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ABSTRACT With the development of the Internet of Things (IoT), massive numbers of IoT devices (smart

sensors, cameras, phones, and so on) have been deployed and utilized in various environments, supporting

numerous smart-world applications. Those devices communicate with computing infrastructure servers over

network infrastructures to send relevant collected data in order to link physical objects to the cyber world.

As the number of IoT devices increases rapidly, the volume of collected data likewise increases prodigiously.

Thus, how to search for and through specific IoT datasets among the enormous amount of data become

critical issues for potential data consumers. Moreover, various IoT devices and applications establish

IoT-based systems, also known as the smart-world systems or smart cyber–physical systems (CPS), such

as smart grids, smart transportation, smart healthcare, smart cities, smart homes, and smart manufacturing

systems, among others. However, the individual CPS are independently designed and deployed,

such that they collect and analyze data independently, with no information sharing or interconnection,

raising serious challenges in searching for valuable information. Thus, in order to efficiently and precisely

utilize the IoT datasets, suitable search techniques designed for the IoT environments are fundamental.

In this paper, we first summarize popular web search techniques and survey existing research on the

search and analysis related to the IoT. We then outline the opportunities and challenges of the IoT search

techniques. Furthermore, we propose a problem space for the IoT search techniques and provide a clear

view of potential future research directions.

INDEX TERMS Internet of Things, search engine, system architecture, challenges and research

opportunities, data mining and analytics.

I. INTRODUCTION

The Internet of Things (IoT) is currently a highly active

topic, with related techniques and applications being devel-

oping at extraordinary speed, in a variety of domains

such as city infrastructure, healthcare, energy, industry, and

others [5]–[11]. As of April 03, 2019 [12], there are over

132 million Internet-connected IoT devices deployed and

in use worldwide. IoT enables the connectivity of physical

things and cyber systems, and the massive number of IoT

devices already in the wild are collecting and analyzing valu-

able information concerning society, industry, and the envi-

ronment [13], [14] without human intervention. Moreover,

Cyber-Physical Systems (CPS), based on a vertical archi-

tecture (i.e., application, networking, and physical), leverage

The associate editor coordinating the review of this manuscript and
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IoT and the generated datasets, and creates a closed loop

process, in which data is collected, analyzed, and decision-

making is resolved upon [6]. CPS are able to monitor and

operate by analyzing IoT data to make systems smart and

partially or fully autonomous. Therefore, the key value of

IoT and CPS is reflected in the datasets that they collect and

analyze.

Because of the increase in deployment of smart devices,

the amount of collected data is constantly increasing, bene-

fiting the data analysis process and yielding more compre-

hensive results. However, this induces obvious pressure in

the targeted and rapid search for specific data and datasets

from the massive volume collected. Specifically, IoT datasets

are quite massive, but not all data is valuable for providing

guidance in decision-making. Furthermore, specific analysis

processes require different datasets or dataset combinations

for different purposes and applications. Thus, a search service
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TABLE 1. Properties of existing IoT search engines.

for IoT data is essential. Although there are some IoT applica-

tions with preliminary search functions, these have numerous

limitations, such as only being applicable for searching spe-

cific datasets defined by the applications, and only being suit-

able for searching static datasets. Therefore, a comprehensive

IoT search engine becomes necessary to improve the perfor-

mance and value of IoT and CPS more broadly [15].

Furthermore, IoT data is abundant and diverse, since

IoT devices are deployed in different CPS and collect data

constantly. The volume, velocity, and variety of IoT data

make the datasets more valuable as well [16]. Thus, utiliz-

ing IoT data efficiently and comprehensively is a particu-

lar goal of the IoT field of research. However, collection

and reassembly of the required datasets is a challenging

issue because, using only one fixed or closed application,

it is difficult or impossible to access different types of IoT

datasets, which are collected by different CPS. For instance,

the autopilot applications of smart vehicles not only require

traffic information, but also parking lot, gas station/charging

station, and weather information, among others. Nonetheless,

this information is provided by many different CPS and there

is no unified interface designed in the application layer of the

IoT infrastructure to allow data consumers to access various

IoT datasets from different CPS. The CPS only provide data

and information services to the consumers by leveraging their

own applications and infrastructures. Those distinct and sepa-

rate applications raise a critical issue of unified management,

access, and leveraging of the IoT datasets.

In terms of development, the IoT search engine is in the

initial stages, at present. Indeed, while there are several popu-

lar IoT search engines that provide search services, including

Shodhan [1], Thingful [2], Censys [3], and Reposify [4],

similar to the initial stages of web search engines, all of them

have some limitations. For instance, they are only able to

search online IoT devices with open-application program-

ming interfaces (APIs), as well as some static data sources

which have been uploaded to the search engine’s accessible

servers. These existing search engines, as shown in Table 1

below, obviously do not satisfy the requirements of IoT or a

fully-realized IoT search engine. Additionally, a number of

studies have focused on IoT search techniques. For instance,

a general view of search techniques was first proposed by

Romer et al. [17], and further work by Zhang et al. [18]

compared IoT search techniques with traditional web search

techniques and summarized the differences and challenges.

However, the study of and recommendations for how to

integrate existing CPS and leverage IoT datasets efficiently

remain unclear.

In this paper, we briefly summarize existing web search

techniques, and then survey related studies on IoT search

techniques in detail. Based on this systematic study, we then

propose a problem space for IoT search techniques and pro-

vide a clear view of potential research directions. The major

contributions of this paper are listed as follows:

• Problem Space of IoT Search Engines: Traditional

web search engines are mature, and have some simi-

larity to IoT search engines from a functional point of

view. Thus, reviewing the development roadmap of web

search engines is helpful to understand the development

of IoT search engines. Therefore, in this study, we first

review the development of the Google search engine

and deeply study existing IoT search techniques. Then,

we discuss the opportunities and challenges of the IoT

search engine from the perspectives of the IoT frame-

work, connections, protocols, and applications. Finally,

based on the study, we propose a problem space for

IoT search engines.

• Further Research Directions: Reflecting on the devel-

opment roadmap of the Google web search engine,

we propose possible future research directions in IoT

search in the contexts of distributed computing, machine

learning, interaction between CPS, resource integration,

and security and privacy. Specifically, since IoT search

engines are comprehensive systems, they require sup-

port from multiple sub-systems to realize and improve

their performance. Therefore, our work not only focuses

on IoT search engines themselves, but also considers

related supporting techniques, which are able to improve

and promote the development of IoT search engines,

such as edge computing and machine learning. Com-

bined with the necessary related techniques, we provide

a clear picture of the IoT search engine broadly.

104674 VOLUME 7, 2019



F. Liang et al.: Search Engine for the Internet of Things: Lessons From Web Search, Vision, and Opportunities

The remainder of this paper is organized as follows:

In Section II, we briefly introduce web search engines,

including an overview of the historical demands and con-

text of web search engines, generalizing their characteris-

tics, as well as introducing web search architectures and

workflow. In Section III, we discuss the motivations for

introducing search engines into IoT systems. Based on the

discussion, we systematically study existing IoT search tech-

niques and provide a comprehensive survey on the funda-

mentals of IoT search and relevant techniques. In Section IV,

we first expound the relationships between CPS and IoT,

and then propose our view, namely that CPS have needs

that require IoT search services and that CPS automation is

one of the important motivations for developing IoT search

engine. Then, we present the problem space of IoT search

engines. According to the problem space, we summarize the

opportunities and challenges of IoT search. In Section V,

we introduce possible future directions for IoT search engines

in detail. Finally, we summarize or efforts and provide some

final comments in Section VI.

II. OVERVIEW OF WEB SEARCH ENGINE

In this section, we first review the development roadmap

of the web search engine as a representative example, from

which we can consider similarities with current and future

IoT search engine development. To do so, we deeply inves-

tigate the most widespread, recognizable, and successful

web search engine: Google (92.04% of market share world-

wide [19]), and extract milestones and key search techniques

as the references for the IoT search engine.

A. DEMANDS AND HISTORY

The Internet has developed at an extremely fast pace, and

has changed significantly since the 1990s. Information dis-

semination has almost entirely changed from physical to

digital media. Thus, massive information is stored in digital

format (documents, multimedia, database, etc.) and covers all

fields of industry, society, and the environment. Similar to the

directory for a book or a library, a search tool is necessary to

assist users in finding the information that they are looking

for, which is the basic demand that promoted the development

of the web search engine. The development of the web search

engine progressed primarily in four key stages as considered

from a functional point of view. These are website navigation,

text retrieval, integration and analysis, and intelligence and

customization, which we detail in the following.

1) WEBSITE NAVIGATION

In its initial stage, the search engine functioned aswebsite that

hosted records of the addresses of the most popular websites,

and was developed for guiding users to find the information

they needed. This kind of website is called a website naviga-

tor and it is the prototype of web search engines. The website

navigator satisfies the requirements of users who browse and

seek specific information from the Internet. The users only

need to remember the address of the website navigator, and

from the website navigator, the users are able to access the

specific websites by clicking the hosted hyperlinks, which are

recorded in the website navigator. By utilizing the website

navigator, the users are not required to remember all the

necessary website addresses, a method that is convenient and

fast.

2) TEXT RETRIEVAL

At the next stage of complexity, users are able to send queries

to the search engine and obtain the relevant information.

The search engine, according to the keywords in the queries,

searches File Transfer Protocol (FTP) servers and provides

feedback to the users. In this stage, the information retrieval

model of the search engine includes the boolean model,

probability model, and the vector space model, while the

search categories are limited to text and documents. Exam-

ples include Alta Vista, Excite, and Archie [20].

3) INTEGRATION AND ANALYSIS

In this stage, the search engine analyzes the popularity of the

website, and when users send queries to the search engine,

the returned results are ordered by popularity. Furthermore,

instead of only returning some website links, the search

engine integrates the results into one interface with descrip-

tions, images, and highlighted content relevant to the query

input. This approach highly improves the user experience.

Google was one of the first web search engines to integrate

this search model. Moreover, based on this model, Google

proposed and developed link analysis algorithms to improve

search performance [21]. Today, link analysis algorithms

have been widely used in web search engines.

4) INTELLIGENCE AND CUSTOMIZATION

Current web search engines can be categorized into this stage

of development. Here, search engines return queries orga-

nized not only according to keywords, but also by leveraging

big data analysis and user data for a better understanding of

query language, usage, and context [22]. For instance, when

the search engine receives a query with the keyword ‘‘apple’’,

the search engine first analyzes the browsing history of the

user to determine whether the user is a potential iPhone con-

sumer or a fruit supplier. Then, the search engine returns cus-

tomized information for different users. Thus, in this stage,

the search engines focus on how to leverage user data to fully

understand the demands of the particular user. In more detail,

utilizing data analysis mechanisms, such as machine learning

and deep learning, the search engines are able to gather rele-

vant information to undertake complex searches [23]. This

complexity is amplified by user data generated via mobile

devices, through which search engines are able to gradually

extract characteristics and identifying features of the user.

This is also the embryonic stage for IoT search engines today.

B. CHARACTERISTICS

In this section, we discuss the characteristics of web search

engines, which are fundamental to the design of future
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IoT search engines. We generalize three basic characteristics

of a web search engine, as follows.

1) RELIABILITY

Reliability is the most important characteristic of a real-

world search engine. For instance, the Google search engine

processes over 75 thousand searches and 72 thousand

GB of content in a single second [24]. Thus, failures of

servers or malfunctions can have an impact that is near

unfathomable.

2) CRAWLING

Crawling is a fundamental approach for search engines to

extract information from multiple websites. As introduced

by Manning et al. [25] in their basic crawling algorithm,

crawlers first initialize a queue of uniform resource loca-

tors (URLs) and then verify whether the web page can be

crawled. Utilizing the crawling algorithm, the web search

engines are able to access websites in the World Wide Web

(Internet), and, after crawling, the search engines associate

the URL with a unique document ID [26]. When the search

engine receives a query, it is then able to match the document

ID and keyword in a very short period of time. Moreover,

Brin and Page [26] introduced the forward and invert index.

The forward index is a mechanism to map documents to

keywords, first retrieving keywords from the document and

then identifying the keyword that matches the query. This

is obviously not efficient for the searching process. Thus,

the invert indexing, as the key enabling component, associates

the keyword with all the documents which contain it. In this

way, users can quickly obtain accurate searching results.

3) RANKING

Query return and page ranking are approaches to improve

user experience. Ranking algorithms that function on user

feedback and keyword occurrence rate can assist search

engines to optimize the sequence of results. For example,

the Google search engine utilizes the content score, popular-

ity score, and overall score, three key parameters to optimize

the ranking of results [27].

C. ARCHITECTURES AND WORKFLOW

In this section, we leverage the Google search engine as

an example. We first introduce the key platform and archi-

tectures of the Google search engine, and then present the

workflow starting with new information detection and ending

at response to queries.

1) ARCHITECTURES

Google is the most popular web search engine to date, with

92% of web queries utilizing Google search [28]. Thus,

the architectures of the Google search engine are able to

represent the development tendencies of web search tech-

niques well, especially as the engine has had to evolve to

support this large user base. The Google search system con-

sists of several major components, including Google File

System (GFS), MapReduce, and BigTable. These compo-

nents are responsible for responding to queries and optimiz-

ing system performance. In the following, we will discuss

these components in detail.

• Google File System: This powerful database system

is required for general data center retrieval. Particu-

larly, the Google search engine finds itself in a critical

situation, as it must cope with more than ten billion

web documents from around the world. Indeed, if it

were to utilize a traditional database system, it would

be unusable, given the latency necessary to search

for specific documents. Thus, the Google File System

(GFS) was designed to deal with a large amount of

information. When the crawlers gather new web data,

Google re-organizes the information into a file and com-

presses the file into chunk blocks to reduce the size

(64 MB per chunk) [29]. GFS is designed around

retrieval technology that includes GFS servers and

Chunk servers. The GFS is a distributed system and

the master node is responsible for maintaining the name

space of the system, access control information, map-

ping files to blocks, and the current location of the

blocks. The master node communicates with several

chunk servers by utilizing heartbeat signals, and gathers

the status of the chunk servers. The chunk servers store

data blocks and copy the data blocks to three different

servers for reliability and redundancy.

• MapReduce: Google’s MapReduce focuses on how

to optimize retrieval speed and obtain specified data

from massive volumes of information. To be specific,

the query is first duplicated to multiple copies and sent

to idle workers for processing. Meanwhile, the map

and reduce tasks are distributed to the working clusters.

The map tasks transform the queries into a key/value

type for input to the map function, with the output then

stored into memory. The reduce tasks act according

to the key/value output to find the data and return a

result file [30]. The result file is the initial search result

awaiting further optimization.

• BigTable: The BigTable architecture is a storage system

that is built on top of the GFS, which not only takes

responsibility for storing the structured data, but also

optimizes data management and load balancing deci-

sions. BigTable technology is widely utilized in different

Google products, such as Google search and Google

Maps. The BigTable database is usually divided into

small pieces, which are named tablets. The tablets are

deployed on the different computing devices in the GFS

cluster in order to store the massive amount of data.

Generally speaking, the BigTable architecture includes

a master server that takes responsibility for assigning

tablets to tablet servers and balancing tablet-server load.

In addition, tablet servers execute the read and write

operations to the tablets and monitor the loads for each

tablet. Then, the tablet servers split the incoming data

and write the data to idle tablets in order to balance
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the loads. Furthermore, the tablets are working inde-

pendently, and do not require constant communication

with the master node. Thus, the BigTable approach

can reduce the communication loads of master

servers [31], [32].

2) WORKFLOW

We now brief the workflow of conventional web search

engines.

• Before the Query:Web search engines utilize a crawler

tool to browse and traverse the Internet. Themain task of

the crawler is detecting updated information, collecting

the new information, and storing the new information

to storage (denoted the ‘‘collection pool’’). In the sec-

ond step, search engines create the index for the col-

lected information and prepare for searching. Taking the

Google search engine as an example, we further discuss

the details of the ‘‘Before the Query’’ phase. When

users update data in their website, blog, etc., the Google

crawler detects that the information is updated. Then,

judgment mechanisms for Google’s crawler determine

whether to collect the information or not. For instance,

the crawler will not crawl the information if no URL

link to the website exists or there is no permission to

access the website (defined in the strategy documents).

Meanwhile, the Google crawler utilizes URLs as road

signs to travel the Internet. Thus, Google has also devel-

oped a mechanism to analyze and identify the value of

the URLs. This mechanism labels low-value URLs as

‘‘nofollow’’, and the crawler does not access thewebsite.

After new information is collected by the crawler, two

steps remain. First, titles and link data are created for the

webpages using a breadth-first search. Then, the content

of the named pages are stored with an index table, which

is used to perform long tail, personalized, and depth-first

searches with low frequency.

• After the Query: There are generally a few steps from

when the users send the quires to when the search engine

returns refined results (note that preliminary results

are not presented directly to the user) [27]: (i) Users

send queries to the search engine, which puts the queries

into multiple parallel control processes to be sent to

different search engine components to request service.

(ii) Google provides some suggestions based on the

keywords of the queries. For instance, based on a

user’s searching history, a keyword of ‘‘apple’’ could be

related to iPhone and other Apple digital products or to

fruit suppliers and purchasers. (iii) Preliminary results

that match the keywords of the queries are collected.

(iv) Refined query results, which, in the case of Google,

is less than 1000 results, will be localized based on the

determined location of the user andwill be arranged geo-

graphically. Furthermore, Google optimizes the search-

ing results based on ranking, location, personality, and

tendency before showing the results to the user on their

website.

III. IOT SEARCH ENGINE

In this section, we first illustrate the motivations of the design

of IoT search engines. Then, we systematically study exist-

ing IoT search engine techniques from the perspectives of

components and architectures. Finally, we classify IoT search

engines from several perspectives.

A. DESIGN MOTIVATIONS OF IOT SEARCH ENGINE

We now consider the motivations of developing and imple-

menting IoT search capabilities. These motivations include

data sharing, resource integration, and artificial intelligence.

1) DATA SHARING

Due to the development of IoT and the increasing volume

of IoT devices, the amount of IoT data is increasing at an

unprecedented rate. Furthermore, this data is updated contin-

uously, and can dynamically describe the status of the related

systems in order to provide a more precise and accurate

description of a system’s state than stale static data. Thus,

the three V’s (volume, velocity, and variety) of big data are

realized in IoT, demonstrating its the potential value [33].

However, searching for specific IoT data is a challenging

problem for data consumers, which slows down the data

sharing process and decreases data value. Therefore, similar

to web search engines, there is an urgent demand to have

a searching engine for IoT to provide the query resolution

services to assist users in finding relevant IoT data efficiently.

2) RESOURCE INTEGRATION

In general, IoT data is stored in different CPS independently,

which cannot communicate with each other. For instance, in a

smart grid system, a smart meter uploads energy consumption

data to the operation servers in the grid, supporting a num-

ber of services, including demand response, dynamic pric-

ing, and integration of renewable energy resources, among

others [34], [35]. Meanwhile, a weather monitoring system

collects temperature and humidity data from sensors and

uploads the data to weather monitoring servers. In reality,

those two systems and their data are dependent, since the

energy consumption data is impacted by the weather con-

ditions. Electric vehicles are another resource integration

example that belongs to the key components in both the smart

grid and smart transportation system [36], [37].

Likewise, the smart city has been developing rapidly to

enable the optimization of resources such as waste, traffic,

parking, and others, as well as toward improving quality of

life [7], [38], [39]. For example, governments utilize IoT

devices to monitor traffic conditions and violations in major

cities [40], [41]. When pedestrians cross the street illegally,

high-resolution cameras are activated and capture an image

of the pedestrian violating the law. The portrait is sent to

different databases, such as citizen information databases,

public security databases, police databases, etc., in order to

determine the identity of the pedestrian. During the pro-

cess, the system not only needs the information from the

VOLUME 7, 2019 104677



F. Liang et al.: Search Engine for the Internet of Things: Lessons From Web Search, Vision, and Opportunities

cameras, but it also needs the reference information to help

in the identification process, such as traffic light information,

location information, and others. Based on these examples,

we know that real production systems typically send multiple

queries to different CPS to obtain the necessary datasets,

increasing the difficulty of utilizing and analyzing the data

comprehensively. Thus, it is necessary to design a unified

interface or platform to manage queries for multiple CPS and

support the inter-operation of systems.

3) ARTIFICIAL INTELLIGENCE

Currently, utilizing and analyzing IoT data accelerates the

development of Artificial Intelligence (AI). These increas-

ingly popular and powerful data analysis tools, such as

Machine Learning and Deep Learning, also increase the

access demands on IoT data [42]–[46]. Unlike the web search

engine, in IoT systems, more data exchanges occur between

smart devices than between users and devices. Taking the

smart grid as an example, a large number of smart meters

and sensors are deployed in the smart grid to monitor the

status of power generation and distribution [47], [48]. In some

cases, the smart meters collect abnormal data, and in order to

identify anomalies, some other information or reference data

is required. To this end, the smart grid system automatically

sends queries to search engines to request weather, public

safety, and electricity use information that are related to the

location of smart meters. Then, depending on the comprehen-

sive analysis, the smart grid system automatically adjusts the

power supply to adapt to the assessed situation.

As another example, smart transportation is of increasing

interest due to its potential to reduce congestion and improve

traveler safety [49]–[51]. In smart transportation, autopi-

lot systems in smart vehicles utilize sensors and data links

to observe their surroundings and communicate with other

facilities. Each autopilot vehicle sends queries to the search

engines in real-time to obtain traffic information, parking

information, weather information, etc., to optimize the route.

In addition, the autopilot vehicles are able to measure the

volume of fuel (gas or electricity) within themselves to assess

the need for additional fuel and send queries to obtain location

information of gas or charging stations. As these types of

events occur quite frequently in IoT, an IoT search engine

that can support many such transactions is required to provide

these services.

B. FUNDAMENTALS OF IOT SEARCH ENGINE

We now consider the fundamentals of IoT search engines,

which we subdivide into components and architectures.

1) COMPONENTS OF IOT SEARCH ENGINES

An IoT search engine is designed for searching a set of

IoT resources, including IoT data and devices. Similar to

web search engines, IoT search engines respond to queries,

returning the IoT resources, IoT data, or combinations of

both, as necessary. Here, we introduce the fundamental com-

ponents of the IoT Search engine.

• IoT Resources: In IoT, physical objects embedded with

computing and networking components become smart

resources (smart sensors, actuators, storage, and net-

working devices, among others) with a digital form. All

IoT devices are abstracted as IoT resources in the IoT

search process. Moreover, the IoT search engine gener-

ally utilizes two methods to find IoT resources, which

are referred to as individual search and cooperative

search [52]. To be specific, individual search discovers

IoT resources based on the resource ID and the related

data type that is generated by the IoT resources. For

example, in the smart grid system, electricity suppliers

need to know the amount of power usage in a time

period at a specific location. To obtain this informa-

tion, the operational center sends queries to IoT search

engine to obtain the power usage data from the smart

meters at the target locations. Likewise, public safety

departments need to obtain meteorological information,

and thus send queries to IoT search engine to obtain

temperature and humidity data from the necessary sen-

sors. Meanwhile, cooperative search grabs IoT resource

information not only from the resources themselves, but

also from third-party information providers. For exam-

ple, in the smart transportation system, when autopilot

vehicles travel along a road, the vehicles send queries

to different CPS to obtain comprehensive information,

enabling vehicle guidance to the target destinations.

Comprehensive information includes traffic informa-

tion, parking information, gas station locations, and oth-

ers.

• IoT Data: The IoT data is the key search target and

is the core component of the IoT search engine. Based

on the source of the data, we can classify IoT data

into two categories. The first is the data collected by

IoT devices, which is the feedback or measurements

of the physical world, such as electricity consumption,

temperature, humidity, etc. The second is context data,

which describes the state and running condition of the

IoT devices, such as availability, network latency, bat-

tery life, storage space, etc. Specifically, collected data

is generally utilized to create a digital model that rep-

resents the status or history of related physical envi-

ronments. Working with digital models, we are able to

simulate the physical environments, in order to predict

the future tendencies and optimize system performance.

In contrast, context data typically represents the running

status of devices. This type of data is critical for ana-

lyzing system robustness and providing the guidelines

for system update. The IoT systems can do self-check

operation based on context data from themselves which

represents their working status without comparing cur-

rent data with history data collected by themselves.

• Search Space: Similar to the web search engine,

a search space is also necessary for IoT search. In IoT

search, the search space is a group of IoT resources

which have well-defined data structures, and search
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algorithms identify the matching resources according

to the queries [53]. The search space for IoT search

is far greater than traditional web search, since IoT

resources are dynamic, updating much faster than web

information. In addition, the IoT devices have a deeper

hierarchical structure than websites, and thus, the IoT

search engines must crawl a greater space than the web

search engines. Moreover, unlike a web search engine,

an IoT search engine can get results based on users’

locations, purposes, and privileges, and has the ability

to send the most accurate and reasonable result back to

users. In order to increase the searching speed of IoT

search engines, related resources can be associated with

relationships and characteristics in order to reduce the

size of the search space.

• IoT Query:Queries in IoT search can be submitted by a

human or an IoT device (i.e., machine) itself. The latter

is the key difference between the web search query and

the IoT search query. In particular, queries must be sent

by IoT devices to achieve automation and intelligence

(i.e., machine-to-machine communications). In CPS,

the systems automatically monitor and control them-

selves without human interruption or intervention, based

on comprehensive information. In this case, to obtain the

required information, the IoT devices need to have the

ability to send queries to the search engines and obtain

feedback. In addition, some CPS are time sensitive.

For instance, autopilot systems on airplanes have anti-

collision systems that must work fast, accurately, auto-

matically, to monitor the surroundings of the airplane.

IoT devices from multiple planes need to communi-

cate and exchange data with each other, including their

height, speed, location, and direction, among others.

In cases where communication and decisions must occur

in real time, the auto-pilot system can take action in a

shorter time than pilots, who need to communicate with

the control tower before taking action.

• Edge Computing Nodes: Distributed computing can

offload computation tasks from cloud infrastructures to

edge and fog nodes [54]–[56] that are close to the IoT

devices. The edge computing nodes are able to execute

the search tasks and are easy to extend. In the IoT search

system, the edge nodes are utilized to crawl for IoT

information and update the index of the search space.

• Middleware: The IoT middleware [57] is another

important component in the IoT search engine,

which acts as the interface between applications and

IoT resources. In particular, it hides the heterogeneous

IoT resources and provides a simple operating platform

for the queries. Additionally, the middleware can be

located anywhere there is enough computation power

to handle the necessary computations, including IoT

gateways, cloud servers, and edge computing nodes,

since it is a service provider for IoT. The middleware

can also offer common services for applications and

application developers by integrating heterogeneous

FIGURE 1. IoT search engine architecture.

computing and communications devices. Moreover,

middleware supports interoperability to enable diverse

applications and services to work together and provides

an API to developers for interacting and extending the

applications.

2) ARCHITECTURES

Fig. 1 illustrates the basic architectural structures of the IoT

search engine, which includes Quality of Service (QoS) mod-

ule, user interface, query module, ranking module, indexing

module, crawlers, database, API, and third-party organiza-

tion. The QoS module mainly focuses on reducing search

times to optimize user experience. It classifies the users into

different groups based on user analysis results (behavior

analysis, search history analysis, user information analysis,

etc.). Based on this analysis, it can reduce the search space

for specific users in order to increase the searching speed, and

determines which types of information should be returned

(dynamic or static). Then, based on the output from the QoS

module, the query model executes the search process, which

could be a real-time search, time-related search, or event-

based search. The crawling results are stored in the database,

and the indexing module categorizes the data and maps the

data with a unique index in order to increase searching speed.

The ranking module retrieves the indexes and organizes the

results based on the ranking algorithms.

C. IoT SEARCH TECHNIQUES

In this subsection, we systematically review existing IoT

search techniques and summarize the contributions of rele-

vant research works.

1) LOCATION-BASED SEARCH

In IoT systems, the location information of IoT devices

is important, as users typically send queries associated

with location information. This location information can be

presented as geographical coordinates or can be a logical

location, such as the distance from another device.
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FIGURE 2. Real-world map of web cameras on shodan.

One example of such a system was introduced by

Liang and Huang [58], who developed the Geospatial Cyber-

infrastructure for Environmental Sensing (GeoCENS) archi-

tecture in order to stimulate the full potential of the IoT

sensors. The GeoCNES was developed based on the Peer-

to-peer (P2P) architecture and is a location-aware system

which utilizes Sensor Web Long Tail to record and collect

the location information of the sensors.

Based on GeoCENS, Mayer et al. [59] optimized the

infrastructure’s lookup mechanism, which leverages loca-

tion information to improve scalability and load balancing

of the IoT search engine. The mechanism has large cache

memory and can reduce the response time. In addition,

Wang et al. [60] developed a geographical location-based

sensor discovery architecture. The discovery system utilizes a

distributed architecture and associates using geospatial index-

ing to reduce the search space. Specifically, it uses the R tree

to index the location information of a given rectangle area

and searches for IoT sensors which have the same location

information. However, the computation complexity is high.

Likewise, Fathy et al. [61] proposed an unsupervisedmachine

learning algorithm to optimize the efficiency of sensor dis-

covery. The learning algorithm divides the sensors by geo-

graphic information into clusters. In addition, the learning

algorithm continuously discovers hidden sensors by measur-

ing the distances between hidden and known sensors.

The Shodan IoT search engine is another location-based

search engine, and is popular for finding specific types of IoT

devices, such as webcams and routers. Searches on Shodan

return hardware information, device status, and device loca-

tion to the user.With advances in IoT technology, IoT systems

have strong demand for centralized management in order to

share information and interact with each other. In fact, Shodan

preliminarily integrates Supervisory Control and Data Acqui-

sition (SCADA) systems, which can dynamically grab

real-time data from various SCADA systems to readily

resolve queries [62].

As an example, we use Shodan to search for all the web

cameras throughout the world within Shodan’s database.

Fig. 2 shows the location distributions of web cameras on

a world map with additional information regarding country,

protocols, and services. As shown in the figure, through

Shodan, we can determine the countries that have the most

web cameras, the protocols that the web cameras use,

and organizations that they belong to. Fig. 3 illustrates

the meta-data of some web cameras, including the device

information (e.g., geo-location, description, etc.) [63]. Here,

let us first look at the web camera with the IP address

of 35.178.106.77. From the meta-data on the right, line 4

shows WWW-Authenticate: Basic realm=‘‘Mini Dome

IPCamera’’, where ‘‘WWW-Authenticate’’ is a part of HTTP

header that defines the authentication method used to get

access to a resource [64], ‘‘Basic’’ is a basic authentication

type, and ‘‘realm’’ displays a device’s hostname. Shodan

reveals that this device is a camera by looking into its

hostname. In addition, for the camera with IP addresses

73.169.181.32 and 186.217.200.31, we know that both are

web cameras through server names (i.e., Server: ip-camera,

220 Network-Camera FTP server).

2) CONTENT-BASED SEARCH

This type of search is conducted based on the data content

that is collected by a specific target sensor or sensors. First,

the IoT search engines analyze the content and map the

corresponding index. Then, when queried, the search engines

pair the query and content by using the corresponding index,

and return the sensor information. Utilizing content-based

search, users can search both real-time and historical data.

One example of content-based IoT search was introduced

by Truong and Römer [65], who proposed a content-based
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FIGURE 3. Meta-data of web cameras on shodan.

sensor search that utilized fuzzy sets to achieve a scalable

system. In detail, the proposed search scheme first selects

a group of sensors, in which data content is in the range

of the query so that the search space can be reduced. Then,

only a small group is searched and the result is returned.

Likewise, Lunardi et al. [66] proposed the content-based

search engine COBASEN. COBASEN is based upon the

semantic characteristics of the devices, which are abstracted

from the data content and assist the users in communicat-

ing with the target sensors. Additionally, Elahi et al. [67]

proposed a prediction model that utilizes a sensor ranking

model to arrange the results based on the content. The ranking

model first polls the sensors to determine the health sta-

tus of the sensors based on the content and then arranges

the sensors returned to the users. Also, Zhang et al. [68]

developed a high-efficiency content-based sensor search sys-

tem which can be considered a prototype of the content-

based search. In particular, a sensor state prediction method

was designed to estimate the sensor data which can clas-

sify sensors into candidate groups in order to increase the

search speed. Further, because of the huge communication

overhead incurred by IoT search engines accessing all avail-

able objects, Zhang et al. [69] proposed a low-overhead

and high-precision prediction model (LHPM) to improve the

sensor search efficiency. First, an approximation scheme was

designed to reduce the search energy cost, and a multi-step

scheme was developed to accurately estimate the sensor state.

Then, a ranking scheme was proposed to organize the results

so that the communication overhead could be effectively

reduced.

3) HETEROGENEOUS SEARCH

Heterogeneous search techniques mainly include semantic/

ontology-based search and resource/service retrieval. In par-

ticular, ontologies represent the concepts, types, and relation-

ships of different domains [70]. Merging semantic and ontol-

ogymechanisms can assist the system to build a domain, task,

and method combination search system. On the other hand,

all the data and IoT devices are able to abstract resources

and provide different services. To discover the resources and

identify the associated services is the main approach for

resource/service retrieval.

For example, Cassar et al. [71] proposed a hybrid semantic

service matchmaking method, which utilizes latent semantic

analysis. It analyzes the semantics and assigns weights to the

different content by logical signature. The proposed scheme

overcomes the critical challenge for semantic service match-

makers, which is the issue of synonymy. The scheme was

also shown to increase the accuracy of searching synonymous

content. Likewise, Fredj et al. [72] proposed the Semantic

Web technologies RDF (an open semantic data format) and

SPARQL (a query language for RDF-encoded data) schemes

to search and obtain real-time content from IoT devices.

Specifically, the proposed schemes encode the sensor data to

RDF triplets, and can be utilized as triplets by SPARQL to

enable searching.

In addition, Ding et al. [73] proposed a hybrid real-

time search engine framework to leverage IoT resources

based on spatial-temporal, value, and keyword search to

identify resources. In detail, a Moving Object Grid-Sketched

Spatial-Temporal R-Tree (MOGSSTR-Tree) is designed and
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utilized to monitor the spatial-temporal attributes of the

IoT resources. The MOGSSTR leverages the actual sam-

pling values to trace the variety of IoT resources instead of

trajectory units. It also increases the IoT searching speed

and reduces the cost of the searching process. Meanwhile,

Shemshadi et al. [20] created and abstracted two types

of interfaces as resource search tools. These gather

IoT datasets from real-time web-based maps. Additionally,

Nunes et al. [74] proposed a Visual Search for Internet of

Things (ViSIoT) platform to pull IoT data from a central

repository. Their ViSIoT then transforms the data into a

generic format, in order to support heterogeneous devices.

IV. PROBLEM SPACE OF IoT SEARCH ENGINE

In this section, we propose and define a problem space of

IoT search engines. To do so, we first introduce CPS and the

relationship between CPS and IoT, in order to provide a better

view of why IoT search services are necessary. Then, we pro-

pose the problem space for IoT search engines. Finally, based

on the presented problem space, we outline opportunities and

challenges for future research and development.

A. CPS AND IoT

We now discuss the relationship between CPS and IoT, and

propose our view, specifically that CPS have needs that

require IoT search services, and that CPS automation is a crit-

ically important motivator for developing IoT search engines.

Generally speaking, CPS are the effective vertical inte-

gration of computation, communication, and command and

control, consisting of a computation core (centralized or dis-

tributed computing), network system (wired or wireless net-

work), physical components (sensors or actuators), and con-

trol applications [6]. CPS can be generalized as closed loop

processes, otherwise known as feedback loops, in which

sensors collect the related data, the computation core ana-

lyzes the data, and results and decisions are disseminated

to actuators to enact control of the system. Fig. 4 shows

the relationship between IoT and CPS. Since IoT is a hori-

zontal network system that connects all the physical objects

and smart devices, IoT can be considered as the network

framework of the CPS and is located in the communication

layer of the CPS framework. The figure clearly shows how

applications and sensors/actuators of CPS communicate with

each other via IoT.

Benefiting from the development of IoT, numerous CPS

are now deployed in various fields to improve system perfor-

mance. For instance, manufacturing CPS are able to control

intelligent machines to produce and assemble products [75].

In addition, in smart transportation systems, sensors collect

traffic information and connected applications can compute

the most efficient routes to destinations [49]. Also, in the

smart grid system, smart meters are deployed to monitor the

electricity consumption in real-time. Based on the collected

data, the smart grid can adjust the power generation to balance

demand and supply [76]. In addition, based on the collected

data, the smart grid can guide the electricity price to balance

FIGURE 4. IoT vs. CPS.

demand and supply so that effective power use can be pro-

vided [34]. Moreover, in smart home systems, sensors are

deployed throughout homes to collect and send information

to servers for further analysis. Based on the data analysis

results, smart home systems are able to obtain the owners’

daily routines, such as work schedule, peak electricity usage,

and others [77].

Furthermore, smart home systems are typically widely

deployed within an area to collect data from the entire region.

Meanwhile, the collected datasets can be sent to smart grid

systems and utilized as the features of the training datasets

for the smart grid system models. The smart grid systems are

then able to adjust the power supply to match the electricity

peaks based on the real, individualized data applied to achieve

more comprehensive analysis results. In such situations, data

acquisition and analysis are the keys to controlling the system

and providing services. However, the data is usually stored

in different CPS independently. For example, in the previous

case, the users’ routines are stored in the smart home system

and the smart grid system cannot obtain the data directly.

Therefore, IoT search is a feasible approach to solving data

availability problems in CPS.

B. PROBLEM SPACE

Fig. 5 shows the problem space of the IoT search engine.

We generalize the problem space of IoT search engines

into three dimensions. Here, the ‘‘x’’ axis represents the

Query Types, which are divided into ‘‘Human’’ queries and

‘‘Machine’’ (i.e., ‘‘IoT device’’) queries. In IoT, both humans

and machines have need to query datasets and IoT resources,

one of the primary differences between web search and

IoT search.

The ‘‘y’’ axis represents the properties, including Quality

of Service (QoS) (e.g., search accuracy, speed) and security,

arranged in a progressive manner. The basic QoS requirement

is search accuracy, which is the first level requirement of QoS.

Next, being able to achieve accurate searches, search speed

104682 VOLUME 7, 2019



F. Liang et al.: Search Engine for the Internet of Things: Lessons From Web Search, Vision, and Opportunities

FIGURE 5. Problem space of the IoT search engines.

is crucial, as IoT search is often time-sensitive and the data

is dynamic. Lastly, with accurate and rapid search achieved,

security is a critical requirement of IoT search. In IoT search,

adversaries may be able to insert tampered datasets in place

of normal ones in order to attack the CPS and force decision

errors [47], [78]. Thus, especially in the context of critical

infrastructures, security is dire.

Finally, the ‘‘z’’ axis represents the resources, where

‘‘Individual’’ represents the search engine retrieving data

from only one CPS repository, while ‘‘Multiple’’ indicates

the search can retrieve data from multiple CPS repositories.

There are a number of existing CPS that provide searching

services. In the case of ‘‘individual’’ search services, in smart

grid systems, users are able to search for electricity usage by

finding the smart meter data for the specific area. However,

the users are not able to obtain the temperature information

from the smart grid systems at the same time, since the tem-

perature information is stored in another CPS. On the other

hand, some other CPS provide ‘‘Multiple’’ search services.

For example, service provided byUber is a typical CPS-based

application that is used for providing peer-to-peer ridesharing

services [79], [80]. For example, Uber not only shows the

available vehicles, but also shows the route from customer

to the destination, which is obtained from Google maps, and

even provides road traffic information. Thus, integrating the

multiple systems enables CPS to provide more comprehen-

sive services.

C. OPPORTUNITIES

Having identified the problem space of IoT search engines,

we now present opportunities and challenges for IoT search

engine research and development. In the following, we dis-

cuss the opportunities for IoT search engines from the per-

spectives of data retrieval, data comprehension and analysis,

system automation, and artificial intelligence.

1) DATA RETRIEVAL

With the increasing volume of IoT data and the increas-

ing demand from data users, we find there to be an ideal

opportunity to introduce novel IoT search engines and to

improve IoT search for all IoT systems and CPS. Similar to

web search engines, there are two key factors that boost the

development of IoT search. The first is that data providers

have massive valuable data, and the second is the increas-

ing number of data users who seek to search and utilize

IoT-related datasets. In this case, IoT search engines present

an unprecedented opportunity and a large development space,

supporting numerous smart-world applications. Currently,

most IoT search engines are in the embryonic stage, with

functional yet limited capabilities, such as the aforemen-

tioned Shodan and Thingful. Indeed, these existing search

engines all have some limitations. For instance, Shodan can

only search the information of IoT devices with open-APIs,

while Thingful can only obtain static datasets that have been

shared by the owners of the IoT devices. Therefore, there is an

emerging demand to construct advanced IoT search engines

with improved functionality.

2) DATA COMPREHENSIVE ANALYSIS

As we discussed before, at the current stage, CPS oper-

ate individually, and cannot access data from any one uni-

fied application. However, in order to obtain more accurate

results, the comprehensive analysis of multiple features and

modalities of IoT data is necessary. For instance, in the event

of a public safety emergency, emergency response depart-

ments and personnel require different types of data from

critical infrastructure CPS [81], which include meteorolog-

ical information, traffic information, energy supply informa-

tion, wireless network information, etc. As the information is

stored individually in each CPS, each must be accessed sepa-

rately, and there are no IoT search portals able to search all the

information by one query, leading to an obvious inefficiency.

Likewise, in the smart city system, in order to obtain situation

awareness of the entire city, the smart city system needs

to communicate with many other CPS, including the traffic

surveillance systems, meteorological information systems,

vehicle tracking systems, etc., none of which are connected.

Moreover, there are many critical issues that arise from con-

necting each individual CPS. Therefore, IoT search engines

are required that can obtain various data from different CPS

in one unified interface to increase data search efficiency.

3) SYSTEM AUTOMATION

CPS assist humans in the monitoring and control of sys-

tems and infrastructure in real-time. Thus, data retrieval and

analysis for dynamic data is key. As we discussed above,

the automation of CPS is a closed loop process which

includes system monitoring, data collection, data analysis,

and execution. However, there are two problems that hin-

der the automation loop. One is the data search, which is

currently hampered because all queries are sent by human

users, meaning that the CPS require human interruption and

intervention in the data collection stage. Therefore, the IoT

search engines are required to respond to queries to/from both

human users and machines (i.e., IoT devices) as necessary.

Specifically, IoT devices should be able to send queries to

the IoT search engines automatically and obtain the necessary
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datasets for the data analysis process. The second problem

is cross-system queries. As we mentioned above, CPS are

executed independently. Thus, without the integration of mul-

tiple CPS, CPS cannot obtain the information stored in one

another’s repositories. Therefore, another opportunity arises

for developing and leveraging IoT search engines.

4) ARTIFICIAL INTELLIGENCE

Furthermore, new techniques and improving technologies,

such as distributed computing (edge computing, edge/cloud

combined) and machine learning [42], [46], [54], are highly

integrated into CPS in order to endow intelligence to the

system. Otherwise known as Artificial Intelligence (AI), sys-

tems that can make decisions autonomously based on data

search and analysis, and those that can learn the requisite

contexts and skills by themselves, are able to handle complex

situations and tasks. For example, autonomous vehicles need

to obtain relevant information without human intervention.

First, the autonomous vehicles communicate with the IoT

search engines to determine the destination. Then, the search

engines search the traffic, weather, and parking lot informa-

tion based on the route and return the information to the

vehicles.Meanwhile, the vehicles send the query to the search

engines to find the locations of gas or charging stations when

the fuel/power supply is low [82]. Additionally, AI require

more information and advanced data search services. Thus,

the AI also have a high need of IoT search services, evenmore

so than CPS automation [83].

D. CHALLENGES

We now consider the challenges facing the development and

improvement of IoT search engines. In particular, we classify

the challenges into three categories: Dynamic Environments,

Search Techniques, and Performance and Security.

1) DYNAMIC ENVIRONMENTS

The IoT is composed of dynamic heterogeneous networks,

which not only continuously generate high-velocity IoT data,

but also change network structures frequently. This is a criti-

cal challenge for IoT search engines. In detail, the variability

in the systems includes both dynamic data and dynamic

network topology. IoT search engines need to crawl dynamic

IoT data in real-time, while being able to react to network

topology changes. Furthermore, scalability is also a chal-

lenge. As we mentioned above, IoT search engines should

have the ability to extend their search area or be able to

add new sensors and data repositories into the search area.

However, in their current stage, IoT search engines all have

some technical limitations to extending the search area. For

instance, the Shodan IoT search engine can only search for

IP address and hardware information of IoT devices, and can-

not obtain such data without permission. Furthermore, while

the Shodan search engine is reliable for dynamic datasets,

the data update frequency is slow. In addition, IoT search

engines need to consider the geographic location changes

of mobile IoT devices, since users require the location of

the specific IoT device. Finally, IoT search engines should

be able to detect and react to the connectivity status of IoT

devices, as the connectivity of IoT devices are not stable.

Thus, there are numerous open issues that make it difficult

for IoT search engines to crawl real-time data in dynamic

environments.

2) SEARCH TECHNIQUES

There are a number of technical challenges for IoT

search engines in terms of search techniques. For instance,

in responding to queries from both humans and machines

(i.e., IoT devices), regarding queries from IoT devices,

the number of instant queries will be very large. Thus,

responding to a large number of queries in a very short time

period is a challenge, especially at a rate not feasible to human

users. In addition, providing efficient query processing and

generating accurate and quick response to queries is criti-

cal [84]–[86]. For example, Wu et al. [84] proposed a time-

series based framework using statistics-based techniques to

carry out information aggregation of machine traffic in IoT

systems, from which the aggregated search results provided

insightful information for resource planning for IoT systems.

Likewise, Quoc et al. [85] addressed the issue of query

planning on spatio-temporal IoT data and proposed a scheme

that leverages query similarity identification and machine

learning techniques to improve query prediction accuracy.

Moreover, data acquisition is another problem for IoT

search engines. Since the IoT data is updated frequently,

conventional crawling algorithms will not be viable. New

data acquisition algorithms are required to detect the dynamic

data changes and collect the new data rapidly. In addition,

the data acquisition process not only collects data from IoT

devices, but also from user applications. Thus, data acquisi-

tion algorithms need to handle heterogeneous IoT data. Fur-

thermore, accessing IoT resources, such as sensors, network

devices, middlewares, computing platforms, and applications

is a challenge. Because the IoT resources are managed by

different organizations, the ability to obtain authorization to

access the IoT resources is still unresolved. Finally, since the

distributed computing platforms andmachine learning-driven

data analysis tools are integrated with IoT, how to integrate

IoT search engines with those new techniques and tools to

obtain better performance is another looming challenge.

3) PERFORMANCE AND SECURITY

From the perspective of the performance of IoT search

engines, challenges persist, as outlined in the problem space,

above. First, since the IoT data is heterogeneous, it is dif-

ficult to accurately describe the specific data and specific

IoT resources, and likewise, it will be difficult for the IoT

search engine to identify and find. As a result, the quality of

searching results will be hard to maintain. Thus, the accuracy

of query results is a particular challenge. Second, the search

speed is an important requirement for IoT systems. However,

IoT resources are massive, and thus, how to satisfy the search

speed requirement is a critical challenge. More importantly,
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security is a challenge for all systems, including IoT search

engines. In IoT search, adversaries could attack either the

engines or the data sources in order to compromise the sys-

tem. The IoT search engines involve numerous systems and

excessive communications, potentially increasing the vulner-

abilities of the system. For instance, adversaries may be able

to easily inject the fake data by compromising the IoT sen-

sors, because sensors are not well protected logically or phys-

ically (network vulnerability and physical environment risk).

The injected false data can impact the search and analysis

results to cause errors in the system, affecting smart-world

systems such as smart grids, smart transportation, smart man-

ufacturing, and others [47], [48], [78], [87]–[89]. In addition,

adversaries may be able to directly attack the database on the

search engines to compromise the searching results. To this

end, comprehensive attack detection and protection strategies

are still unresolved.

V. FUTURE DIRECTIONS

In this section, we propose a vision for potential future

research work and development directions for IoT search

engines. Based on the survey and problem space developed,

we summarize five major directions below.

A. CO-DESIGN WITH OTHER TECHNIQUES

The first potential research direction is the integration of

IoT search engines and search mechanisms with emerg-

ing, state-of-the-art, bleeding-edge network and computing

techniques. With the ongoing development of distributed

computing and machine learning technologies [42], [54],

[55], the integration of these technologies with IoT is pro-

gressing. This integration should be extended to encom-

pass search, as these emerging technologies can improve

searching performance, resiliency, and security. Specifically,

distributed computing, such as edge and fog computing,

offloads computation tasks from cloud servers to edge com-

putation nodes. Distributed computing has a hierarchical

structure similar to IoT, and clearly shows potential for

integration with IoT systems to provide low-latency com-

puting and storage services [54], [55]. Since edge com-

putation nodes are both topologically and geographically

close to the collaborating IoT devices, data transmission and

response times will be reduced, enabling real-time or near-

real-time service. The distributed computing structures

are able to solve problems in network delay, comput-

ing capacity limitations, and provide computation resource

optimization.

In the case of IoT search, issues persist in leveraging

distributed computing. These include, but are not limited to:

(i) Edge computing node deployment, which is a critical issue

for IoT search engines, as IoT is dynamic and devices may

move during the data collection and computation process.

Indeed, it is challenging for IoT devices to select optimal edge

computing nodes normally, and the problem is made worse in

the dynamic context, as mechanisms for switching between

optimal edge computing nodes duringmovement are complex

and the problem is not fully resolved. (ii) Synchronization of

distributed IoT search systems is another ongoing challenge,

which, given the computation and power limitations of nodes,

requires that search tasks deployed in a distributed manner be

efficient and resilient to services outage. Therefore, how to

synchronize the search process on dispersed computing nodes

is another promising research direction. (iii) Research on

network architectures and protocols is still relatively limited.

Edge computing nodes may be PCs, workstations, or mobile

devices, and therefore, how to organize the heterogeneous

networks with a number of heterogeneous devices is a chal-

lenge. (iv) Next generation mobile networks, including 5G,

are the cellular infrastructures that may enable solutions to

IoT connectivity problems [90], [91]. The 5G networks pro-

vide high-speed connections with low transmit energy cost,

which creates a friendly ecosystem for IoT devices. Potential

research directions include the leveraging of 5G to improve

the performance of IoT search. For instance, one question is

how to connect with IoT devices which use different proto-

cols. In addition, Software Defined Networking (SDN) is a

key feature of 5G, which provides flexible network structure

and management [92]. SDN can help humans to easily man-

age IoT devices, but how to organize the IoT devices under

SDN is another problem.

Similarly, machine learning has eclipsed other traditional

big data analysis approaches, providing unique and impres-

sive advantages in a variety of areas. For instance, machine

learning algorithms can obtain more accurate results in large

and dynamic datasets compared with other conventional data

analysis methods. Furthermore, machine learning can be

applied in a variety of ways, enabling accurate prediction,

identification, and classification of data, actions, and tasks,

and can be leveraged to realize AI. Thus, machine learn-

ing has the potential to assist IoT search in optimizing per-

formance and analysis. However, there are several issues

still remaining: (i) The training time for highly accurate

machine learning models for production systems is unac-

ceptable for time-sensitive IoT search, and especially for

dynamic data. Thus, leveraging on-line learning strategies to

handle dynamic data is a key research direction with impli-

cations for a variety of systems. (ii) The computation costs

of machine learning models, especially in training, are non-

trivial. Currently, the two major ways to reduce computa-

tional costs are data sampling to reduce total data throughput

(and thus time), and data pre-preprocessing algorithms to

reduce the training data sizes. While these are useful, it is

not clear that these schemes are complete solutions, and new

schemes to reduce the data needs of models would be highly

beneficial. (iii) Additionally, optimizing machine learning

algorithms for computation-limited devices that are available

inside IoT systems is a further research direction with great

potential, which already has a small body of work behind

it, such as the optimization of trained models for resource

constrained devices such as smartphones. Note that existing

schemes are far from perfect solutions, and further work is

needed.
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B. MULTI-SYSTEM INTERACTION

As we mentioned above, currently, CPS are built and man-

aged independently. Thus, the integration of multiple CPS

to enable interaction and inter-operation between different

CPS is a possible research direction for IoT search engines.

In the current stage of IoT search engine development, search

servers generally serve applications of individual CPS man-

agement organizations, or at best serve multiple systems

within a single organization. The data users have no choice

but to install several different applications to complete the

necessary data search and retrieval, which is a critical prob-

lem delaying the development of IoT search engines. The

meta-search engine, as an emerging technology, sends queries

to different search engines simultaneously in order to gen-

erate its own results. Thus, it is necessary to leverage the

meta-search engine [93] concept to promote CPS integration

and increase the interaction between different CPS. Generally

speaking, there are two developmental phases or categories

necessary for the integration of multiple CPS with meta-

search, the first being hardware integration, and the second

being software integration.

Hardware integration enables the connection of the differ-

ent types of IoT devices anywhere and anytime, in order to

respond to queries. Since IoT devices are diverse, there are

a number of challenges and impediments to integrating the

various IoT devices, including diverse network and commu-

nication protocols, hardware standards, geographic distance

and location, and network connection. However, maintain-

ing the interconnection of IoT devices is fundamental to

IoT search. Thus, hardware integration should be a primary

research direction to further enable IoT search.

Software integration includes the control, monitoring,

management, and configuration of IoT devices through the

utilization of a unified application or platform. As we dis-

cussed above, similar to web search engines, IoT search

requires a unified portal. Since the data analysis requires com-

prehensive datasets from diverse CPS, the IoT search portal

(single point search) is necessary. Moreover, the IoT devices

must be able to send queries to the search engines to obtain

related datasets from other CPS. Yet, the CPS belong to differ-

ent organizations and their applications utilize different APIs,

raising critical challenges to software integration. Utilizing

middleware or a related federation layer between IoT search

engines and applications is a potential solution to enable the

necessary integration. The middleware can provide a unified

API to enable both IoT search and other applications, and can

enable IoT search engines to access data across different CPS

repositories and nodes.

Generally speaking, after hardware and software integra-

tion, meta-search engines are able to send queries to all CPS

and obtain data. Nonetheless, meta-search techniques raise

some new challenges: (i) Search Resource Selection: Select-

ing the fastest search response servers is critical. Since there

are massive numbers of servers distributed throughout the

network to provide searching services, how to select the best

server still needs significant research. Taking autonomous

vehicles as an example, the meta-search engine sends queries

to different search engines simultaneously. However, if the

meta-search engine selects the search server whose response

is slow, it will delay the searching results from being returned

to the search engines and may result in accidents. (ii) Data

Format: Due to different storage policies, the types of data

collected from different IoT devices can be different (for-

mat, encoding, etc.). How to unify the different types of

data formats into one is another pressing issue. (iii) Access

Authentication: IoT search engines contain much more sen-

sitive information than a typical web search engine. Thus,

access authentication policies are an urgent demand for IoT

search engines. How to build a trustworthy environment

for interconnecting different entities is a challenging issue.

Although web search engines indeed contain sensitive data

such as user location, account, and email information, this

information is traditionally freely generated by users (though

perhaps unintentionally). In IoT search, we can consider the

data to be more sensitive in some ways, and while some

may be personal private data, we are also concerned about

critical device information, and more, that may make IoT

systems vulnerable to attack [89], [94], [95]. This information

could be used to cause unallowable damage to individuals,

notwithstanding the damage to system components and the

system in total. If there is no access authentication in IoT

search, all personal information might get leaked.

C. PERFORMANCE OPTIMIZATION

Generally speaking, performance optimization is the

inevitable approach to improve and maximize system effi-

cacy. Similar to other systems, performance optimization is

critical to improving the width and breadth of utilization

and the availability of IoT search engines. Optimization

approaches should consider, in particular, the time and space

of search retrieval. Specifically, how to reduce search time

and expand the search space are themain purposes of retrieval

optimizations. As discussed in Section V-A, the integration

of IoT search engines and other emerging technologies,

such as distributed computing and machine learning-based

data analytics, can play an important role in realizing IoT

search capabilities. However, this integration raises additional

questions, and how to overcome these new problems requires

further research. For instance, we could leverage on-line

machine learning to reduce the training time for machine

learningmodels utilized in IoT search systems [96], and could

apply distributed learning strategies (e.g., federated learn-

ing, transfer learning) to increase the scalability of machine

learning to handle large volumes of training data [97], [98].

Yet, neither of these technologies are fully developed and

optimized for use in the particular case of IoT search in

scalability, efficiency and effectiveness.

At the same time, we should encourage data owners to

share data publicly in order to extend the breadth of the

search space and enable collaborative improvement of all

systems. As further incentive, data owners have the potential

to trade both physical commodities in the IoT system and
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data via digital markets such that the commercial value

of the data remains intact and can be recuper-

ated [16], [99]–[102]. On one hand, for the physical world

commodities, such as electricity in the smart grid system,

the secondary market among microgrids in the smart grid

allows entities to buy or sell energy efficiently. To tackle the

security and privacy concerns, new schemes would be con-

ceived to ensure not only economic properties via different

trading algorithms, but also security and privacy properties

via secure protocol design, multi-party computing and differ-

ential privacy [103], [104].

On the other hand, IoT big data is considered to be the

key to unlocking the next great wave of growth in produc-

tivity, supporting numerous smart-world applications. With

the exponential growth of data in IoT-based systems, how

to efficiently utilize the data becomes a critical issue. This

calls for the development of a big data market that enables

efficient and secure data trading. By pushing data as a kind

of commodity into a digital market, the data owners and

consumers are able to connect with each other, sharing and

further increasing the utility of the data. However, to enable

such a market for data trading, several challenges need to

be addressed: (i) how to determine the proper price for the

data to be sold or purchased, (ii) how to design a trustworthy

trading platform and schemes to enable the maximization of

social welfare of trading participants with efficiency, security

and privacy guarantees, and (iii) how to protect the traded

data from being resold to maintain the value of the data.

Future research must provide a clear and deep understanding

of commodity and big data trading markets and initiate a

scientific foundation for trading commodities and data in an

efficient, secure and privacy-preserving manner. Note that

pushing data to digital markets as a commodity can promote

data sharing and extend the searching space. In addition, it is

necessary to attend to the optimization of the IoT search

engines themselves. As we discussed before, how to leverage

and update crawling algorithms to suit IoT scenarios and IoT

data with high vitality is a meaningful problem. Likewise,

how to store and generate the index for different types of IoT

data also needs to be addressed.

D. SECURITY AND PRIVACY

The widespread adoption of IoT devices and heterogeneous

network structures provide new vulnerabilities for adversaries

and drastically increases the risks of attacks, in both breadth

and depth. Indeed, a number of recent IoT-based attacks

have exacerbated the urgency and need for assuring secu-

rity in IoT [105]–[109], [109]–[111]. In the context of IoT

search engines, attacks have the potential to induce catas-

trophic damage to data analysis results, affecting CPS and

the security and privacy of individuals [89]. For instance,

in the smart transportation system, attacks against On-Board

Units (OBUs) and traffic lights can generate serious traf-

fic congestion, impact traffic prediction, and potentially

cause harm and human injury. In the smart city, adversaries

could attack the city surveillance system and manipulate the

directions of the cameras in order to escape tracking. In addi-

tion, in the smart grid system, adversaries could compromise

smart meters and inject false data to impact power sup-

ply management. Furthermore, since smartphone and wear-

able devices are widespread, adversaries could attack such

devices to obtain personal and private data, health informa-

tion, intercept package delivery, or even track the user. How to

design effective privacy protection schemes, including differ-

ential privacy [94], secure multi-part computing [99], [112],

and anonymous communication [113], [114], in IoT search

remain a challenging issue.

In general, attacks on IoT search engines can be

launched to target service, query, and devices: (i) Attacks on

services: Adversaries directly attacking the IoT search

engines themselves have the potential to disable search ser-

vices and deny queries being serviced. In this case, the CPS

cannot obtain real-time data, negatively impacting the data

analysis results. Erroneousness results may cause system

failures, should no redundancies be in place. (ii) Attacks on

queries: Adversaries may launch attacks on queries in the

IoT search process. In conventional web search, humans can

inspect the search results in order to verify the accuracy of the

query and prevent tampered queries from impacting systems

and decisions. However, in IoT search, many queries are

sent by machines such as IoT devices, and attack detection

schemes will be necessary to inspect the correctness of the

queries. (iii) Attacks on devices: Adversaries have the poten-

tial to launch attacks on IoT devices, which aremore critically

vulnerable due to their limited computing resources and lack

of security features. Since most IoT data is collected by IoT

sensors, maliciously manipulating sensors can damage data

and CPS at the source. In addition, new attack detection and

protection strategies for IoT sensors are necessary to handle

their limitations, which increase the risks of adversaries sub-

verting IoT systems. All these approaches have the potential

to disturb the performance of CPS and IoT search engines

and cause irreparable damage. Therefore, for the IoT search

engines and the betterment of IoT as a whole, a significant

amount of research on security and privacy is necessary for

the future.

E. FOUNDATION FOR DATA AND NETWORK SCIENCE

Big Data has come to be a dominant force in our society,

affecting all manner of industries, products, and livelihoods.

Moreover, the foundational aspects of Big Data include net-

worked systems, computation systems, cloud infrastructures,

software and systems security, distributed systems and mul-

tiprocessing, data collection and storage, data analytics and

assessment, and many more. As a logical extension of Big

Data, IoT Search, or the search of distributed, dynamic big

data, implicates all such foundational techniques and tech-

nologies, with the addition of algorithms, methodologies, and

technologies particular to search, retrieval, and return. Thus,

the study of IoT search and the development of IoT search

engines offer clear opportunities for interested computer,

network, and data science researchers and practitioners to
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advance their knowledge and understanding of foundational

computer, computation, data, and statistical sciences.

In the study of traditional foundational computational,

computer, and data sciences, IoT search implicates aspects of

big data analytics and assessment, machine learning, automa-

tion, command and control design and management, and

so on. In particular, the hardware and software challenges

for big data increase in scale under IoT search, as systems

become more massively distributed, and data becomes more

massively large and continuous. The many V’s of Big Data

(Value, Veracity, Volume, Velocity, Variety, etc.) are clearly

realized, andmust be accounted for. Additionally, the analysis

of such data faces massively increased potential, as well as

massively increased noise and vulnerability, along with the

inability for complete data review and understanding. Thus,

the need for astute design and understanding of the practical-

ities and limitations of a variety of combined technologies is

imperative.

Given the reliance of all modern societies on the Internet

and networked systems, it is imperative that these systems be

understood, improved, and innovated on to better ensure the

security and reliability of users, their data, and the systems

that we all rely upon. Necessarily implicating networked

systems and the Internet, IoT search requires proper consider-

ation for heterogeneous network conditions, and will require

advancements in cloud and edge technologies, machine-to-

machine communication techniques and infrastructures, 5G,

MANET, SDN, and others. Not simply an improvement in

service, networks to support IoT search must contend with

the massively distributed IoT, aggregation of massive sensor

data, the service provisioning for critical versus non-critical

applications and hardware, and so on. Future work toward

improving networks, as big communication infrastructure,

from all aspects, including throughput, bandwidth, organi-

zation, optimization, function, and security, are necessary

to realize IoT search engine capabilities. Thus, advances in

techniques, technologies, algorithms, design, etc. achieved

through targeted and collaborative research are necessary and

imperative, both overall, and specifically to realize IoT search

capabilities.

VI. FINAL REMARKS

With the development of IoT sensor networks and powerful

emerging technologies, such as distributed computing and

machine learning, there is an urgent demand to develop IoT

search engines to retrieve IoT data, an extension of big data

that has real-world implications. In order to provide a general

view of IoT search engine concepts, research, and progress,

in this work we surveyed IoT search and search engine

techniques. Primarily, we have focused on the development

progress of IoT search engines, first briefly reviewing the

development of conventional web search engines as a rep-

resentative example. We also studied the major techniques of

web search, and systematically studied existing IoT search

techniques, discussing the differences between traditional

web and novel IoT search engines. Based on our study,

we developed the problem space for IoT search engines and

discussed opportunities and challenges that remain. Finally,

we proposed a vision for future research and highlighted key

areas in which IoT search and IoT technologies in general

must progress to ensure more reliable, safe, and secure dis-

tributed sensing and computing systems, supporting numer-

ous emergent smart-world applications.

REFERENCES

[1] Shodan. Accessed: Jun. 13, 2019. [Online]. Available:

https://www.shodan.io/

[2] Thingful. Accessed: Jun. 13, 2019. [Online]. Available:

https://www.thingful.net/

[3] Censys. Accessed: Jun. 13, 2019. [Online]. Available: https://censys.io/

[4] Reposify. Accessed: Jun. 13, 2019. [Online]. Available:

https://www.reposify.com/

[5] J. A. Stankovic, ‘‘Research directions for the Internet of Things,’’ IEEE

Internet Things J., vol. 1, no. 1, pp. 3–9, Feb. 2014.

[6] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, ‘‘A sur-

vey on Internet of things: Architecture, enabling technologies, security

and privacy, and applications,’’ IEEE Internet Things J., vol. 4, no. 5,

pp. 1125–1142, Oct. 2017.

[7] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi,

‘‘Internet of Things for smart cities,’’ IEEE Internet Things J., vol. 1, no. 1,

pp. 22–32, Feb. 2014.

[8] S. M. Riazul Islam, D. Kwak, M. Humaun Kabir, M. Hossain, and

K.-S. Kwak, ‘‘The Internet of Things for health care: A comprehensive

survey,’’ IEEE Access, vol. 3, pp. 678–708, Jun. 2015.

[9] L. Da Xu, W. He, and S. Li, ‘‘Internet of Things in industries: A survey,’’

IEEE Trans. Ind. Informat., vol. 10, no. 4, pp. 2233–2243, Nov. 2014.

[10] M. Aazam, K. A. Harras, and S. Zeadally, ‘‘Fog computing for 5G tactile

industrial Internet of Things: QoE-aware resource allocation model,’’

IEEE Trans. Ind. Informat., vol. 15, no. 5, pp. 3085–3092, May 2019.

[11] S. B. Baker, W. Xiang, and I. Atkinson, ‘‘ Internet of Things for smart

healthcare: Technologies, challenges, and opportunities,’’ IEEE Access,

vol. 5, pp. 26521–26544, 2017.

[12] Xiaomi Team. Xiaomi and IKEA Partner to Bring Smart Connected

Homes to More Users. [Online]. Available: https://bit.ly/2GnJWWy

[13] L. Atzori, A. Iera, and G. Morabito, ‘‘The Internet of Things: A survey,’’

Comput. Netw., vol. 54, no. 15, pp. 2787–2805, Oct. 2010.

[14] Y. Liu, Y. He, M. Li, J. Wang, K. Liu, and X. Li, ‘‘Does wireless

sensor network scale? Ameasurement study on GreenOrbs,’’ IEEE Trans.

Parallel Distrib. Syst., vol. 24, no. 10, pp. 1983–1993, Oct. 2013.

[15] P. Barnaghi and A. Sheth, ‘‘On searching the Internet of Things: Require-

ments and challenges,’’ IEEE Intell. Syst., vol. 31, no. 6, pp. 71–75,

Nov./Dec. 2016.

[16] F. Liang, W. Yu, D. An, Q. Yang, X. Fu, and W. Zhao, ‘‘A survey on

big data market: Pricing, trading and protection,’’ IEEE Access, vol. 6,

pp. 15132–15154, 2018.

[17] K. Romer, B. Ostermaier, F. Mattern, M. Fahrmair, and W. Kellerer,

‘‘Real-time search for real-world entities: A survey,’’ Proc. IEEE, vol. 98,

no. 11, pp. 1887–1902, Nov. 2010.

[18] D. Zhang, L. T. Yang, and H. Huang, ‘‘Searching in Internet of Things:

Vision and challenges,’’ in Proc. IEEE 9th Int. Symp. Parallel Distrib.

Process. Appl., May 2011, pp. 201–206.

[19] StatCounter. Search Engine Market Share Worldwide. [Online]. Avail-

able: http://gs.statcounter.com/search-engine-market-share

[20] A. Shemshadi, Q. Z. Sheng, and Y. Qin, ‘‘ThingSeek: A crawler and

search engine for the Internet of Things,’’ in Proc. 39th Int. ACM SIGIR

Conf. Res. Develop. Inf. Retr., 2016, pp. 1149–1152.

[21] J. Bar-Ilan, M. Levene, and M. Mat-Hassan, ‘‘Methods for evaluating

dynamic changes in search engine rankings: A case study,’’ J. Document.,

vol. 62, no. 6, pp. 708–729, 2006.

[22] C. D. Nguyen, ‘‘Smart search engine,’’ U.S. Patent 14 455 482,

Feb. 11 2016.

[23] J. Boyan, D. Freitag, and T. Joachims, ‘‘A machine learning architecture

for optimizing Web search engines,’’ in Proc. AAAI Workshop Internet

Based Inf. Syst., 1996, pp. 1–8.

[24] StatCounter. Accessed: Jun. 15, 2019. [Online]. Available:

http://gs.statcounter.com/search-engine-market-share/

104688 VOLUME 7, 2019



F. Liang et al.: Search Engine for the Internet of Things: Lessons From Web Search, Vision, and Opportunities

[25] C. Manning, P. Raghavan, and H. Schütze, ‘‘Introduction to information

retrieval,’’ Natural Lang. Eng., vol. 16, no. 1, pp. 100–103, 2010.

[26] S. Brin and L. Page, ‘‘The anatomy of a large-scale hypertextual

Web search engine,’’ Comput. Netw. ISDN Syst., vol. 30, nos. 1–7,

pp. 107–117, Apr. 1998.

[27] A. N. Langville and C. D. Meyer, Google’s PageRank and Beyond:

The Science of Search Engine Rankings. Princeton, NJ, USA: Princeton

Univ. Press, 2011.

[28] StatCounter. Search Engine Market Share Worldwide. Accessed:

Jun. 15, 2019. [Online]. Available: http://gs.statcounter.com/

search-engine-market-share

[29] S. Ghemawat, H. Gobioff, and S.-T. Leung, ‘‘The Google file system,’’

ACM SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp. 29–43, Dec. 2003.

[30] J. Dean and S. Ghemawat, ‘‘MapReduce: Simplified data processing on

large clusters,’’ Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[31] F. Chang, J. Dean, S. Ghemawat,W. C.Hsieh, D.A.Wallach,M. Burrows,

T. Chandra, A. Fikes, and R. E. Gruber, ‘‘Bigtable: A distributed storage

system for structured data,’’ ACM Trans. Comput. Syst., vol. 26, no. 2,

pp. 4:1–4:26, Jun. 2008.

[32] E. Schmidt and J. Rosenberg, How Google Works. London, U.K.:

Hachette, 2014.

[33] M. Chen, S. Mao, and Y. Liu, ‘‘Big data: A survey,’’Mobile Netw. Appl.,

vol. 19, no. 2, pp. 171–209, Apr. 2014.

[34] J. Lin, W. Yu, and X. Yang, ‘‘Towards multistep electricity prices in smart

grid electricity markets,’’ IEEE Trans. Parallel Distrib. Syst., vol. 27,

no. 1, pp. 286–302, Jan. 2016.

[35] X. Fang, S. Misra, G. Xue, and D. Yang, ‘‘Smart grid—The new and

improved power grid: A survey,’’ IEEE Commun. Surveys Tuts., vol. 14,

no. 4, pp. 944–980, 4th Quart., 2012.

[36] Y. Zhang, Q. Yang, W. Yu, D. An, D. Li, and W. Zhao, ‘‘An online con-

tinuous progressive second price auction for electric vehicle charging,’’

IEEE Internet Things J., vol. 6, no. 2, pp. 2907–2921, Apr. 2019.

[37] J. Li, X. Sun, Q. Liu, W. Zheng, H. Liu, and J. A. Stankovic, ‘‘Plan-

ning electric vehicle charging stations based on user charging behav-

ior,’’ in Proc. IEEE/ACM 3rd Int. Conf. Internet-Things Design Imple-

ment. (IoTDI), Apr. 2018, pp. 225–236.

[38] T. Anagnostopoulos, A. Zaslavsky, K. Kolomvatsos, A. Medvedev,

P. Amirian, J. Morley, and S. Hadjieftymiades, ‘‘Challenges and opportu-

nities of waste management in IoT-enabled smart cities: A survey,’’ IEEE

Trans. Sustain. Comput., vol. 2, no. 3, pp. 275–289, Jul. 2017.

[39] S. Mallapuram, N. Ngwum, F. Yuan, C. Lu, and W. Yu, ‘‘Smart city: The

state of the art, datasets, and evaluation platforms,’’ in Proc. IEEE/ACIS

16th Int. Conf. Comput. Inf. Sci. (ICIS), May 2017, pp. 447–452.

[40] G. Fayard, ‘‘Road injury prevention in China: Current state and future

challenges,’’ J. Public Health Policy, vol. 40, no. 1, pp. 1–16, 2019.

[41] J. C. F. de Winter, D. Dodou, R. Happee, and Y. B. Eisma, ‘‘Will vehicle

data be shared to address the how, where, and who of traffic accidents?,’’

Eur. J. Futures Res., vol. 7, no. 1, p. 2, 2019.

[42] W. G. Hatcher and W. Yu, ‘‘A survey of deep learning: Platforms,

applications and emerging research trends,’’ IEEE Access, vol. 6,

pp. 24411–24432, 2018.

[43] O. Elijah, T. A. Rahman, I. Orikumhi, C. Y. Leow, and M. N. Hindia,

‘‘An overview of Internet of Things (IoT) and data analytics in agricul-

ture: Benefits and challenges,’’ IEEE Internet Things J., vol. 5, no. 5,

pp. 3758–3773, Oct. 2018.

[44] M. Mohammadi, A. Al-Fuqaha, S. Sorour, and M. Guizani, ‘‘Deep learn-

ing for IoT big data and streaming analytics: A survey,’’ IEEE Commun.

Surveys Tuts., vol. 20, no. 4, pp. 2923–2960, 4th Quart., 2018.

[45] E. Hossain, I. Khan, F. Un-Noor, S. S. Sikander, and M. S. H. Sunny,

‘‘Application of big data and machine learning in smart grid, and associ-

ated security concerns: A review,’’ IEEE Access, vol. 7, pp. 13960–13988,

2019.

[46] H. Li, K. Ota, and M. Dong, ‘‘Learning IoT in edge: Deep learning for

the Internet of things with edge computing,’’ IEEE Netw., vol. 32, no. 1,

pp. 96–101, Jan. 2018.

[47] Q. Yang, J. Yang, W. Yu, D. An, N. Zhang, and W. Zhao, ‘‘On false

data-injection attacks against power system state estimation: Modeling

and countermeasures,’’ IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 3,

pp. 717–729, Mar. 2014.

[48] Y. Liu, P. Ning, and M. K. Reiter, ‘‘False data injection attacks against

state estimation in electric power grids,’’ in Proc. 16th ACM Conf.

Comput. Commun. Secur. (CCS). New York, NY, USA: ACM, 2009,

pp. 21–32. doi: 10.1145/1653662.1653666.

[49] J. Lin, W. Yu, X. Yang, Q. Yang, X. Fu, and W. Zhao, ‘‘A novel dynamic

en-route decision real-time route guidance scheme in intelligent trans-

portation systems,’’ in Proc. IEEE 35th Int. Conf. Distrib. Comput. Syst.,

Jun./Jul. 2015, pp. 61–72.

[50] Y. Lv, Y. Duan, W. Kang, Z. Li, and F.-Y. Wang, ‘‘Traffic flow prediction

with big data: A deep learning approach,’’ IEEE Trans. Intell. Transp.

Syst., vol. 16, no. 2, pp. 865–873, Apr. 2015.

[51] J. Contreras-Castillo, S. Zeadally, and J. A. Guerrero-Ibañez, ‘‘Internet of

vehicles: Architecture, protocols, and security,’’ IEEE Internet Things J.,

vol. 5, no. 5, pp. 3701–3709, Oct. 2018.

[52] Y. Zhou, S. De, W. Wang, and K. Moessner, ‘‘Search techniques for the

Web of things: A taxonomy and survey,’’ Sensors, vol. 16, no. 5, p. 600,

2016.

[53] H. Ma and W. Liu, ‘‘A progressive search paradigm for the Internet of

things,’’ IEEE MultiMedia, vol. 25, no. 1, pp. 76–86, Jan./Mar. 2018.

[54] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang,

‘‘A survey on the edge computing for the Internet of Things,’’ IEEE

Access, vol. 6, pp. 6900–6919, 2018.

[55] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, ‘‘Edge computing: Vision

and challenges,’’ IEEE Internet Things J., vol. 3, no. 5, pp. 637–646,

Oct. 2016.

[56] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and

P. A. Polakos, ‘‘A comprehensive survey on fog computing: State-of-the-

art and research challenges,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 1,

pp. 416–464, 1st Quart., 2018.

[57] M. A. Razzaque, M.Milojevic-Jevric, A. Palade, and S. Clarke, ‘‘Middle-

ware for Internet of Things: A survey,’’ IEEE Internet Things J., vol. 3,

no. 1, pp. 70–95, Feb. 2016.

[58] S. H. L. Liang and C.-Y. Huang, ‘‘ GeoCENS: A geospatial cyberin-

frastructure for the world-wide sensor Web,’’ Sensors, vol. 13, no. 10,

pp. 13402–13424, 2013.

[59] S. Mayer, D. Guinard, and V. Trifa, ‘‘Searching in a Web-based infras-

tructure for smart things,’’ in Proc. 3rd IEEE Int. Conf. Internet Things,

Oct. 2012, pp. 119–126.

[60] W. Wang, S. De, G. Cassar, and K. Moessner, ‘‘An experimental study

on geospatial indexing for sensor service discovery,’’ Expert Syst. Appl.,

vol. 42, no. 7, pp. 3528–3538, May 2015.

[61] Y. Fathy, P. Barnaghi, S. Enshaeifar, and R. Tafazolli, ‘‘A distributed in-

network indexing mechanism for the Internet of Things,’’ in Proc. IEEE

3rd World Forum Internet Things (WF-IoT), Dec. 2016, pp. 585–590.

[62] S. Samtani, S. Yu, H. Zhu,M. Patton, J. Matherly, and H. Chen, ‘‘Identify-

ing supervisory control and data acquisition (SCADA) devices and their

vulnerabilities on the Internet of Things (IoT): A text mining approach,’’

IEEE Intell. Syst., to be published.

[63] M. Blackstock and R. Lea, ‘‘IoT mashups with the WoTKit,’’ in Proc.

3rd IEEE Int. Conf. Internet Things, Oct. 2012, pp. 159–166.

[64] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach,

A. Luotonen, and L. Stewart, HTTP Authentication: Basic and Digest

Access Authentication, document RFC 2617, 1999.

[65] C. Truong and K. Römer, ‘‘Content-based sensor search for the Web

of things,’’ in Proc. IEEE Global Commun. Conf. (GLOBECOM),

Dec. 2013, pp. 2654–2660.

[66] W. T. Lunardi, E. de Matos, R. Tiburski, L. A. Amaral, S. Marczak, and

F. Hessel, ‘‘Context-based search engine for industrial IoT: Discovery,

search, selection, and usage of devices,’’ in Proc. IEEE 20th Conf. Emerg.

Technol. Factory Autom. (ETFA), Sep. 2015, pp. 1–8.

[67] B. M. Elahi, K. Romer, B. Ostermaier, M. Fahrmair, and W.

Kellerer, ‘‘Sensor ranking: A primitive for efficient content-based sen-

sor search,’’ in Proc. Int. Conf. Inf. Process. Sensor Netw., Apr. 2009,

pp. 217–228.

[68] P. Zhang, Y.-A. Liu, F. Wu, and B. Tang, ‘‘Matching state estimation

scheme for content-based sensor search in the Web of things,’’ Int. J.

Distrib. Sensor Netw., vol. 11, no. 11, 2015, Art. no. 326780.

[69] P. Zhang, Y. Liu, F. Wu, S. Liu, and B. Tang, ‘‘Low-overhead and high-

precision prediction model for content-based sensor search in the Internet

of Things,’’ IEEE Commun. Lett., vol. 20, no. 4, pp. 720–723, Apr. 2016.

[70] S. Pattar, R. Buyya, K. Venugopal, S. S. Iyengar, and L. M. Patnaik,

‘‘Searching for the IoT resources: Fundamentals, requirements, compre-

hensive review, and future directions,’’ IEEE Commun. Surveys Tuts.,

vol. 20, no. 3, pp. 2101–2132, 3rd Quart., 2018.

[71] G. Cassar, P. Barnaghi, W. Wang, and K. Moessner, ‘‘A hybrid semantic

matchmaker for IoT services,’’ in Proc. IEEE Int. Conf. Green Comput.

Commun., Nov. 2012, pp. 210–216.

VOLUME 7, 2019 104689

http://doi.acm.org/10.1145/1653662.1653666


F. Liang et al.: Search Engine for the Internet of Things: Lessons From Web Search, Vision, and Opportunities

[72] S. Ben Fredj, M. Boussard, D. Kofman, and L. Noirie, ‘‘Efficient

semantic-based IoT service discovery mechanism for dynamic environ-

ments,’’ in Proc. IEEE 25th Annu. Int. Symp. Pers., Indoor, Mobile Radio

Commun. (PIMRC), Sep. 2014, pp. 2088–2092.

[73] Z. Ding, Z. Chen, andQ.Yang, ‘‘IoT-SVKSearch: A real-timemultimodal

search engine mechanism for the Internet of Things,’’ Int. J. Commun.

Syst., vol. 27, no. 6, pp. 871–897, 2014.

[74] L. Nunes, J. Estrella, L. Nakamura, R. de Libardi, C. Ferreira, L. Jorge,

C. Perera, and S. Reiff-Marganiec, ‘‘A distributed sensor data search

platform for Internet of things environments,’’ 2016, arXiv:1606.07932.

[Online]. Available: https://arxiv.org/abs/1606.07932

[75] H. Xu,W. Yu, D. Griffith, and N. Golmie, ‘‘A survey on industrial Internet

of Things: A cyber-physical systems perspective,’’ IEEE Access, vol. 6,

pp. 78238–78259, 2018.

[76] P. Moulema, W. Yu, D. Griffith, and N. Golmie, ‘‘On effectiveness of

smart grid applications using co-simulation,’’ in Proc. 24th Int. Conf.

Comput. Commun. Netw. (ICCCN), Aug. 2015, pp. 1–8.

[77] P. Siano, ‘‘Demand response and smart grids—A survey,’’Renew. Sustain.

Energy Rev., vol. 30, pp. 461–478, Feb. 2014.

[78] J. Lin, W. Yu, N. Zhang, X. Yang, and L. Ge, ‘‘Data integrity attacks

against dynamic route guidance in transportation-based cyber-physical

systems: Modeling, analysis, and defense,’’ IEEE Trans. Veh. Technol.,

vol. 67, no. 9, pp. 8738–8753, Sep. 2018.

[79] M. Zhu, X. Liu, and X. Wang, ‘‘An online ride-sharing path-planning

strategy for public vehicle systems,’’ IEEE Trans. Intell. Transp. Syst.,

vol. 20, no. 2, pp. 616–627, Feb. 2019.

[80] M. Zhu, X.-Y. Liu, F. Tang, M. Qiu, R. Shen, W. Shu, and

M.-Y.Wu, ‘‘Public vehicles for future urban transportation,’’ IEEE Trans.

Intell. Transp. Syst., vol. 17, no. 12, pp. 3344–3353, Dec. 2016.

[81] W. Yu, H. Xu, J. Nguyen, E. Blasch, A. Hematian, and W. Gao, ‘‘Sur-

vey of public safety communications: User-side and network-side solu-

tions and future directions,’’ IEEE Access, vol. 6, pp. 70397–70425,

2018.

[82] M. Gerla, E.-K. Lee, G. Pau, and U. Lee, ‘‘Internet of vehicles:

From intelligent grid to autonomous cars and vehicular clouds,’’

in Proc. IEEE World Forum Internet Things (WF-IoT), Mar. 2014,

pp. 241–246.

[83] S. Madakam, R. Ramaswamy, and S. Tripathi, ‘‘Internet of Things

(IoT): A literature review,’’ J. Comput. Commun., vol. 3, no. 5, p. 164,

2015.

[84] Y. Wu, Y. Cui, W. Yu, C. Lu, and W. Zhao, ‘‘Modeling and fore-

casting of timescale network traffic dynamics in M2M communica-

tions,’’ in Proc. 39th IEEE Int. Conf. Distrib. Comput. Syst. (ICDCS),

Jul. 2019, pp. 711–721.

[85] H. N. M. Quoc, M. Serrano, J. G. Breslin, and D. L. Phuoc,

‘‘A learning approach for query planning on spatio-temporal IoT

data,’’ in Proc. 8th Int. Conf. Internet Things (IOT). New York, NY,

USA: ACM, 2018, pp. 1:1–1:8. [Online]. Available: http://doi.acm.org/

10.1145/3277593.3277598

[86] P. W. Widya, Y. Yustiawan, and J. Kwon, ‘‘A oneM2M-based

query engine for Internet of Things (IoT) data streams,’’ Sensors,

vol. 18, no. 10, 2018. [Online]. Available: https://www.mdpi.com/

1424-8220/18/10/3253

[87] Q. Yang, D. Li, W. Yu, Y. Liu, D. An, X. Yang, and J. Lin, ‘‘Toward data

integrity attacks against optimal power flow in smart grid,’’ IEEE Internet

Things J., vol. 4, no. 5, pp. 1726–1738, Oct. 2017.

[88] N. Tuptuk and S. Hailes, ‘‘Security of smart manufacturing systems,’’

J. Manuf. Syst., vol. 47, pp. 93–106, Apr. 2018.

[89] X. Liu, C. Qian, W. G. Hatcher, H. Xu, W. Liao, and W. Yu, ‘‘Secure

Internet of Things (IoT)-based smart-world critical infrastructures: Sur-

vey, case study and research opportunities,’’ IEEE Access, vol. 7,

pp. 79523–79544, 2019.

[90] M. Agiwal, A. Roy, and N. Saxena, ‘‘Next generation 5G wireless net-

works: A comprehensive survey,’’ IEEE Commun. Surveys Tut., vol. 18,

no. 3, pp. 1617–1655, 3rd Quart., 2016.

[91] W. Yu, H. Xu, H. Zhang, D. Griffith, and N. Golmie, ‘‘Ultra-

dense networks: Survey of state of the art and future directions,’’

in Proc. 25th Int. Conf. Comput. Commun. Netw. (ICCCN), Aug. 2016,

pp. 1–10.

[92] D. Kreutz, F. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky,

and S. Uhlig, ‘‘Software-defined networking: A comprehensive survey,’’

Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

[93] A. Halavais, Search Engine Society. Hoboken, NJ, USA: Wiley, 2017.

[94] X. Yang, T. Wang, X. Ren, and W. Yu, ‘‘Survey on improving data utility

in differentially private sequential data publishing,’’ IEEE Trans. Big

Data, to be published.

[95] D. Li, Q. Yang, D. An, W. Yu, X. Yang, and X. Fu, ‘‘On location privacy-

preserving online double auction for electric vehicles in microgrids,’’

IEEE Internet Things J., to be published.

[96] F. Liang,W.G.Hatcher, G.Xu,W. Liao, andW.Yu, ‘‘Towards online deep

learning based energy forecasting,’’ in Proc. IEEE Int. Conf. Comput.

Commun. Netw. (ICCCN), Jul. 2019.

[97] Q. Yang, Y. Liu, T. Chen, and Y. Tong, ‘‘Federated machine learning:

Concept and applications,’’ ACM Trans. Intell. Syst. Technol., vol. 10,

no. 2, pp. 12:1–12:19, 2019. doi: 10.1145/3298981.

[98] S. J. Pan and Q. Yang, ‘‘A survey on transfer learning,’’ IEEE Trans.

Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010.

[99] W. Gao, W. Yu, F. Liang, W. G. Hatcher, and C. Lu, ‘‘Privacy-preserving

auction for big data trading using homomorphic encryption,’’ IEEE Trans.

Netw. Sci. Eng., to be published.

[100] D. An, Q. Yang, W. Yu, D. Li, and Y. Zhang, ‘‘Towards truthful auction

for big data trading,’’ in Proc. 36th IEEE Int. Perform. Comput. Commun.

Conf. (IPCCC), Dec. 2017, pp. 1–7.

[101] Y. Jiao, P. Wang, D. Niyato, M. A. Alsheikh, and S. Feng, ‘‘Profit

maximization auction and data management in big data markets,’’

in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), May 2017,

pp. 1–6.

[102] D. Niyato, D. T. Hoang, N. C. Luong, P. Wang, D. I. Kim, and

Z. Han, ‘‘Smart data pricing models for the Internet of Things:

A bundling strategy approach,’’ IEEE Netw., vol. 30, no. 2, pp. 18–25,

Feb. 2016.

[103] D. An, Q. Yang, W. Yu, X. Yang, X. Fu, and W. Zhao, ‘‘SODA: Strategy-

proof online double auction scheme for multimicrogrids bidding,’’

IEEE Trans. Syst., Man, Cybern. Syst., vol. 48, no. 7, pp. 1177–1190,

Jul. 2018.

[104] D. Li, Q. Yang, W. Yu, D. An, X. Yang, and W. Zhao, ‘‘A strategy-

proof privacy-preserving double auction mechanism for electrical

vehicles demand response in microgrids,’’ in Proc. 36th IEEE

Int. Perform. Comput. Commun. Conf. (IPCCC), Dec. 2017,

pp. 1–8.

[105] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,

J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis,

and D. Kumar, ‘‘Understanding the mirai botnet,’’ in Proc. 26th USENIX

Conf. Secur. Symp. (SEC). Berkeley, CA, USA: USENIX Associa-

tion, 2017, pp. 1093–1110. [Online]. Available: http://dl.acm.org/citation.

cfm?id=3241189.3241275

[106] S. Soltan, P. Mittal, and H. V. Poor, ‘‘BlackIoT: IoT botnet of high

wattage devices can disrupt the power grid,’’ in Proc. 27th USENIX

Conf. Secur. Symp. (SEC). Berkeley, CA, USA: USENIX Associa-

tion, 2018, pp. 15–32. [Online]. Available: http://dl.acm.org/citation.

cfm?id=3277203.3277206

[107] Z. Ling, J. Luo, Y. Xu, C. Gao, K.Wu, andX. Fu, ‘‘Security vulnerabilities

of Internet of Things: A case study of the smart plug system,’’ IEEE

Internet Things J., vol. 4, no. 6, pp. 1899–1909, Dec. 2017.

[108] E. Bertino and N. Islam, ‘‘Botnets and Internet of Things security,’’ Com-

puter, vol. 50, no. 2, pp. 76–79, Feb. 2017. doi: 10.1109/MC.2017.62.

[109] A. Morse. (May 2017). Investigation: WannaCry cyber attack and the

NHS. National Audit Office. [Online]. Available: https://www.nao.

org.uk/wp-content/uploads/2017/10/Investigation-WannaCry-cyber-

attack-and-the-NHS.pdf

[110] R. Williams, E. McMahon, S. Samtani, M. Patton, and H. Chen, ‘‘Iden-

tifying vulnerabilities of consumer Internet of Things (IoT) devices:

A scalable approach,’’ in Proc. IEEE Int. Conf. Intell. Secur. Inform. (ISI),

Jul. 2017, pp. 179–181.

[111] B. Pearson, L. Luo, Y. Zhang, R. Dey, Z. Ling, M. Bassiouni, and

X. Fu, ‘‘On misconception of hardware and cost in IoT security

and privacy,’’ in Proc. IEEE Int. Conf. Commun. (ICC), May 2019,

pp. 1–7.

[112] D.W. Archer, D. Bogdanov, Y. Lindell, L. Kamm, K. Nielsen, J. I. Pagter,

N. P. Smart, and R. N. Wright, ‘‘From keys to databases—Real-world

applications of secure multi-party computation,’’ Comput. J., vol. 61,

no. 12, pp. 1749–1771, Dec. 2018.

[113] Tor. Accessed: Jun. 17, 2019. [Online]. Available:

https://www.torproject.org/

[114] W. Yu, X. Fu, S. Graham, D. Xuan, and W. Zhao, ‘‘DSSS-based flow

marking technique for invisible traceback,’’ in Proc. IEEE Symp. Security

Privacy (SP), May 2007, pp. 18–32.

104690 VOLUME 7, 2019

http://doi.acm.org/10.1145/3298981
http://dx.doi.org/10.1109/MC.2017.62


F. Liang et al.: Search Engine for the Internet of Things: Lessons From Web Search, Vision, and Opportunities

FAN LIANG received the bachelor’s degree in

computer science from Northwestern Polytechni-

cal University, China, in 2005, and the master’s

degree in computer engineering from the Univer-

sity of Massachusetts Dartmouth, in 2015. He is

currently pursuing the Ph.D. degree in computer

science with Towson University. His research

interests include big data, the Internet of Things,

and security.

CHENG QIAN received the B.S. degree from Jian-

qiao University, Shanghai, China, in 2018. He is

currently pursuing the M.S. degree with Towson

University. His research interests include the Inter-

net of Things, cyberspace security and privacy, and

computer networks.

WILLIAM GRANT HATCHER received the B.Sc.

degree in materials science and engineering from

the University of Maryland and the master’s

degree in computer science from Towson Univer-

sity, in 2018, where he is currently pursuing the

Ph.D. degree. His research interests includemobile

computing and security, big data, and machine

learning.

WEI YU received the B.S. degree in electrical

engineering from the Nanjing University of Tech-

nology, Nanjing, China, in 1992, the M.S. degree

in electrical engineering from Tongji University,

Shanghai, China, in 1995, and the Ph.D. degree

in computer engineering from Texas A&M Uni-

versity, in 2008. He is currently a Full Professor

with the Department of Computer and Information

Sciences, Towson University, MD, USA. Before

joining Towson University, he was with Cisco Sys-

tems, Inc., for nine years. His research interests include cyberspace security

and privacy, cyber-physical systems, the Internet of Things, and big data. He

was a recipient of the 2014 NSF Faculty CAREER Award, the 2015 Uni-

versity System of Maryland (USM) Regents’ Faculty Award for Excellence

in Scholarship, Research, or Creative Activity, and the University System

of Maryland (USM)’s Wilson H. Elkins Professorship Award, in 2016. His

work has also received the Best Paper Awards from the IEEE ICC 2008, ICC

2013, IEEE IPCCC 2016, and WASA 2017.

VOLUME 7, 2019 104691


	INTRODUCTION
	OVERVIEW OF WEB SEARCH ENGINE
	DEMANDS AND HISTORY
	WEBSITE NAVIGATION
	TEXT RETRIEVAL
	INTEGRATION AND ANALYSIS
	INTELLIGENCE AND CUSTOMIZATION

	CHARACTERISTICS
	RELIABILITY
	CRAWLING
	RANKING

	ARCHITECTURES AND WORKFLOW
	ARCHITECTURES
	WORKFLOW


	IOT SEARCH ENGINE
	DESIGN MOTIVATIONS OF IOT SEARCH ENGINE
	DATA SHARING
	RESOURCE INTEGRATION
	ARTIFICIAL INTELLIGENCE

	FUNDAMENTALS OF IOT SEARCH ENGINE
	COMPONENTS OF IOT SEARCH ENGINES
	ARCHITECTURES

	IoT SEARCH TECHNIQUES
	LOCATION-BASED SEARCH
	CONTENT-BASED SEARCH
	HETEROGENEOUS SEARCH


	PROBLEM SPACE OF IoT SEARCH ENGINE
	CPS AND IoT
	PROBLEM SPACE
	OPPORTUNITIES
	DATA RETRIEVAL
	DATA COMPREHENSIVE ANALYSIS
	SYSTEM AUTOMATION
	ARTIFICIAL INTELLIGENCE

	CHALLENGES
	DYNAMIC ENVIRONMENTS
	SEARCH TECHNIQUES
	PERFORMANCE AND SECURITY


	FUTURE DIRECTIONS
	CO-DESIGN WITH OTHER TECHNIQUES
	MULTI-SYSTEM INTERACTION
	PERFORMANCE OPTIMIZATION
	SECURITY AND PRIVACY
	FOUNDATION FOR DATA AND NETWORK SCIENCE

	FINAL REMARKS
	REFERENCES
	Biographies
	FAN LIANG
	CHENG QIAN
	WILLIAM GRANT HATCHER
	WEI YU


