1 Initial policy

SEARN relies on a good initial policy on the training data. This policy can take full ad-
vantage of the training data labels. The initial policy needs to be efficiently computable
for SEARN to be efficient. The implications of this assumption are discussed in detail in
Sect. 3.4.1, but it is strictly weaker than assumptions made by other structured prediction
techniques. The initial policy we use is a policy that, for a given state predicts the best action
to take with respect to the labels:

Definition 2 (Initial Policy) For an input x and a cost vector c as in Def 1, and a state s = x×
(y1, . . . , yt) in the search space, the initial policy π(s, c) is arg minyt+1 minyt+2,...,yT

c〈y1,...,yT 〉.
That is, π chooses the action (i.e., value for yt+1) that minimizes the corresponding cost,
assuming that all future decisions are also made optimally.

This choice of initial policy is optimal when the correct output is a deterministic function
of the input features (effectively in a noise-free environment).

3.2.2 Cost-sensitive examples

In the training phase, SEARN uses a given policy h (initialized to the initial policy π) to
construct cost-sensitive multiclass classification examples from which a new classifier is
learned. These classification examples are created by running the given policy h over the
training data. This generates one path per structured training example. SEARN creates a
single cost-sensitive example for each state on each path. The classes associated with each
example are the available actions (or next states). The only difficulty lies in specifying the
costs.

The cost associated with taking an action that leads to state s is the regret associated
with this action, given our current policy. For each state s and each action a, we take action
a and then execute the policy to gain a full sequence of predictions ŷ for which we can
compute a loss cŷ . Of all the possible actions, one, a′, has the minimum expected loss. The
cost �h(c, s, a) for an action a in state s is the difference in loss between taking action a and
taking the action a′; see (2):

�h(c, s, a) = Eŷ∼(s,a,h)cŷ − min
a′ Eŷ∼(s,a′,h)cŷ . (2)

One complication arises because the policy used may be stochastic. First, the base clas-
sifier may be stochastic. Second, the interpolation is stochastic. In particular, the method of
interpolation is to flip a weighted coin. On heads, the initial policy is called; on tails, the
learned policy. There are (at least) three possible ways to deal with randomness.

1. Monte-Carlo sampling: one draws many paths according to h beginning at s ′ and average
over the costs.

2. Single Monte-Carlo sampling: draw a single path and use the corresponding cost, with
tied randomization as per Pegasus (Ng and Jordan 2000).

3. Approximation: it is often possible to efficiently compute the loss associated with fol-
lowing the initial policy from a given state; when h is sufficiently good, this may serve
as a useful and fast approximation. (This is also the approach described by Langford and
Zadrozny 2005.)

302 Mach Learn (2009) 75: 297–325

The quality of the learned solution depends on the quality of the approximation of the
loss. Obtaining Monte-Carlo samples is likely the best solution, but in many cases the ap-
proximation is sufficient. An empirical comparison of these options is performed in (Daumé
III 2006). Here it is observed that for easy problems (one for which low loss is possible), the
approximation performs approximately as well as the alternatives. Moreover, typically the
approximately outperforms the single sample approach, likely due to the noise induced by
following a single sample.

3.2.3 Algorithm

The SEARN algorithm is shown in Fig. 1. As input, the algorithm takes a structured learn-
ing data set, an initial policy π and a multiclass cost sensitive learner A. SEARN operates
iteratively, maintaining a current policy hypothesis h at each iteration. This hypothesis is
initialized to the initial policy (step 1).

The algorithm then loops for a number of iterations. In each iteration, it creates a
(multi-)set of cost-sensitive examples, S. These are created by looping over each struc-
tured example (step 4). For each example (step 5), the current policy h is used to produce
a full output, represented as a sequence of predictions y1, . . . , yTn . From this, states are de-
rived and used to create a single cost-sensitive example (steps 6–14) at each timestep. (We
evaluate the role of the iterations in Sect. 6.1.9.)

The first task in creating a cost-sensitive example is to compute the associated feature
vector, performed in step 7. This feature vector is based on the current state st which includes
the features x (the creation of the feature vectors is discussed in more detail in Sect. 3.3).
The cost vector contains one entry for every possible action a that can be executed from
state st . For each action a, we compute the expected loss associated with the state st ⊕ a:
the state arrived at assuming we take action a (step 10).

Algorithm SEARN(SSP, π , A)

1: Initialize policy h ← π

2: while h has a significant dependence on π (see Lemma 2) do
3: Initialize the set of cost-sensitive examples S ← ∅
4: for (x, y) ∈ SSP do
5: Compute predictions under the current policy ŷ ∼ x,h

6: for t = 1 . . . Tx do
7: Compute features Φ = Φ(st) for state st = (x, y1, . . . , yt)

8: Initialize a cost vector c = 〈〉
9: for each possible action a do

10: Let the cost �a for example x, c at state s be �h(c, s, a)

11: end for
12: Add cost-sensitive example (Φ,�) to S

13: end for
14: end for
15: Learn a classifier on S: h′ ← A(S)

16: Interpolate: h ← βh′ + (1 − β)h

17: end while
18: return hlast without π

Fig. 1 Complete SEARN algorithm

Mach Learn (2009) 75: 297–325 303

SEARN creates a large set of cost-sensitive examples S. These are fed into any cost-
sensitive classification algorithm, A, to produce a new classifier h′ (step 15). In step 16,
SEARN combines the newly learned classifier h′ with the current classifier h to produce a
new classifier. This combination is performed through stochastic interpolation with interpo-
lation parameter β (see Sect. 4 for details). The meaning of stochastic interpolation here is:
“every time h is evaluated, a new random number is drawn. If the random number is less
than β then h′ is used and otherwise the old h is used.” SEARN returns the final policy with
π removed (step 18) and the stochastic interpolation renormalized.

3.3 Feature computations

In step 7 of the SEARN algorithm (Fig. 1), one is required to compute a feature vector Φ on
the basis of the give state st . In theory, this step is arbitrary. However, the performance of the
underlying classification algorithm (and hence the induced structured prediction algorithm)
hinges on a good choice for these features. The feature vector Φ(st) may depend on any
aspect of the input x and any past decision. In particular, there is no limitation to a “Markov”
dependence on previous decisions.

For concreteness, consider the part-of-speech tagging task: for each word in a sen-
tence, we must assign a single part of speech (e.g., Det, Noun, Verb, etc.). Given a state
st = 〈x, y1, . . . , yt 〉, one might compute a sparse feature vector Φ(st) with zeros everywhere
except at positions corresponding to “interesting” aspects of the input. For instance, a fea-
ture corresponding to the identity of the t + 1st word in the sentence would likely be very
important (since this is the word to be tagged). Furthermore, a feature corresponding to the
value yt would likely be important, since we believe that subsequent tags are not indepen-
dent of previous tags. These features would serve as the input to the cost-sensitive learning
algorithm, which would attempt to predict the correct label for the t +1st word. This usually
corresponds to learning a single weight vector for each class (in a one-versus-all setting) or
to learning a single weight vector for each pair of classes (for all-pairs).

3.4 Policies

SEARN functions in terms of policies, a notion borrowed from the field of reinforcement
learning. This section discusses the nature of the initial policy assumption and the connec-
tions to reinforcement learning.

3.4.1 Computability of the initial policy

SEARN relies upon the ability to start with a good initial policy π , defined formally in De-
finition 2. For many simple problems under standard loss functions, it is straightforward
to compute a good policy π in constant time. For instance, consider the sequence labeling
problem (discussed further in Sect. 6.1). A standard loss function used in this task is Ham-
ming loss: of all possible positions, how many does our model predict incorrectly. If one
performs search left-to-right, labeling one element at a time (i.e., each element of the y vec-
tor corresponds exactly to one label), then π is trivial to compute. Given the correct label
sequence, π simply chooses at position i the correct label at position i. However, SEARN

is not limited to simple Hamming loss. A more complex loss function often considered for
the sequence segmentation task is F-score over (correctly labeled) segments. As discussed in
Sect. 6.1.3, it is just as easy to compute a good initial policy for this loss function. This is not
possible in many other frameworks, due to the non-additivity of F-score. This is independent
of the features.

304 Mach Learn (2009) 75: 297–325

This result—that SEARN can learn under strictly more complex structures and loss func-
tions than other techniques—is not limited to sequence labeling, as demonstrated below in
Theorem 1. In order to prove this, we need to formalize what we consider as “other tech-
niques.” We use the max-margin Markov network (M3N) formalism (Taskar et al. 2005)
for comparison, since this currently appears to be the most powerful generic framework.
In particular, learning in M3Ns is often tractable for problems that would be #P-hard for
conditional random fields. The M3N has several components, one of which is the ability
to compute a loss-augmented minimization (Taskar et al. 2005). This requirement states
that (3) is computable for any input x, output set Yx , true output y and weight vec-
tor w:

opt(Yx, y,w) = arg max
ŷ∈Yx

w�Φ(x, ŷ) − l(y, ŷ). (3)

In (3), Φ(·) produces a vector of features, w is a weight vector and l(y, ŷ) is the loss for
prediction ŷ when the correct output is y.

Theorem 1 Suppose (3) is computable in time T (x); then the optimal policy is computable
in time O(T (x)).

Proof We use a vector encoding of y that maintains the decomposition over the regions used
by the M3N. Given a prefix y1, . . . , yt , solve opt on the future choices (i.e., remove the part
of the structure corresponding to the first t outputs) and removing the “loss” term, which
gives us an optimal policy. �

This theorem shows that any problem solvable by a max margin Markov network is
also amenable to a solution via SEARN. One key advantage to SEARN, however, is that it
never needs to solve such an “arg max” problem. For example, for complex, loopy struc-
tures (such as those found in image segmentation problems or complex natural language
processing problems), the “arg max” computation is known to be intractable. However,
one may still apply SEARN to such problems by ordering the vertices and running greedy
search.

3.4.2 Search-based policies

The SEARN algorithm and the theory to be presented in Sect. 4 do not require that the initial
policy be optimal. SEARN can train against any policy. One artifact of this observation is
that we can use search to create the initial policy.

At any step of SEARN, we need to be able to compute the best next action. That is,
given a node in the search space, and the cost vector c, we need to compute the best step to
take. This is exactly the standard search problem: given a node in a search space, we find
the shortest path to a goal. By taking the first step along this shortest path, we obtain a good
initial policy (assuming this shortest path is, indeed, shortest). This means that when SEARN

asks for the best next step, one can execute any standard search algorithm to compute this,
for cases where a good initial policy is not available analytically.

Given this observation, the requirements of SEARN are reduced: instead of requiring a
good initial policy, we simply require that one can perform efficient approximate search.

Mach Learn (2009) 75: 297–325 305

3.4.3 Beyond greedy search

We have presented SEARN as an algorithm that mimics the operations of a greedy search al-
gorithm. Real-world experience has shown that often greedy search is insufficient and more
complex search algorithms are required. This observation is consistent with the standard
view of search (trying to find a shortest path), but nebulous when considered in the con-
text of SEARN. Nevertheless, it is often desirable to allow a model to trade past decisions
off future decisions, and this is precisely the purpose of instituting more complex search
algorithms.

It turns out that any (non-greedy) search algorithm operating in a search space S can be
equivalently viewed as a greedy search algorithm operating in an abstract space S ∗ (where
the structure of the abstract space is dependent on the original search algorithm). In a general
search algorithm (Russell and Norvig 1995), one maintains a queue of active states and
expands a single state in each search step. After expansion, each resulting child state is
enqueued. The ordering (and, perhaps, maximal size) of the queue is determined by the
specific search algorithm.

In order to simulate this more complex algorithm as greedy search, we construct the
abstract space S ∗ as follows. Each node s ∈ S ∗ represents a state of the queue. A transition
exists between s and s ′ in S ∗ exactly when a particular expansion of an S -node in the s-
queue results in the queue becoming s ′. Finally, for each goal state g ∈ S , we augment S ∗

with a single unique goal state g∗. We insert transitions from s ∈ S ∗ to g∗ exactly when
g∗ ∈ s. Thus, in order to complete the search process, a goal node must be in the queue and
the search algorithm must select this single node.

In general, SEARN makes no assumptions about how the search process is structured.
A different search process leads to a different bias in the learning algorithm. It is up to the
designer to construct a search process so that (a) a good bias is exhibited and (b) computing
a good initial policy is easy. For instance, for some combinatorial problems such as match-
ings or tours, it is known that left-to-right beam search tends to perform poorly. For these
problems, a local hill-climbing search is likely to be more effective since we expect it to
render the underlying classification problem simpler.

4 Theoretical analysis

SEARN functions by slowly moving away from the initial policy (which is available only
for the training data) toward a fully learned policy. Each iteration of SEARN degrades the
current policy.3 The main theorem states that the learned policy is not much worse than the
starting (optimal) policy plus a term related to the average cost sensitive loss of the learned
classifiers and another term related to the maximum cost sensitive loss. To simplify notation,
we write T for Tmax.

It is important in the analysis to refer explicitly to the error of the classifiers learned dur-
ing SEARN process. Let SEARN(D, h) denote the distribution over classification problems
generated by running SEARN with policy h on distribution D. Also let �CS

h (h′) denote the
loss of classifier h′ on the distribution SEARN(D, h). Let the average cost sensitive loss over

3In empirical practice, performance first degrades and then often improves. This positive contribution can be
understood in the framework of conservative policy iteration (Kakade and Langford 2002).

306 Mach Learn (2009) 75: 297–325

I iterations be:

�avg = 1

I

I∑

i=1

�cs
hi

(h′
i) (4)

where hi is the ith policy and h′
i is the classifier learned on the ith iteration.

Theorem 2 For all D with cmax = E(x,c)∼D maxy cy (with (x, c) as in Definition 1), for all
learned cost sensitive classifiers h′, SEARN with β = 1/T 3 and 2T 3 lnT iterations, outputs
a learned policy with loss bounded by:

L(D, hlast) ≤ L(D,π) + 2T �avg lnT + (1 + lnT)cmax/T

The dependence on T in the second term is due to the cost sensitive loss being an average
over T timesteps while the total loss is a sum. The lnT factor is not essential and can be
removed using other approaches (Bagnell et al. 2003; Langford and Zadrozny 2005). The
advantage of the theorem here is that it applies to an algorithm that naturally copes with
variable length T and yields a smaller amount of computation in practice.

The choices of β and the number of iterations are pessimistic in practice. Empirically, we
use a development set to perform a line search minimization to find per-iteration values for
β and to decide when to stop iterating. The analytical choice of β is made to ensure that the
probability that the newly created policy only makes one different choice from the previous
policy for any given example is sufficiently low. The choice of β assumes the worst: the
newly learned classifier always disagrees with the previous policy. In practice, this rarely
happens. After the first iteration, the learned policy is typically quite good and only rarely
differs from the initial policy. So choosing such a small value for β is unnecessary: even
with a higher value, the current classifier often agrees with the previous policy.

The theorem makes clear that the performance of the initial policy is of great interest in
controlling final performance. For learning problems where noise is not essential, simply
using a policy on the training data which agrees with the labels is an optimal starting policy.
In situations where noise is essential, constructing a good initial policy can be difficult,
even given the labels available on the training data. The theory here does not specify how
this initial policy with good performance is formed—all that it does is show that the final
learned policy competes well with whatever initial policy is used.

The proof rests on the following lemma.

Lemma 1 (Policy degradation) Given a policy h with loss L(D, h), apply a single iteration
of SEARN to learn a classifier h′ with cost-sensitive loss �CS

h (h′). Create a new policy hnew

by acting according to h′ with probability β ∈ (0,1/T) and otherwise acting according to
h at each step. Then, for all D, with cmax = E(x,c)∼D maxi ci (with (x, c) as in Definition 1):

L(D, hnew) ≤ L(D, h) + Tβ�CS
h (h′) + 1

2
β2T 2cmax. (5)

Proof The proof largely follows the proofs of Lemma 6.1 and Theorem 4.1 for conservative
policy iteration (Kakade and Langford 2002). The three differences are that (1) we must deal
with the finite horizon case; (2) we move away from rather than toward a good policy; and
(3) we expand to higher order.

The proof works by separating three cases depending on whether h′ or h is called in the
process of running hnew. The easiest case is when h′ is never called. The second case is

Mach Learn (2009) 75: 297–325 307

when it is called exactly once. The final case is when it is called more than once. Denote
these three events by c = 0, c = 1 and c ≥ 2, respectively:

L(D, hnew) = Pr(c = 0)L(D, hnew‖c = 0) + Pr(c = 1)L(D, hnew‖c = 1)

+ Pr(c ≥ 2)L(D, hnew‖c ≥ 2) (6)

≤ (1 − β)T L(D, h) + Tβ(1 − β)T −1[L(D, h) + �CS
h (h′)]

+ [1 − (1 − β)T − Tβ(1 − β)T −1]cmax (7)

= L(D, h) + Tβ(1 − β)T −1�CS
h (h′)

+ [1 − (1 − β)T − Tβ(1 − β)T −1](cmax − L(D, h)) (8)

≤ L(D, h) + Tβ�CS
h (h′) + [1 − (1 − β)T − Tβ(1 − β)T −1]cmax (9)

= L(D, h) + Tβ�CS
h (h′) +

(
T∑

i=2

(−1)iβi

(
T

i

))
cmax (10)

≤ L(D, h) + Tβ�CS
h (h′) + 1

2
T 2β2cmax. (11)

The first inequality writes out the precise probability of the events in terms of β and
bounds the loss of the last event (c > 2) by cmax. The second inequality is algebraic. The
third uses the assumption that β < 1/T . �

This lemma states that applying a single iteration of SEARN does not cause the structured
prediction loss of the learned hypothesis to degrade too much. In particular, up to a first
order approximation, the loss increases proportional to the loss of the learned classifier. This
observation can be iterated to yield the following lemma:

Lemma 2 (Iteration) For all D, for all learned h′, after C/β iterations of SEARN beginning
with a policy π with loss L(D,π), and average learned losses as (4), the loss of the final
learned policy h (without the optimal policy component) is bounded by (12):

L(D, hlast) ≤ L(D,π) + CT �avg + cmax

(
1

2
CT 2β + T exp[−C]

)
. (12)

This lemma states that after C/β iterations of SEARN the learned policy is not much
worse than the quality of the initial policy π . The theorem follows from a choice of the
constants β and C in Lemma 2.

Proof The proof involves invoking Lemma 1 C/β times. The second and the third terms
sum to give the following:

L(D, h) ≤ L(D,π) + CT �avg + cmax

(
1

2
CT 2β

)
.

Last, if we call the initial policy, we fail with loss at most cmax. The probability of failure
after C/β iterations is at most T (1 − β)C/β ≤ T exp[−C]. �

308 Mach Learn (2009) 75: 297–325

5 Comparison to alternative techniques

Standard techniques for structured prediction focus on the case where the arg max in (13)
is tractable. Given its tractability, they attempt to learn parameters θ such that solving (13)
often results in low loss. There are a handful of classes of such algorithms and a large num-
ber of variants of each. Here, we focus on independent classifier models, perceptron-based
models, and global models (such as conditional random fields and max-margin Markov
networks). There are, of course, alternative frameworks (see, e.g., Weston et al. 2002;
McAllester et al. 2004; Altun et al. 2004; McDonald et al. 2004; Tsochantaridis et al. 2005),
but these are common examples.

5.1 The arg max problem

Many structured prediction problems construct a scoring function F(y|x, θ). For a given
input x ∈ X and set of parameters θ ∈ �, F provides a score for each possible output y.
This leads to the “arg max” problem (also known as the decoding problem or the pre-image
problem), which seeks to find the y that maximizes F in order to make a prediction:

ŷ = arg max
y∈Yx

F (y|x, θ). (13)

In (13), we seek the output y from the set Yx (where Yx ⊆ Y is the set of all “reasonable”
outputs for the input x – typically assumed to be finite). Unfortunately, solving (13) exactly
is tractable only for very particular structures Y and scoring functions F . As an easy exam-
ple, when Yx is interpreted as a label sequence and the score function F depends only on
adjacent labels, then dynamic programming can be used, leading to an O(nk2) prediction
algorithm, where n is the length of the sequence and k is the number of possible labels for
each element in the sequence. Similarly, if Y represents trees and F obeys a context-free
assumption, then this problem can be solved in time O(n3k).

Often we are interested in more complex structures, more complex features or both.
For such tasks, an exact solution to (13) is not tractable. For example, In natural language
processing most statistical word-based and phrase-based models of translation are known
to be NP-hard (Germann et al. 2003); syntactic translations models based on synchronous
context free grammars are sometimes polynomial, but with an exponent that is too large in
practice, such as n11 (Huang et al. 2005). Even in comparatively simple problems like se-
quence labeling and parsing—which are only O(n) or O(n3)—it is often still computation-
ally prohibitive to perform exhaustive search (Bikel 2004). For another sort of example, in
computational biology, most models for phylogeny (Foulds and Graham 1982) and protein
secondary structure prediction (Crescenzi et al. 1998) result in NP-hard search problems.

When faced with such intractable search problem, the standard tactic is to use an ap-
proximate search algorithm, such as greedy search, beam search, local hill-climbing search,
simulated annealing, etc. These search algorithms are unlikely to be provably optimal (since
this would imply that one is efficiently solving an NP-hard problem), but the hope is that
they perform well on problems that are observed in the real world, as opposed to “worst
case” inputs.

Unfortunately, applying suboptimal search algorithms to solve the structured prediction
problem from (13) dispenses with many nice theoretical properties enjoyed by sophisticated
learning algorithms. For instance, it may be possible to learn Bayes-optimal parameters θ

such that if exact search were possible, one would always find the best output. But given
that exact search is not possible, such properties go away. Moreover, given that different

Mach Learn (2009) 75: 297–325 309

search algorithms exhibit different properties and biases, it is easy to believe that the value
of θ that is optimal for one search algorithm is not the same as the value that is optimal for
another search algorithm.4 It is these observations that have motivated our exploration of
search-based structured prediction algorithms: learning algorithms for structured prediction
that explicitly model the search process.

5.2 Independent classifiers

There are essentially two varieties of local classification techniques applied to structured
prediction problems. In the first variety, the structure in the problem is ignored, and a single
classifier is trained to predict each element in the output vector independently (Punyakanok
and Roth 2001) or with dependence created by enforcement of membership in Yx constraints
(Punyakanok et al. 2005b). The second variety is typified by maximum entropy Markov
models (McCallum et al. 2000), though the basic idea of MEMMs has also been applied
more generally to SVMs (Kudo and Matsumoto 2001, 2003; Giménez and Màrquez 2004).
In this variety, the elements in the prediction vector are made sequentially, with the nth
element conditional on outputs n − k . . . n − 1 for a kth order model.

In the purely independent classifier setting, both training and testing proceed in the ob-
vious way. Since the classifiers make one decision completely independently of any other
decision, training makes use only of the input. This makes training the classifiers incredi-
bly straightforward, and also makes prediction easy. In fact, running SEARN with Φ(x,y)

independent of all but yn for the n prediction would yield exactly this framework (note that
there would be no reason to iterate SEARN in this case). While this renders the independent
classifiers approach attractive, it is also significantly weaker, in the sense that one cannot de-
fine complex features over the output space. This has not thus far hindered its applicability
to problems like sequence labeling (Punyakanok and Roth 2001), parsing and semantic role
labeling (Punyakanok et al. 2005a), but does seem to be an overly strict condition. This also
limits the approach to Hamming loss.

SEARN is more similar to the MEMM-esque prediction setting. The key difference is that
in the MEMM, the nth prediction is being made on the basis of the k previous predictions.
However, these predictions are noisy, which potentially leads to the suboptimal performance
described in the previous section. The essential problem is that the models have been trained
assuming that they make all previous predictions correctly, but when applied in practice,
they only have predictions about previous labels. It turns out that this can cause them to
perform nearly arbitrarily badly. This is formalized in the following theorem, due to Matti
Kääriäinen.

Theorem 3 (Kääriäinen 2006) There exists a distribution D over first order binary Markov
problems such that training a binary classifier based on true previous predictions to an error
rate of ε > 0 leads to a Hamming loss given in (14), where T is the length of the sequence:

T

2
− 1 − (1 − 2ε)T +1

4ε
+ 1

2
≈ T

2
(14)

where the approximation is true for small ε or large T .

4In fact, (Wainwright 2006) has provided evidence that when using approximation algorithms for graphical
models, it is important to use the same approximate at both training and testing time.

310 Mach Learn (2009) 75: 297–325

Recently, Cohen and Carvalho (2005) has described an algorithm termed stacked se-
quential learning that attempts to remove this bias from MEMMs in a similar fashion to
SEARN. The stacked algorithm learns a sequence of MEMMs, with the model trained on the
(t + 1)st iteration based on outputs of the model from the t th iteration. For sequence label-
ing problems, this is quite similar to the behavior of SEARN when β is set to 1. However,
unlike SEARN, the stacked sequential learning framework is effectively limited to sequence
labeling problems. This limitation arises from the fact that it implicitly assumes that the set
of decisions one must make in the future are always going to be same, regardless of deci-
sions in the past. In many applications, such as entity detection and tracking (Daumé III and
Marcu 2005b), this is not true. The set of possible choices (actions) available at time step i is
heavily dependent on past choices. This makes the stacked sequential learning inapplicable
in these problems.

5.3 Perceptron-style algorithms

The structured perceptron is an extension of the standard perceptron (Rosenblatt 1958) to
structured prediction (Collins 2002). Assuming that the arg max problem is tractable, the
structured perceptron constructs the weight vector in nearly an identical manner as for the
binary case. While looping through the training data, whenever the predicted ŷn for xn differs
from yn, we update the weights according to (15):

w ← w + Φ(xn, yn) − Φ(xn, ŷn). (15)

This weight update serves to bring the vector closer to the true output and further from
the incorrect output. As in the standard perceptron, this often leads to a learned model that
generalizes poorly. As before, one solution to this problem is weight averaging (Freund and
Shapire 1999).

The incremental perceptron (Collins and Roark 2004) is a variant on the structured per-
ceptron that deals with the issue that the arg max may not be analytically available. The
idea of the incremental perceptron is to replace the arg max with a beam search algorithm.
The key observation is that it is often possible to detect in the process of executing search
whether it is possible for the resulting output to ever be correct. The incremental percep-
tron is essentially a search-based structured prediction technique, although it was initially
motivated only as a method for speeding up convergence of the structured perceptron. In
comparison to SEARN, it is, however, much more limited. It cannot cope with arbitrary loss
functions, and is limited to a beam-search application. Moreover, for search problems with
a large number of internal decisions (such as entity detection and tracking Daumé III and
Marcu 2005b), aborting search at the first error is far from optimal.

5.4 Global prediction algorithms

Global prediction algorithms attempt to learn parameters that, essentially, rank correct (low
loss) outputs higher than incorrect (high loss) alternatives.

Conditional random fields are an extension of logistic regression (maximum entropy
models) to structured outputs (Lafferty et al. 2001). Similar to the structured perceptron,
a conditional random field does not employ a loss function, but rather optimizes a log-loss
approximation to the 0/1 loss over the entire output. Only when the features and structure
are chosen properly can dynamic programming techniques be used to compute the required
partition function, which typically limits the application of CRFs to linear chain models
under a Markov assumption.

Mach Learn (2009) 75: 297–325 311

The maximum margin Markov network (M3N) formalism considers the structured pre-
diction problem as a quadratic programming problem (Taskar et al. 2003, 2005), following
the formalism for the support vector machine for binary classification. The M3N formal-
ism extends this to structured outputs under a given loss function l by requiring that the
difference in score between the true output y and any incorrect output ŷ is at least the loss
l(x, y, ŷ) (modulo slack variables). That is: the M3N framework scales the margin to be
proportional to the loss. Under restrictions on the output space and the features (essentially,
linear chain models with Markov features) it is possible to solve the corresponding quadratic
program in polynomial time.

In comparison to CRFs and M3Ns, SEARN is strictly more general. SEARN is limited
neither to linear chains nor to Markov style features and can effectively and efficiently opti-
mize structured prediction models under far weaker assumptions (see Sect. 6.2 for empirical
evidence supporting this claim).

6 Experimental results

In this section, we present experimental results on two different sorts of structured predic-
tion problems. The first set of problems—the sequence labeling problems—are compara-
tively simple and are included to demonstrate the application of SEARN to easy tasks. They
are also the most common application domain on which other structured prediction tech-
niques are tested; this enables us to directly compare SEARN with alternative algorithms on
standardized data sets. The second application we describe is based on an automatic doc-
ument summarization task, which is a significantly more complex domain than sequence
labeling. This task enables us to test SEARN on significantly more complex problems with
loss functions that do not decompose over the structure.

6.1 Sequence labeling

Sequence labeling is the task of assigning a label to each element in an input sequence. Se-
quence labeling is an attractive test bed for structured prediction algorithms because it is the
simplest non-trivial structure. Modern state-of-the-art structured prediction techniques fare
very well on sequence labeling problems. In this section, we present a range of results inves-
tigating the performance of SEARN on four separate sequence labeling tasks: handwriting
recognition, named entity recognition (in Spanish), syntactic chunking and joint chunking
and part-of-speech tagging.

For pure sequence labeling tasks (i.e., when segmentation is not also done), the standard
loss function is Hamming loss, which gives credit on a per label basis. For a true output y of
length N and hypothesized output ŷ (also of length N), Hamming loss is defined according
to (16):

�Ham(y, ŷ) �
N∑

n=1

1
[
yn �= ŷn

]
. (16)

The most common loss function for joint segmentation and labeling problems (like the
named entity recognition and syntactic chunking problems) is F1 measure over chunks.5 F1

5We note in passing that directly optimizing F1 may not be the best approach, from the perspective of integrat-
ing information in a pipeline (Manning 2006). However, since F1 is commonly used and does not decompose
over the output sequence, we use it for the purposes of demonstration.

312 Mach Learn (2009) 75: 297–325

is the geometric mean of precision and recall over the (properly-labeled) chunk identification
task, given in (17):

�F(y, ŷ) � 2|y ∩ ŷ|
|y| + |ŷ| . (17)

As can be seen in (17), one is penalized both for identifying too many chunks (penalty in
the denominator) and for identifying too few (penalty in the numerator). The advantage of
F1 measure over Hamming loss seen most easily in problems where the majority of words
are “not chunks”—for instance, in gene name identification (McDonald and Pereira 2005)—
Hamming loss often prefers a system that identifies no chunks to one that identifies some
correctly and other incorrectly. Using a weighted Hamming loss cannot completely alleviate
this problem, for essentially the same reasons that a weighted zero-one loss cannot optimize
F1 measure in binary classification, though one can often achieve an approximation (Lewis
2001; Musicant et al. 2003).

6.1.1 Handwriting recognition

The handwriting recognition task we consider was introduced by (Kassel 1995). Later,
(Taskar et al. 2003) presented state-of-the-art results on this task using max-margin Markov
networks. The task is an image recognition task: the input is a sequence of pre-segmented
hand-drawn letters and the output is the character sequence (“a”-“z”) in these images. The
data set we consider is identical to that considered by (Taskar et al. 2003) and includes 6600
sequences (words) collected from 150 subjects. The average word contains 8 characters.
The images are 8 × 16 pixels in size, and rasterized into a binary representation. Exam-
ple image sequences are shown in Fig. 2 (the first characters are removed because they are
capitalized).

For each possible output letter, there is a unique feature that counts how many times that
letter appears in the output. Furthermore, for each pair of letters, there is an “edge” feature
counting how many times this pair appears adjacent in the output. These edge features are the
only “structural features” used for this task (i.e., features that span multiple output labels).
Finally, for every output letter and for every pixel position, there is a feature that counts how
many times that pixel position is “on” for the given output letter.

In the experiments, we consider two variants of the data set. The first, “small,” is the
problem considered by (Taskar et al. 2003). In the small problem, ten fold cross-validation
is performed over the data set; in each fold, roughly 600 words are used as training data and
the remaining 6000 are used as test data. In addition to this setting, we also consider the
“large” reverse experiment: in each fold, 6000 words are used as training data and 600 are
used as test data.

6.1.2 Spanish named entity recognition

The named entity recognition (NER) task is concerned with spotting names of persons,
places and organizations in text. Moreover, in NER we only aim to spot names and neither
pronouns (“he”) nor nominal references (“the President”). We use the CoNLL 2002 data set,
which consists of 8324 training sentences and 1517 test sentences; examples are shown in
Fig. 3. A 300-sentence subset of the training data set was previously used by (Tsochantaridis
et al. 2005) for evaluating the SVMstruct framework in the context of sequence labeling. The
small training set was likely used for computational considerations. The best reported results
to date using the full data set are due to (Ando and Zhang 2005). We report results on both
the “small” and “large” data sets.

Mach Learn (2009) 75: 297–325 313

Fig. 2 Eight example words
from the handwriting recognition
data set

El presidente de la [Junta de Extremadura]ORG , [Juan Carlos Rodríguez Ibarra]PER , recibirá
en la sede de la [Presidencia del Gobierno]ORG extremeño a familiares de varios de los
condenados por el proceso “ [Lasa-Zabala]MISC ” , entre ellos a [Lourdes Díez Urraca]PER

, esposa del ex gobernador civil de [Guipúzcoa]LOC [Julen Elgorriaga]PER ; y a [Antonio
Rodríguez Galindo]PER , hermano del general [Enrique Rodríguez Galindo]PER .

Fig. 3 Example labeled sentence from the Spanish Named Entity Recognition task

The structural features used for this task are roughly the same as in the handwriting
recognition case. For each label, each label pair and each label triple, a feature counts the
number of times this element is observed in the output. Furthermore, the standard set of
input features includes the words and simple functions of the words (case markings, prefix
and suffix up to three characters) within a window of ±2 around the current position. These
input features are paired with the current label. This feature set is fairly standard in the
literature, though (Ando and Zhang 2005) report significantly improved results using a much
larger set of features. In the results shown later in this section, all comparison algorithms use
identical feature sets.

6.1.3 Syntactic chunking

The final sequence labeling task we consider is syntactic chunking (for English), based on
the CoNLL 2000 data set. This data set includes 8936 sentences of training data and 2012
sentences of test data. An example is shown in Fig. 4. (Several authors have considered
the noun-phrase chunking task instead of the full syntactic chunking task. It is important to
notice the difference, though results on these two tasks are typically very similar, indicating
that the majority of the difficulty is with noun phrases.)

We use the same set of features across all models, separated into “base features” and
“meta features.” The base features apply to words individually, while meta features apply
to entire chunks. The standard base features used are: the chunk length, the word (original,
lower cased, stemmed, and original-stem), the case pattern of the word, the first and last 1,
2 and 3 characters, and the part of speech and its first character. We additionally consider
membership features for lists of names, locations, abbreviations, stop words, etc. The meta
features we use are, for any base feature b, b at position i (for any sub-position of the chunk),
b before/after the chunk, the entire b-sequence in the chunk, and any 2- or 3-gram tuple of
bs in the chunk. We use a first order Markov assumption (chunk label only depends on the
most recent previous label) and all features are placed on labels, not on transitions. In the
results shown later in this section, some of the algorithms use a slightly different feature set.
In particular, the CRF-based model uses similar, but not identical features; see (Sutton et al.
2005) for details.

314 Mach Learn (2009) 75: 297–325

[Great American]NP [said]VP [it]NP [increased]VP [its loan-loss reserves]NP [by]PP [$ 93
million]NP [after]PP [reviewing]VP [its loan portfolio]NP , [raising]VP [its total loan and real
estate reserves]NP [to]PP [$ 217 million]NP .

Fig. 4 Example labeled sentence from the syntactic chunking task

GreatNNP
B-NP AmericanNNP

I-NP saidVBD
B-VP itPRP

B-NP increasedVBD
B-VP itsPRP$

B-NP loan-lossNN
I-NP reservesNNS

I-NP byIN
B-PP

$$
B-NP 93CD

I-NP millionCD
I-NP afterIN

B-PP reviewingVBG
B-VP itsPRP$

B-NP loanNN
I-NP portfolioNN

I-NP ..O

Fig. 5 Example sentence for the joint POS tagging and syntactic chunking task

6.1.4 Joint chunking and tagging

In the preceding sections, we considered the single sequence labeling task: to each element
in a sequence, a single label is assigned. In this section, we consider the joint sequence label-
ing task. In this task, each element in a sequence is labeled with multiple tags. A canonical
example of this task is joint POS tagging and syntactic chunking (Sutton et al. 2004). An
example sentence jointly labeled for these two outputs is shown in Fig. 5 (under the BIO
encoding).

For SEARN, there is little difference between standard sequence labeling and joint se-
quence labeling. We use the same data set as for the standard syntactic chunking task
(Sect. 6.1.3) and essentially the same features. In order to model the fact that the two streams
of labels are not independent, we decompose the problem into two parallel tagging tasks.
First, the first POS label is determined, then the first chunk label, then the second POS label,
then the second chunk label, etc. The only difference between the features we use in this
task and the vanilla chunking task has to do the structural features. The structural features
we use include the obvious Markov features on the individual sequences: counts of single-
ton, doubleton and tripleton POS and chunk tags. We also use “crossing sequence” features.
In particular, we use counts of pairs of POS and chunk tags at the same time period as well
as pairs of POS tags at time t and chunk tags at t − 1 and vice versa.

6.1.5 Search and initial policies

The choice of “search” algorithm in SEARN essentially boils down to the choice of output
vector representation, since, as defined, SEARN always operates in a left-to-right manner
over the output vector. In this section, we describe vector representations for the output
space and corresponding optimal policies for SEARN.

The most natural vector encoding of the sequence labeling problem is simply as itself. In
this case, the search proceeds in a greedy left-to-right manner with one word being labeled
per step. This search order admits some linguistic plausibility for many natural language
problems. It is also attractive because (assuming unit-time classification) it scales as O(NL),
where N is the length of the input and L is the number of labels, independent of the number
of features or the loss function. However, this vector encoding is also highly biased, in the
sense that it is perhaps not optimal for some (perhaps unnatural) problems. Other orders
are possible (such as allowing any arbitrary position to be labeled at any time, effectively
mimicing belief propagation); see (Daumé III 2006) for more experimental results under
alternative orderings.

For joint segmentation and labeling tasks, such as named entity identification and syn-
tactic chunking, there are two natural encodings: word-at-a-time and chunk-at-a-time. In

Mach Learn (2009) 75: 297–325 315

word-at-a-time, one essentially follows the “BIO encoding” and tags a single word in each
search step. In chunk-at-a-time, one tags single chunks in each search step, which can con-
sist of multiple words (after fixing a maximum phrase length). In our experiments, we focus
exclusively on chunk-at-a-time decoding, as it is more expressive (feature-wise) and has
been seen to perform better in other scenarios (Sarawagi and Cohen 2004).

Under the chunk-at-a-time encoding, an input of length N leads to a vector of length
N over M × L + 1 labels, where M is the maximum phrase length. The interpretation of
the first M × L labels, for instance (m, l) means that the next phrase is of length m and is
a phrase of type l. The “+1” label corresponds to a “complete” indicator. Any vector for
which the sum of the “m” components is not exactly N attains maximum loss.

6.1.6 Initial policies

For the sequence labeling problem under Hamming loss, the optimal policy is always to
label the next word correctly. In the left-to-right order, this is straightforward. For the seg-
mentation problem, word-at-a-time and chunk-at-a-time behave very similarly with respect
to the loss function and optimal policy. We discuss word-at-a-time because its notationally
more convenient, but the difference is negligible. The optimal policy can be computed by
analyzing a few options in (18):

π(x, y1:T , ŷ1:t−1) =
⎧
⎨

⎩

begin X yt = begin X

in X yt = in X and ŷt−1 ∈ {begin X, in X},
out otherwise.

(18)

It is easy to show that this policy is optimal (assuming noise-free training data). There
is, however, another equally optimal policy. For instance, if yt is “in X” but ŷt−1 is “in Y ”
(for X �= Y), then it is equally optimal to select ŷt to be “out” or “in Y ”. In theory, when
the optimal policy does not care about a particular decision, one can randomize over the
selection. However, in practice, we always default to a particular choice to reduce noise in
the learning process.

For all of the policies described above, it is also straightforward to compute the optimal
approximation for estimating the expected cost of an action. In the Hamming loss case, the
loss is 0 if the choice is correct and 1 otherwise. The computation for F1 loss is a bit more
complicated: one needs to compute an optimal intersection size for the future and add it to
the past “actual” size. This is also straightforward by analyzing the same cases as in (18).

6.1.7 Experimental results and discussion

In this section, we compare the performance of SEARN to the performance of alternative
structured prediction techniques over the data sets described above. The results of this
evaluation are shown in Table 1. In this table, we compare raw classification algorithms
(perceptron, logistic regression and SVMs) to alternative structured prediction algorithms
(structured perceptron, CRFs, SVMstructs and M3Ns) to SEARN with three baseline classi-
fiers (perceptron, logistic regression and SVMs). For all SVM algorithms and for M3Ns, we
compare both linear and quadratic kernels (cubic kernels were evaluated but did not lead to
improved performance over quadratic kernels).

For all SEARN-based models, we use the following settings of the tunable parameters (see
Daumé III 2006 for a comparison of different settings). We use the optimal approximation
for the computation of the per-action costs. We use a left-to-right search order with a beam
of size 10. For the chunking tasks, we use chunk-at-a-time search. We use weighted all pairs

316 Mach Learn (2009) 75: 297–325

Table 1 Empirical comparison of performance of alternative structured prediction algorithms against SEARN

on sequence labeling tasks. (Top) Comparison for whole-sequence 0/1 loss; (Bottom) Comparison for indi-
vidual losses: Hamming for handwriting and Chunking+Tagging and F for NER and Chunking. SEARN is
always optimized for the appropriate loss

ALGORITHM Handwriting NER Chunk C+T

Small Large Small Large

CLASSIFICATION

Perceptron 65.56 70.05 91.11 94.37 83.12 87.88

Log Reg 68.65 72.10 93.62 96.09 85.40 90.39

SVM-Lin 75.75 82.42 93.74 97.31 86.09 93.94

SVM-Quad 82.63 82.52 85.49 85.49 ∼ ∼
STRUCTURED

Str. Perc. 69.74 74.12 93.18 95.32 92.44 93.12

CRF − − 94.94 ∼ 94.77 96.48

SVMstruct − − 94.90 ∼ − −
M3N-Lin 81.00 ∼ − − − −
M3N-Quad 87.00 ∼ − − − −

SEARN

Perceptron 70.17 76.88 95.01 97.67 94.36 96.81

Log Reg 73.81 79.28 95.90 98.17 94.47 96.95

SVM-Lin 82.12 90.58 95.91 98.11 94.44 96.98

SVM-Quad 87.55 90.91 89.31 90.01 ∼ ∼

(Beygelzimer et al. 2005) and costing (Zadrozny et al. 2003) to reduce from cost-sensitive
classification to binary classification.

Note that some entries in Table 1 are missing. The vast majority of these entries are
missing because the algorithm considered could not reasonably scale to the data set under
consideration. These are indicated with a “∼” symbol. Other entries are not available simply
because the results we report are copied from other publications and these publications did
not report all relevant scores. These are indicated with a “−” symbol.

It should be noted that there are several issues that can account for a “∼” symbol. In
the case of the quadratic SVMs applied to Chunk and C+T, the issue is primarily that the
number of examples is simply too large to solve with libSVM (Chang and Lin 2001), which
we used in our implementation. It is possible (in fact, likely) that some newer subgradient-
based optimizer may be able to scale sufficiently. The same holds for the M3N results on
the large Handwriting task. However, we do not believe this comparison to be unfair: the
SEARN-based algorithms could equally benefit from such improved optimization methods.
The second issue is that for NER under CRFs and SVMstructs, the inference is over seg-
mentations, not labellings. This is considerably more expensive that simple labeling tasks.
However, there is an additional issue: the time complexity for a gradient computation for a
CRF is exponential in the Markov length; while it is independent of the Markov length for
SEARN. (In addition to the big-O complexity, running the forward-backward algorithm is
simply an expensive computation: the constant is large.)

We observe several patterns in the results from Table 1. The first is that structured tech-
niques consistently outperform their classification counterparts (e.g., CRFs outperform lo-
gistic regression). The single exception is on the small handwriting task: the quadratic SVM

Mach Learn (2009) 75: 297–325 317

outperforms the quadratic M3N.6 For all classifiers, adding SEARN consistently improves
performance.

An obvious pattern worth noticing is that moving from the small data set to the large
data set results in improved performance, regardless of learning algorithm. However, equally
interesting is that simple classification techniques when applied to large data sets outperform
complicated learning techniques applied to small data sets. Although this comparison is not
completely fair—both algorithms should get access to the same data—if the algorithm (like
the SVMstruct or the M3N) cannot scale to the large data set, then something is missing.
For instance, a vanilla SVM on the large handwriting data set outperforms the M3N on the
small set. Similarly, a vanilla logistic regression classifier trained on the large NER data set
outperforms the SVMstruct and the CRF on the small data sets.

On the same data set, SEARN can perform comparable or better than competing struc-
tured prediction techniques. On the small handwriting task, the two best performing sys-
tems are M3Ns with quadratic kernels (87.0% accuracy) and SEARN with quadratic SVMs
(87.6% accuracy). On the NER task, SEARN with a perceptron classifier performs compa-
rably to SVMstruct and CRFs (at around 95.9% accuracy). On the Chunking+Tagging task,
all varieties of SEARN perform comparatively to the CRF. In fact, the only task on which
SEARN does not outperform the competing techniques is on the raw chunking task, for
which the CRF obtains an F-score of 94.77 compared to 94.47 for SEARN, using a signifi-
cantly different feature set.

The final result from Table 1 worth noticing is that, with the exception of the handwriting
recognition task, SEARN using logistic regression as a base learner performs at the top of the
pack. The SVM-based SEARN models typically perform slightly better, but not significantly.
In fact, the raw averaged perceptron with SEARN performs almost as well as the logistic
regression. This is a nice result because the SVM-based models tend to be expensive to
train, especially in comparison to the perceptron. The fact that this pattern does not hold for
the handwriting task is likely due to the fact that the data for this task is quite unlike the
data for the other tasks. For the handwriting task, there are a comparatively small number of
features which are individually much less predictive of the class. It is only in combination
that good classifiers can be learned.

While these results are useful, they should be taken with a grain of salt. Sequence la-
beling is a very easy problem. The structure is simple and the most common loss functions
decompose over the structure. The comparatively good performance of raw classifiers sug-
gests that the importance of structure is minor. In fact, some results suggest that one need not
actually consider the structure at all for some such problems (Punyakanok and Roth 2001;
Punyakanok et al. 2005b).

6.1.8 Effect of search order

One significant issue with SEARN, or any search-based prediction algorithm, is the choice
of the prediction order. In the sequence labeling experiments presented in this section, the
search order has always been left-to-right. This is sensible, as it is how humans process text.
However, the question arises: could one do better? For certain problems, the answer seems
to be “yes.” For certain sequence labeling tasks, it has been observed that ordering the search
based on the entropy of the label distribution of certain words can lead to improved perfor-
mance (Tsuruoka and Tsujii 2005). It was later observed that the order could be learned

6However, it should be noted that a different implementation technique was used in this comparison. The

M3N is based on an SMO algorithm, while the quadratic SVM is libsvm (Chang and Lin 2001).

318 Mach Learn (2009) 75: 297–325

(Shen et al. 2007). In the context of incremental parsing, for some languages, it is helpful
to parse backwards rather than forwards (Turian and Melamed 2006). To ascertain the ef-
fect of search order on the NER task, we have run additional experiments in a right-to-left
setting. In comparison to the left-to-right performance of 97.67 (for perceptron) and 98.17
(for logistic regression), the right-to-left performance was slightly worse: 97.40 and 97.98,
respectively. These differences were not statistically significant at the 5% level.

A more substantial question is: what happens when there is not an obvious search order.
This arises, for instance, in image segmentation, or collective-classification problems. One
answer, akin to the learned search order method (Shen et al. 2007) would be to simply allow
SEARN to chose the order on its own. This makes inference significantly more computa-
tionally intensive (but still much less so than exact probabilistic inference on the associated
graph). This is the approach we take in the automatic document summarization example
described in Sect. 6.2 where a left-to-right search order is not natural.

6.1.9 Effect of iterating

In Fig. 6, we plot the performance of the learned policy for the SEARN-based models for the
four tasks as the number of iterations increases. For these graphs, we use a constant value
of β = 1 for the interpolation: pure policy-iteration. The curves are somewhat different for
each problem, but in general an optimum is reached in 5–15 iterations and then performance
either levels off (e.g., for syntactic chunking) or beings to drop (e.g., for handwriting recog-
nition). The drop in performance is likely due to overfitting. Note that these curves are the
performance of the learned policy without the optimal policy on the test data, so these graphs
do not contradict the SEARN theorem of uniform degradation of performance (Lemma 1).

6.2 Automatic document summarization

Multidocument summarization is the task of creating a summary out of a collection of doc-
uments on a focused topic. In query-focused summarization, this topic is given explicitly
in the form of a user’s query. The dominant approach to the multidocument summarization
problem is sentence extraction: a summary is created by greedily extracting sentences from
the document collection until a pre-defined word limit is reached. Teufel and Moens (1997)
and Lin and Hovy (2002) describe representative examples. Recent work in sentence com-
pression (Knight and Marcu 2002; McDonald 2006) and document compression (Daumé
III and Marcu 2002) attempts to take small steps beyond sentence extraction. Compression
models can be seen as techniques for extracting sentences then dropping extraneous infor-
mation. They are more powerful than simple sentence extraction systems, while remaining
trainable and tractable. Unfortunately, their training hinges on the existence of 〈sentence,
compression〉 pairs, where the compression is obtained from the sentence by only dropping
words and phrases (the work of Turner and Charniak 2005 is an exception). Obtaining such
data is quite challenging.

The exact model we use for the document summarization task is a novel “vine-growth”
model, described in more detail in (Daumé III 2006). The vine-growth method uses syntactic
parses of the sentence in the form of dependency structures. In the vine-growth model, if a
word w is to be included in the summary, then all words closer to the tree root are included.
Viewed as a graph (for instance, in a CRF application), this would result in a (nearly) fully
connected graph, for which we know inference is very hard.

Mach Learn (2009) 75: 297–325 319

Fig. 6 Number of iterations of SEARN for each of the four sequence labeling problem. Upper-left: Handwrit-
ing recognition; Upper-right: Spanish named entity recognition; Lower-left: Syntactic chunking; Lower-right:
Joint chunking/tagging

6.2.1 Search space and actions

The search algorithm we employ for implementing the vine-growth model is based on incre-
mentally growing summaries. In essence, beginning with an empty summary, the algorithm
incrementally adds words to the summary, either by beginning a new sentence or growing
existing sentences. At any step in search, the root of a new sentence may be added, as may
any direct child of a previously added node. To see more clearly how the vine-growth model
functions, consider Fig. 7. This figure shows a four step process for creating the summary
“the man ate a sandwich.” from the original document sentence “the man ate a big sandwich
with pickles.”

When there is more than one sentence in the source documents, the search proceeds
asynchronously across all sentences. When the sentences are laid out adjacently, the end
summary is obtained by taking all the green summary nodes once a pre-defined word limit
has been reached. This final summary is a collection of subtrees grown off a sequence of
underlying trees: hence the name “vine-growth.”

6.2.2 Data and evaluation criteria

For data, we use the DUC 2005 data set (Dang 2005). This consists of 50 document col-
lections of 25 documents each; each document collection includes a human-written query.
Each document collection additionally has five human-written “reference” summaries (250

320 Mach Learn (2009) 75: 297–325

Fig. 7 An example of the creation of a summary under the vine-growth model

words long, each) that serve as the gold standard. In the official DUC evaluations, all 50
collections are “test data.” However, since the DUC 2005 task is significantly different from
previous DUC tasks, there is no a good source of training data. Therefore, we report results
based on 10-fold cross validation. We train on 45 collections and test on the remaining 5.

Automatic evaluation is a notoriously difficult problem for document summarization. The
current popular choice for metric is Rouge (Lin and Hovy 2003), which (roughly speaking)
computes n-gram overlap between a system summary and a set of human written summaries.
In various experiments, Rouge has been seen to correspond with human judgment of sum-
mary quality. In the experiments described in this chapter, we use the “Rouge 2” metric,
which uses evenly weighted bigram scores.

6.2.3 Initial policy

Computing the best label completion under Rouge metric for the vine-growth model is in-
tractable. The intractability stems from the model constraint that a word can only be added
to a summary after its parent is added. We therefore use an approximate, search-based pol-
icy (see Sect. 3.4.2). In order to approximate the cost of a given partial summary, we search
for the best possible completion. That is, if our goal is a 100 word summary and we have
already created a 50 word summary, then we execute beam search (beam size 20) for the
remaining 50 words that maximize the Rouge score.

6.2.4 Feature functions

Features in the vine-growth model may consider any aspect of the currently generated sum-
mary, and any part of the input document set. These features include simple lexical features:
word identity, stem and part of speech of the word under consideration, the syntactic rela-
tion with its parent, the position and length of the sentence it appears in, whether it appears
in quotes, the length of the document it appears in, the number of pronouns and attribution
verbs in the subtree rooted at the word. The features also include language model probabil-
ities for: the word, sentence and subtree under language models derived from the query, a
BAYESUM representation of the query, and the existing partial summary.

6.2.5 Experimental results

Experimental results are shown in Table 2. We report Rouge scores for summaries of length
100 and length 250. We compare the following systems. First, oracle systems that per-
form the summarization task with knowledge of the true output, attempting to maximize

Mach Learn (2009) 75: 297–325 321

Table 2 Summarization results; values are Rouge 2 scores (higher is better)

ORACLE SEARN BAYESUM Base Best

Vine Extr Vine Extr D05 D03

100 w 0.0729 0.0362 0.0415 0.0345 0.0340 0.0316 0.0181 –

250 w 0.1351 0.0809 0.0824 0.0767 0.0762 0.0698 0.0403 0.0725

the Rouge score. We present results for an oracle sentence extraction system (Extr) and
an oracle vine-growth system (Vine). Second, we present the results of the SEARN-based
systems, again for both sentence extraction (Extr) and vine-growth (Vine). Both of these are
trained with respect to the oracle system. (Note that it is impossible to compare against com-
peting structured prediction techniques. This summarization problem, even in its simplified
form, is far too complex to be amenable to other methods.) For comparison, we present re-
sults from the BAYESUM system (Daumé III and Marcu 2005a, 2006), which achieved the
highest score according to human evaluations of responsiveness in DUC 05. This system,
as submitted to DUC 05, was trained on DUC 2003 data; the results for this configuration
are shown in the “D03” column. For the sake of fair comparison, we also present the results
of this system, trained in the same cross-validation approach as the SEARN-based systems
(column “D05”). Finally, we present the results for the baseline system and for the best DUC
2005 system (according to the Rouge 2 metric).

As we can see from Table 2 at the 100 word level, sentence extraction is a nearly solved
problem for this domain and this evaluation metric. That is, the oracle sentence extraction
system yields a Rouge score of 0.0362, compared to the score achieved by the SEARN

system of 0.0345. This difference is on the border of statistical significance at the 95%
level. The next noticeable item in the results is that, although the SEARN-based extraction
system comes quite close to the theoretical optimal, the oracle results for the vine-growth
method are significantly higher. Not surprisingly, under SEARN, the summaries produced
by the vine-growth technique are uniformally better than those produced by raw extraction.
The last aspect of the results to notice is how the SEARN-based models compare to the best
DUC 2005 system, which achieved a Rouge score of 0.0725. The SEARN-based systems
uniformly dominate this result, but this comparison is not fair due to the training data. We
can approximate the expected improvement for having the new training data by comparing
the BAYESUM system when trained on the DUC 2005 and DUC 2003 data: the improvement
is 0.0064 absolute. When this result is added to the best DUC 2005 system, its score rises to
0.0789, which is better than the SEARN-based extraction system but not as good as the vine-
growth system. It should be noted that the best DUC 2005 system was a purely extractive
system (Ye et al. 2005).

7 Discussion and conclusions

In this paper, we have:

– Presented an algorithm, SEARN, for solving complex structured prediction problems with
minimal assumptions on the structure of the output and loss function.

– Compared the performance of SEARN against standard structured prediction algorithms
on standard sequence labeling tasks, showing that it is competitive with existing tech-
niques.

322 Mach Learn (2009) 75: 297–325

– Described a novel approach to summarization—the vine-growth method—and applied
SEARN to the underlying learning problem, yielding state-of-the-art performance on stan-
dardized summarization data sets.

There are many lenses through which one can view the SEARN algorithm.
From an applied perspective, SEARN is an easy technique for training models for which

complex search algorithms must be used. For instance, when using multiclass logistic regres-
sion as a base classifier for Hamming loss, the first iteration of SEARN is identical to training
a maximum entropy Markov model. The subsequent iterations of SEARN can be seen as at-
tempting to get around the fact that MEMMs are trained assuming all previous decisions are
made correctly. This assumption is false, of course, in practice. Similar recent algorithms
such a decision-tree-based parsing (Turian and Melamed 2006) and perceptron-based ma-
chine translation (Liang et al. 2006) can also be seen as running a (slightly modified) first
iteration of SEARN.

SEARN contrasts with more typical algorithms such as CRFs and M3Ns based on con-
sidering how information is shared at test time. Standard algorithms use exact (typically
Viterbi) search to share full information across the entire output, “trading off” one decision
for another. SEARN takes an alternative approach: it attempts to share information at train-
ing time. In particular, by training the classifier using a loss based on both past experience
and future expectations, the training attempts to integrate this information during learning.
This is not unsimilar to the “alternative objective” proposed by (Kakade et al. 2002) for
CRFs. One approach is not necessarily better than the other; they are simply different ways
to accomplish the same goal.

One potential limitation to SEARN is that when one trains a new classifier on the output
of a previous iteration’s classifier, it is usually going to be the case that previous iteration’s
classifier performs better on the training data than on the test data. This means that, although
training via SEARN is likely preferable to training against only an initial policy, it can still
be overly optimistic. Based on the experimental evidence, it appears that this has yet to be a
serious concern, but it remains worrisome. There are two easy ways to combat this problem.
The first is simply to attempt to ensure that the learned classifiers do not overfit at all. In
practice, however, this can be difficult. Another approach with a high computational cost
is cross-validation. Instead of training one classifier in each SEARN step, one could train
ten, each holding out a different 10% of the data. When asked to run the “current” classifier
on an example, the classifier not trained on the example is used. This does not completely
remove the possibility of overfitting, but significantly lessens its likelihood.

A second limitation, pointed out by (Zhang 2006), is that there is a slight disparity be-
tween what SEARN does at a theoretical level and how SEARN functions in practice. In
particular, SEARN does not actually start with the optimal policy. Even when we can com-
pute the initial policy exactly, the “true outputs” on which this initial policy are based are
potentially noisy. This means that while π is optimal for the noisy data, it is not optimal
for the true data distribution. In fact, it is possible to construct noisy distributions where
SEARN performs poorly.7 Finding other initial policies which are closer to optimal in these
situations is an open problem.

SEARN obeys a desirable theoretical property: given a good classification algorithm, one
is guaranteed a good structured prediction algorithm. Importantly, this result is independent

7One can construct such a noisy distribution as follows. Suppose there is fundamental noise and a “safe”
option which results in small loss. Suppose this safe option is always more than a one step deviation from the
highly noisy “optimal” sequence. SEARN can be confused by this divergence.

Mach Learn (2009) 75: 297–325 323

of the size of the search space or the tractability of the search method. This shows that local
learning—when done properly—can lead to good global performance. From the perspective
of applied machine learning, SEARN serves as an interpreter through which engineers can
easily make use of state-of-the-art machine learning techniques.

In the context of structured prediction algorithms, SEARN lies somewhere between global
learning algorithms, such as M3Ns and CRFs, and local learning algorithms, such as those
described (Punyakanok and Roth 2001). The key difference between SEARN and global
algorithms is in how uncertainty is handled. In global algorithms, the search algorithm is
used at test time to propagate uncertainty across the structure. In SEARN, the prediction costs
are used during training time to propagate uncertainty across the structure. Both contrast
with local learning, in which no uncertainty is propagated.

From a wider machine learning perspective, SEARN makes more apparent the connection
between reinforcement learning and structured prediction. In particular, structured predic-
tion can be viewed as a reinforcement learning problem in a degenerate world in which
all observations are available at the initial time step. However, there are clearly alternative
middle-grounds between pure structured prediction and full-blown reinforcement learning
(and natural applications—such as planning—in this realm) for which this connection might
serve to be useful.

Despite these successes, there is much future work that is possible. One significant open
question on the theoretical side is that of sample complexity: “How many examples do we
need in order to achieve learning under additional assumptions?” Related problems of semi-
supervised and active learning in the SEARN framework are also interesting and likely to
produce powerful extensions. Another vein of research is in applying SEARN to domains
other than language. Structured prediction problems arise in a large variety of settings (vi-
sion, biology, system design, compilers, etc.). For each of these domains, different sorts of
search algorithms and different sorts of features are necessary. Although SEARN has been
discussed largely as a method for solving structured prediction problems, it is, more gen-
erally, a method for integrating search and learning. This leads to potential applications of
SEARN that fall strictly outside the scope of structured prediction.

References

Altun, Y., Hofmann, T., & Smola, A. (2004). Gaussian process classification for segmenting and annotating
sequences. In Proceedings of the international conference on machine learning (ICML).

Ando, R., & Zhang, T. (2005). A framework for learning predictive structures from multiple tasks and unla-
beled data. Journal of Machine Learning Research, 6, 1817–1853.

Bagnell, J. A., Kakade, S., Ng, A., & Schneider, J. (2003). Policy search by dynamic programming. In Neural
information processing systems (Vol. 16). Cambridge: MIT Press.

Beygelzimer, A., Dani, V., Hayes, T., Langford, J., & Zadrozny, B. (2005). Error limiting reductions between
classification tasks. In Proceedings of the international conference on machine learning (ICML).

Bikel, D. M. (2004). Intricacies of Collins’ parsing model. Computational Linguistics, 30(4), 479–511.
Chang, C.-C., & Lin, C.-J. (2001). LIBSVM: a library for support vector machines. Software available at

http://www.csie.ntu.edu.tw/~cjlin/libsvm.
Cohen, W. W., & Carvalho, V. (2005). Stacked sequential learning. In Proceedings of the international joint

conference on artificial intelligence (IJCAI).
Collins, M. (2002). Discriminative training methods for hidden Markov models: theory and experiments

with perceptron algorithms. In Proceedings of the conference on empirical methods in natural language
processing (EMNLP).

Collins, M., & Roark, B. (2004). Incremental parsing with the perceptron algorithm. In Proceedings of the
conference of the association for computational linguistics (ACL).

Crescenzi, P., Goldman, D., Papadimitriou, C., Piccolboni, A., & Yannakakis, M. (1998). On the complexity
of protein folding. In ACM symposium on theory of computing (STOC) (pp. 597–603).

http://www.csie.ntu.edu.tw/~cjlin/libsvm

324 Mach Learn (2009) 75: 297–325

Dang, H. (Ed.). (2005). Fifth document understanding conference (DUC-2005), Ann Arbor, MI, June 2005.
Daumé III, H. (2006). Practical structured learning for natural language processing. PhD thesis, University

of Southern California.
Daumé III, H., & Marcu, D. (2002). A noisy-channel model for document compression. In Proceedings of

the conference of the association for computational linguistics (ACL) (pp. 449–456).
Daumé III, H., & Marcu, D. (2005a). Bayesian summarization at DUC and a suggestion for extrinsic evalua-

tion. In Document understanding conference.
Daumé III, H., & Marcu, D. (2005b). A large-scale exploration of effective global features for a joint entity

detection and tracking model. In Proceedings of the joint conference on human language technology
conference and empirical methods in natural language processing (HLT/EMNLP) (pp. 97–104).

Daumé III, H., & Marcu, D. (2006). Bayesian query-focused summarization. In Proceedings of the conference
of the association for computational linguistics (ACL), Sydney, Australia.

Foulds, L. R., & Graham, R. L. (1982). The Steiner problem in phylogeny is NP-complete. Advances in
Applied Mathematics, 3, 43–49.

Freund, Y., & Shapire, R. E. (1999). Large margin classification using the perceptron algorithm. Machine
Learning, 37(3), 277–296.

Germann, U., Jahr, M., Knight, K., Marcu, D., & Yamada, K. (2003). Fast decoding and optimal decoding
for machine translation. Artificial Intelligence, 154(1–2), 127–143.

Giménez, J., & Màrquez, L. (2004). SVMTool: a general POS tagger generator based on support vector
machines. In Proceedings of the 4th LREC.

Huang, L., Zhang, H., & Gildea, D. (2005). Machine translation as lexicalized parsing with hooks. In Pro-
ceedings of the 9th international workshop on parsing technologies (IWPT-05), October 2005.

Kääriäinen, M. (2006). Lower bounds for reductions. In The atomic learning workshop (TTI-C), March 2006.
Kakade, S., & Langford, J. (2002). Approximately optimal approximate reinforcement learning. In Proceed-

ings of the international conference on machine learning (ICML).
Kakade, S., Teh, Y. W., & Roweis, S. (2002). An alternate objective function for Markovian fields. In Pro-

ceedings of the international conference on machine learning (ICML).
Kassel, R. (1995). A comparison of approaches to on-line handwritten character recognition. PhD thesis,

Massachusetts Institute of Technology, Spoken Language Systems Group.
Knight, K., & Marcu, D. (2002). Summarization beyond sentence extraction: a probabilistic approach to

sentence compression. Artificial Intelligence, 139(1).
Kudo, T., & Matsumoto, Y. (2001). Chunking with support vector machines. In Proceedings of the conference

of the North American chapter of the association for computational linguistics (NAACL).
Kudo, T., & Matsumoto, Y. (2003). Fast methods for kernel-based text analysis. In Proceedings of the con-

ference of the association for computational linguistics (ACL).
Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional random fields: probabilistic models for seg-

menting and labeling sequence data. In Proceedings of the international conference on machine learning
(ICML).

Langford, J., & Zadrozny, B. (2005). Relating reinforcement learning performance to classification perfor-
mance. In Proceedings of the international conference on machine learning (ICML).

Lewis, D. (2001). Applying support vector machines to the TREC-2001 batch filtering and routing tasks. In
Proceedings of the conference on research and developments in information retrieval (SIGIR).

Liang, P., Bouchard-Côté, A., Klein, D., & Taskar, B. (2006). An end-to-end discriminative approach to
machine translation. In Proceedings of the joint international conference on computational linguistics
and association of computational linguistics (COLING/ACL).

Lin, C.-Y., & Hovy, E. (2002). From single to multi-document summarization: a prototype system and its
evaluation. In Proceedings of the conference of the association for computational linguistics (ACL),
July 2002.

Lin, C.-Y., & Hovy, E. (2003). Automatic evaluation of summaries using n-gram co-occurrence statistics.
In Proceedings of the conference of the North American chapter of the association for computational
linguistics and human language technology (NAACL/HLT), Edmonton, Canada, 27 May–1 June 2003.

Manning, C. (2006). Doing named entity recognition? Don’t optimize for F1. Post on the NLPers Blog, 25
August 2006. http://nlpers.blogspot.com/2006/08/doing-named-entity-recognition-dont.html.

McAllester, D., Collins, M., & Pereira, F. (2004). Case-factor diagrams for structured probabilistic modeling.
In Proceedings of the conference on uncertainty in artificial intelligence (UAI).

McCallum, A., Freitag, D., & Pereira, F. (2000). Maximum entropy Markov models for information extraction
and segmentation. In Proceedings of the international conference on machine learning (ICML).

McDonald, R. (2006). Discriminative sentence compression with soft syntactic constraints. In Proceedings
of the conference of the European association for computational linguistics (EACL).

McDonald, R., & Pereira, F. (2005). Identifying gene and protein mentions in text using conditional random
fields. BMC Bioinformatics, 6(Suppl 1).

http://nlpers.blogspot.com/2006/08/doing-named-entity-recognition-dont.html

Mach Learn (2009) 75: 297–325 325

McDonald, R., Crammer, K., & Pereira, F. (2004). Large margin online learning algorithms for scalable
structured classification. In NIPS workshop on learning with structured outputs.

Musicant, D., Kumar, V., & Ozgur, A. (2003). Optimizing F-measure with support vector machines. In Pro-
ceedings of the international Florida artificial intelligence research society conference (pp. 356–360).

Ng, A., & Jordan, M. (2000). PEGASUS: A policy search method for large MDPs and POMDPs. In Proceed-
ings of the conference on uncertainty in artificial intelligence (UAI).

Punyakanok, V., & Roth, D. (2001). The use of classifiers in sequential inference. In Advances in neural
information processing systems (NIPS).

Punyakanok, V., Roth, D., & Yih, W.-T. (2005a). The necessity of syntactic parsing for semantic role labeling.
In Proceedings of the international joint conference on artificial intelligence (IJCAI) (pp. 1117–1123).

Punyakanok, V., Roth, D., Yih, W.-T., & Zimak, D. (2005b). Learning and inference over constrained output.
In Proceedings of the international joint conference on artificial intelligence (IJCAI) (pp. 1124–1129).

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the
brain. Psychological Review, 65, 386–408. Reprinted in Neurocomputing (MIT Press, 1998).

Russell, S., & Norvig, P. (1995). Artificial intelligence: a modern approach. New Jersey: Prentice Hall.
Sarawagi, S., & Cohen, W. (2004). Semi-Markov conditional random fields for information extraction. In

Advances in neural information processing systems (NIPS).
Shen, L., Satta, G., & Joshi, A. (2007). Guided learning for bidirectional sequence classification. In Proceed-

ings of the conference of the association for computational linguistics (ACL).
Sutton, C., Rohanimanesh, K., & McCallum, A. (2004). Dynamic conditional random fields: factorized prob-

abilistic models for labeling and segmenting sequence data. In Proceedings of the international confer-
ence on machine learning (ICML) (pp. 783–790).

Sutton, C., Sindelar, M., & McCallum, A. (2005). Feature bagging: preventing weight undertraining in struc-
tured discriminative learning (Technical Report IR-402). University of Massachusetts, Center for Intel-
ligent Information Retrieval.

Taskar, B., Guestrin, C., & Koller, D. (2003). Max-margin Markov networks. In Advances in neural informa-
tion processing systems (NIPS).

Taskar, B., Chatalbashev, V., Koller, D., & Guestrin, C. (2005). Learning structured prediction models: a
large margin approach. In Proceedings of the international conference on machine learning (ICML)
(pp. 897–904).

Teufel, S., & Moens, M. (1997). Sentence extraction as a classification task. In ACL/EACL-97 workshop on
intelligent and scalable text summarization (pp. 58–65).

Tsochantaridis, I., Hofmann, T., Joachims, T., & Altun, Y. (2005). Large margin methods for structured and
interdependent output variables. Journal of Machine Learning Research, 6, 1453–1484.

Tsuruoka, Y., & Tsujii, J. (2005). Bidirectional inference with the easiest-first strategy for tagging sequence
data. In Proceedings of the conference on empirical methods in natural language processing (EMNLP).

Turian, J., & Melamed, I. D. (2006). Advances in discriminative parsing. In Proceedings of the joint inter-
national conference on computational linguistics and association of computational linguistics (COL-
ING/ACL).

Turner, J., & Charniak, E. (2005). Supervised and unsupervised learning for sentence compression. In Pro-
ceedings of the conference of the association for computational linguistics (ACL).

Wainwright, M. (2006). Estimating the “wrong” graphical model: benefits in the computation-limited setting
(Technical report). University of California Berkeley, Department of Statistics, February 2006.

Weston, J., Chapelle, O., Elisseeff, A., Schoelkopf, B., & Vapnik, V. (2002). Kernel dependency estimation.
In Advances in neural information processing systems (NIPS).

Ye, S., Qiu, L., Chua, T.-S., & Kan, M.-Y. (2005). NUS at DUC 2005: understanding documents via concept
links. In Document understanding conference.

Zadrozny, B., Langford, J., & Abe, N. (2003). Cost-sensitive learning by cost-proportionate example weight-
ing. In Proceedings of the IEEE conference on data mining (ICMD).

Zhang, T. (2006). Personal communication, June 2006.

	Search-based structured prediction
	Abstract
	Introduction
	Core definitions
	The Searn algorithm
	Searn at test time
	Searn at train time
	Initial policy
	Cost-sensitive examples
	Algorithm

	Feature computations
	Policies
	Computability of the initial policy
	Search-based policies
	Beyond greedy search

	Theoretical analysis
	Comparison to alternative techniques
	The argmax problem
	Independent classifiers
	Perceptron-style algorithms
	Global prediction algorithms

	Experimental results
	Sequence labeling
	Handwriting recognition
	Spanish named entity recognition
	Syntactic chunking
	Joint chunking and tagging
	Search and initial policies
	Initial policies
	Experimental results and discussion
	Effect of search order
	Effect of iterating

	Automatic document summarization
	Search space and actions
	Data and evaluation criteria
	Initial policy
	Feature functions
	Experimental results

	Discussion and conclusions
	References

