
IEEE TRANSACTIONS ON SYSTEM, MAN, AND CYBERNETICS: PART C, VOL. X, NO. XX, MONTH 2004 (SMCC KE-09) 1

Search Biases in Constrained

Evolutionary Optimization
Thomas Philip Runarsson, Member, IEEE, and Xin Yao, Fellow, IEEE,

Abstract— A common approach to constraint handling in
evolutionary optimization is to apply a penalty function to bias
the search towards a feasible solution. It has been proposed
that the subjective setting of various penalty parameters can be
avoided using a multi-objective formulation. This paper analyses
and explains in depth why and when the multi-objective approach
to constraint handling is expected to work or fail. Furthermore,
an improved evolutionary algorithm based on evolution strategies
and differential variation is proposed. Extensive experimental
studies have been carried out. Our results reveal that the
unbiased multi-objective approach to constraint handling may
not be as effective as one may have assumed.

Index Terms— Nonlinear programming, multi-objective,
penalty functions, evolution strategy.

I. INTRODUCTION

THIS paper considers the general nonlinear programming

problem formulated as

minimize f(x), x = (x1, . . . , xn) ∈ Rn, (1)

where f(x) is the objective function, x ∈ S ∩ F , S ⊆ Rn

defines the search space bounded by the parametric constraints

xi ≤ xi ≤ xi, (2)

and the feasible region F is defined by

F = {x ∈ Rn | gj(x) ≤ 0 ∀ j}, (3)

where gj(x), j = 1, . . . , m, are inequality constraints (equality

constraints may be approximated by inequality constraints).

There have been many methods proposed for handling

constraints in evolutionary optimization, including the penalty

function method, special representations and operators, co-

evolutionary method, repair method, multi-objective method,

etc [1]. The penalty function method, due to its simplicity,

is by far the most widely studied and used in handling

constraints.

The introduction of a penalty term enables the transforma-

tion of a constrained optimization problem into a series of

unconstrained ones. The common formulation is the following

exterior penalty method,

minimize ψ(x) = f(x) + w0

m
∑

j=1

wj

(

g+
j (x)

)β
(4)

= f(x) + w0φ
(

g+(x)
)

,

where φ
(

g+(x)
)

is the penalty function and g+(x) =
{g+

1 (x), . . . , g+
m(x)} are the constraint violations,

g+
j (x) = max[0, gj(x)]. (5)

Manuscript received September 1, 2003; revised February 1, 2004.

The exponent β is usually 1 or 2 and the weights wj ; j =
0, . . . ,m, are not necessarily held constant during search. In

practice, it is difficult to find the optimal weights wj ; j =
0, . . . ,m for a given problem. Balancing the objective function

f(x) and constraint violations g+
j (x) has always been a key

issue in the study of constraint handling.

One way to avoid the setting of penalty parameters wj ; j =
0, . . . ,m subjectively in (5) is to treat the constrained opti-

mization problem as a multi-objective one [2, p. 403], where

each of the objective function and constraint violations is a

separate objective to be minimized,

minimize f(x),

minimize g+
j (x), j = 1, . . . , m. (6)

Alternatively, one could approach the feasible region by con-

sidering only the constraint violations as objectives [3], [4],

minimize g+
j (x), j = 1, . . . , m, (7)

in which case the Pareto optimal set is the feasible region.

These unbiased multi-objective approaches are compared with

the penalty function method.

Although the idea of handling constraints through multi-

objective optimization is very attractive, a search bias towards

the feasible region must still be introduced in optimization

if a feasible solution is to be found. When comparing the

unbiased multi-objective approach to that of the biased penalty

function method it becomes evident that the multi-objective

approach does not work as well as one might first think. It does

not solve the fundamental problem of balancing the objective

function and constraint violations faced by the penalty function

approach. The introduction of a search bias to the multi-

objective approach would clearly be beneficial as illustrated

in [5]. However, these search biases are also subjective and

therefore defeat the purpose of the current study. The purpose

of this study is not to present a new multi-objective approach

for constraint handling. The main contribution lies in a new

and clear exposition of how the multi-objective approach

to constraint handling works and how to improve it in a

principled way based on this new understanding. Furthermore,

a search bias depends not only on selection but also on

the chosen search operators. A significant improvement in

performance can be achieved when the appropriate search

distribution is applied. It will be shown that there exists a

more suitable search distribution for some commonly studied

benchmark functions.

The remainder of the paper is organized as follows. Sec-

tion II introduces the test function used in this paper. Both

IEEE TRANSACTIONS ON SYSTEM, MAN, AND CYBERNETICS: PART C, VOL. X, NO. XX, MONTH 2004 (SMCC KE-09) 2

artificial test functions with known characteristics and bench-

mark test functions widely used in the literature are included.

Section III proposes an improved evolutionary algorithm used

in this paper for constrained optimization. It combines evolu-

tion strategies with differential variation. Section IV presents

our experimental results and discussions. Several different con-

straint handling techniques using the multi-objective approach

are studied. Finally, Section V concludes the paper with a brief

summary and some remarks.

II. TEST PROBLEMS

Two types of test problems will be used in this paper. The

first are artificial test functions with known characteristics.

Such test functions enable one to understand and analyze

experimental results. They also help in validating theories and

gaining insights into different constraint handling techniques.

The second type of test problems investigated are 13 widely-

used benchmark functions [6], [7], [8].

Let’s first introduce the artificial test functions as follows,

minimize f(x) =

n
∑

i=1

(xi − ci,0)
2 (8)

subject to

gj(x) =

n
∑

i=1

(xi − ci,j)
2 − r2

j ≤ 0, (9)

where rj > 0, j = 1, . . . , m, and n is the problem dimension.

This problem is similar to that used in the test-case generator in

[9]. A solution is infeasible when gj(x) > 0,∀j ∈ [1, . . . , m],
otherwise it is feasible. In other words,

g+
j (x) =

{

max[0, gj(x)] if gk(x) > 0,∀ k ∈ [1, . . . , m]

0 otherwise.

The local optima, ∀ j ∈ [1, . . . , m], are

x∗
j =

{

cj + rj
c0−cj

‖c0−cj‖
when ‖c0 − cj‖ > rj

c0 otherwise.
(10)

If any local optimum is located at c0, then this is the

constrained as well as unconstrained global optimum. In the

case where c0 is infeasible, the local minima with the smallest

‖c0 − cj‖ − rj is the constrained global minimum. For an

infeasible solution x, the sum of all constraint violations,

φ(x) =

m
∑

j=1

wj

(n
∑

i=1

(xi − ci,j)
2 − r2

j

)β

, (11)

form a penalty function which has a single optimum located

at x∗
φ.

An example of the artificial test functions defined by equa-

tions (8) and (9) with m = n = 2 is shown in figure 1.

Here the objective function’s unconstrained global minimum is

located at c0. Dotted contour lines for this function are drawn

as circles around this point. The example has two constraints

illustrated by the two solid circles. Any point within these two

circles is feasible and the local minimum are x∗
1 and x∗

2. The

larger circle contains the constrained global minimum, which

is x∗
1. The penalty function that uses β = w0 = w1 = w2 = 1

has its minimum located at x∗
φ in the infeasible region and the

dashed contours for the penalty function are centered around

this point. Figure 1 also shows two Pareto sets. The shaded

sector represents the Pareto optimal set for (6). The global

optimal feasible solution is located at x∗
1 and belongs to this

Pareto optimal set. Using this formulation the search may

wander in and out of the feasible region. This could be avoided

if all feasible solution were set to a special 0 Pareto level.

Alternatively, an optimization level technique applied to find

regions of preferred solution with small constraint violations

would surely be located near x∗
φ. The Pareto optimal set for

(7) is the feasible region but the next best (level 2) Pareto set

is depicted figure 1. This is the line drawn from the centers

of the feasible spheres and between the two feasible regions.

Again, an optimization level technique biased towards a region

for which all constraint violations are small would concentrate

its search around x∗
φ. Notice also that a search guided by (7)

enters the feasible region at a different point to that when

guided by (6).

The artificial test functions defined by equations (8) and (9)

are simple yet capture many important characteristics of

constrained optimization problems. It is scalable, easy to

implement, and easy to visualize in low dimension cases.

Because we know the characteristics, we can understand and

analyze the experimental results much better than on an

unknown test function. However, the artificial test functions

are not widely used. They do not include all the characteristics

of different constrained optimization problems. To evaluate

our evolutionary algorithm and constraint handling techniques

comprehensively in the remaining sections of this paper, we

employ a set of 13 benchmark functions from the literature [6],

[7] in our study, in addition to the artificial function. The 13
benchmark functions are described in the appendix and their

main characteristics are summarized in table I.

As seen from Table I, the 13 benchmark functions represent

a reasonable set of diverse functions that will help to evaluate

~x∗

φ~c0

~x∗

1

~x∗

2

g+

1
(~x), g+

2
(~x) > 0

f(~x), g+

1
(~x), g+

2
(~x)

Pareto optimal set (6)
Pareto set (7)

Fig. 1. A 2-D example of the artificial test function.

IEEE TRANSACTIONS ON SYSTEM, MAN, AND CYBERNETICS: PART C, VOL. X, NO. XX, MONTH 2004 (SMCC KE-09) 3

TABLE I

SUMMARY OF MAIN PROPERTIES OF THE BENCHMARK PROBLEMS (NE:

NONLINEAR EQUALITY, NI: NONLINEAR INEQUALITY, LI: LINEAR

INEQUALITY, THE NUMBER OF ACTIVE CONSTRAINTS AT OPTIMUM IS a.)

fcn n f(x) type |F|/|S| LI NE NI a
g01 13 quadratic 0.011% 9 0 0 6
g02 20 nonlinear 99.990% 1 0 1 1
g03 10 polynomial 0.002% 0 1 0 1
g04 5 quadratic 52.123% 0 0 6 2
g05 4 cubic 0.000% 2 3 0 3
g06 2 cubic 0.006% 0 0 2 2
g07 10 quadratic 0.000% 3 0 5 6
g08 2 nonlinear 0.856% 0 0 2 0
g09 7 polynomial 0.512% 0 0 4 2
g10 8 linear 0.001% 3 0 3 3
g11 2 quadratic 0.000% 0 1 0 1

g12 3 quadratic 4.779% 0 0 93 0
g13 5 exponential 0.000% 0 3 0 3

different constraint handling techniques and gain a better

understand why and when some techniques work or fail.

III. EXPERIMENTAL SETUP

An evolutionary algorithm (EA) is based on the collective

learning process within a population of individuals each of

which represents a point in the search space. The EA’s driving

force is the rate at which the individuals are imperfectly

replicated. The rate of replication is based on a quality measure

for the individual. Here this quality is a function of the

objective function and the constraint violations. In particular

the population of individuals, of size λ, are ranked from best

to worst, denoted (x1;λ, . . . ,xµ;λ, . . . ,xλ;λ), and only the best

µ are allowed to replicate λ/µ times. The different rankings

considered are as follows:

1) Rank feasible individuals highest and according to their

objective function value, followed by the infeasible so-

lutions ranked according to penalty function value. This

is the so called over-penalized approach and denoted as

method A.

2) Treat the problem as an unbiased multi-objective opti-

mization problem, either (6) or (7). Use a non-dominated

ranking with the different Pareto levels determined using

for example the algorithm described in [10]. All feasible

solutions are set to a special 0 Pareto level. Applying the

over-penalty approach, feasible individuals are ranked

highest and according to their objective function value,

followed by the infeasible solutions ranked according to

their Pareto level. The ranking strategies based on (6)

and (7) are denoted as methods B and C respectively.

3) Rank individuals such that neither the objective function

value nor the penalty functions or Pareto level determine

solely the ranking. An example of such a ranking would

be the stochastic ranking [7] illustrated in figure 2. The

ranking strategies above will in this case be marked by

a dash, i.e. A′, B′, and C ′.

The different ranking determine which parent individuals

are to be replicated λ/µ times imperfectly. These imperfec-

tions or mutations have a probability density function (PDF)

that can either dependent on the population and/or be self-

adaptive. The evolution strategy (ES) is an example of a

self-adaptive EA, where the individual represents a point

in the search space as well as some strategy parameters

describing the PDF. In mutative step-size self-adaptation the

mutation strength is randomly changed. It is only dependent

on the parent’s mutation strength, that is the parent step-

size multiplied by a random number. This random number

is commonly log-normally distributed but other distributions

are equally plausible [11], [12].

The isotropic mutative self-adaptation for a (µ, λ) ES, using

the log-normal update rule, is as follows [13],

σ′
k = σi;λ exp(τoN(0, 1)), (12)

xk = xi;λ + σ′
kN(0, 1), k = 1, . . . , λ

for parent i ∈ [1, µ] where τo ≃ c(µ,λ)/
√

n [14]. Similarly,

the non-isotropic mutative self-adaptation rule is,

σ′
k,j = σ(i;λ),j exp

(

τ ′N(0, 1) + τNj(0, 1)
)

, (13)

x′
k,j = x(i;λ),j + σ′

k,jNj(0, 1), k = 1, . . . , λ, j = 1, . . . , n

where τ ′ = ϕ/
√

2n and τ = ϕ/
√

2
√

n [13].

The primary aim of the step-size control is to tune the search

distribution so that maximal progress in maintained. For this

some basic conditions for achieving optimal progress must be

satisfied. The first lesson in self-adaptation is taken from the

1/5-success rule [15, p. 367]. The rule’s derivation is based on

the probability we that the offspring is better than the parent.

This probability is calculated for the case where the optimal

standard deviation is used ŵe, from which it is then determined

that the number of trials must be greater than or equal to 1/ŵe

if the parent using the optimal step-size is to be successful.

Founded on the sphere and corridor models, this is the origin

of the 1/5 value.

In a mutative step-size control, such as the one given by

(12), there is no single optimal standard deviation being tested,

but rather a series of trial step sizes σ′
k, k = 1, . . . , λ/µ cen-

tered (the expected median is σi;λ) around the parent step size

σi;λ. Consequently, the number of trials may need to be greater

than that specified by the 1/5-success rule. If enough trial steps

for success are generated near the optimal standard deviation

then this trial step-size will be inherited via the corresponding

offspring. This offspring will necessarily also be the most

1 Ij = j ∀ j ∈ {1, . . . , λ}
2 for i = 1 to λ do

3 for j = 1 to λ − 1 do

4 sample u ∈ U(0, 1) (uniform random number generator)
5 if (φ(Ij) = φ(Ij+1) = 0) or (u < 0.45) then

6 if (f(Ij) > f(Ij+1)) then

7 swap(Ij , Ij+1)
8 fi

9 else

10 if (φ(Ij) > φ(Ij+1)) then

11 swap(Ij , Ij+1)
12 fi

13 fi

14 od

15 if no swap done break fi

od

Fig. 2. The stochastic ranking algorithm [7]. In the case of non-dominated
ranking φ is replaced by the Pareto level.

IEEE TRANSACTIONS ON SYSTEM, MAN, AND CYBERNETICS: PART C, VOL. X, NO. XX, MONTH 2004 (SMCC KE-09) 4

likely to achieve the greatest progress and hence be the fittest.

The fluctuations on σi;λ (the trial standard deviations σ′
k)

and consequently also on the optimal mutation strength, will

degrade the performance of the ES. The theoretical maximal

progress rate is impossible to obtain. Any reduction of this

fluctuation will therefore improve performance [14, p. 315].

If random fluctuations are not reduced, then a larger number

of trials must be used (the number of offspring generated

per parent) in order to guarantee successful mutative self-

adaptation. This may especially be the case for when the

number of free strategy parameters increases, as in the non-

isotropic case.

Reducing random fluctuations may be achieved using av-

eraging or recombination on the strategy parameters. The

most sophisticated approach is the derandomized approach

to self-adaptation [16] which also requires averaging over

the population. However, when employing a Pareto based

method one is usually exploring different regions of the search

space. For this reason one would like to employ a method

which reduces random fluctuations without averaging over

very different individuals in the population. Such a technique is

described in [17] and implemented in our study. The method

takes an exponential recency-weighted average of trial step

sizes sampled via the lineage instead of the population.

In a previous study [7] the authors had some success

applying a simple ES, using the non-isotropic mutative self-

adaptation rule, on the 13 benchmark functions described in

the previous section. The algorithm described here is equiv-

alent but uses the exponential averaging of trial step sizes.

Its full details are presented by the pseudocode in figure 3.

As seen in the figure the exponential smoothing is performed

on line 10. Other notable features are that the variation of

the objective parameters x is retried if they fall outside of

the parametric bounds. A mutation out of bounds is retried

only 10 times after which it is set to its parent value. Initially

(line 1) the parameters are set uniform and randomly within

these bounds. The initial step sizes are also set with respect to

the parametric bounds (line 1) guaranteeing initial reachability

over the entire search space.

There is still one problem with the search algorithm de-

scribed in figure 3. The search is biased toward a grid aligned

with the coordinate system [18]. This could be solved by

adapting the full covariance matrix of the search distribution

1 Initialize: �′

k
:= (xk − xk)/

√
n, x′

k
= xk + (xk − xk)Uk(0, 1)

2 while termination criteria not satisfied do

3 evaluate: f(x′

k
), g+(x′

k
), k = 1 . . . , λ

4 rank the λ points and copy the best µ in their ranked order:
5 (xi,�i) ← (x′

i;λ,�′

i;λ), i = 1, . . . , µ

6 for k := 1 to λ do (replication)
7 i ← mod (k − 1, µ) + 1 (cycle through the best µ points)

8 σ′

k,j
← σi,j exp

�
τ ′N(0, 1) + τNj(0, 1)

�
, j = 1, . . . , n

9 x′

k
← xi + �′

k
N(0, 1) (if out of bounds then retry)

10 �′

k
← �i + α(�′

k
− �i) (exponential smoothing [17])

11 od

12 od

Fig. 3. Outline of the simple (µ, λ) ES using exponential smoothing to
facilitate self-adaptation (typically α ≈ 0.2).

for the function topology. This would require (n2+n)/2 strat-

egy parameters and is simply too costly for complex functions.

However, to illustrate the importance of this problem a simple

modification to our algorithm is proposed. The approach can

be thought of as a variation of the Nelder-Mead method

[19] or differential evolution [20]. The search is “helped” by

performing one mutation per parents i as follows,

x′
k = xi;λ + γ(x1;λ − xi+1;λ), i ∈ {1, . . . , µ − 1} (14)

where the search direction is determined by the best individual

in the population and the individual ranked one below the

parent i being replicated. The step length taken is controlled

by the new parameter γ. The setting of this new parameter

will be described in the next section. The modified algorithm

is described in figure 4 where the only change has been

the addition of lines 8–10. For these trials the parent mean

step size is copied unmodified (line 9). Any trial parameter

outside the parametric bounds is generated anew by a standard

mutation as before. Since this new variation involves other

members of the population, it will only be used in the case

where the ranking is based on the penalty function method.

IV. EXPERIMENTAL STUDY

The experimental studies are conducted in three parts. First

of all, the behavior of six different ranking methods (A,

B, C, A′, B′, C ′) for constraint handling are compared.

In section IV-A, the search behavior for these methods is

illustrated on the artificial test function using a simple ES.

In section IV-B the search performance of these methods on

commonly used benchmark functions is compared. Finally, the

improved search algorithm presented in figure 4 is examined

on the benchmark functions in section IV-C.

A. Artificial function

The search behavior resulting from the different ranking

methods is illustrated using an artificial test function similar

to the one depicted in fig. 1. Here both the objective function

and constraint violations are spherically symmetric and so the

isotropic mutation (12) is more suitable than (13) described on

1 Initialize: �′

k
:= (xk − xk)/

√
n, x′

k
= xk + (xk − xk)Uk(0, 1)

2 while termination criteria not satisfied do

3 evaluate: f(x′

k
), g+(x′

k
), k = 1 . . . , λ

4 rank the λ points and copy the best µ in their ranked order:
5 (xi,�i) ← (x′

i;λ,�′

i;λ), i = 1, . . . , µ

6 for k := 1 to λ do

7 i ← mod (k − 1, µ) + 1
8 if (k < µ) do (differential variation)
9 �′

k
← �i

10 x′

k
← xi + γ(x1 − xi+1)

11 else (standard mutation)

12 σ′

k,j
← σi,j exp

�
τ ′N(0, 1) + τNj(0, 1)

�
, j = 1, . . . , n

13 x′

k
← xi + �′

k
N(0, 1)

14 �′

k
← �i + α(�′

k
− �i)

15 od

16 od

17 od

Fig. 4. Outline of the improved (µ, λ) ES using the differential variation
(lines 8 − 11) performed once for each of the best µ − 1 point.

IEEE TRANSACTIONS ON SYSTEM, MAN, AND CYBERNETICS: PART C, VOL. X, NO. XX, MONTH 2004 (SMCC KE-09) 5

line 8 in figure 3. Exponential smoothing is also not necessary,

i.e. α = 1. 1000 independent runs using a (1, 10) ES are made

and the algorithm is terminated once the search has converged.

The termination criterion used is when the mean step size

σ < 10−7 the algorithm is halted. The initial step size is

σ = 1 and the initial point used is x = [−1, 0] (marked by ∗).

The artificial function is defined by the centers c0 = [−1, 0],
c1 = [−1, 1], c2 = [1, −1] and the radius r = [0.1, 0.8]. This

experiment is repeated for all six different ranking methods

and plotted in figure 5. The final 1000 solutions are plotted as

dots on the graphs.

The first two experiments are based on the penalty function

method with w0 = w1 = w2 = β = 1. Case A is an over-

penalty and case A′ uses the stochastic ranking [7] to balance

the influence of the objective and penalty function on the

ranking. In case A one observes that the search is guided to

x∗
φ, but since the initial step size is large enough some parents

happen upon a feasible region and remain there. Clearly the

larger the feasible space is the likelier is this occurrence.

From this example it should also be possible to visualize the

case where x∗
φ is located further away or closer to the global

feasible optimum. The location of x∗
φ is determined by the

constraint violations and also the different penalty function

A A′

B B′

C C
′

Fig. 5. The six different search behaviors resulting from the different ranking
methods described in the text as cases A to C′. Some noise is added to make
the density of the dots clearer on the figures.

parameters. In case A′ the search is biased not only towards

x∗
φ but also towards c0. Again it should be possible to imagine

that theses attractors could be located near or far from the

global feasible optimum. For the example plotted both are in

the infeasible region creating additional difficulties for this

approach.

The last four experiments are equivalent to the previous two,

however, now the ranking of infeasible solution is determined

by a non-dominated ranking. In case B the non-dominated

ranking is based on (6) where all feasible solution are set at the

special highest Pareto level 0. In this case there is no collection

of solutions around x∗
φ but instead the search is spread over the

Pareto front increasing the likelihood of falling into a feasible

region and remaining there. Nevertheless, a number of parents

were left scattered in the infeasible region at the end of their

runs. When the objective function takes part in determining the

ranking also, as shown by case B′, the search is centered at c0.

Again the experiment is repeated but now the non-dominated

ranking is based on (7). These cases are marked C and C ′

respectively. The results are similar, however, in case C ′ the

parents are spread between c0 and the Pareto front defined by

the line between the centers of the two feasible spheres.

In general a feasible solution is either found by chance or

when the search is biased by small constraint violations, and/or

small objective function value, to a feasible region (or close to

one). The global feasible optimum does not necessarily need

to be in this region. Furthermore, one cannot guarantee that

the attractors are located near a feasible region, as illustrated

by the test case studied here. For the multi-objective approach,

individuals will drift on the Pareto front and may chance upon

a feasible region in an unbiased manner. The likelihood of

locating a feasible region is higher when the size of the feasible

search space is large.

It is possible that a method that minimizes each constraint

violation independently would locate the two disjoint feasible

regions. Such a multi-objective method was proposed in [21].

However, such a method may have difficulty finding feasible

solutions to other problems such as g13 [22].

B. Benchmarks functions

The artificial test function in the previous section illustrates

the difficulties of finding a general method for constraint

handling for nonlinear programming problems. However, in

practice the class of problems studied may have different

properties. For this reason it is also necessary to investigate

the performance of our algorithms on benchmark functions

typically originating from real world applications. These are

the 13 benchmark functions summarized in table I and listed

in the appendix.

For these experiments the non-isotropic mutation (13) with

a smoothing factor α = 0.2 is used. The expected rate of

convergence ϕ is scaled up so that the expected change in the

step size between generations is equivalent to when ϕ = 1 and

α = 1, see [17] for details. As it may be necessary for a multi-

objective approach to maintain a greater diversity a larger than

usual parent number is used, i.e. a (60, 400) ES. Since the

parent number has been doubled the number of generations

IEEE TRANSACTIONS ON SYSTEM, MAN, AND CYBERNETICS: PART C, VOL. X, NO. XX, MONTH 2004 (SMCC KE-09) 6

TABLE II

RESULTS USING THE OVER-PENALIZED APPROACH.

fcn/rnk best median mean st. dev. worst Gm

g01/ −15.000
A −15.000 −15.000 −15.000 4.7E−14 −15.000 874
C −15.000 −15.000 −15.000 7.7E−14 −15.000 875

(3) B −1.506 −1.502 −1.202 5.2E−01 −0.597 693
g02/ −0.803619
A −0.803474 −0.769474 −0.762029 2.9E−02 −0.687122 865
C −0.803523 −0.773975 −0.764546 2.8E−02 −0.687203 858
B −0.803517 −0.756532 −0.754470 3.1E−02 −0.673728 837

g03/ −1.000
A −0.400 −0.126 −0.151 1.1E−01 −0.020 54
C −0.652 −0.103 −0.157 1.6E−01 −0.024 46

(11) B −0.703 −0.085 −0.188 2.5E−01 −0.003 34
g04/ −30665.539
A −30665.539−30665.539−30665.5391.1E−11−30665.539478
C −30665.539−30665.539−30665.5391.0E−11−30665.539472
B −30665.539−30665.539−30665.5391.4E−11−30665.539467

g05/ 5126.498
(22) A 5129.893 5274.662 5336.733 2.0E+02 5771.563 247

C 5127.351 5380.142 5415.491 2.8E+02 6030.261 440
B – – – – – –

g06/ −6961.814
A −6961.814 −6961.814 −6961.814 1.9E−12 −6961.814 663
C −6961.814 −6961.814 −6961.814 1.9E−12 −6961.814 658
B −6961.814 −6961.814 −6921.010 7.8E+01 −6702.973 646

g07/ 24.306
A 24.323 24.474 24.552 2.3E−01 25.284 774
C 24.336 24.500 26.364 9.5E+00 76.755 873
B 24.317 24.450 24.488 1.6E−01 25.092 816

g08/ −0.095825
A −0.095825 −0.095825 −0.095825 2.8E−17 −0.095825 335
C −0.095825 −0.095825 −0.095825 2.8E−17 −0.095825 343
B −0.095825 −0.095825 −0.095825 2.7E−17 −0.095825 295

g09/ 680.630
A 680.635 680.673 680.694 7.6E−02 681.028 208
C 680.632 680.667 680.693 8.4E−02 681.086 264
B 680.632 680.668 680.680 5.3E−02 680.847 235

g10/ 7049.248
A 7085.794 7271.847 7348.555 2.4E+02 8209.622 776
C 7130.745 7419.552 7515.000 4.7E+02 9746.656 827

(16) B 10364.402 14252.581 15230.161 4.4E+03 23883.283 57
g11/ 0.750
A 0.750 0.857 0.840 6.0E−02 0.908 19
C 0.750 0.821 0.827 5.5E−02 0.906 15
B 0.750 0.750 0.751 3.7E−03 0.766 478

g12/ −1.000000
A −1.000000 −1.000000 −0.999992 4.6E−05 −0.999750 85
C −1.000000 −1.000000 −0.999992 4.6E−05 −0.999747 85
B −1.000000 −1.000000 −1.000000 1.0E−11 −1.000000 85

g13/ 0.053950
A 0.740217 0.999424 0.974585 5.9E−02 0.999673 875
C 0.564386 0.948202 0.884750 1.3E−01 0.999676 875
B – – – – – –

used has been halved, i.e. all runs are terminated after G =
875 generations except for g12, which is run for G = 87
generations, in this way the number of function evaluations is

equivalent to that in [7].

For each of the test functions 30 independent runs are

performed using the six different ranking strategies denoted by

A to C ′, and whose search behavior was illustrated using the

artificial test function in figure 5. The statistics for these runs

are summarized in two tables. The first is table II where the

feasible solutions are always ranked highest and according to

their objective function value. The constraints are treated by A
the penalty function w = 1 and β = 2, then B and C for when

the infeasible solutions are ranked according to their Pareto

TABLE III

RESULTS USING THE STOCHASTIC RANKING.

fcn/rnk best median mean st. dev. worst Gm

g01/ −15.000
A′ −15.000 −15.000 −15.000 1.2E−13 −15.000 875
C′ −15.000 −15.000 −15.000 4.1E−12 −15.000 875
B′ – – – – – –

g02/ −0.803619
A′ −0.803566 −0.766972 −0.760541 3.8E−02 −0.642388 848
C′ −0.803542 −0.769708 −0.768147 2.2E−02 −0.729792 863
B′ −0.803540 −0.771902 −0.765590 2.7E−02 −0.697707 794
g03/ −1.000
A′ −1.000 −0.999 −0.999 5.3E−04 −0.998 381
C′ −1.000 −0.999 −0.999 5.0E−04 −0.998 369
B′ – – – – – –

g04/ −30665.539
A′ −30665.539−30665.539−30665.5391.1E−11−30665.539484
C′ −30665.539−30665.539−30665.5391.1E−11−30665.539499
B′ −30665.539−30665.539−30665.5391.0E−11−30665.539570
g05/ 5126.498

(28) A′ 5126.509 5129.190 5134.550 1.0E+01 5162.690 432
C′ – – – – – –
B′ – – – – – –

g06/ −6961.814
A′ −6961.814 −6830.074 −6828.072 8.5E+01 −6672.254 37
C′ −6961.814 −6961.814 −6961.795 1.0E−01 −6961.258 467
B′ −6927.754 −6756.593 −6753.254 1.2E+02 −6480.124 33
g07/ 24.306
A′ 24.319 24.395 24.443 1.3E−01 24.948 870
C′ 24.335 24.505 24.616 2.6E−01 25.350 872

(26) B′ 63.951 106.811 135.417 9.3E+01 479.533 29
g08 −0.095825
A′ −0.095825 −0.095825 −0.095825 2.8E−17 −0.095825 303
C′ −0.095825 −0.095825 −0.095825 2.5E−17 −0.095825 288
B′ −0.095825 −0.095825 −0.095825 2.6E−17 −0.095825 311
g09 680.630
A′ 680.634 680.674 680.691 6.5E−02 680.880 232
C′ 680.634 680.659 680.671 3.3E−02 680.762 235
B′ 680.677 781.001 788.336 7.8E+01 952.502 23
g10 7049.248
A′ 7086.363 7445.279 7563.709 4.0E+02 8778.744 873

(4) C′ 14171.664 15484.311 15695.524 1.5E+03 17641.811 10
B′ – – – – – –

g11/ 0.750
A′ 0.750 0.750 0.750 4.1E−05 0.750 74
C′ 0.750 0.750 0.750 9.2E−05 0.750 70

(15) B′ 0.750 0.755 0.811 8.6E−02 0.997 4
g12/ −1.000000
A′ −1.000000 −1.000000 −1.000000 7.3E−11 −1.000000 86
C′ −1.000000 −1.000000 −1.000000 2.1E−10 −1.000000 85
B′ −1.000000 −1.000000 −1.000000 4.6E−12 −1.000000 86
g13/ 0.053950
A′ 0.053950 0.055225 0.107534 1.3E−01 0.444116 493

(2) C′ 0.063992 0.075856 0.075856 1.7E−02 0.087719 874
B′ – – – – – –

levels specified by problems (6) and (7) respectively. The

second set of results are given in table III, with the constraint

violations treated in the same manner but now the objective

function plays also a role in the ranking, this is achieved using

the stochastic ranking [7]. These runs are labeled as before by

A′, B′ and C ′ respectively.

The results for runs A and A′ are similar to those in [7]. The

only difference between the algorithm in [7] and the one here

is the parent size and the manner by which self-adaptation

is facilitated. In this case allowing the objective function

to influence the ranking improves the quality of search for

test functions g03, g05, g11, g13, which have non-linear

equality constraints, and g12 whose global constrained opti-

IEEE TRANSACTIONS ON SYSTEM, MAN, AND CYBERNETICS: PART C, VOL. X, NO. XX, MONTH 2004 (SMCC KE-09) 7

mum is also the unconstrained global optimum. In general the

performance of the search is not affected when the objective

function is allowed to influence the search. The exception is

g06, however, in [8] this was shown to be the result of the

rotational invariance of the non-isotopic search distribution

used (see also results in next section).

The aim here is to investigate how the search bias introduced

by the constraint violations influences search performance. The

multi-objective formulation allows the feasible solutions to be

found without the bias introduced by a penalty function. In

cases C and C ′ the infeasible solution are ranked according to

their Pareto level specified by problem (7). When comparing

A with C in table II an insignificant difference is observed

in search behavior with the exception of g05 and g07. The

difference is more apparent when A′ with C ′ are compared

in table III. The search behavior remains similar with the

exception of g05, g10 and g13 where it has become difficult

to find feasible solutions. The number of feasible solution

found, for the 30 independent runs, are listed in parenthesis in

the left most column when fewer than 30. The corresponding

statistics is also based on this number. In tables II and III

the variable Gm denotes the median number of generations

needed to locate the best solution.

The problem of finding feasible solutions is an even greater

issue when the infeasible solutions are ranked according to

their Pareto levels specified by (6), these are case studies B and

B′. An interesting search behavior is observed in case B for

g11 and g12. Because the objective function is now also used

in determining the Pareto levels the search has been drawn

to the location of the constrained feasible global optimum.

This is the type of search behavior one desires from a multi-

objective constraint handling method. Recall figure 1 where

the feasible global optimum is part of the Pareto optimal set

(hatched sector). However, these two problems are of a low

dimension and it may be the case that in practice, as seen by

the performance on the other benchmark functions, that this

type of search is difficult to attain.

The difficulty in using Pareto ranking for guiding the search

to feasible regions has also been illustrated in a separate

study [22] where four different multi-objective techniques are

compared. These methods fail to find feasible solutions to

g13, in most cases for g05 and in some for g01, g07, g08

and g10.

C. Improved search

The purpose of the previous sections was to illustrate the

effect different ranking (constraint handling) methods have

on search performance. The results tend to indicate that the

multi-objective methods are not as effective as one may at

first have thought. They seem to spend too much time ex-

ploring the infeasible regions of the Pareto front. The penalty

function method is more effective for the commonly used

benchmark problems. It was also demonstrated that letting

the objective function influence the ranking improves search

performance for some of the problems without degrading the

performance significantly for the others. However, the quality

can only be improved so much using a proper constraint

TABLE IV

THE IMPROVED (60, 400) ES EXPERIMENT WITH STOCHASTIC RANKING

D′ AND OVER-PENALIZED APPROACH D.

fcn/rnk best median mean st. dev. worst Gm

g01/ −15.000
D′ −15.000 −15.000 −15.000 5.8E−14 −15.000 875
D −15.000 −15.000 −15.000 1.3E−15 −15.000 861
g02/ −0.803619
D′ −0.803619 −0.793082 −0.782715 2.2E−02 −0.723591 874
D −0.803619 −0.780843 −0.776283 2.3E−02 −0.712818 875
g03/ −1.000
D′ −1.001 −1.001 −1.001 8.2E−09 −1.001 873
D −0.747 −0.210 −0.257 1.9E−01 −0.031 875
g04/ −30665.539
D′ −30665.539−30665.539−30665.5391.1E−11−30665.539480
D −30665.539−30665.539−30665.5391.1E−11−30665.539403
g05/ 5126.498
D′ 5126.497 5126.497 5126.497 7.2E−13 5126.497 489
D 5126.497 5173.967 5268.610 2.0E+02 5826.807 875
g06/ −6961.814
D′ −6961.814 −6961.814 −6961.814 1.9E−12 −6961.814 422
D −6961.814 −6961.814 −6961.814 1.9E−12 −6961.814 312
g07/ 24.306
D′ 24.306 24.306 24.306 6.3E−05 24.306 875
D 24.306 24.306 24.307 1.3E−03 24.311 875
g08 −0.095825
D′ −0.095825 −0.095825 −0.095825 2.7E−17 −0.095825 400
D −0.095825 −0.095825 −0.095825 5.1E−17 −0.095825 409
g09 680.630
D′ 680.630 680.630 680.630 3.2E−13 680.630 678
D 680.630 680.630 680.630 1.7E−07 680.630 599
g10 7049.248
D′ 7049.248 7049.248 7049.250 3.2E−03 7049.270 872
D 7049.248 7049.248 7049.248 7.5E−04 7049.252 770
g11/ 0.750
D′ 0.750 0.750 0.750 1.1E−16 0.750 343
D 0.750 0.754 0.756 6.9E−03 0.774 875
g12/ −1.000000
D′ −1.000000 −1.000000 −1.000000 1.2E−09 −1.000000 84
D −1.000000 −0.999954 0.999889 1.5E−04 −0.999385 78
g13/ 0.053950
D′ 0.053942 0.053942 0.066770 7.0E−02 0.438803 559
D 0.447118 0.998918 0.964323 1.2E−01 0.999225 875

handling technique. The search operators also influence search

performance. This is illustrated here using the improved ES

version described in figure 4.

The new search distribution attempts to overcome the

problem of a search bias aligned with the coordinate axis.

The method introduces a new parameter γ. This parameter

is used to scale the step length. In general a smaller step

length is more likely to result in an improvement. Typically

a step length reduction of around 0.85 is used in the ES

literature. Using this value for γ the over-penalty method is

compared with the stochastic ranking method in table IV.

These experiments are labeled D and D′ respectively. Here,

like before, allowing the objective function to influence the

ranking of infeasible solutions (using the stochastic ranking)

is more effective. However, the results are of a much higher

quality. Indeed global optimal solutions are found in all cases

and consistently in 11 out of the 13 cases. Improved search

performance typically means one has made some assumptions

about the function studied. These assumptions may not hold

for all functions and therefore the likelihood of being trapped

in local minima is greater. This would seem to be the case

for function g13. Although the global optimum is found

IEEE TRANSACTIONS ON SYSTEM, MAN, AND CYBERNETICS: PART C, VOL. X, NO. XX, MONTH 2004 (SMCC KE-09) 8

TABLE V

STATISTICS FOR 100 INDEPENDENT RUNS OF THE IMPROVED (60, 400) ES

WITH STOCHASTIC RANKING USING 3 DIFFERENT SETTINGS FOR γ .

fcn/γ best median mean st. dev. worst Gm

g01/ −15.000
0.60 −15.000 −15.000 −15.000 1.9E−13 −15.000 873
0.85 −15.000 −15.000 −15.000 1.3E−13 −15.000 873
1.10 −15.000 −15.000 −15.000 1.4E−13 −15.000 873
g02/ −0.803619
0.60 −0.803619 −0.780843 −0.775360 2.5E−02 −0.669854 871
0.85 −0.803619 −0.779581 −0.772078 2.6E−02 −0.683055 873
1.10 −0.803619 −0.773304 −0.768157 2.8E−02 −0.681114 873
g03/ −1.000
0.60 −1.001 −1.001 −1.001 2.1E−11 −1.001 869
0.85 −1.001 −1.001 −1.001 6.0E−09 −1.001 873
1.10 −1.001 −1.001 −1.001 6.0E−09 −1.001 874
g04/ −30665.539
0.60 −30665.539−30665.539−30665.5392.9E−11−30665.539519
0.85 −30665.539−30665.539−30665.5392.2E−11−30665.539507
1.10 −30665.539−30665.539−30665.5392.2E−11−30665.539519
g05/ 5126.498
0.60 5126.497 5126.497 5126.497 6.3E−12 5126.497 525
0.85 5126.497 5126.497 5126.497 6.2E−12 5126.497 487
1.10 5126.497 5126.497 5126.497 6.1E−12 5126.497 474
g06/ −6961.814
0.60 −6961.814 −6961.814 −6961.814 6.4E−12 −6961.814 486
0.85 −6961.814 −6961.814 −6961.814 6.4E−12 −6961.814 427
1.10 −6961.814 −6961.814 −6961.814 6.4E−12 −6961.814 404
g07/ 24.306
0.60 24.306 24.306 24.306 1.0E−04 24.307 874
0.85 24.306 24.306 24.306 2.7E−04 24.308 874
1.10 24.306 24.306 24.307 8.0E−04 24.313 874
g08/ −0.095825
0.60 −0.095825 −0.095825 −0.095825 4.2E−17 −0.095825 364
0.85 −0.095825 −0.095825 −0.095825 4.2E−17 −0.095825 328
1.10 −0.095825 −0.095825 −0.095825 4.2E−17 −0.095825 285
g09/ 680.630
0.60 680.630 680.630 680.630 4.5E−13 680.630 706
0.85 680.630 680.630 680.630 4.6E−13 680.630 672
1.10 680.630 680.630 680.630 3.6E−11 680.630 715
g10/ 7049.248
0.60 7049.248 7049.248 7049.248 1.1E−12 7049.248 836
0.85 7049.248 7049.248 7049.249 4.9E−03 7049.296 874
1.10 7049.248 7049.253 7049.300 1.8E−01 7050.432 874
g11/ 0.750
0.60 0.750 0.750 0.750 1.8E−15 0.750 473
0.85 0.750 0.750 0.750 1.8E−15 0.750 359
1.10 0.750 0.750 0.750 1.8E−15 0.750 330
g12/ −1.000000
0.60 −1.000000 −1.000000 −1.000000 1.8E−09 −1.000000 84
0.85 −1.000000 −1.000000 −1.000000 9.6E−10 −1.000000 84
1.10 −1.000000 −1.000000 −1.000000 7.1E−09 −1.000000 85
g13/ 0.053950
0.60 0.053942 0.053942 0.134762 1.5E−01 0.438803 593
0.85 0.053942 0.053942 0.096276 1.2E−01 0.438803 570
1.10 0.053942 0.053942 0.100125 1.3E−01 0.438803 574

consistently for this function, still one or two out of the runs

are trapped in a local minimum with a function value of

0.438803. Another function whose optimum was not found

consistently is g02. This benchmark function is known to

have a very rugged fitness landscape and is in general the

most difficult to solve of these functions.

In order to illustrate the effect of the new parameter γ on

performance another set of experiments are run. This time 100
independent runs are performed for γ = 0.6, 0.85 and 1.1
using the (60, 400) ES and stochastic ranking, these results

are depicted in table V. From this table it may be seen that

a smaller value for γ results in even further improvement for

TABLE VI

STATISTICS FOR 100 INDEPENDENT RUNS OF THE IMPROVED (µ, λ) ES

WITH STOCHASTIC RANKING USING DIFFERENT POPULATION SIZES.

fcn
(µ,λ)

best median mean st. dev. worst feval
400

g01/ −15.000
(60, 400) −15.000 −15.000 −15.000 1.3E−13 −15.000 873
(30, 200) −15.000 −15.000 −15.000 0.0E+00 −15.000 520
(15, 100) −15.000 −15.000 −15.000 1.6E−16 −15.000 305
g02/ −0.803619

(60, 400) −0.803619 −0.779581 −0.772078 2.6E−02 −0.683055 873
(30, 200) −0.803619 −0.770400 −0.765099 2.9E−02 −0.686574 875
(15, 100) −0.803619 −0.760456 −0.753209 3.7E−02 −0.609330 874
g03/ −1.000

(60, 400) −1.001 −1.001 −1.001 6.0E−09 −1.001 873
(30, 200) −1.001 −1.001 −1.001 7.0E−07 −1.001 875
(15, 100) −1.001 −1.001 −1.001 1.7E−05 −1.001 849
g04/ −30665.539

(60, 400)−30665.539−30665.539−30665.5392.2E−11−30665.539 507
(30, 200)−30665.539−30665.539−30665.5392.2E−11−30665.539 228
(15, 100)−30665.539−30665.539−30665.5392.2E−11−30665.539 166
g05/ 5126.498

(60, 400) 5126.497 5126.497 5126.497 6.2E−12 5126.497 487
(30, 200) 5126.497 5126.497 5126.497 6.0E−12 5126.497 264
(15, 100) 5126.497 5126.497 5126.497 5.8E−12 5126.497 155
g06/ −6961.814

(60, 400) −6961.814 −6961.814 −6961.814 6.4E−12 −6961.814 427
(30, 200) −6961.814 −6961.814 −6961.814 6.4E−12 −6961.814 247
(15, 100) −6961.814 −6961.814 −6961.814 6.4E−12 −6961.814 140
g07/ 24.306

(60, 400) 24.306 24.306 24.306 2.7E−04 24.308 874
(30, 200) 24.306 24.308 24.310 7.1E−03 24.355 875
(15, 100) 24.306 24.323 24.337 4.1E−02 24.635 875
g08 −0.095825

(60, 400) −0.095825 −0.095825 −0.095825 4.2E−17 −0.095825 328
(30, 200) −0.095825 −0.095825 −0.095825 4.2E−17 −0.095825 214
(15, 100) −0.095825 −0.095825 −0.095825 4.2E−17 −0.095825 124
g09 680.630

(60, 400) 680.630 680.630 680.630 4.6E−13 680.630 672
(30, 200) 680.630 680.630 680.630 1.5E−06 680.630 798
(15, 100) 680.630 680.630 680.630 7.4E−04 680.635 775
g10 7049.248

(60, 400) 7049.248 7049.248 7049.249 4.9E−03 7049.296 874
(30, 200) 7049.248 7049.375 7050.109 2.7E+00 7073.069 875
(15, 100) 7049.404 7064.109 7082.227 4.2E+01 7258.540 860
g11/ 0.750

(60, 400) 0.750 0.750 0.750 1.8E−15 0.750 359
(30, 200) 0.750 0.750 0.750 1.8E−15 0.750 206
(15, 100) 0.750 0.750 0.750 1.8E−15 0.750 116
g12/ −1.000000

(60, 400) −1.000000 −1.000000 −1.000000 9.6E−10 −1.000000 84
(30, 200) −1.000000 −1.000000 −1.000000 2.4E−15 −1.000000 85
(15, 100) −1.000000 −1.000000 −1.000000 0.0E+00 −1.000000 51
g13/ 0.053950

(60, 400) 0.053942 0.053942 0.096276 1.2E−01 0.438803 570
(30, 200) 0.053942 0.053942 0.100125 1.2E−01 0.438803 314
(15, 100) 0.053942 0.053942 0.111671 1.4E−01 0.438804 273

g10, however, smaller steps sizes also means slower conver-

gence. In general the overall performance is not sensitive to

the setting of γ. Finally, one may be interested in the effect

of the parent number. Again three new runs are performed,

(15, 100), (30, 200), (60, 400), each using the same number

of function evaluations as before. Here γ ≈ 0.85 and the

stochastic ranking is used. The results are given in table VI.

These results show that most functions can be solved using a

fewer number of function evaluations, i.e a smaller population.

The exceptions are g02, g03, g07, g09 and g10 which

benefit from using larger populations.

IEEE TRANSACTIONS ON SYSTEM, MAN, AND CYBERNETICS: PART C, VOL. X, NO. XX, MONTH 2004 (SMCC KE-09) 9

V. CONCLUSIONS

This paper shows in depth the importance of search bias

[23] in constrained optimization. Different constraint handling

methods and search distributions create different search biases

for constrained evolutionary optimization. As a result, infeasi-

ble individuals may enter a feasible region from very different

points depending on this bias. An artificial test function was

created to illustrate this search behavior.

Using the multi-objective formulation of constrained opti-

mization, infeasible individuals may drift into a feasible region

in a bias-free manner. Of the two multi-objective approaches

presented in this paper, the one based solely on constraint

violations (7) in determining the Pareto levels is more likely

to locate feasible solutions than (6), which also includes

the objective function. However, in general finding feasible

solutions using the multi-objective technique is difficult since

most of the time is spent on searching infeasible regions. The

use of a non-dominated rank removes the need for setting a

search bias. However, this does not eliminate the need for

having a bias in order to locate feasible solutions. Introducing

a search bias is equivalent to making hidden assumptions about

a problem. It turns out that these assumptions, i.e. using the

penalty function to bias the search towards the feasible region,

is a good idea for 13 test functions but a bad idea for our

artificial test function. These results give us some insights into

when the penalty function can be expected to work in practice.

A proper constraint handling method often needs to be con-

sidered in conjunction with an appropriate search algorithm.

Improved search methods are usually necessary in constrained

optimization as illustrated by our improved ES algorithm.

However, an improvement made in efficiency and effectiveness

for some problems, whether due to the constraint handling

method or search operators, comes at the cost of making

some assumptions about the functions being optimized. As a

consequence, the likelihood of being trapped in local minima

for some other functions may be greater. This is in agreement

with the no-free-lunch theorem [24].

REFERENCES

[1] C. A. C. Coello, “Theoretical and numerical constraint-handling tech-
niques used with evolutionary algorithms: A survey of the state of the
art,” Computer Methods in Applied Mechanics and Engineering, vol.
191, no. 11-12, pp. 1245–1287, January 2002.

[2] K. Deb, Multi-Objective Optimization using Evolutionary Algorithms.
Wiley & Sons, Ltd, 2001.

[3] P. D. Surry, N. J. Radcliffe, and I. D. Boyd, “A multi-objective approach
to constrained optimisation of gas supply networks: The COMOGA
Method,” in Evolutionary Computing. AISB Workshop. Selected Papers,
T. C. Fogarty, Ed. Sheffield, U.K.: Springer-Verlag, 1995, pp. 166–180.

[4] T. Ray, K. Tai, and K. C. Seow, “An evolutionary algorithm for
constrained optimization,” in Genetic and Evolutionary Computing Con-

ference (GECCO), 2000.
[5] A. Hernández Aguirre, S. Botello Rionda, G. Lizárraga Lizárraga,

and C. A. Coello Coello, “IS-PAES: A Constraint-Handling Technique
Based on Multiobjective Optimization Concepts,” in Evolutionary Multi-

Criterion Optimization. Second International Conference, EMO 2003.
Faro, Portugal: Springer. Lecture Notes in Computer Science. Volume
2632, April 2003, pp. 73–87.

[6] S. Koziel and Z. Michalewicz, “Evolutionary algorithms, homomorphous
mappings, and constrained parame ter optimization,” Evolutionary Com-

putation, vol. 7, no. 1, pp. 19–44, 1999.
[7] T. P. Runarsson and X. Yao, “Stochastic ranking for constrained evolu-

tionary optimization,” IEEE Transactions on Evolutionary Computation,
vol. 4, no. 3, pp. 284–294, 2000.

[8] ——, Evolutionary Optimization. Kluwer Academic Publishers, 2002,
ch. Constrained Evolutionary Optimization: The penalty function ap-
proach., pp. 87–113.

[9] Z. Michalewicz, K. Deb, M. Schmidt, and T. Stidsen, “Test-case gener-
ator for nonlinear continuous parameter optimization techniques,” IEEE

Transactions on Evolutionary Computation, vol. 4, no. 3, pp. 197–215,
2000.

[10] H. T. Kung, F. Luccio, and F. P. Preparata, “On finding the maxima of
a set of vectors,” Journal of the Association for Computing Machinery,
vol. 22, no. 4, pp. 496–476, 1975.

[11] H.-G. Beyer, “Evolutionary algorithms in noisy environments: theoret-
ical issues and guidelines for practice,” Computer Methods in Applied

Mechanics and Engineering, vol. 186, no. 2–4, pp. 239–267, 2000.
[12] N. Hansen and A. Ostermeier, “Completely derandomized self-

adaptation in evolution stategies,” Evolutionary Computation, vol. 2,
no. 9, pp. 159–195, 2001.

[13] H.-P. Schwefel, Evolution and Optimum Seeking. New-York: Wiley,
1995.

[14] H.-G. Beyer, The Theory of Evolution Strategies. Berlin: Springer-
Verlag, 2001.

[15] I. Rechenberg, Evolutionstrategie ’94. Stuttgart: Frommann-Holzboog,
1994.

[16] A. Ostermeier, A. Gawelczyk, and N. Hansen, “A derandomized ap-
proach to self-adaptation of evolution strategies,” Evolutionary Compu-

tation, vol. 2, no. 4, pp. 369–380, 1994.
[17] T. P. Runarsson, “Reducing random fluctuations in mutative self-

adaptation,” in Parallel Problem Solving from Nature VII (PPSN-2002),
ser. LNCS, vol. 2439. Granada, Spain: Springer Verlag, 2002, pp.
194–203.

[18] R. Salomon, “Some comments on evolutionary algorithm theory,” Evo-

lutionary Computation Journal, vol. 4, no. 4, pp. 405–415, 1996.
[19] J. A. Nelder and R. Mead, “A simplex method for function minimiza-

tion,” The Computer Journal, vol. 7, pp. 308–313, 1965.
[20] R. Storn and K. Price, “Differential evolution - a simple and efficient

heuristic for global optimization over continuous spaces,” Journal of

Global Optimization, vol. 11, pp. 341 – 359, 1997.
[21] C. A. Coello Coello, “Treating Constraints as Objectives for

Single-Objective Evolutionary Optimization,” Engineering Optimization,
vol. 32, no. 3, pp. 275–308, 2000.

[22] E. Mezura-Montes and C. A. C. Coello, “A numerical comparison of
some multiobjective-based techniques to handle constraints in genetic
algorithms,” Departamento de Ingeniera Elctrica, CINVESTAV-IPN,
México, Tech. Rep. Technical Report EVOCINV-03-2002, 2002.

[23] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,”
IEEE Transactions on Evolutionary Computation, vol. 3, no. 2, pp. 82–
102, July 1999.

[24] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” IEEE Transactions on Evolutionary Computation, vol. 1,
no. 1, pp. 67–82, 1997.

APPENDIX

g01

Minimize:

f(x) = 5

4
∑

i=1

xi − 5

4
∑

i=1

x2
i −

13
∑

i=5

xi (15)

subject to:

g1(x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0

g2(x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0

g3(x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0

g4(x) = −8x1 + x10 ≤ 0

g5(x) = −8x2 + x11 ≤ 0

g6(x) = −8x3 + x12 ≤ 0

g7(x) = −2x4 − x5 + x10 ≤ 0

g8(x) = −2x6 − x7 + x11 ≤ 0

g9(x) = −2x8 − x9 + x12 ≤ 0

IEEE TRANSACTIONS ON SYSTEM, MAN, AND CYBERNETICS: PART C, VOL. X, NO. XX, MONTH 2004 (SMCC KE-09) 10

where the bounds are 0 ≤ xi ≤ 1 (i = 1, . . . , 9), 0 ≤ xi ≤ 100
(i = 10, 11, 12) and 0 ≤ x13 ≤ 1 . The global minimum is

at x∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1) where six constraints

are active (g1, g2, g3, g7, g8 and g9) and f(x∗) = −15.

g02

Maximize:

f(x) =

∣

∣

∣

∣

∑n

i=1 cos4(xi) − 2
∏n

i=1 cos2(xi)
√

∑n

i=1 ix2
i

∣

∣

∣

∣

(16)

subject to:

g1(x) = 0.75 −
n

∏

i=1

xi ≤ 0

g2(x) =

n
∑

i=1

xi − 7.5n ≤ 0

where n = 20 and 0 ≤ xi ≤ 10 (i = 1, . . . , n). The

global maximum is unknown, the best we found is f(x∗) =
0.803619, constraint g1 is close to being active (g1 = −10−8).

g03

Maximize:

f(x) = (
√

n)n

n
∏

i=1

xi (17)

h1(x) =

n
∑

i=1

x2
i − 1 = 0

where n = 10 and 0 ≤ xi ≤ 1 (i = 1, . . . , n). The global

maximum is at x∗
i = 1/

√
n (i = 1, . . . , n) where f(x∗) = 1.

g04

Minimize:

f(x) = 5.3578547x2
3 + 0.8356891x1x5 + (18)

37.293239x1 − 40792.141

subject to:

g1(x) = 85.334407 + 0.0056858x2x5 +

0.0006262x1x4 − 0.0022053x3x5 − 92 ≤ 0

g2(x) = −85.334407 − 0.0056858x2x5 −
0.0006262x1x4 + 0.0022053x3x5 ≤ 0

g3(x) = 80.51249 + 0.0071317x2x5 +

0.0029955x1x2 + 0.0021813x2
3 − 110 ≤ 0

g4(x) = −80.51249 − 0.0071317x2x5 −
0.0029955x1x2 − 0.0021813x2

3 + 90 ≤ 0

g5(x) = 9.300961 + 0.0047026x3x5 +

0.0012547x1x3 + 0.0019085x3x4 − 25 ≤ 0

g6(x) = −9.300961 − 0.0047026x3x5 −
0.0012547x1x3 − 0.0019085x3x4 + 20 ≤ 0

where 78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45 and 27 ≤ xi ≤
45 (i = 3, 4, 5). The optimum solution is x∗ =(78, 33,

29.995256025682, 45, 36.775812905788) where f(x∗) =
−30665.539. Two constraints are active (g1 and g6).

g05

Minimize:

f(x) = 3x1 + 0.000001x3
1 + 2x2 + (0.000002/3)x3

2 (19)

subject to:

g1(x) = −x4 + x3 − 0.55 ≤ 0

g2(x) = −x3 + x4 − 0.55 ≤ 0

h3(x) = 1000 sin(−x3 − 0.25) + 1000 sin(−x4 − 0.25)

+894.8 − x1 = 0

h4(x) = 1000 sin(x3 − 0.25) + 1000 sin(x3 − x4 − 0.25)

+894.8 − x2 = 0

h5(x) = 1000 sin(x4 − 0.25) + 1000 sin(x4 − x3 − 0.25)

+1294.8 = 0

where 0 ≤ x1 ≤ 1200, 0 ≤ x2 ≤ 1200, −0.55 ≤ x3 ≤ 0.55
and −0.55 ≤ x4 ≤ 0.55. The best known solution [6]

x∗ = (679.9453, 1026.067, 0.1188764,−0.3962336) where

f(x∗) = 5126.4981.

g06

Minimize:

f(x) = (x1 − 10)3 + (x2 − 20)3 (20)

subject to:

g1(x) = −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0

g2(x) = (x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0

where 13 ≤ x1 ≤ 100 and 0 ≤ x2 ≤ 100. The optimum solu-

tion is x∗ = (14.095, 0.84296) where f(x∗) = −6961.81388.

Both constraints are active.

g07

Minimize:

f(x) = x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (21)

(x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2 +

2(x6 − 1)2 + 5x2
7 + 7(x8 − 11)2 +

2(x9 − 10)2 + (x10 − 7)2 + 45

subject to:

g1(x) = −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0

g2(x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0

g3(x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0

g4(x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2
3 − 7x4 − 120 ≤ 0

g5(x) = 5x2
1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0

g6(x) = x2
1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0

g7(x) = 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2
5 − x6 − 30 ≤ 0

g8(x) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0

IEEE TRANSACTIONS ON SYSTEM, MAN, AND CYBERNETICS: PART C, VOL. X, NO. XX, MONTH 2004 (SMCC KE-09) 11

where −10 ≤ xi ≤ 10 (i = 1, . . . , 10). The optimum

solution is x∗ = (2.171996, 2.363683, 8.773926, 5.095984,

0.9906548, 1.430574, 1.321644, 9.828726, 8.280092,

8.375927) where g07(x∗) = 24.3062091. Six constraints are

active (g1, g2, g3, g4, g5 and g6).

g08

Maximize:

f(x) =
sin3(2πx1) sin(2πx2)

x3
1(x1 + x2)

(22)

subject to:

g1(x) = x2
1 − x2 + 1 ≤ 0

g2(x) = 1 − x1 + (x2 − 4)2 ≤ 0

where 0 ≤ x1 ≤ 10 and 0 ≤ x2 ≤ 10. The optimum is located

at x∗ = (1.2279713, 4.2453733) where f(x∗) = 0.095825.

The solution lies within the feasible region.

g09

Minimize:

f(x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2 (23)

+10x6
5 + 7x2

6 + x4
7 − 4x6x7 − 10x6 − 8x7

subject to:

g1(x) = −127 + 2x2
1 + 3x4

2 + x3 + 4x2
4 + 5x5 ≤ 0

g2(x) = −282 + 7x1 + 3x2 + 10x2
3 + x4 − x5 ≤ 0

g3(x) = −196 + 23x1 + x2
2 + 6x2

6 − 8x7 ≤ 0

g4(x) = 4x2
1 + x2

2 − 3x1x2 + 2x2
3 + 5x6 − 11x7 ≤ 0

where −10 ≤ xi ≤ 10 for (i = 1, . . . , 7). The opti-

mum solution is x∗ = (2.330499, 1.951372, −0.4775414,

4.365726, −0.6244870, 1.038131, 1.594227) where f(x∗) =
680.6300573. Two constraints are active (g1 and g4).

g10

Minimize:

f(x) = x1 + x2 + x3 (24)

subject to:

g1(x) = −1 + 0.0025(x4 + x6) ≤ 0

g2(x) = −1 + 0.0025(x5 + x7 − x4) ≤ 0

g3(x) = −1 + 0.01(x8 − x5) ≤ 0

g4(x) = −x1x6 + 833.33252x4 + 100x1 − 83333.333 ≤ 0

g5(x) = −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0

g6(x) = −x3x8 + 1250000 + x3x5 − 2500x5 ≤ 0

where 100 ≤ x1 ≤ 10000, 1000 ≤ xi ≤ 10000 (i = 2, 3)

and 10 ≤ xi ≤ 1000 (i = 4, . . . , 8). The optimum solution

is x∗ = (579.3167, 1359.943, 5110.071, 182.0174, 295.5985,

217.9799, 286.4162, 395.5979) where f(x∗) = 7049.3307.

Three constraints are active (g1, g2 and g3).

g11

Minimize:

f(x) = x2
1 + (x2 − 1)2 (25)

subject to:

h(x) = x2 − x2
1 = 0

where −1 ≤ x1 ≤ 1 and −1 ≤ x2 ≤ 1. The optimum solution

is x∗ = (±1/
√

2, 1/2) where f(x∗) = 0.75.

g12

Maximize:

f(x) = (100− (x1 − 5)2 − (x2 − 5)2 − (x3 − 5)2)/100 (26)

subject to:

g(x) = (x1 − p)2 + (x2 − q)2 + (x3 − r)2 − 0.0625 ≤ 0

where 0 ≤ xi ≤ 10 (i = 1, 2, 3) and p, q, r = 1, 2, . . . , 9. The

feasible region of the search space consists of 93 disjointed

spheres. A point (x1, x2, x3) is feasible if and only if there

exist p, q, r such that the above inequality holds. The optimum

is located at x∗ = (5, 5, 5) where f(x∗) = 1. The solution

lies within the feasible region.

g13

Minimize:

f(x) = ex1x2x3x4x5 (27)

subject to:

h1(x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − 10 = 0

h2(x) = x2x3 − 5x4x5 = 0

h3(x) = x3
1 + x3

2 + 1 = 0

where −2.3 ≤ xi ≤ 2.3 (i = 1, 2) and −3.2 ≤
xi ≤ 3.2 (i = 3, 4, 5). The optimum solution is x∗ =
(−1.717143, 1.595709, 1.827247, −0.7636413, −0.763645)
where f(x∗) = 0.0539498.

Thomas Philip Runarsson received the M.Sc. in
mechanical engineering and Dr. Scient. Ing. degrees
from the University of Iceland, Reykjavik, Iceland,
in 1995 and 2001, respectively. Since 2001 he is
a research professor at the Applied Mathematics
and Computer Science division, Science Institute,
University of Iceland and adjunct at the Department
of Computer Science, University of Iceland. His
present research interests include evolutionary com-
putation, global optimization, and statistical learn-
ing.

IEEE TRANSACTIONS ON SYSTEM, MAN, AND CYBERNETICS: PART C, VOL. X, NO. XX, MONTH 2004 (SMCC KE-09) 12

Xin Yao is a professor of computer science in
the Natural Computation Group and Director of
the Centre of Excellence for Research in Compu-
tational Intelligence and Applications (CERCIA) at
the University of Birmingham, UK. He is also a
Distinguished Visiting Professor of the University
of Science and Technology of China in Hefei, and a
visiting professor of the Nanjing University of Aero-
nautics and Astronautics in Nanjing, the Xidian Uni-
versity in Xi’an and the Northeast Normal University
in Changchun. He is an IEEE fellow, the editor in

chief of IEEE Transactions on Evolutionary Computation, an associate editor
or an editorial board member of ten other international journals, and the
past chair of IEEE NNS Technical Committee on Evolutionary Computation.
He is the recipient of the 2001 IEEE Donald G. Fink Prize Paper Award
and has given more than 27 invited keynote/plenary speeches at various
international conferences. His major research interests include evolutionary
computation, neural network ensembles, global optimization, computational
time complexity and data mining.

