
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Search engines that learn from their users

Schuth, A.G.

Publication date
2016
Document Version
Final published version

Link to publication

Citation for published version (APA):
Schuth, A. G. (2016). Search engines that learn from their users.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:25 Aug 2022

https://dare.uva.nl/personal/pure/en/publications/search-engines-that-learn-from-their-users(0e7d7585-40b1-4f96-940b-338020cb4287).html

Search Engines that Learn from

Their Users

Anne Gerard Schuth

Search Engines that Learn from

Their Users

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de

Universiteit van Amsterdam

op gezag van de Rector Magnificus

prof.dr. D.C. van den Boom

ten overstaan van een door het College voor Promoties ingestelde

commissie, in het openbaar te verdedigen in

de Aula der Universiteit

op vrijdag 27 mei 2016, te 13:00 uur

door

Anne Gerard Schuth

geboren te Groningen

Promotiecommissie

Promotor:

Prof. dr. M. de Rijke Universiteit van Amsterdam

Co-promotor:

Dr. S.A. Whiteson University of Oxford

Overige leden:

Prof. dr. T. Joachims Cornell University

Dr. E. Kanoulas Universiteit van Amsterdam

Prof. dr. D. Kelly University of North Carolina

Dr. M.J. Marx Universiteit van Amsterdam

Prof. dr. M. Welling Universiteit van Amsterdam

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

SIKS Dissertation Series No. 2016-11

The research reported in this thesis has been carried out

under the auspices of SIKS, the Dutch Research School

for Information and Knowledge Systems.

This research was supported by the European Community’s Seventh Framework Pro-

gramme (FP7/2007-2013) under grant agreement nr 288024 (LiMoSINe project).

Copyright © 2016 Anne Schuth, Amsterdam, The Netherlands

Cover by David Graus

Printed by Off Page, Amsterdam

ISBN: 978-94-6182-674-9

Acknowledgments

Almost nine years ago, I contacted a professor for a bachelor thesis project that had caught

my eye. It was the start of a fruitful period during which I learned as much about the topic

of my research and science in general as I did the people around me and myself. This

period now comes to an end and I want to thank all the people that played an important

role.

ILPS, the research group that adopted me while I was still a bachelor student, is a truly

unique place to do research. While science is often seen as a solitary profession, I never

experienced it as such. The atmosphere in the group has always been very supportive

and cooperative. And for this I have to thank Maarten de Rijke, my supervisor, who built

the group. I cannot thank Maarten enough. He taught me how to ask questions, which

questions were important to ask, and how to answer them. His teaching, however, went far

beyond science when we spent much of our weekly meetings talking about much broader

topics than the papers we were writing. Thank you, Maarten.

Secondly, I want to thank Shimon Whiteson, my co-promotor, who has been a driving

force for me. Coming from a more formal discipline, Shimon was there to point me in the

right direction whenever my reasoning was flawed. Thank you for being persistent.

I am very honored to have Thorsten Joachims, Evangelos Kanoulas, Diane Kelly,

Maarten Marx and Max Welling serving on my PhD committee.

I would also like to especially thank Maarten Marx for being very welcoming when I

contacted him as a bachelor student. He first introduced me to research and showed me

how much fun it could be. I also want to thank the other members of ILPS back then

for allowing me to take a desk and have lunch and drinks with them: Balder, Bouke,

Breyten, Edgar, Erik, Jiyin, Katja, Krisztian, Loredana, Marc, Manos, Nir, Valentin,

and Wouter. Christof Monz, also in ILPS, then agreed to supervise my master thesis

on statistical machine translation. I very much enjoyed working with him and the other

SMTers: Bogomil, Simon, and Spyros. During the one year that I worked as scientific

programmer, we had a great team with Arjan, Bart, Johan, Justin, and Lars.

I want to thank all the other people in and around ILPS that were part of my journey

as a PhD student: Abdo, Adith, Aleksandr, Alexey, Amit, Anna, Arianna, Artem, Bob,

Caroline, Cristina, Christophe, Chuan, Daan, Damiano, Damien, David, David, Diederik,

Eva, Evangelos, Evgeny, Fares, Fei, Floor, Fons, Guangliang, Hamid, Harrie, Hendrike,

Hosein, Ilya, Isaac, Ivan, Katya, Ke, Marlies, Marzieh, Masrour, Mustafa, Nikos, Petra,

Praveen, Richard, Ridho, Shangsong, Tobias, Tom, Xinyi, and Zhaochun. I want to

thank you for your friendship and for the countless evenings at Oerknal or wherever the

conference train would bring us. Thank you Daan for looking out for others, David for

disagreeing with me, Marlies for always being uplifting.

I want to thank all my co-authors. In particular Katja from whom I learned a lot.

Harrie, who was always fast to produce and question results. I also want to thank Damien,

Filip, Floor, Krisztian, Liadh and the students with whom I wrote papers.

I want to thank my students who have taught me more than I taught them.

I owe much to Petra and Caroline who took care of so much and were a pleasure to

work with. Auke and Jeroen, thank you for taking care of our machines, but even more

for all the discussions we had about infrastructure, I learned a lot.

During three months in Moscow, I had the pleasure of working with many great people

at Yandex. In particular, I want to thank Damien, Eugene, and Pavel. In Cambridge, Filip

and Katja were incredible mentors.

I want to thank the research community, of which I feel I have become part, for being

awesome. It was great to meet all these wonderful people again and again wherever there

was a conference.

Collaborations have been very valuable to me. I want to thank Joemon’s research

group in Glasgow for all the interactions we have had. I want to thank Sander Kieft at

Sanoma for believing in our research. Agnes, Henning, Jakub, and Remko at Textkernel

for showing me what search looked like in practice. Krisztian and Liadh for taking me

on board of the Living Labs initiative. The collaborations with Seznam and SOARR that

came from the Living Labs initiative have also been very valuable to me, thank you Jir̆ı́,

Philipp, Narges for believing in the initiative.

I want to thank my fellow members of UvAPro and the FNWI PhD council. I enjoyed

our many discussions. I also want to thank the ReThink UvA movement and in particular

Sicco with whom I had countless discussions on what a university ideally should look

like, and on how far we are from this ideal.

Ik wil graag mijn studiegenoten bedanken. Zij zorgden ervoor dat het meer dan een

studie was: Aksel, Bram, Folkert, Gijs, Hanne, Hylke, Mark, Tjerk. En ik wil graag al

mijn vrienden bedanken die bereid waren mijn eindeloze gepraat over mijn onderzoek

aan te horen. Maar die er ook voor zorgden dat ik me er niet volledig in verloor. In het

bijzonder bedank ik Bart, Bart-Jan, Guido, Willem Frederik, en Wisse.

Als laatste wil ik mijn familie bedanken. Mijn ouders, Paula en Gerard, omdat ze

me altijd steunden. Wout en Rozalie voor het altijd tonen van interesse. Mijn oma, Sina,

omdat ze het tolereert dat haar kleinzoon nog altijd studeert. Nina, mijn liefde, omdat ze

er altijd is.

Contents

1 Introduction 1

1.1 Research Outline and Questions . 3

1.1.1 Evaluation of Search Engines 3

1.1.2 Learning Search Engines . 5

1.1.3 Online Evaluation and Learning Methodology 7

1.2 Main Contributions . 8

1.2.1 Algorithmic Contributions . 8

1.2.2 Theoretical Contributions . 9

1.2.3 Empirical Contributions . 9

1.2.4 Software Contributions . 10

1.3 Thesis Overview . 11

1.4 Origins . 11

2 Background 13

2.1 Information Retrieval . 13

2.1.1 A Brief History of Information Retrieval 13

2.1.2 Modern Information Retrieval 14

2.1.3 Retrieval Models . 15

2.2 Offline Evaluation . 16

2.2.1 Cranfield-style Evaluation . 17

2.2.2 User Studies . 18

2.3 Online Evaluation . 18

2.3.1 Interpreting User Interactions 19

2.3.2 A/B Testing . 20

2.3.3 Interleaving . 21

2.3.4 K-Armed Dueling Bandits Problem 24

2.3.5 Counterfactual Analysis . 24

2.3.6 Click Models . 25

2.4 Offline Learning to Rank . 26

2.4.1 Pointwise Learning to Rank 26

2.4.2 Pairwise Learning to Rank . 27

2.4.3 Listwise Learning to Rank . 27

2.5 Online Learning to Rank . 28

2.5.1 Dueling Bandit Gradient Descent 28

2.5.2 Reusing Historical Interaction Data 29

3 Experimental Methodology 31

3.1 Experimental Setup . 31

3.2 Data Sets . 31

3.3 Simulating Users . 32

3.4 Evaluation . 34

v

CONTENTS

I Online Evaluation 35

4 Multileaved Comparisons 37

4.1 Introduction . 37

4.2 Related Work . 40

4.3 Problem Definition . 40

4.4 Methods . 41

4.4.1 Team Draft Multileave . 41

4.4.2 Optimized Multileave . 41

4.4.3 Probabilistic Multileave . 46

4.5 Experiments . 49

4.5.1 Data Sets . 49

4.5.2 Selecting Rankers . 49

4.5.3 Simulating Clicks . 49

4.5.4 Experimental Runs . 50

4.5.5 Parameter Settings . 50

4.6 Results and Analysis . 51

4.6.1 Team Draft Multileave and Optimized Multileave 51

4.6.2 Probabilistic Multileave . 61

4.7 Discussion off K-Armed Dueling Bandits 63

4.8 Conclusion . 65

4.9 Future Work . 65

5 Predicting A/B Testing with Interleaved Comparisons 67

5.1 Introduction . 67

5.2 Related Work . 69

5.2.1 Optimizing Interleaving Metrics 70

5.3 Background . 70

5.3.1 Common A/B Metrics . 70

5.3.2 Interleaving . 72

5.4 Data Analysis . 73

5.4.1 Data . 73

5.4.2 Estimating Power and Agreement 73

5.4.3 Data Analysis Results . 75

5.4.4 Implications . 77

5.5 Methods . 77

5.5.1 Formalizing Interleaving Credit 77

5.5.2 Matching A/B Credit . 78

5.5.3 Parameterized Credit Functions 79

5.5.4 Combined Credit Functions 79

5.5.5 Maximizing Agreement with A/B Metrics 79

5.6 Experiments and Results . 81

5.6.1 Matching A/B Credit . 82

5.6.2 Parameterized Credit Functions 84

5.6.3 Combined Credit Functions 86

5.7 Conclusion . 87

vi

CONTENTS

5.8 Future Work . 87

II Online Learning to Rank 89

6 Learning Parameters for Existing Rankers using Users Interactions 91

6.1 Introduction . 91

6.2 Related Work . 93

6.3 Methods . 94

6.3.1 Implementation of BM25 . 94

6.3.2 Learning from Clicks . 95

6.4 Experiments . 96

6.4.1 Data Sets . 96

6.4.2 Clicks . 96

6.4.3 Parameter Settings . 96

6.4.4 Evaluation and Significance Testing 97

6.5 Results and Analysis . 97

6.5.1 Measuring the Performance of BM25 with Manually Tuned Pa-

rameters . 97

6.5.2 Learning Parameters of BM25 Using Clicks 99

6.6 Conclusion . 100

6.7 Future Work . 102

7 Learning from Multileaved Comparisons 105

7.1 Introduction . 105

7.2 Related Work . 107

7.3 Multileave Gradient Descent . 107

7.3.1 Extending DBGD with Multileaving 107

7.3.2 Multileave Approaches to Gradient Descent 108

7.4 Experiments . 109

7.4.1 Data Sets . 110

7.4.2 Simulating Clicks . 110

7.4.3 Experimental Runs . 110

7.4.4 Evaluation . 110

7.5 Results and Analysis . 115

7.5.1 Learning Speed . 115

7.5.2 Convergence . 116

7.5.3 Comparing Outcome Interpretations 117

7.5.4 Number of Candidates and Learning Rate 118

7.6 Conclusion . 120

7.7 Future Work . 121

vii

CONTENTS

III Resources and Methodology 123

8 Lerot: Simulating Users 125

8.1 Introduction . 125

8.2 Framework . 127

8.2.1 Learning Algorithms . 128

8.2.2 Interleaved Comparison Methods 128

8.2.3 User Models . 130

8.2.4 Evaluation . 131

8.3 Implementation . 131

8.3.1 Installation . 132

8.3.2 Configuration . 132

8.3.3 Running . 133

8.4 Conclusion . 134

8.5 Future Work . 134

9 OpenSearch: Actual Users 135

9.1 Introduction . 136

9.2 Related Work . 137

9.3 OpenSearch Architecture . 138

9.3.1 Overview . 139

9.3.2 Lab Organization . 140

9.3.3 Evaluation Metric . 141

9.4 Implementation and Results . 142

9.5 Limitations . 142

9.6 Conclusion . 142

9.7 Future Work . 143

10 Conclusions 145

10.1 Main Findings . 145

10.2 Summary of Findings . 149

10.3 Future Work . 150

10.3.1 Online Evaluation . 150

10.3.2 Online Learning to Rank . 150

10.3.3 Online Learning and Evaluation Methodology 151

Bibliography 153

List of Terms 163

Samenvatting 167

viii

1
Introduction

Over half a billion web searches are performed every single day [46] by over half the

world’s population [204]. For many people, web search engines such as Baidu, Bing,

Google, and Yandex are among the first resources they go to when any question arises.

What is more, these web search engines have for many become the most trusted source

of information, more so even than traditional media such as newspapers, news websites

or news channels on television [54]. What web search engines present people with thus

greatly influences what they believe to be true and consequently it influences their thoughts,

opinions, decisions, and the actions they take. It matters a great deal what search engines

present people with; more and more our world depends on them [184]. With this in mind,

from an information retrieval (IR)1 research perspective, two things are important. First, it

is important to understand how well search engines perform and secondly this knowledge

should be used to improve them. This thesis is about these two topics: evaluation of

search engines and learning search engines.

Evaluation—understanding how well search engines perform—has always been a major

area within IR research [155, page 250] and now that search engines have such a large

impact on society, evaluating them is more important than ever. It is not only of commercial

importance to the companies running web search engines, but now that more and more

of the world’s beliefs depend on it, evaluation is of great importance to society too. It

is crucial to understand whether—or, to what degree—the trust people put into search

engines is justified. Moreover, evaluation of search engines not only gives insight into

the quality of the engine, it also enables reliable improvement of the search engine. As

the British scientist Lord Kelvin stated, “if you cannot measure it, you cannot improve

it” [190]. Evaluation serves as crucial guidance towards better search engines, towards

search engines that serve their users better.

Traditionally, search engines were evaluated following the Cranfield approach [45,

155]. Using this approach, systems are evaluated in terms of document relevance for given

queries, which is assessed by trained experts. While the Cranfield paradigm ensures high

internal validity and repeatability of experiments, it has been shown that users’ search

success and satisfaction with an IR system are not always accurately reflected by standard

IR metrics [187, 193].

One reason is that the judges typically do not assess queries and documents that reflect

1We maintain a list of acronyms at the back of this thesis, on page 163.

1

1. Introduction

their own information needs, and have to make assumptions about relevance from an

assumed user’s point of view. Because the true information need can be difficult to assess,

this can cause substantial biases. Conclusions drawn from analyses on data sets consisting

of relevance assessments do not always agree with preferences from actual users of search

engines [155].

A second difficulty with these data sets is that they are hard and expensive to produce

and keep up to date. The manual effort required to obtain a substantial amount of high

quality relevance judgments is enormous [7]. Doing so for an ever changing stream of

queries coming from users is prohibitively expensive.

Besides the two issues mentioned before, data sets are actually not as easily reusable

as they may seem at first glance. The Cranfield approach requires a diverse set of systems

to produce rankings before any relevance judging takes place. A so-called pooling process

combines the top k documents of each produced ranking and only these documents are

actually assessed for relevance. As a consequence, only systems that are reasonably

similar to the systems that produced the pool can ever be evaluated using the data set. A

radically different system that might be much better than any of the systems contributing

to the pool, would never be able to obtain a good score as none of the documents it ranks

was ever assessed [196].

For all these reasons researchers have been looking for alternatives that do not suffer

from these drawbacks. The Cranfield way of evaluating can be referred to as offline

evaluation because there are no users interacting with a real, online system. In contrast,

the alternative then is called online evaluation. Online evaluation uses the interactions of

real and unsuspecting users of search engines for evaluation instead of professional human

judges. These users have their natural information needs that made them decide to use the

search engine. These users have a task in mind that they wish to solve. This task often

extends beyond just search [114]. Search, for these users, is just a means to an end. These

users come to the search engine, translate their information need into a keyword query

and are determined to find what they need to complete their task. To this end they interact

with the search engine. They may, for instance, reformulate their query or click around in

result lists presented to them. All these traces of user interactions with the search engine

are easily captured and can then be interpreted as implicit signals for evaluation. For

instance, one could measure how often users need to reformulate their queries before they

stop search, and presumably are satisfied with the results. Or one could measure where in

a result list users click, the intuition being that it is better if users click higher in such a

list because a user scanning the list from top bottom found it faster. Alternatively, one

could measure the time it took until a user clicked a document, where the intuition again

is that it is better if users spend less time to find what they were looking for. All these

signals, and often many of them combined, are good indicators of performance of a search

engine. Moreover, these interactions are the natural byproduct of users interacting with a

search engine. When such interactions are used, explicit relevance judgments from trained

assessors are no longer required. Without doing anything out of the ordinary, many search

engines in fact already store all these interactions in their search logs. How to use these

interactions for evaluation in a reliable and effective way is explored extensively in Part I

of this thesis.

Search engines have become highly complex machines that incorporate hundreds or even

2

1.1. Research Outline and Questions

thousands of signals, each contributing to a part of the search solution. These signals

are combined into a single ranking model—often called a ranker—that produces the

rankings shown to users. A ranker is at the heart of every search engine. The signals—also

referred to as features—that a ranker combines each serve a different purpose. Some

reflect the importance of a document—a webpage in the case of web search—by looking

at documents pointing to it and how important these documents are [139]. Other signals

indicate whether the terms in the keyword query appear in the document and whether

these terms are informative [146]. Many variants of such signals exist. A large body of

research is aimed at improving the signals, while another large body of work looks into

learning to rank (LTR): learning how to combine all these signals optimally [124]. The

second part of this thesis is about the latter.

Traditionally, learning to rank, like evaluation, was done offline. Offline learning to

rank is supervised machine learning: rankers are optimized based on their rankings for a

fixed set of queries with an offline evaluation metric as target. All the downsides of offline

evaluation, as described above, apply. It is expensive to produce data sets that contain

human judgements, but more importantly, conclusions that are drawn from such data sets

do not always agree with preferences of actual search engine users [155].

An alternative approach to learning optimal rankers uses online evaluation methods.

Such an approach considers interactions of users with the search engines. A user’s behavior

such as clicks can reveal their preference. Since such interactions are readily available in

large quantities, it makes sense to learn from them instead. Learning in this fashion, while

interacting with users, is referred to as online learning to rank [82, 92, 144, 207] and is

discussed in Part II of this thesis.

In the next section we outline the research in this thesis and the questions that are answered

within it.

1.1 Research Outline and Questions

This thesis investigates whether, how and to what degree search engines can learn from

their users? This thesis consists of three parts. All learning starts with evaluation: if

you cannot measure it, you cannot improve it [190]. We therefore, in Part I, dive into

evaluation of search engines before we investigate how this can be used for learning in

Part II. This section sketches the outline of our research. Below, we introduce the research

questions answered in the first two parts of thesis.

In Part III we investigate both online evaluation and learning methodologies. This

part is not centered around research questions but rather around the design of these

methodologies.

1.1.1 Evaluation of Search Engines

Part I discusses the evaluation of search engines.

Deployed search engines often have several teams of engineers tasked with developing

potential improvements to the current production ranker. To determine whether the

candidate rankers they develop are indeed improvements, such teams need experimental

feedback about their performance relative to the production ranker. However, in order

3

1. Introduction

to develop and refine those candidate rankers in the first place, they also need more

detailed feedback about how the candidate rankers compare to each other. For example,

to explore a parameter space of interest, they may be interested in the relative performance

of multiple rankers in that space.

Several existing approaches could be used to generate this feedback. Firstly, assessors

could produce relevance assessments from which offline metrics (e.g., MAP, nDCG,

ERR [155]) could be computed. However, offline metrics do not tell the whole story since

relevance assessments come from assessors, not users. Offline evaluation is described

in detail in Section 2.2. Secondly, online experiments could generate user feedback

such as clicks from which rankers could be evaluated. In particular, interleaved com-

parison [92, 93] methods enable such evaluations with greater data efficiency than A/B

testing [144]. A/B testing is described in detail in Section 2.3.2 and interleaving is de-

scribed in Section 2.3.3. In short, interleaving [93] is a highly sensitive online evaluation

method that is often used at large scale commercial (web) search engines. One particular

variant of interleaving, called Team Draft Interleaving, works as follows. It combines two

rankings that are to be compared into a single ranking. This interleaved ranking is shown

to a user and the ranker that contributed more documents that were clicked is preferred.

However, teams of engineers can easily produce enough candidate rankers that com-

paring all of them pairwise to each other using interleaving methods quickly becomes

infeasible. To address this difficulty, we propose a new evaluation paradigm, which we

call multileaved comparison, that makes it possible to compare more than two rankers

at once. Multileaved comparisons can provide detailed feedback about how multiple

candidate rankers compare to each other using much less interaction data than would be

required using interleaved comparisons. We ask ourselves the following questions:

RQ1 Can multileaved comparison methods identify preferences between rankers faster

than interleaved comparison methods?

RQ2 How does the sensitivity of multileaving methods compare to that of interleaving

methods?

RQ3 Do multileaving methods improve over interleaving methods in terms of unbiased-

ness and online performance?

In particular, we first propose two specific implementations of multileaved comparisons.

The first, which we call team draft multileave (TDM), builds on team draft interleave

(TDI) [144], an interleaving method that assigns documents in the interleaved list to

a team per ranker. Surprisingly, only a minor extension to TDI is necessary to enable

it to perform multileaved comparisons, yielding TDM. However, despite its appealing

simplicity, TDM has the important drawback that it requires multileavings, i.e., the result

lists shown to the user, to be long enough to represent teams for each ranker.

Therefore, we propose a second method that we call optimized multileave (OM),

which builds on optimized interleave (OI) [143], an interleaved comparison method that

uses a prefix constraint to restrict the allowed interleavings to those that are “in between”

the two rankers and then solves an optimization problem to ensure unbiasedness and to

maximize sensitivity of the interleavings shown to users. OM requires deriving a new

prefix constraint, new definitions of unbiasedness and sensitivity, a new credit function

4

1.1. Research Outline and Questions

upon which these definitions depend, and a new sampling scheme to make optimization

tractable. We verify our motivation for introducing OM by answering the following

question:

RQ4 Does OM scale better with the number of rankers than TDM?

Next, we propose probabilistic multileave (PM) which builds on probabilistic interleave

(PI) [79]. We ask ourselves:

RQ5 How does PM compare to TDM and OM in terms of sensitivity, bias and scaling?

We empirically show that it is highly sensitive and unbiased and scales well to comparing

many rankers. An important implication of this result is that historical interactions

with multileaved comparisons can be reused, allowing for ranker comparisons that need

much less user interaction data. Furthermore, we show that our method, as opposed to

earlier sensitive multileaving methods, scales well when the number of rankers increases.

Chapter 4 answers research questions RQ1 through RQ5.

The gold standard for information retrieval system evaluation is user satisfaction. However,

as online user satisfaction is not directly observable, a significant amount of research has

investigated how to summarize online behavior (such as clicks) into online metrics that

best reflect user satisfaction.

Despite the advantages of interleaving and multileaving in terms of sensitivity, the

most common online evaluation methodology is A/B testing [112]. Users of an online

system are assigned to either a control or experimental condition, with the metric being

computed on each population. However, large numbers of users are typically necessary

to obtain reliable results as this approach has high variance. Interleaved evaluation is an

alternative online approach previously shown to be much more sensitive. However, until

now interleaved evaluation has not modeled user satisfaction as reliably as recent A/B

metrics, resulting in low agreement with recent A/B metrics given realistic differences in

IR system effectiveness.

We ask ourself the following two questions:

RQ6 How do A/B metrics compare to interleaving in terms of sensitivity and agreement?

RQ7 Can A/B metrics and interleaving be made to agree better without loosing sensivity?

Chapter 5 answers research questions RQ6 and RQ7.

1.1.2 Learning Search Engines

In Part II of this thesis, we turn to learning using the evaluation methods described above.

Traditional approaches to evaluating or optimizing rankers are based on editorial data, i.e.,

manually created explicit judgments. Recent years have witnessed a range of alternative

approaches for the purpose of evaluating or optimizing rankers, approaches that reduce or

even avoid the use of explicit manual judgments.

One type of approach is based on so-called pseudo test collections, where judgments

about query-document pairs are automatically generated by repurposing naturally occur-

ring labels such as hashtags or anchor texts [10, 21].

5

1. Introduction

Another type of approach is based on the use of implicit signals. The use of implicit

signals such as click data to evaluate or optimize retrieval systems has long been a

promising alternative or complement to explicit judgments. Evaluation methods that

interpret clicks as absolute relevance judgments have often been found unreliable [95].

In some applications, e.g., for optimizing the click-through rate in ad placement and

web search, it is possible to learn effectively from click data, using various learning to

rank methods, often based on bandit algorithms [77, 207]. Click models can effectively

leverage click data to allow more accurate evaluations with relatively little editorial

data [30]. Moreover, interleaved comparison methods have been developed that use clicks

not to infer absolute judgments but to compare rankers by observing clicks on interleaved

result lists [144].

The state-of-the-art click-based optimization of IR systems has focused on optimizing

a linear combination of the base rankers, thereby treating those rankers as black boxes [83,

207]. In this chapter, we try to break open those black boxes and examine whether online

learning to rank can be leveraged to optimize those base rankers themselves. Surprisingly,

even though a lot of work has been done on improving the weights of base rankers in

a combined learner, there is no previous work on online learning of the parameters of

base rankers and there is a lot of potential gain from this form of optimization. We

investigate whether individual base rankers can be optimized using clicks. This question

has two key dimensions. First, we aim to use clicks, an implicit signal, instead of explicit

judgments. The topic of optimizing individual base rankers such as term frequency

times inverse document frequency (TF.IDF), best match 25 (BM25) or divergence from

randomness (DFR) has received considerable attention over the years but that work has

almost exclusively used explicit judgments. Second, we work in an online setting while

previous work on optimizing base rankers has almost exclusively focused on a more or

less traditional, Cranfield-style, offline setting.

Importantly, the problem of optimizing base rankers is not the limiting case of the

problem of optimizing a linear combination of base rankers where one has just one base

ranker. Unlike the scoring function that represents a typical online learning to rank

solution, the scoring function for a single base ranker is not necessarily linear, meaning

that the ranker is not necessarily a linear combination of raw ranking features. A clear

example is provided by the well-known BM25 ranker [146], which has three parameters

that are related in a non-linear manner: k1, k3 and b.
In Chapter 6, we pursue the problem of optimizing a base ranker using clicks by

focusing on BM25. Currently, it is common practice to choose the parameters of BM25

according to manually tuned values reported in the literature, or to manually tune them

for a specific setting based on domain knowledge or a sweep over a number of possible

combinations using guidance from an annotated data set [147]. We propose an alternative

by learning the parameters from click data. Our goal is not necessarily to improve

performance over manually tuned parameter settings, but rather to obviate the need for

manual tuning.

Specifically, the research questions we aim to answer are as follows.

RQ8 How good are the manually tuned parameter values of BM25 that are currently

used? Are they optimal for all data sets on average? Are they optimal for individual

data sets?

6

1.1. Research Outline and Questions

RQ9 Is it possible to learn good values of the BM25 parameters from clicks? Can we

approximate or even improve the performance of BM25 achieved with manually

tuned parameters?

Chapter 6 answers research questions RQ8 and RQ9.

Traditionally, learning in the context of information retrieval in general was done offline

by optimizing for performance on a training set consisting of queries and relevance

assessments produced by human assessors. As pointed out previously, such data sets

are time consuming and expensive to produce and assessments are not always in line

with actual user preferences [155]. User interactions, and in particular clicks, are readily

available and have proven to be a valuable source of information when interpreted as a

preference between either rankings [144] or documents [92]. In particular, as described

above, when clicks are interpreted using interleaved comparison methods, they can reliably

infer preferences between a pair of rankers [34, 92, 93].

Dueling bandit gradient descent (DBGD) [207] is an online learning to rank algorithm

that learns from these interleaved comparisons. It uses the inferred preferences to estimate

a gradient, which is followed to find a locally optimal ranker. At every learning step,

DBGD estimates this gradient with respect to a single exploratory ranker and updates its

solution if the exploratory ranker seems better. Exploring more than one ranker before

updating towards a promising one could lead to finding a better ranker using fewer updates.

For this purpose we can use multileaved comparisons such as TDM, as introduced above.

In this way, our proposed method, multileave gradient descent (MGD), aims to speed up

online learning to rank.

We propose two variants of MGD that differ in how they estimate the gradient. In MGD

winner takes all (MGD-W), the gradient is estimated using one ranker randomly sampled

from those that won the multileaved comparison. In MGD mean winner (MGD-M), the

gradient is estimated using the mean of all winning rankers.

The research questions we aim to answer are the following.

RQ10 Can MGD learn faster from user feedback (i.e., using fewer clicks) than DBGD

does?

RQ11 Does MGD find a better local optimum than DBGD?

RQ12 Which update approach, MGD-W or MGD-M, learns faster? Which finds a better

local optimum?

Chapter 7 answers research questions RQ10 through RQ12.

1.1.3 Online Evaluation and Learning Methodology

Part III of this thesis discusses the methodology of online experimentation. This part is

of a very different nature than the earlier two parts. As opposed to the earlier chapters,

in this part we will no longer study algorithms. IR research has always been driven by a

combination of algorithms, shared resources, and evaluation. In Part III we will introduce

a new shared resource in the form of a learning framework. We will also introduce a new

evaluation paradigm. Our research in this last part of the thesis will not be centered around

7

1. Introduction

research questions but rather around designing these shared resources and designing the

new evaluation methodology.

Performing online experiments in principle requires access to real users. This is often

not available to researchers. And what is more, very new ideas are often not suitable for

being exposed to real users. We therefore create an online learning to rank framework

which allows for experimenting with simulated users. We implemented and distribute our

framework in an open source software package called learning and evaluating rankers

online toolkit (Lerot). In Lerot, presented in this thesis, we bundle all ingredients needed

for experimenting with online learning to rank for IR. Lerot includes several online

learning algorithms, interleaving methods and a full suite of ways to evaluate these

methods. In the absence of real users, the evaluation method bundled in the software

package is based on simulations of users interacting with the search engine. The software

presented here has been used to verify findings of over six papers at major information

retrieval venues over the last few years. We describe Lerot in detail in Chapter 8.

Finally, we turn to experiments with real users of search engines by introducing OpenSearch,

the living labs for IR evaluation. The idea with this living lab is to provide a benchmarking

platform for researchers to evaluate their ranking systems in a live setting with real users

in their natural task environments. OpenSearch represents the first attempt to offer such

an experimental platform to the IR research community in the form of a community

challenge. In this thesis we describe how living lab experiments can be performed, how

such experiments are actually run, what the resulting outcomes are, and provide a de-

tailed analysis of the use-cases and a discussion of ideas and opportunities for future

development research directions. OpenSearch is described in detail in Chapter 9.

1.2 Main Contributions

In this section we summarize the main contributions of this thesis. Our contributions

come in the form of algorithmic, theoretical, empirical, and software contributions.

1.2.1 Algorithmic Contributions

We list five algorithmic contributions. The first two are online evaluation methods that

extend interleaving methods. Algorithmic contributions 3 and 4 deal with bringing the

outcomes of interleaving methods in line with A/B testing. Our last contribution of this

type, contribution 5, is an online learning to rank method.

1. We introduce three implementations of multileaved comparisons methods team

draft multileave (TDM), optimized multileave (OM), and probabilistic multileave

(PM) (cf. Chapter 4).

2. Our extension of probabilistic interleave (PI) to probabilistic multileave (PM) is a

multileaving method that is able to reuse historical interaction data (cf. Chapter 4).

3. We propose novel interleaving credit functions that are (1) designed to closely

match the implementation and parameters of A/B metrics; or (2) are parameterized

8

1.2. Main Contributions

to allow optimization towards agreement with arbitrary A/B metrics (cf. Chapter 5).

4. We further propose the first approach for automatically maximizing agreement

between interleaving credit functions and A/B metrics (cf. Chapter 5).

5. Lastly, we propose several multileave gradient descent (MGD) approaches to

using multileaved comparison outcomes in an online learning to rank method (cf.

Chapter 7).

1.2.2 Theoretical Contributions

This thesis contains four theoretical contributions. We first propose a new online evaluation

paradigm. Secondly, we propose a statistical method for assessing sensitivity of evaluation

methods. Contribution 8 is insight into the parameter space of BM25. Our last theoretical

contribution is in the area of online evaluation methodology.

6. A novel online ranker evaluation paradigm in which more than two rankers can be

compared at once, called multileaved comparisons (cf. Chapter 4).

7. Starting with existing A/B and interleaving metrics, we propose a new, statistical

method for assessing the sensitivity of these metrics from estimated effect sizes.

The resulting method allows a detailed comparison between metrics in terms of the

power of statistical tests at varying sample sizes. Our analysis shows that A/B tests

typically require two orders of magnitude more data than interleaved comparisons

(cf. Chapter 5).

8. The insight that we can potentially achieve significant improvements of state-of-

the-art learning to rank approaches by learning the parameters of base rankers, as

opposed to treating them as black boxes which is currently the common practice

(cf. Chapter 6).

9. We introduce OpenSearch, the living lab for IR evaluation, a completely new

evaluation paradigm for IR. Within the OpenSearch paradigm the idea is to perform

experiments in situ, with real users doing real tasks using real-world applications

(cf. Chapter 9).

1.2.3 Empirical Contributions

We list a total of ten empirical contributions. Empirical contributions 10 through 13

compare our new online evaluation algorithms to existing baselines. Contributions 14

through 16 are on the topic of bringing interleaving methods and A/B testing in agreement.

Contributions 17 and 18 demonstrate the parameter space of BM25 and how BM25 can be

optimized by learning from users. Our last contribution is that we empirically show that

online learning to rank methods that use our multileaving methods outperform baselines.

10. We provide a thorough experimental comparison of TDM and OM against each

other and against TDI and OI that shows that multileaved comparison methods can

9

1. Introduction

find preferences between rankers much faster than interleaved comparison methods

(cf. Chapter 4).

11. Our experiments also show that TDM outperforms OM unless the number of

rankers becomes too large to handle for TDM, at which point OM performs better

(cf. Chapter 4).

12. Our experiments show that, when the differences between evaluated rankers are

varied, the sensitivity of TDM and OM is affected in the same way as for TDI and

OI (cf. Chapter 4).

13. We show experimentally that PM is at least as sensitive as TDM (which in turn is

more sensitive than OM), that PM is unbiased, and that PM scales well when the

number rankers that are compared increases (cf. Chapter 4).

14. We demonstrate that interleaving credit functions can be automatically optimized,

and that learned parameters generalize to unseen experiments. These results demon-

strate for the first time that interleaving can be augmented with user satisfaction

metrics, to accurately predict the outcomes of A/B tests that would require one to

two orders of magnitude more data (cf. Chapter 5).

15. We find that current interleaved comparisons achieve from random up to 76%
agreement with A/B user satisfaction metrics (cf. Chapter 5).

16. Our empirical results, obtained from experiments with 3 billion user impressions

and 38 paired (A/B and interleaving) experiments demonstrate the effectiveness of

approach to bringing the outcome of interleaving and A/B tests in agreement. In

particular, we achieve agreement of up to 87%, while maintaining high sensitivity

(cf. Chapter 5).

17. A demonstration of how parameters of an individual base ranker such as BM25

can be learned from clicks using the dueling bandit gradient descent approach (cf.

Chapter 6).

18. We gained empirical insight into the parameter space of a base ranker such as BM25

(cf. Chapter 6).

19. Extensive empirical validation of our new online learning to rank methods that use

multileaved comparisons methods show that MGD-W and MGD-M outperform the

state of the art in online learning to rank (cf. Chapter 7).

1.2.4 Software Contributions

We have two software contributions, both are open source and have been contributed to by

several others.

20. We contribute Lerot, an open source implementation of our online learning to rank

framework that has all batteries included. The framework is easily extensible to

compare the implemented methods to new online evaluation and online learning

approaches (cf. Chapter 8).

10

1.3. Thesis Overview

21. We introduce OpenSearch, the first living labs for IR evaluation benchmarking

platform and provide an open source implementation (cf. Chapter 9).

1.3 Thesis Overview

This section provides an overview of this thesis. We finish this section with reading

directions.

The first chapter, to which this section belongs, gives an introduction to the subject of this

thesis. This chapter also provides an overview of the research questions, the contributions

and the origins of this work. Chapter 2 then introduces the background for all six research

chapters that follow. The background material mostly provides background for the first

two parts this thesis. Chapter 3 is a short chapter introducing the experimental setup used

in Chapters 4, 6 and 7.

Part I of this thesis contains research chapters related to online evaluation of search

engines. In particular, Chapter 4 introduces an extension to interleaving methods which

is called multileaving. Chapter 5 then looks into the relation between A/B testing and

interleaving.

Part II of this thesis uses the evaluation methods, discussed in the first part, for learning

purposes. Chapter 6 uses interleaved comparisons for tuning parameters of BM25, a

popular retrieval method. Chapter 7 uses multileaved comparison methods introduced in

Chapter 4 as feedback for its learning method.

Part III is of a different nature than the earlier two parts. This part is more practical

in nature and describes two evaluation methodologies and shared resources. Chapter 8

introduces an online simulation framework which acts as a shared resource for the com-

munity. Chapter 9 describes OpenSearch, a completely new evaluation paradigm that is

an alternative to Cranfield-style evaluation and uses real users using real search engines.

Lastly, in Chapter 10 we draw conclusions and we give an outlook to future work.

Readers familiar with background on online evaluation, online learning to rank may skip

over the respective parts of Chapter 2. Chapter 3 can be read only to understand the details

of the experiments in Chapters 4, 6 and 7.

Part I and Part III can be read independently of other parts. However, Part II assumes

Part I, and in particular Chapter 4, as prerequisite.

1.4 Origins

We list for each research chapter the publications on which it is based. For each publication

we mention the role of each co-author. The thesis is based on in total 8 publications [15,

161–167].

Chapter 4 is based on Multileaved Comparisons for Fast Online Evaluation published

at CIKM’14 by Schuth, Sietsma, Whiteson, Lefortier, and de Rijke [163]. Schuth

performed the experiments for [163], all authors contributed to the design of the

11

1. Introduction

algorithms and to the text. The chapter further builds on Probabilistic Multileave for

Online Retrieval Evaluation published at SIGIR’15 by Schuth, Bruintjes, Büttner,

van Doorn, Groenland, Oosterhuis, Tran, Veeling, van der Velde, Wechsler, Wouden-

berg, and de Rijke [165]. For this paper Büttner, van Doorn, Tran, Veeling and

Wechsler delivered the first version of the text. Bruintjes, Groenland, Oosterhuis,

van der Velde and Woudenburg were involved in the design and implementation

of the experiments. Schuth wrote much of the final version and reimplemented the

experiments. De Rijke contributed to the text.

Chapter 5 is based on Predicting Search Satisfaction Metrics with Interleaved Compar-

isons published at SIGIR’15 by Schuth, Hofmann, and Radlinski [166]. Schuth

performed most of the experiments. All authors contributed equally to the text.

Chapter 6 is based on Optimizing Base Rankers Using Clicks: A Case Study using BM25

published at ECIR’14 by Schuth, Sietsma, Whiteson, and de Rijke [162]. Schuth

performed most of the experiments. All authors contributed to the text.

Chapter 7 is based on Multileave Gradient Descent for Fast Online Learning to Rank

published at WSDM’16 by Schuth, Oosterhuis, Whiteson, and de Rijke [167]. All

authors contributed to the design of the algorithms. Oosterhuis performed most of

the experiments. Schuth wrote a first version and all authors contributed to the text.

Chapter 8 is based on Lerot: an Online Learning to Rank Framework published at the

Living Labs Workshop at CIKM’13 by Schuth, Hofmann, Whiteson, and de Rijke

[161]. All authors contributed to the conception of Lerot. Hofmann implemented

the predecessor of Lerot. Hofmann and Schuth actually implemented Lerot. Schuth

initiated writing and the other authors contributed to writing.

Chapter 9 is based on Head First: Living Labs for Ad-hoc Search Evaluation published

at CIKM’14 by Balog, Kelly, and Schuth [15]. All authors contributed equally and

author order was alphabetical. This chapter is also based on Extended Overview of

the Living Labs for Information Retrieval Evaluation (LL4IR) CLEF Lab 2015 by

Schuth, Balog, and Kelly [164]. All authors contributed to the text. The experiments

were run on the OpenSearch platform implemented mostly by Schuth.

This thesis also, but indirectly, builds on joint work on interleaving methods for aggregated

search [36, 39, 41], evaluation of recommender systems [84], and online learning to rank

[83, 86, 138].

Other work, not directly related to this thesis, did contribute to insight in the broader

research areas of evaluation [159], information extraction [160], and data integration

[129, 130, 137].

12

2
Background

In this chapter we set the stage for the research chapters in this thesis. In Section 2.1, we

start with a historical introduction into the field of information retrieval (IR) including

description of modern IR methods and retrieval models. We then continue with offline

evaluation in Section 2.2, online evaluation in Section 2.3, offline learning to rank in

Section 2.4, and finally online learning to rank in Section 2.5.

Section 2.1 serves as background to the whole thesis. Sections 2.2 and 2.3 are

background to Part I. The Sections 2.4 and 2.5 serve as background to Part II.

2.1 Information Retrieval

We give a historical overview of the scientific field of IR starting in 300BC up, leading up

to a modern view on the field followed by an overview of retrieval models.

2.1.1 A Brief History of Information Retrieval

The Pinakes may have been the first IR system. Callimachus (310/305-240 BC) compiled

this catalog of the Library of Alexandria [55]. The Pinakes contained an—what we would

now call—inverted index: an alphabetical list of topics with for each topic a list of papyrus

scrolls about the topic and where they could be found. In total 500,000 scrolls were

indexed this way in an indexing system that itself spanned 120 volumes, even for today’s

standards not a small collection.

The first automated IR system was developed in 1890 for the United States Cen-

sus [156]. It was required by law to perform a census every 10 years but it was estimated

that by 1890 the United States had grown so large that the census would take 13 years.

An electrical tabulating machine was devised by Hollerith [87] that could perform all

the calculations. Each citizen was represented by a punchcard, where each hole would

represent properties such as age groups, gender, marital status etc. The machine then

could operate on a batch of 10,000 such cards and sort them based on several criteria

using boolean logic, much like components of modern IR systems.

In 1931 Goldberg [62] patented what he called a statistical machine, which was

a search engine he had been working on since the twenties. The search engine used

photoelectric cells and techniques much like optical character recognition (OCR) for

searching in the metadata of documents that were stored on microfilm.

13

2. Background

In 1945 Bush [26] published an article describing a memory extender (memex) he

envisioned. The memex was a desk which would contain all the owners’ personal

documents on microfilm and provided screens and a keyboard to search through them. He

also pioneered the idea of documents linking to each other and was later credited to have

invented the hypertext system that now underlies the world wide web.

Mooers [135] was the first to introduce the term and problem of “information retrieval”

at the 1950 meeting of the Association for Computing Machinery (ACM). He introduced

it to this scientific community as he believed the development of IR should be taken up

by members of this association. Mooers not only introduced the problem but he also had

ideas about how IR systems should be evaluated, namely on two criteria: 1) whether the

systems do their job; and 2) how expensive is it to operate such a system [134]. These

areas that Mooers identified are still active research areas, and IR research is indeed

carried out by the community that he had envisioned.

2.1.2 Modern Information Retrieval

Since Mooers coined the term, the field of IR rapidly evolved, driven by the need to search

through the ever larger volumes of information that are being produced and stored. This

was further accelerated with the advent of the internet and the increased access to digital

equipment—such as personal computers and recently mobile devices—by the masses.

Despite the intensified research in recent years, many of the methods developed in the

early years of IR research are still very central to modern IR systems. We therefore

describe them in some detail here, starting with a widely accepted definition of IR, which

we borrow from Manning et al. [127, Chapter 1]:

“Information retrieval (IR) is finding material (usually documents) of an

unstructured nature (usually text) that satisfies an information need from

within large collections (usually stored on computers).”

So, in essence, IR starts with an information need. An information need [186] is born

in the head of a person and can be unrecognized by the person as such. If this person

would use an IR system to satisfy the information need, we would refer to this person

as a user. The act of retrieving information used to be a librarian’s task. A user would

explain the information need to a librarian who would then know how to search through

a collection of books and articles. Nowadays the more common scenario is that a user

translates their need into keywords and enters them into a search engine. Search engines

are now the predominant instance of IR systems and in this thesis the terms “information

retrieval” and “search” are interchangeable.

Modern IR as we know it started at the 1958 International Conference on Scientific

Information, as recalled by Sparck Jones [172]. Following that conference, researchers

considered automating retrieval tasks that were manual tasks until then [50, 151]. This

progress combined with the growing amounts of scientific literature culminated in the

Cranfield experiments by Cleverdon [43–45], setting the stage for much IR research today.

The Cranfield evaluation paradigm is described in more detail in Section 2.2.1 and is highly

popular until this date. Nevertheless, this thesis argues that, even though this paradigm

has been instrumental in the growth of the field of IR, with the abundance of (web) search

engines it is time to move at least partially away from Cranfield-style evaluation, towards

14

2.1. Information Retrieval

evaluation methodologies that take actual users with actual information needs into account.

In fact, the type of evaluation this thesis proposes is moving closer to evaluating IR

as it was defined by Manning et al. when compared to Cranfield-style evaluation. The

style of evaluation this thesis proposes takes actual users with actual information needs

into account, while Cranfield-stye evaluation requires human assessors that will assess

documents for relevance with respect to some imagined information need. We discuss

this in more detail in Section 2.3. The International Conference on Scientific Information

in 1958 was also where Vickery [195] presented his view on relevance, which turned out

to be influencial [132]. Vickery introduced a distinction between “relevance to a subject”

and “user relevance”, between topical relevance and relevance towards the information

need of a user.

2.1.3 Retrieval Models

Perhaps the oldest well known retrieval model is the boolean model (BM) [116]. Inci-

dentally, this model is still widely used. Documents are identified by a set of terms. An

inverted index is then created for Boolean retrieval. For each term in the vocabulary this

index lists which documents contain it. For each term in the query then, the BM obtains

the set of documents that contain the term. The Boolean operators in the query are used

to determine, using Boolean logic, what the set of documents is that answers the query.

This is a simple, efficient and elegant solution to information retrieval. But it has several

drawbacks as listed by Salton et al. [154, page 1]. Firstly, the size of the answer set

is difficult to control. It can easily be too large a set of documents or it can be empty.

Secondly, there is no ranking defined over the documents in the answer. Thirdly, terms in

the query are all weighted equally. Lastly, Salton et al. state that formulating a Boolean

query is not always very intuitive. However, perhaps the biggest problem of the BM is

the mismatch with the “anomalous state of knowledge” [18] of users; users only have a

vague notion of their information need and the sort of document that may satisfy it. It is

therefore, for a user, very difficult to formulate a query in Boolean terms.

The vector space model (VSM) [153] addresses all the drawbacks of the BM as listed

by Salton et al. The vector space model represents both documents and queries in a space

of terms. Documents can then be ranked by how close they are to the query in this

space. In this space, terms can be weighted. Term are trivially weighted by their term

frequency (TF) [126] or more effectively terms can be weighted by the TF multiplied

by their inverse document frequency (IDF) to arrive at the term frequency times inverse

document frequency (TF.IDF) model [171]. The idea behind IDF is that the “specificity

of a term can be quantified as an inverse function of the number of documents in which

it occurs”, as stated by Sparck Jones [171]. This idea remained very influential in later

ranking models.

Salton et al. [154] introduced the extended Boolean model as an intermediate between

the BM and the VSM. It preserved both the Boolean logic and queries as well as the

ranking and term weighting from the VSM.

Robertson [145] formalized the concept of ranking documents in his probability rank-

ing principle: a system’s performance is optimal when it ranks documents in decreasing

probability of relevance to the user. This led to the development of many new retrieval

models of which best match 25 (BM25) by Robertson and Walker [146] is still widely

15

2. Background

used. BM25 is a weighted version of TF.IDF that corrects for document length.

More recent retrieval models are based on language models (LM) in which documents

and queries are modeled as sequences drawn from a probability distribution over sequences.

Documents are then ranked by the probability that document and query come from the

same underlying distribution [76, 140]. Divergence from randomness (DFR) [8] is an

even more recent retrieval model, based on the 2-Poisson indexing model by [69]. The

idea behind DFR is that terms cary more meaning if their document frequency diverges

from the collection frequency.

The retrieval models mentioned so far take only the terms of a document and query

into account while there are additional sources that could be used. One of the earliest

attempts to including additional sources was by Garfield [61]. He used citation counts to

rank scientists and their work. He showed high correlation with Nobel prizes, indicating

that citations were a useful external source of information. When the world wide web

gained popularity, it was realized by several that hyperlinks could be used just like citations

in scientific literature rankings. Two examples of such algorithms from that time were

HITS [111] and PageRank [139], which was based on HITS. PageRank led to Page and

Brin founding Google that since then grew into the most widely used web search engine.

Since then, the most prominent instance of information retrieval has been web search.

Broder [23] explored how information needs in web search can differ. In his study less

than half the queries were informational, which was earlier assumed to be the predominant

information need. Figuring out the intent of the user and behind the query has become

an important topic [117]. Why this is important is illustrated by Teevan et al. [188], who

describe the potential for personalization as the gap in performance between a search

engine responding to the average user and a search engine personalizing for each user.

Additional sources that IR systems tap into for this purpose are user sessions; previous

queries issued by the user [20, 203]. Other contexts of the user such as the location [19]

of a user are also considered. With the advent of social networks, signals arising from

these networks can also be integrated in ranking systems [16].

In much of this thesis, the retrieval models discussed above are considered as features

or ranking signals that can be combined into rankers. In Section 2.4 we discuss the

background of methods for combining features. Note how the earlier models, such as BM,

VSM and BM25 take both the query and document into account while the later models

such as HITS and PageRank only take the document into account. We call the former

query-document features while we call the latter document features. Query intent, or other

annotations of the query can be seen as query features.

We refer the reader to Manning et al. [127], Salton [152], Sanderson and Croft [156],

Sparck Jones [173] who all write extensive overviews—each from their perspective and

moment in time—of the history of IR in much more depth than can be covered in this

thesis.

2.2 Offline Evaluation

The research discussed so far was mostly in the area of IR systems. However, the

experimental evaluation of IR systems, i.e., rankers, has always been a central topic

in IR research, as was already foreseen by Mooers [134]. Offline evaluation was the

16

2.2. Offline Evaluation

predominant form of evaluation in IR for a long time. In particular Cranfield-style

evaluation has been very influential in the formation of the field.

2.2.1 Cranfield-style Evaluation

Cranfield-style evaluation, as described by Cleverdon and Keen [43–45], uses a fixed

document collection, a fixed set of queries, and relevance judgments for the documents

in the collection with respect to the queries. These judgements are produced by trained

assessors. These assessors are asked to follow carefully composed judging guidelines.

Often a narrative for each information need underlying a query is composed. The judges

then judge the relevance of documents with respect to that narrative [198]. The documents

that are to be judged come from a pooling process: experimental systems that are to be

evaluated produce their rankings for each query. For each query the top k documents

from each of these rankings are taken and the union of the documents is judged. The

result is that for experimental systems that took part in the pooling, all documents in

the top k are judged for relevance. However, an experimental system that did not take

part in the pooling does not necessarily have all documents in its top k judged. For this

reason it is vital to have a diverse set of experimental systems contributing to the pooling.

It is typically assumed that documents without judgments are not relevant, which is a

relatively save assumption if the pooled systems were of high quality and diverse [197].

The Cranfield evaluation paradigm is the predominant form of evaluation in the text

retrieval conference (TREC) [197] which has for the last 25 years organized the largest

IR evaluation campaigns.

The relevance judgements are used to compute IR evaluation metrics so that systems

can be compared. Originally, metrics such as recall—the fraction of relevant documents

that is retrieved—and precision—the fraction of the retrieved documents that is relevant—

were considered. But these metrics do not take the ranking of documents into account, nor

do they allow for graded relevance. Many metrics have been introduced since. Popular

metrics include mean average precisions (MAP) [68], normalized discounted cumulative

gain (nDCG) [89] and expected reciprocal rank (ERR) [33]. Sanderson [155] gives a

thorough overview of TREC and its metrics.

More task specific metrics have been proposed as well, such as intent aware metrics

by Clarke et al. [42], diversification metrics by Agrawal et al. [1] and metrics for evaluating

faceted search systems by Schuth and Marx [159].

In this thesis, we follow Hofmann [77] and use nDCG by Järvelin and Kekäläinen

[89]. This metric allows for graded relevance and it takes rankings into account. More-

over, nDCG has been used in the validation of online evaluation (see Part I) and online

learning systems [142, 207] (see Part II). Both lie close to the content of this thesis. Still

following Hofmann [77], we use the formulation of nDCG as introduced by Burges et al.

[24]. This is a slight variation of the original formulation by Järvelin and Kekäläinen

so that differences at the highest two positions can also be measured. We explain our

evaluation setup in detail in Section 3.4.

Offline evaluation has the benefit that it becomes easy to compare rankers and thus

easy to try out new things, as long as the new experimental systems are close enough

to the systems used in pooling [122]. Lipani et al. [123] recently worked on methods

to reduce this pooling bias. With Cranfield-style evaluation, experiments also become

17

2. Background

repeatable. The downside of this type of evaluation is that it expensive to obtain reliable

relevance judgements. Moreover, these relevance judgements are not always in line with

actual user preferences [75, 100, 155, 192, 206]. Carterette and Allan [29] and Sanderson

and Joho [157] discuss approaches to building test sets for offline evaluation at low cost.

Several attempts have been made to either simulate human queries or generate relevance

judgments without the need of human assessors for a range of tasks. One recurring

idea is that of pseudo test collections, which consist of automatically generated sets of

queries and for every query an automatically generated set of relevant documents (given

some document collection). The issue of creating and using pseudo test collections goes

back at least to [183]. Azzopardi et al. [13] simulate queries for known-item search and

investigate term-weighting methods for query generation. Asadi et al. [10] describe a

method for generating pseudo test collections for training learning to rank methods for

web retrieval; they use anchor text in web documents as a source for sampling queries, and

the documents that these anchors link to are regarded as relevant documents for the anchor

text (query). Berendsen et al. [21] use a similar methodology for optimizing microblog

rankers and build on the idea that tweets with a hashtag are relevant to a topic covered by

the hashtag and hence to a suitable query derived from the hashtag.

2.2.2 User Studies

Another way to evaluate rankers is through user studies. Such studies are usually con-

ducted in a lab setting, as described extensively by Kelly [101]. Because one needs a lab

and one needs to recruit users, these studies are expensive, hard to repeat and laborious

and expensive to scale up. User studies do have the advantage that there is a large amount

of control over the users. Additionally, many things that are otherwise unreachable can

be measured. For instance, eye gaze can be tracked [63] and one can even measure brain

activity [5]. User studies rarely scale beyond dozens to at most hundreds of subjects.

Typically this number is determined by a power analysis. Still, one should be careful not to

draw conclusions that generalize towards the whole population of users of a system [101].

2.3 Online Evaluation

Since the advent of web search, there has been a focus on online evaluation. The number

of users interacting with search engines and the number of interactions of each of them

has increased tremendously, from only professional users in libraries to over half a billion

web searches per day [46]1, by over half the world’s population [204]. It was realized that

these interactions can be used for evaluation.

Deployed search engines often have several teams of engineers tasked with developing

potential improvements to the current production ranker. To determine whether the

candidate rankers they develop are indeed improvements, such teams need experimental

feedback about their performance relative to the production ranker. They need to evaluate

their rankers. One of the first and most obvious things to do is to use one of the methods

described above. One would start with offline evaluation as described in Section 2.2 and

1These are only explicit searches by users, meaning that on a given day, over half a billion times a user

navigated to a web search engine and typed in their keyword query.

18

2.3. Online Evaluation

maybe perform a user study as described in Section 2.2.2. Then when there is enough

evidence that the candidate ranker is indeed an improvement over the current production

ranker it should probably replace the production ranker. However, offline metrics do not

tell the whole story since relevance assessments come from assessors, not users. And user

studies do not tell the whole story since the number of subjects is rarely large enough to

draw reliable enough conclusions.

Online experiments, as described by Kohavi et al. [113], however, can be used to

reliably determine how users interact with a change in the ranker and whether the change

really constitutes an improvement. Online experiments rely on real users of a real search

engine. One variant, called A/B testing, compares two rankers by showing ranker A to

one group of users and ranker B to another group and then tries to infer a difference

between the systems from differences in observed behavior. We describe this variant in

Section 2.3.2. The other variant, called interleaving, combines rankings from both A and

B and shows the combined results to all users and then tries to infer differences between

the systems by interpreting user behavior. We describe interleaving in Section 2.3.3.

We then turn to the K-armed dueling bandits problem in Section 2.3.4 and quickly to

counterfactual reasoning in Section 2.3.5. In Section 2.3.6 we discuss click models used

to simulate users interacting with a search engine.

2.3.1 Interpreting User Interactions

We start, however, with an overview of how user interactions can be interpreted. The idea

of using the interactions of users with search engines to either evaluate or improve the

search engine is not new. Ruthven and Lalmas [149] write an extensive survey of relevance

feedback methods, these are methods that allow users to explicitly mark documents as

relevant in an initial ranking. These labels coming from the users are then used to generate

a better ranking. Rocchio [148] was the first to formalize this idea. The type of feedback

gathered though through a relevance feedback mechanism is explicit, in the sense that

the user is explicitly asked to provide this feedback. Other ways of collecting explicit

feedback is for instance through side-by-side comparisons [2, 189]. Explicit feedback has

as drawback that it disturbs users in their normal interaction with search engines.

On the other hand, implicit feedback results from the natural interaction of users

with the search system [102]. Implicit feedback consists for instance of query reformu-

lations [71], mouse clicks [95], mouse movements [48, 66, 67, 73, 201], measurements

of dwell-time [206]—the time users spend on a website—, or even the time a search re-

sult [115]. The advantage of implicit feedback over explicit feedback is that it is available

in abundance. All user interactions with the search engine are typically recorded anyway

so billions of such signals are generated every single day.

A major drawback, however, of implicit feedback is that it is inherently noisy, which

makes interpretation challenging. What is more, user interactions are heavily biased by

the systems that were used to collect them. This makes these sort of interactions much

less fit for reuse, unlike judgements from human assessors in a Cranfield-style evaluation

setting (see Section 2.2.1). There has been work that addresses this, which we discuss in

Section 2.3.5.

Even though implicit user interactions are available in abundance, there is often a stiff

competition among algorithms—and their developers—to be evaluated online [108, 109].

19

2. Background

This is due to a combination of factors mentioned above: (1) the fact that it is hard to

reuse user interactions for evaluation; and (2) the noise in this type of feedback which can

be countered only by large amount of feedback. For this reason it is vital for an online

evaluation method to be highly sensitive, that is, use as little user interaction as possible

to draw reliable conclusions. Recently, Kharitonov et al. [108] worked on scheduling of

online experiments such that the most promising would be evaluated first. Kharitonov

et al. [109] introduced a method to prematurely stop an online experiment if it is known

to be converged, which also avoids wasting valuable user interactions.

2.3.2 A/B Testing

The most common type of online evaluation today is A/B testing. A/B testing compares

two rankers by showing ranker A to one group of users and ranker B to another group. A/B

testing then tries to infer difference between the two rankers by computes metrics based

on observed behavior of both groups. Kohavi et al. [113] describes this methodology in

the context of web search. Standard assumptions allow experimenters to obtain unbiased

online performance estimates, and confidence estimates or hypothesis testing are available

via statistical methods such as the two-sample t-test.

A/B metrics are absolute click metrics that are computed for ranker A and B, after

which a t-test is used to select a winner. For instance, this methodology has been ef-

fectively used to compare systems in terms of click through rate (CTR) (e.g., for news

recommendation [121]). Carterette and Jones [30] studied the relationship between clicks

coming from users and offline evaluations metrics. In particular, they were able to reliably

predict nDCG from clicks.

While simple to measure, CTR has been shown to be a poor metric for measuring

user satisfaction in search [95]. Consequently, a large body of work has developed online

metrics that more accurately measure search satisfaction. An established signal is dwell

time, where clicks followed by only short visits to the corresponding result document

are considered “unsatisfied,” i.e., the user is unlikely to have found the document as

relevant [206]. Moving beyond a single time threshold for identifying user satisfaction,

sophisticated click satisfaction classifiers combine a range of user signals, and have been

shown to accurately detect satisfied clicks [110].

Other proposed online metrics also consider the effect of tabbed browsing (opening

several results in browser tabs in quick succession) [88]. Conversely, the lack of a click

(abandonment) is often taken as a signal of a lack of relevance, but this interpretation

has posed a challenge for evaluating richer search engine result pages, where relevant

information may be presented directly, without the need to click. A number of papers

have proposed methods to determine when abandonment indicates satisfaction [119, 170].

Follow-on queries can also be considered indicative of a lack of success [71], as can

skipping results be indicative of incorrect result order [200]. Of course, to accurately

interpret user clicks, we must also consider which results users examined. If a user never

looked at a search result, their lack of engagement on this result cannot be indicative

of low relevance. A number of studies have shown that mouse movement can be an

indicator of user examination of search results, and of specific sections within search

results [48, 66, 67, 73, 201]. Similarly, in a mobile setting recording how long each part

of the screen is visible can be considered an indicator of relevance [115].

20

2.3. Online Evaluation

An earlier survey of other implicit indicators of user satisfaction by Kelly and Teevan

[102] provides further insight into implicit indicators of relevance that may be used in

A/B metrics.

Finally, although the majority of online evaluation has focused on user satisfaction

for individual queries, it has been argued that the correct unit of measurement is the user

session, or a search task. A number of session based metrics have been proposed [70, 199].

Chapter 5 focuses on online evaluation and A/B testing in particular. In that chapter we

also provide details of several common A/B metrics.

2.3.3 Interleaving

While providing flexibility and control, A/B tests typically require a large number of ob-

servations. Given typical differences in IR system performance in state of the art systems,

many A/B metrics have been found to require millions of users [34, 166]. Interleaved

comparison methods, originally proposed by Joachims [93], reduce the variance of mea-

surement by combining documents retrieved by both the control and the treatment system.

Projecting user clicks on the resulting interleaved document lists back to the original

document rankings is then taken as an estimate of which system would be preferred by

the user. This mixing substantially reduces variance and was found to reduce required

sample sizes by up to two orders of magnitude [34, 144, 166] (see Chapter 5).

Interleaved comparison methods take as input two rankers and a query, and produce as

output a combined result list to show to the user. The resulting clicks are then interpreted

by the interleaving method to decide on a winning ranker. Many interleaving methods

have been proposed over the years.

Balanced interleave Balanced interleave (BI) [95] randomly selects a ranker to start

with. Then, it takes the first document from this ranker and, alternating, each ranker

contributes its next document. This document is added to the interleaving only

if it was not yet present. balanced interleave (BI) can produce biased results: in

comparisons of two very similar rankers, it can favor one ranker regardless of where

the user clicks.

Team draft interleave This bias was subsequently fixed in team draft interleave (TDI)

[144]. This algorithm is most frequently used in practice, and has been empirically

shown to be equally effective as BI [34, 93]. We describe team draft interleave

(TDI) in detail below as the algorithm is used extensively throughout this thesis.

Document constraints interleave Lesser known interleaving methods include document

constraints interleave (DCI) [72] which infers constraints on documents pairs based

on the rank of the documents and on user interactions. For pairs of clicked and

non-clicked documents, the method infers a requirement of the clicked document

being ranked higher than the non-clicked document. DCI also infers a constraint

that prefers click documents over the next non-clicked document. The input ranking

that violates the least constraint is te preferred ranking.

Probabilistic interleave Probabilistic interleave (PI) by Hofmann et al. [79] is a more

recent probabilistic generalization of TDI. This interleaving method has a non-zero

21

2. Background

probability of any interleaving occurring as documents are sampled from a softmax

distribution over the ranking instead of a deterministic ranking. Unlike TDI, team

assignments are not recorded, instead, the algorithm marginalizes over all possible

team assignments that could have occurred. Probabilistic interleave (PI) has the

advantage that historical interaction data can be reused using importance sampling,

for instance in an online learning to rank setting, as shown by Hofmann et al. [83].

Upper bound interleave Kharitonov et al. [106] also use historical click data, however

with the goal to increase the sensitivity of interleaving, they refer to their method as

upper bound interleave (UBI). Upper bound interleave (UBI) uses historical user

interactions to train a click model which would predict the documents that are likely

to be clicked by a user. This can be used to predict which interleavings are likely

to contribute to the interleaving outcome. This provides the opportunity to select

interleavings that can discriminate between two systems that are compared.

Optimized interleave Optimized interleave (OI) [143], like UBI, aims at increasing

sensitivity. Optimized interleave (OI) does so by restricting the allowed interleavings

to those that are the union of prefixes of the input rankings. In addition, it computes

all possible probability distributions over these rankers that avoid bias. If there

are multiple such distributions, then OI selects the distribution that maximizes

sensitivity.

Generalized team draft interleave Kharitonov et al. [107] recently introduced general-

ized team draft interleave (GTDI) which jointly optimizes for credit assignment and

an interleaving policy. This way, generalized team draft interleave (GTDI) achieves

a higher sensitivity. Furthermore GTDI introduces a framework that allows for

other layouts of results lists to be interleaved.

In this thesis, in Chapter 4, we extend TDI, OI, and PI to comparing more than two

rankers at once. Previously, TDI was extended by Chuklin et al. [36] to handle non-

uniform result lists that contain vertical documents such as images. TDI is also extended

in Chapter 5 where we extend it to be more in agreement with A/B metrics. Below, we

describe TDI in detail.

Team Draft Interleave

Given an incoming user query, TDI produces a result list as follows. The algorithm takes as

input two ranked lists of documents for the query, A = (a1, a2, . . .) and B = (b1, b2, . . .).
The goal is to produce a combined ranking L = (l1, l2, . . .). This is done in the same way

that sports teams may be constructed in a friendly match, with two team captains taking

turns picking players for their team.

The algorithm is detailed in Algorithm 1. It initializes the interleaved list L with any

common prefix of A and B, if this exists. For this common prefix, no teams are assigned,

as no preferences should be inferred.2 Then, on line 5, the algorithm continues in phases

by adding two documents to L: In each phase, on line 6, we first flip an unbiased coin

to decide if ranker A or B is given priority. Assuming that ranker A is given priority, A

2This was shown to substantially increase sensitivity of the simpler original TDI algorithm [34, 142].

22

2.3. Online Evaluation

Algorithm 1 Team draft interleave (TDI) [144]

Require: Rankings A = (a1, a2, . . .) and B = (b1, b2, . . .)
1: Init: L ();TeamA ;;TeamB ;; i 1
2: while A[i] = B[i] do // common prefix

3: L L+A[i] // append result to L without assigning teams

4: i i+ 1 // increment i

5: while (9i : A[i] 62 L) ^ (9j : B[j] 62 L) do // not at end of A or B

6: if (|TeamA| < |TeamB|) _
((|TeamA| = |TeamB|) ^ (RandBit() = 1)) then

7: k mini{i : A[i] 62 L} // top result in A not yet in L

8: L L+A[k] // append it to L

9: TeamA TeamA [{A[k]} // clicks credited to A

10: else

11: k mini{i : B[i] 62 L} // top result in B not yet in L

12: L L+B[k] // append it to L

13: TeamB TeamB [{B[k]} // clicks credited to B

14: Output: Interleaved ranking L, TeamA, TeamB

appends its highest ranked result that is not already in L to L (i.e., l1 a1 in the first

instance), and assigns it to TeamA. Then, B selects its first result not already present in

L (in the first instance either b1 if it differs from a1, and b2 otherwise) and again appends

it to L and TeamB. This repeats until all results in A or B have been consumed or until

L reaches the desired length.

The interleaved ranking L is then shown to the user. Any clicks on documents

contributed by A (in TeamA) are credited to A. Clicks on documents in TeamB are

credited to B. Over an observed sample of interleaving observations, a preference for A
or B is then inferred based on which ranker was credited with more clicks. For any given

set of results shown to users, the ranker where more contributed documents are clicked is

considered to be preferred. In Algorithm 1, the results contributed by A are recorded in a

set TeamA and similarly for the results contributed by B. We refer the reader to work

by Chapelle et al. [34] for a more in-depth discussion of this algorithm.

Suppose the user clicks on Cq = c1, c2, . . . when presented with the results L in

response to query q. Let Cq
A = Cq \ TeamA be the clicked documents in TeamA, and

Cq
B = C \ TeamB be the clicked documents in TeamB. If |Cq

A| > |Cq
B |, then ranker

A is considered to have won for this query, and if |Cq
B > Cq

A| then ranker B is considered

to have won. Otherwise, there was a tie.

The final outcome of the interleaving comparison experiment can thus be written as:

OTDI(A,B) = sgn

0

@

1

|Q|

X

q2Q

|Cq
A|� |Cq

B |

1

A , (2.1)

where Q is the set of all query impressions (non-unique queries issued by all users during

the interleaving experiment), and Cq
X denotes the set of clicks observed in TeamX on q.

TDI is extensively used in Chapters 4 and 5. In Chapter 4 we extend interleaving so that

23

2. Background

more rankers can be compared at once. In Chapter 5 we adapt interleaving to increase

agreement with A/B testing metrics.

2.3.4 K-Armed Dueling Bandits Problem

Related to the online evaluation setting described so far is the K-armed dueling bandits

problem by Yue et al. [209], which can be stated as follows. From a set of K rankers

(bandits), the task is to find the best ranker using pairwise comparisons and to do so while

incurring minimum regret. The pairwise comparisons use interleaved comparisons as

introduced above in Section 2.3.3. These pairwise comparisons are used as they are easier

to obtain than absolute metrics [93, 209]. Regret is proportional to the probability that

users would have preferred the best ranking to the one shown to them. The aim is to

minimize cumulative regret, the sum of regret over all query impressions. We define the

best ranker as the Condorcet winner [194], the ranker that, when compared with every

other ranker, is preferred in more interleaved comparisons.

Existing algorithms that aim at solving the K-armed dueling bandits problem (e.g., [208,

213, 214, 216]) all work by performing a series of pairwise interleaved comparisons, with

a focus on finding the best ranker in a set of rankers. The order in which pairs of rankers

are compared varies and is determined by these algorithms. One the first algorithms to

address this problem is the beat the mean (BTM) by Yue and Joachims [208]. This algo-

rithm keeps track of how often each ranker beats the mean of a set of rankers that is still

being considered. relative upper confidence bound (RUCB) by Zoghi et al. [214] works

by selecting randomly among those rankers that, when optimistic about them, appear to be

Condorcet winners. RUCB then selects an opponent for this ranker by selecting the ranker

that, when optimistic about that ranker, is most likely to beat this first ranker. MergeRUCB

by Zoghi et al. [216] is a recent variant on RUCB that uses a divide an conquer strategy

to make the algorithm scale to a large K. Zoghi et al. [215] introduce a version of the

dueling bandits problem for when the Condorcet winner does not exist. They propose two

algorithms aimed at minimizing regret with respect to the Copeland winner instead. This

winner is guaranteed to exist.

The dueling bandit gradient descent (DBGD) algorithm by Yue and Joachims [207],

which we describe in Section 2.5.1, can be seen as an algorithm to solve a variant of the

K-armed dueling bandits problem that considers rankers in a continuous space of feature

weights instead of a fixed set of K rankers

We address a similar but different problem in Chapter 4. In that chapter, we are not so

much interested in finding the best ranker among a set of K rankers as we are interested

in finding out how all rankers in the set compare to each other.

2.3.5 Counterfactual Analysis

Counterfactual analysis reuses historical user interactions, just like probabilistic interleave

(PI) [79], described above in Section 2.3.3, does. As we described in Section 2.3.1, user

interactions are biased by the system under which they were collected. In order to be

able to reuse them, one needs to correct for the bias that was introduced. A common way

to do so is by using a statistical technique called importance sampling [97]. Bottou and

Peters [22] describe several importance sampling methods for counterfactual analysis. PI

24

2.3. Online Evaluation

also uses importance sampling to reinterpret historical interactions [79] and is therefore

a particular counterfactual analysis method. Once there is a method for interpreting

historical interactions, these can be used either for online evaluation methods [120, 158]

or online learning methods [176, 180, 181]. Counterfactual analysis can be seen as an

alternative for online evaluation. As opposed to online evaluation, users are not actually

exposed to potentially inferior rankings.

2.3.6 Click Models

Yet another alternative to online evaluation is simulation. User interactions with search

engines can be simulated by using click models. These interactions, in turn, can then be

used either to validate evaluation methods, as we do in Part I of this thesis, or learning,

as we do in Part II. In Section 3.3 we describe how we simulate clicks in this thesis.

The advantage of simulating user interactions is that no actual users are exposed to

potentially inferior rankings while it is still possible to experiment with for instance

online learning to rank methods. And as with Cranfield-style evaluation, described in

Section 2.2.1, experiments are repeatable. The downside is that every click model has its

own assumptions that do not necessarily agree with reality. Additionally, click models,

when they are used to simulate clicks, require relevance assessments which have their

own drawbacks (see Section 2.2.1).

While we do not use them as such, an important use of click models is to interpret

clicks in order to understand user behavior. In the setting we use them in, we assume that

the parameters of the clicks models have been estimated from data or that they have been

chosen such that they reflect actual user behavior. Once the click models are instantiated,

they can be used to produce clicks instead of interpreting them.

Many alternative click models have been developed over the years, Chuklin et al. [40]

provide an overview. We list a selection of well-known models here.

Cascade click model The cascade click model (CCM) [47] assumes users scan a result

list from top to bottom and click on a result as soon as it seems to satisfy their

information need.

Dependent click model Guo et al. [65] introduce the dependent click model (DCM), an

extension to cascade click model (CCM) that allows for multiple clicks on a single

results page. Dependent click model (DCM) is used extensively throughout this

thesis as it produces simulated clicks in many of our experiments (see Section 3.3).

User browsing model The user browsing model (UBM) by Dupret and Piwowarski [53]

assumes that the examination probability of a document also depends on previous

clicks.

Dynamic bayesian network model The CCM has also been extended into the dynamic

bayesian network model (DBN) by Chapelle and Zhang [32]. A difference is that

dynamic bayesian network model (DBN) assumes that the probability of a user

clicking is dependent on the actual relevance of a document.

Many more advanced models exist. For instance, Chuklin et al. [38] model clicks beyond

the first result page and click models by Markov et al. [128] take vertical results into

account.

25

2. Background

Interestingly, Chuklin et al. [37] connect click models to information retrieval metrics

as described in Section 2.2. Also Kharitonov [105] aims at improving both offline and

online evaluation by modeling user behavior.

2.4 Offline Learning to Rank

Modern search engines base their rankings on combinations of dozens or even hundreds

of features. These features are retrieval models as described above in Section 2.1.3.

Learning to rank (LTR) for IR [124] is about finding an optimal combination of features

using machine learning techniques. Where optimal is defined as optimal for some metric

discussed in Section 2.2.

Traditionally, learning was done offline by optimizing for performance on a training

set consisting of queries and relevance assessments produced by human assessors. Offline

learning methods suffer from the drawback of requiring labeled data sets, which are

expensive to produce and the models learned do not necessarily align with user satisfac-

tion [155]. These drawbacks are the reason for us to focus on online learning to rank

methods in this thesis, starting with Section 2.5. We first provide a short overview of

offline learning to rank methods in this section.

The problem of LTR for IR can be described as follows. For a query q, each document

is represented by a feature vector x. Typically there would be dozens or even hundreds of

such features. These features would either be only query dependent, only document de-

pendent or they would model the relationship between queries and documents. Examples

of features are BM25, LM, and PageRank (see Section 2.1.3). The task of the learner is

then to find a model that combines these features such that, when this model is used to

produce a ranking for an unseen query, user satisfaction is maximized. The model is a

function that maps a set of documents, represented by features, to a ranking. This can be

achieved in several ways. We provide details for three ways of doing is in this section.

User satisfaction is often approximated by an evaluation metric, such as described in

Section 2.2. This in turn, would require relevance assessments y, acquired through the

process described in Section 2.2.1. Training instances then, for a LTR method, consist

of (q,x, y).
Offline learning to rank methods [124] can be supervised and semi-supervised [182].

Most methods are supervised and can be classified into pointwise, pairwise, and listwise

LTR methods [27, 124]. We briefly describe each class of learning methods below.

2.4.1 Pointwise Learning to Rank

Pointwise LTR [124] methods learn a direct mapping from features x to label y. If the

labels are binary, any machine learning classification method can be used. If the domain

of the labels is the real values, regressions methods can be used. Fuhr [58], for instance,

introduces one of the earliest LTR methods that minimizes square errors. This is a typical

loss function used in regression based methods. Classification methods could use simple

zero-one loss [136].

However, neither of these loss functions reflects the IR problem well. Absolute loss is

not what matters. What matters is an optimal ranking of documents. It does, for instance,

26

2.4. Offline Learning to Rank

matter much more that a good document is placed near the top of a ranking than that a

label of an irrelevant document near the bottom of the ranking is incorrect.

Moreover, typically, for a query only few documents are relevant. This causes the

training data sets to be highly unbalanced. This makes it a difficult problem for standard

classification or regression problem that would score well by predicting that every docu-

ments is not relevant. This is difficult in the sense that, using offline evaluation metrics,

such a naive baseline would perform extremely bad.

2.4.2 Pairwise Learning to Rank

Pairwise LTR [124] is about the ordering of pairs of documents. Training instances are

pairs of feature vectors (xd1
,xd2

) and a binary label y to indicate whether document

d1 should be preferred over d2 or the other way around. Pairwise LTR methods would

typically take xd1,2
= xd1

� xd2
as feature vector to reduce the problem to binary

classification.

The advantage of pairwise over pointwise learning is that the loss function now counts

ranking mismatches as opposed to absolute errors of individual documents. Also the

unbalancedness of the training data is no longer a problem as there are now as many

positive as negative examples (all document pairs twice). What remains is the problem

of punishing incorrect document orderings in the top of the ranking as much as incorrect

orderings at the bottom. Typical methods for pairwise learning to rank are Ranking SVM

by Herbrich et al. [74], RankBoost by Freund et al. [57], RankSVM by Joachims [92],

and RankNet by Burges et al. [24].

Additionally a new problem of pairwise LTR is that the complexity becomes quadratic

in the number of documents, as all pairs of documents are considered. Sculley [168]

addressed this problem by sampling from the pairs of documents. Another new problem,

depending on the learned model, is that transforming pairwise preferences into a ranking

may not be trivial.

An effective approach to pairwise LTR is RankSVM [92] which, when a linear kernel

is used, produces a model that can easily be used to create rankings. Very related methods

are developed by Fürnkranz and Hüllermeier [59].

2.4.3 Listwise Learning to Rank

Lastly, listwise LTR [124] aims at directly optimizing the whole ranking of documents.

Listwise methods take feature vectors for all documents for a query as input and produce

a ranking of documents. The loss function then can be an IR metric, as described in

Section 2.2. The advantage listwise methods have over pointwise methods is that listwise

methods capture the quality of the whole ranking instead of attempting to quantify the

quality of a document in isolation. Advantages over pairwise LTR methods are that the

importance of correct rankings at the top of a ranking can be taken into account. And that

the problem does not become quadratic in the number of documents.

A disadvantage is that the objective function, an IR metric, may be very hard to learn

as it may not be smooth or differentiable. Nevertheless, listwise LTR approaches are

currently the state-of-the-art. Examples of successful methods are LambdaRank by Burges

et al. [24] and LambdaMART by Burges et al. [25].

27

2. Background

The above offline LTR methods are all supervised machine learning methods. And like any

supervised learning method, these LTR methods require labeled data. This data is typically

acquired through a Cranfield-style evaluation setup, described in Section 2.2.1. Offline

LTR therefore suffers from the same drawbacks as Cranfield-style evaluation. Labels are

expensive to obtain and do not necessarily reflect user preferences [75, 100, 155, 192, 206].

Learning models based on such labels thus results in an IR system that does not necessarily

satisfy users maximally. Other offline LTR methods such as semi-supervised learning and

active learning methods have been explored [49, 182, 205]. However, in contrast, in most

of this thesis we focus on online learning methods as described in the next section.

2.5 Online Learning to Rank

Our focus in this thesis is on online learning to rank methods that learn from online

evaluation methods, based on users’ interactions with IR systems [82, 207], without

requiring annotated data sets. One can formulate the online learning to rank for IR

problem as a reinforcement learning (RL) problem [178]. The problem can be modeled as

a contextual bandit problem that assumes that consecutive queries are independent of each

other [120, 177]. In a contextual bandit problem, the algorithm has access to a context

vector, which in the LTR setting would be the feature vector, as used in offline learning to

rank.

A crucial difference between typical RL problems and the application to IR is that in

the IR scenario the reward cannot be observed directly. Instead, user interactions with an

IR system can be interpreted as a biased and noisy preference for either rankings [144] or

documents [92].

Many methods for online learning to rank have been proposed. Hofmann et al. [82]

explore learning from pairwise document preferences while most methods are based

on the listwise learning paradigm where preferences between rankers are inferred from

clicks. Such pairwise preferences can come from interleaving methods as discussed in

Sections 2.3 and in particular 2.3.3. One influential learning to rank method is dueling

bandit gradient descent (DBGD) [207], which is extended upon in Chapter 7 and therefore

explained in more detail in Section 2.5.1. DBGD implements a stochastic gradient descent

method to find the best ranker in an infinite space of rankers. This algorithm has been

extended before by Hofmann et al. [83] such that it would reuse historical interaction data

and not just live user interactions. Alternative methods, discussed in Secion 2.3.4, are

based on the K-armed dueling bandit formulation by [209] and assume a finite space of

possible rankers, the best of which needs to be found.

2.5.1 Dueling Bandit Gradient Descent

DBGD [207] is an online learning to rank method that learns from user feedback in the

form of clicks. In particular, DBGD learns from a relative interpretation of this feedback

produced by, e.g., TDI (see Section 2.3.3). The DBGD algorithm can be seen as an

algorithm to solve a continuous variant of the K-armed dueling bandits problem which

we introduced in Section 2.3.4.

DBGD, shown in Algorithm 2, assumes that rankers can be represented by weight

28

2.5. Online Learning to Rank

Algorithm 2 Dueling Bandit Gradient Descent (DBGD).

Require: α, δ, w0
0

1: for t 1..1 do

2: qt receive query(t) // obtain a query from a user

3: l0 generate list(w0
t , qt) // ranking of current best

4: u
1
t sample unit vector()

5: w
1
t w

0
t + δu1

t // create a candidate ranker

6: l1 generate list(w1
t , qt) // exploratory ranking

7: mt, tt TDI interleave(l) // interleaving and teams

8: ct receive clicks(mt) // show interleaving to the user

9: bt TDI infer(tt, ct) // set of winning candidates

10: if w0
t 2 bt then

11: w
0
t+1 w

0
t // if current best wins or ties, no update

12: else

13: w
0
t+1 w

0
t + αu1

t // update α step towards candidate

vectors, starting with a randomly initialised weight vector w0
0, referred to as the current

best ranker. For each query that is issued, on line 5, an exploratory candidate ranker w1
t

is created by slightly perturbing the weight vector of the current best ranker. Both the

current best ranker and the candidate ranker create their rankings of documents for the

issued query. These two rankings are interleaved using, e.g., TDI, on line 7. Then on line 8

this interleaving is shown to the user that issued the query and clicks are observed. The

interactions of this user with the interleaving are interpreted by the interleaving method

on line 9 to determine who won the comparison. If the candidate won, the weight vector

of the current best ranker is updated with an α step towards the weight vector of the

candidate ranker. If not, the weight vector is not updated. This process repeats indefinitely,

yielding a continuously adapting system.

DBGD is used extensively in Part II of this thesis. Chapter 6 uses the algorithm to learn

parameters of base rankers. Chapter 7 extends DBGD to using multileaved comparison

methods—introduced in Chapter 4—instead of interleaved comparisons methods.

2.5.2 Reusing Historical Interaction Data

DBGD originally used team draft interleave (TDI) [144] (see Section 2.3.3) as a method

of obtaining preferences between rankers. The introduction of probabilistic interleave

(PI) by Hofmann et al. [79] paved the way also to new learning methods. PI allows for

interpreting historical user interactions with an interleaved results for a different pair

of rankers than was originally used. In other words, if a new pair of rankers is to be

compared, a historical click can be used to obtain an unbiased preference. Hofmann et al.

[83] used this idea in their candidate preselection (CPS), which extends DBGD, as follows.

Where DBGD would, on line 5 in Algorithm 2, create a candidate ranker by stepping

into a random direction, CPS would create many such candidates. Historical interactions

in combination with PI would then be used to determine which of these candidates is

most promising. The most promising candidate is then used and the algorithm functions

the same as DBGD, except that additionally historical interactions need to be stored.

29

2. Background

Hofmann et al. [83] show that by reusing historical interaction data in this way, the

learning method can learn much faster than the baseline DBGD method, in particular

when the user feedback is noisy.

30

3
Experimental Methodology

In this chapter we detail the experimental setup used in Chapters 4, 6 and 7. This setup

has been used to validate both evaluation methods, as in Chapter 4, as well as learning

methods, as in Chapters 6 and 7. The exact same setup or a variation on it has been used

in numerous publications [36, 39, 41, 83, 84, 138, 162, 163, 165, 167, 216]. It has been

implemented in a framework explained by Schuth et al. [161] and detailed in Chapter 8.1

We first describe the data sets that we use in Section 3.2. Then, in Section 3.3, we

detail our click simulation framework. We then turn to evaluation metrics and statistical

significance testing. Lastly we describe our evaluation metrics in Section 3.4.

3.1 Experimental Setup

We employ a click simulation framework analogous to that of [83]. We do so because we

do not have access to a live search engine or a suitable click log. Note that, even if a click

log was available, it would not be adequate since a learning algorithm or an algorithm that

is to be evaluated is likely to produce result lists that do not appear in the log. But there

are evaluation methods designed to address exactly this problem, e.g., the work by Li et al.

[120], described in Section 2.3.5.

All our experiments that use this simulation setup assume a stream of independent

queries coming from users interacting with the system we are training or evaluating. Users

are presented with a result list in response to their query and may or may not interact with

the list by clicking on one or more documents. The queries come from static data sets

(Section 3.2) and the clicks from a click model (Section 3.3).

We measure performance in two ways: online, the way a user experienced it, and

offline, measured on a held-out data set (Section 3.4).

3.2 Data Sets

Many of the experiments in this thesis are conducted on nine learning to rank data sets

that are distributed as LETOR 3.0 and 4.0 [125, 141]. Per chapter, when applicable, we

list which data sets are used exactly.

1All our experimental code is open source and available at https://bitbucket.org/ilps/

lerot [161] (see also Chapter 8).

31

https://bitbucket.org/ilps/lerot
https://bitbucket.org/ilps/lerot

3. Experimental Methodology

Table 3.1: Characteristics of the nine learning to rank data sets that are distributed as

LETOR 3.0 and 4.0 [125, 141] and used throughout this thesis.

Task Data #queries #relevance #docs #features

NP2003 Named page finding .GOV 150 2 1000 64

NP2004 Named page finding .GOV 75 2 1000 64

HP2003 Homepage finding .GOV 150 2 1000 64

HP2004 Homepage finding .GOV 75 2 1000 64

TD2003 Topic distillation .GOV 50 2 1000 64

TD2004 Topic distillation .GOV 75 2 1000 64

MQ2007 Web search .GOV2 1700 3 16-128 46

MQ2008 Web search .GOV2 800 3 16-128 46

OHSUMED Literature search MedLine 106 3 150 45

Each learning to rank data set contains feature vectors representing the relationships

between queries and documents. These feature vectors contain between 45 and 64 features.

Examples of features are best match 25 (BM25), language model (LM), and PageRank

(see Section 2.1.3). Each of these features can be treated independently as rankers, by

simply sorting on the feature value. While we use learning to rank data sets, we do

not necessarily perform learning. These data sets can also be used to validate ranker

evaluation, as in Chapter 4. If the data sets are used in an evaluation setting, individual

features or combinations of features are typically taken as rankers.

The (manually assessed) relevance level of each document-query pair is also provided

in the data set. Finally, all data sets are pre-split by query for 5-fold cross validation.

In the nine data sets, the following search tasks are implemented. The OHSUMED

data set models a literature search task which is based on a query log of a search engine

for the MedLine abstract database. This data set contains 106 queries that implement

an informational search task. The remaining eight data sets are based on text retrieval

conference (TREC) Web track tasks that run between 2003 and 2008.

The data sets HP2003, HP2004, NP2003, and NP2004 implement navigational tasks,

homepage finding and named-page finding respectively. TD2003 and TD2004 implement

an informational task: topic distillation.

These last six data sets are based on the .GOV document collection, a crawl of the

.gov domain, and contain between 50 and 150 queries and approximately 1000 judged

documents per query. The more recent .GOV2 collection formed the basis of MQ2007

and MQ2008; two data sets that contain 1700 and 800 queries respectively, but far fewer

judged documents per query.

The data sets OHSUMED, MQ2007 and MQ2008 are annotated with graded relevance

judgments (3 grades, from 0, not relevant, to 2, highly relevant). The other data sets have

binary relevance labels (grade 0 for not relevant, 2 for relevant).

We summarize the characteristics of our data sets in Table 3.1.

3.3 Simulating Users

To produce clicks, we use a click simulation framework that is analogous to [83], which

is explained in [161]. The framework produces clicks based on the dependent click

32

3.3. Simulating Users

Table 3.2: Instantiations of the DCM [65] as used in this thesis.

P (click = 1|R) P (stop = 1|R)
0 1 2 0 1 2

perfect (per) 0.0 0.5 1.0 0.0 0.0 0.0

navigational (nav) 0.05 0.5 0.95 0.2 0.5 0.9

informational (inf) 0.4 0.7 0.9 0.1 0.3 0.5

almost random (a.ra) 0.4 0.5 0.6 0.5 0.5 0.5

random (ran) 0.5 0.5 0.5 0.0 0.0 0.0

model (DCM) [65], also used by [77], that effectively explains the click behavior of web

search users. The cascade click model explains position bias by assuming that users start

examining a result from the top of the list. Then, when the user scans down the list, for

each document they determine whether it looks promising enough to deserve a click. This

is modeled with a click probability given some relevance label P (click = 1|R). These

relevance labels R come from human assessors, as explained in Section 2.2.1. After a

click, a user decides whether their information need has been satisfied by the document

just clicked. We model this with a stop probability P (stop = 1|R). Table 3.2 lists the

instantiations of the click model used in our experiments. Depending on our research

questions, experiments use different instantiations.

The instantiations listed in Table 3.2 can be interpreted as follows.

perfect The perfect instantiation of the click model, in which exactly every relevant

document is clicked, provides unrealistically reliable feedback, and is used to

obtain an upper bound on performance. Users click on all the highly relevant

documents, never on the irrelevant documents and half the time on the mildly

relevant documents.

navigational The navigational click model, in which users almost only click relevant doc-

uments and usually stop when they have found a relevant document, reflects a user

with a navigational information need [23]. Users with a navigational information

need seek to find a particular url of a website they have in mind.

informational The informational click model, in which non-relevant documents are also

clicked quite often and users stop after finding a relevant document only half of the

time, represents a user with an informational information need [23]. Users with an

informational information need seek to acquire some information about a particular

topic. Users with such a need often inspect multiple documents.

almost random The almost random click model, in which there is only a very small

difference in user behavior for relevant and non-relevant documents, is used to

establish whether an evaluation method can identify preferences or alternatively

whether a learning method can still learn, when the signal in clicks is extremely

weak.

random The random instantiation of the click model is used to examine behavior of the

evaluation methods when no information is present in the clicks.

33

3. Experimental Methodology

For each instantiation, the table provides the click and stop probabilities given a relevance

grade R. For example, under the navigational model, simulated users would be very likely

to click on a highly relevant document (P (click = 1|2) = 0.95), and very likely to stop

examining documents once they clicked on such a document (P (stop = 1|2) = 0.9).

Under the informational model, users are less likely to stop, and click probabilities for the

different relevance grades are much more similar, resulting in a higher level of noise. For

data sets with binary relevance judgments, only the two extremes (relevance labels 0 and

2) are used.

See Section 2.3.6 for an overview of the many alternative click models that have been

developed over the years. Despite the existence of all these models we use the relatively

simple DCM, following Hofmann [77], as it makes very few assumptions.

3.4 Evaluation

We measure performance of rankers in two ways: online, the way a user experiences it,

and offline, measured on a held-out data set.

First, to assess offline performance, we use the offline evaluation metric (see Sec-

tion 2.2) normalized discounted cumulative gain (nDCG) [89] which is computed on

held-out data. All data sets described in Section 3.2 are pre-split in five folds. Four folds

are used for training purposes. The fifth fold is used for computing the metric.

We use the top κ = 10 documents for simulating clicks and computing the nDCG:

nDCG =
κ
X

i=1

2rel(r[i])�1

log2(i+ 1)
InDCG�1. (3.1)

This metric calculates the gain over relevance labels rel(r[i]) for each document, which

is then normalized by the maximal nDCG possible, the ideal nDCG (InDCG). Offline

performance is determined by computing the average nDCG score of the current best

ranker over a held-out set.

During an experiment the user experience may be inferior compared to the production

system that the user would otherwise see. Therefore, online performance is also assessed.

We do this by computing the discounted cumulative nDCG over the results shown to the

user. This can be seen as the inverse of regret as used in a reinforcement learning (RL)

setting. For online performance, a discount factor of γ = 0.995 is used [77, 178]. We

compute our discounted cumulative nDCG as

N
X

n=1

γn · nDCGn, (3.2)

where nDCGn denotes the nDCG of the nth query. This factor ensures that impressions

beyond a horizon of N = 1000 query impressions have an impact of less than 1%. We

repeat each experiment 25 times and average results over the 5 folds and these repetitions.

To verify whether differences are statistically significantly different, a two tailed

Student’s t-test is used [169].

34

Part I

Online Evaluation

35

4
Multileaved Comparisons

Evaluation methods for information retrieval systems come in three types: offline evalua-

tion, using static data sets annotated for relevance by human judges; user studies, usually

conducted in a lab-based setting; and online evaluation, using implicit signals such as

clicks from actual users (see Sections 2.2 and 2.3). For the latter, preferences between

rankers are typically inferred from implicit signals via interleaved comparison methods,

which combine a pair of rankings and display the result to the user (see Section 2.3.3).

We propose a new approach to online evaluation called multileaved comparisons that is

useful in the prevalent case where designers are interested in the relative performance

of more than two rankers. Rather than combining only a pair of rankings, multileaved

comparisons combine an arbitrary number of rankings. The resulting user clicks then

give feedback about how all these rankings compare to each other. We propose three

specific multileaved comparison methods. The first, called team draft multileave (TDM),

is an extension of team draft interleave (TDI). The second, called optimized multileave

(OM), is an extension of optimized interleave (OI) and is designed to handle cases where

a large number of rankers must be multileaved. We present experimental results that

demonstrate that both team draft multileave and optimized multileave can accurately

determine all pairwise preferences among a set of rankers using far less data than the

interleaving methods that they extend. Lastly, we introduce probabilistic multileave (PM),

an extension of probabilistic interleave (PI). PM can reliably infer preferences among

multiple rankers, also using historical interaction data.

This chapter is based on two publications: Schuth, Sietsma, Whiteson, Lefortier,

and de Rijke [163], Schuth, Bruintjes, Büttner, van Doorn, Groenland, Oosterhuis, Tran,

Veeling, van der Velde, Wechsler, Woudenberg, and de Rijke [165].

4.1 Introduction

Deployed search engines often have several teams of engineers tasked with developing

potential improvements to the current production ranker [112]. To determine whether

the candidate rankers they develop are indeed improvements over the production ranker,

such teams need experimental feedback about their performance relative to the production

ranker. However, in order to develop and refine those candidate rankers in the first place,

they also need more detailed feedback about how the candidate rankers compare to each

other. For example, to explore a parameter space of interest, they may be interested in the

37

4. Multileaved Comparisons

relative performance of multiple rankers in that space.

Several existing approaches could be used to generate this feedback. Firstly, assessors

could produce relevance assessments from which offline metrics (e.g., MAP, nDCG,

ERR [155]) could be computed. However, offline metrics do not tell the whole story since

relevance assessments come from assessors, not users (see Section 2.3). Secondly, online

experiments generate user feedback such as clicks from which rankers can be evaluated. In

particular, interleaved comparison [92, 93] methods enable such evaluations with greater

data efficiency than A/B testing [144]. But teams of engineers can easily produce enough

candidate rankers that comparing all of them to each other using interleaving methods

quickly becomes infeasible.

To address this difficulty, we propose a new evaluation paradigm, which we call

multileaved comparison, that makes it possible to compare more than two rankers at once.

Multileaved comparisons can provide detailed feedback about how multiple candidate

rankers compare to each other using much less interaction data than would be required

using interleaved comparisons.

In particular, we start by proposing two specific implementations of multileaved com-

parisons. The first, which we call team draft multileave (TDM), builds on team draft

interleave (TDI) [144], an interleaving method that assigns documents in the interleaved

list to a team per ranker. TDI is explained in detail in Section 2.3.3. Surprisingly, only

a minor extension to TDI is necessary to enable it to perform multileaved comparisons,

yielding TDM. However, despite its appealing simplicity, TDM has the important draw-

back that it requires multileavings, i.e., the result lists shown to the user, to be long enough

to represent teams for each ranker.

Therefore, we propose a second method that we call optimized multileave (OM),

which builds on optimized interleave (OI) [143], an interleaved comparison method that

uses a prefix constraint to restrict the allowed interleavings to those that are “in between”

the two rankers and then solves an optimization problem to ensure unbiasedness and

maximize sensitivity of the interleavings shown to users. OM requires deriving a new

prefix constraint, new definitions of unbiasedness and sensitivity, a new credit function

upon which these definitions depend, and a new sampling scheme to make optimization

tractable. Because it avoids the limitations of TDM, OM is better suited to handle larger

numbers of rankers.

We present experimental results on several data sets that aim to answer the following

research questions, repeated from Section 1.1.

RQ1 Can multileaved comparison methods identify preferences between rankers faster

than interleaved comparison methods?

RQ2 Does OM scale better with the number of rankers than TDM?

RQ3 How does the sensitivity of multileaving methods compare to that of interleaving

methods?

RQ4 Do multileaving methods improve over interleaving methods in terms of unbiased-

ness and online performance?

38

4.1. Introduction

As an aside, we also investigate how multileaved comparison methods perform on decision

problems other than finding all preferences between pairs of rankers in a set of rankers.

The interleaving and multileaving methods listed so far can only infer preferences among

rankers based on interaction data that is generated using those very same rankers, thus

preventing generalizations to new and unseen rankers. Probabilistic interleave (PI),

however, is a recent interleaving method that can reuse historical interaction data collected

using other rankers than the ranker being evaluated to infer preferences between rankers

[79, 83]. This allows for comparisons that are more efficient in terms of how many user

impressions are required for reliable comparisons.

In this chapter, we also propose an extension of PI to probabilistic multileave (PM): a

multileaving method that is able to reuse historical interaction data.

As stated before, an evaluation method is sensitive if it quickly detects differences

in the quality of rankings. That is, if rankers are of different quality, the evaluation

method should detect those differences with fewest comparisons. An evaluation method

is unbiased if all the rankers are equal in expectation when clicks are random. That is, the

method should evaluate rankers fairly and only on the basis of their actual performance.

We answer the following research question, repeated from Section 1.1.

RQ5 How does PM compare to TDM and OM in terms of sensitivity, bias and scaling?

The main contributions of this chapter are as follows.

Paradigm We introduce a novel ranker evaluation paradigm in which more than two

rankers can be compared at once.

Algorithms Three implementations of this new paradigm, TDM, OM, and PM are intro-

duced.

Evaluation A thorough experimental comparison of TDM and OM against each other

and against TDI and OI that shows that multileaved comparison methods can find

preferences between rankers much faster than interleaved comparison methods.

Sensitivity When the differences between evaluated rankers are varied, the sensitivity of

TDM and OM is affected in the same way as for TDI and OI. We show experimen-

tally that PM is at least as sensitive as TDM, which in turn is more sensitive than

OM.

Scaling Our experiments also show that TDM outperforms OM unless the number of

rankers becomes too large to handle for TDM, at which point OM performs better.

Our experiments show that, like OM but unlike TDM, PM scales well when the

number rankers that are compared increases.

Bias We also show experimentally that PM is unbiased.

We have incorporated the above contributions in Section 1.2 where we give a complete

overview of all contributions of this thesis.

An important implication of our results is that multileaving methods TDM, OM and

PM can accurately determine a set of pairwise preferences among a set of rankers using

39

4. Multileaved Comparisons

much less data than interleaving methods need. Furthermore, when using PM, historical

interactions with multileaved comparisons can be reused, allowing for ranker comparisons

that need much less user interaction data. This, in turn, means that users are exposed less

often to inferior rankers and that more rankers can be compared with the same number of

user interactions.

4.2 Related Work

We refer to Section 2.3 and in particular to Section 2.3.3 for background on this chapter.

Our work in this chapter differs from earlier work in that it does not rely on pairwise

comparisons. As a result, when a set of rankers is evaluated, it is no longer necessary

to separately compare each ranker pair. We obviate that need by introducing a new

paradigm called multileaved comparisons that can evaluate a complete set of rankers in

one comparison and thereby requires substantially less data.

4.3 Problem Definition

The problem we want to tackle can be formulated as follows: we have a set of rankers

R (with |R| � 2) whose performance we want to evaluate using click feedback. We

may be interested in knowing how all rankers in R compare to each other, as doing so

gives valuable feedback to the engineers who design new rankers. If we already have a

working production ranker, we may also be interested in determining how each ranker

in R compares to it. Alternatively, we may be interested in finding the best ranker in R,

which is an instance of the K-armed dueling bandit problem.

In this chapter, we focus on developing multileaved comparisons methods for the

first task, comparing all rankers to each other, because it represents a scenario that is

vital for enabling ranker development in deployed search engines. For completeness, in

Section 4.6.1, we also evaluate our methods, designed to compare all rankers to each

other, on the task variation in which they are asked to compare a set of rankers to a single

production ranker. In Section 4.7, we discuss how our methods can be customized to this

task variation or to the K-armed dueling bandit problem (see also Section 2.3.4).

To formalize the task of determining how all rankers in R compare to each other, we

begin by defining ground truth as a preference matrix P , an |R|⇥ |R| matrix in which

each cell Pij contains the difference in expected normalized discounted cumulative gain

(nDCG) [89] between rankers Ri and Rj , normalized to lie between 0 and 1:

Pij = 0.5(nDCG(Ri)� nDCG(Rj)) + 0.5, (4.1)

where nDCG(Ri) is the expected nDCG of ranker Ri across queries. The goal of

an online evaluation method is then to use click feedback to learn a matrix P̂ that

approximates P . Its performance is thus measured using the error of P̂ with respect to

P . We propose a binary error metric that counts the number of times P̂ is incorrect about

which ranker has a higher expected nDCG:

Ebin =

P

i,j2R^i 6=j sgn(P̂i,j � 0.5) 6= sgn(Pi,j � 0.5)

|R| · (|R|� 1)
, (4.2)

40

4.4. Methods

where sgn(·) returns �1 for negative values, 1 for positive values and 0 otherwise, and

the infix operator 6= returns 1 whenever the signs are not equal.

4.4 Methods

Using interleaving methods, learning P̂ requires interleaving each ranker pair (Ri, Rj)
separately to estimate each Pij , which means that many interleavings are required for

learning. The goal of multileaved comparison methods is to reduce the cost of learning by

constructing multileavings that, by combining documents from all rankers R, can learn

about all cells in P at once.

We propose three variants of multileaved comparison: team draft multileave (TDM),

explained in Section 4.4.1, optimized multileave (OM), explained in Section 4.4.2, and

probabilistic multileave (PM) in Section 4.4.3. OM is designed to avoid a limitation of

TDM concerning the number of rankers that it can compare using a single query. PM

has the same advantage over TDM and additional allows for reusing historical interaction

data.

4.4.1 Team Draft Multileave

The first variant of multileaved comparisons is based on team draft interleave (TDI) [144],

as introduced in Section 2.3.3. This interleaving method follows the analogy of selecting

players (documents) for a team (ranking) for a friendly sports match. The construction of

an interleaved list takes several rounds, until the interleaving is long enough. In each round,

rankers select their most preferred document that is still available. It is added to their

team and appended to the interleaving. The order in which rankers get to pick a document

in a round is randomized. After a user interacts with documents in the interleaving, the

team that owns a clicked document gets credit and the team with the most credit wins the

comparison.

We propose team draft multileave (TDM), an extension that can compare more than

two rankers at a time. Doing so is straightforward, as it only requires changing the number

of teams that participate. TDM is described in Algorithm 3, which returns not only the

multileaving, but also the teams to which the documents in the multileaving belong.

These team assignments are used after a user interacts with the interleaving to update

the matrix P̂ij . We maintain an empirical mean for all P̂ij . We increase the preference

P̂ij if and only if there were more clicks on documents belonging to the team of ranker i
than on documents belonging to the team of ranker j. Note that one reason why this may

happen is that ranker j was not represented in the multileaving.

4.4.2 Optimized Multileave

While TDM is a natural way of dealing with more than two rankers, it requires multi-

leavings to be long enough to represent teams for each ranker. Therefore, we propose

optimized multileave (OM), based on optimized interleave (OI) [143], which does not

have this drawback and thus may scale better with the number of rankers.

41

4. Multileaved Comparisons

Algorithm 3 Team draft multileave (TDM).

Require: set of rankings R, multileaving length k.

1: L [] // initialize new multileaving

2: 8Rx 2 R : Tx ; // initialize teams for each ranking

3: while |L| < k do

4: select Rx randomly s.t. |Tx| is minimized

5: p 0
6: while Rx[p] 2 L and p < k � 1 do

7: p p+ 1
8: if Rx[p] /2 L then

9: L L+ [Rx[p]] // append document to multileaving

10: Tx Tx [{Rx[p]} // add document to team

11: return L, T

We start in the following sub-section by constructing combinations of documents from

the different rankings that satisfy a generalization of the prefix constraint of [143]; this

results in a set of allowed multileavings. Then we assign a probability to each of these

multileavings that determines how often it is shown to users. This probability distribution

over multileavings is computed by solving for the simplex and unbiasedness constraints

in the next sub-section. Subsequently, the probability distribution over multileavings that

maximizes sensitivity is selected in the second to last sub-section of this method. When a

multileaving is shown to a user, credit is assigned according to credit functions, described

in the last sub-section, to each of the original rankings based on which documents the user

clicks. We explain each step in more detail in the following sections.

Allowed Multileavings

The prefix constraint proposed by Radlinski and Craswell [143] states that any prefix (i.e.,

the top) of the constructed interleaving should be the union of prefixes of the two original

rankings. We extend this to the case with more than two original rankings by defining the

set of allowed multileavings L as follows:

L = {Li : 8k, 8Rx 2 R, 9mx such that Lk
i =

[

Rx2R

Rmx
x }. (4.3)

Here, R is the set of original input rankings Rx that we want to compare, Lk
i is the top k

documents of multileaving Li, and Rmx
x is the top mx documents in ranking Rx. Note

that when there are only two rankings (A and B in the definition in [143]) in R, then

(4.3) coincides with the prefix constraint in [143]. In other words, (4.3) states that only

multileavings are allowed for which any possible prefix is the union of prefixes of the

input rankings.

Our constraint in (4.3) allows for at most |R||Li| multileavings. Even with a relatively

small |R| and |Li|, this is more than can be handled by the optimization step described

in the following sections. Therefore, we consider a sampling approach. Instead of

materializing all multileavings allowed by (4.3), we construct only a small number of

them using Algorithm 4. The result of this algorithm is a set L of multileavings that

42

4.4. Methods

Algorithm 4 Prefix constraint sampling for OM.

Require: set of rankings R, multileaving length k, sample size η.

1: L ; // initialize empty set of multileavings

2: while |L| < η do

3: Li [] // initialize new multileaving

4: while |Li| < k do

5: select Rx randomly from R
6: p 0
7: while Rx[p] 2 Li and p < k � 1 do

8: p p+ 1
9: if Rx[p] /2 Li then

10: Li Li + [Rx[p]] // append document to multileaving

11: L L [{Li} // add constructed multileaving to set

12: return L

obey the prefix constraint (4.3) because documents from a ranking can be added to the

multileaving only if all documents above it in the ranking have already been added.

The size of the set L of multileavings can be controlled by the parameter η. Keeping η

small reduces the size of the resulting optimization problem but could introduce variance,

since only a subset of allowed multileavings are considered. Besides that, due to the

small number of multileavings considered, it may be the case that the optimization

problem becomes overconstrained. As a result, it may no longer be possible to satisfy the

unbiasedness constraint, leading to a second source of bias. We hypothesize, however,

that this will not lead to severe degradation of the algorithm’s performance, since ranker

evaluation methods can perform well in practice even when they are biased [85].

Simplex Constraints

Every allowed multileaving Li 2 L is shown to the user with probability pi. These

probabilities have to satisfy a number of constraints. First of all, as in [143], they must

satisfy the simplex constraint to form a valid probability distribution:

pi 2 [0, 1] (4.4)

|L|
X

i=1

pi = 1. (4.5)

The constraints expressed in Equations 4.4 and 4.5 together ensure that the probability

distribution p over multileavings L is in fact a probability distribution.

Unbiasedness Constraint

Furthermore, the multileavings satisfy the unbiasedness constraint: they should be shown

to the user in such a way that none of the original rankings gets an unfair advantage. We

instantiate this constraint by insisting that if the multileavings are presented to a randomly

43

4. Multileaved Comparisons

clicking user (according to the probability distribution p over multileavings L), all original

rankings receive the same expected credit.

In [143], a randomly clicking user is assumed to pick a number k, and clicks every

result in the top k of the presented list with the same probability. When a user clicks in

this way, none of the original rankings should be preferred and they should all receive the

same expected credit. We adapted the resulting constraint for the multileave case. Here,

given a multileaving Li, let dij denote its j-th document and let δ(dij , Rx) be the credit

assigned to ranker Rx when dij is clicked. The following unbiasedness constraint directly

extends [143] and expresses that, for every k, there should be some constant ck such that

when the user clicks every document in the top k, every original ranking receives the same

expected credit ck:

8k, 9ck such that 8x,

|L|
X

i=1

0

@pi

k
X

j=1

δ(dij , Rx)

1

A = ck. (4.6)

Optimizing for Sensitivity

Given the above constraints, multiple probability distributions over multileavings may

still be possible, because the optimization problem may be underconstrained. Whether

it is underconstrainted or overconstrained, however, depends on the number of sampled

multileavings. As described in Section 4.4.2, if the number of samples is small, there

might not even be a single solution to the optimization problem.

If the optimization problem is indeed underconstrained, there is the opportunity to

prefer one probability distribution over multileavings over another. Following [143], we

want to optimize the probabilities for maximal sensitivity. Intuitively, this means that

probability distributions that distribute more mass to multileavings that can distinguish

between rankers are preferred. We follow the alternative suggestion by [143], in that we

minimize variance, as opposed to maximizing entropy.

The expected credit assigned to ranking Rx after the user clicks on documents in

multileaving Li is:

E[δ(Rx)] =

|Li|
X

j=1

f(j) · δ(dij , Rx).

Here f(j) is the probability with which a user clicks a document at position j. For

simplicity and following [143], we assume that f(j) = 1/j. Given a multileaving Li, we

define the expectation over the variance in credit assigned to the different rankings as:

E[Var i] =

|R|
X

x=1

0

@

0

@

|Li|
X

j=1

f(j) · δ(dij , Rx)

1

A� µi

1

A

2

, (4.7)

µi =
1

|R|

|R|
X

x=1

|Li|
X

j=1

f(j) · δ(dij , Rx). (4.8)

44

4.4. Methods

Then the aim of the optimization is to find the pi’s such that the sum of all variances is

minimized:
|L|
X

i=1

pi · E[Var i]. (4.9)

Note that we minimize the sum of all variances while taking all other constraints from

Section 4.4.2 into account. In particular, if we did not ensure unbiasedness, we would find

pi = 1 for multileaving Li with the lowest E[Var i].

Assigning Credit

We have not yet defined the credit function δ. This function is used in a number of places

in the multileaved comparison method: (1) ensuring unbiasedness, (2) optimizing for

sensitivity, and (3) determining the outcome. The credit function should assign credit to an

input ranking, given a clicked document in a multileaving. However, in the optimization

step, there is no observed click yet. Therefore, we assume all documents are clicked.

Following Radlinski and Craswell [143], we define two possible credit functions.

Intuitively, both assign more credit to rankings that rank clicked documents at a higher

position. The first is inverse rank and analogous to the function with the same name

in [143]:

δ(dij , Rx) =
1

rank(dij , Rx)
. (4.10)

Here, rank(dij , Rx) is the rank of document dij in Rx if it is present in the ranking, and

otherwise |Rx|+ 1. Note that this is the rank in the full ranking Rx and not just the top k.

An alternative credit function is negative rank:

δ(dij , Rx) = � rank(dij , Rx). (4.11)

This credit function is analogous to the linear rank difference credit function from [143].1

The difference between the credit functions in [143] and the ones defined here is that we

cannot define our credit functions on a pair of rankings. Instead, our credit functions are

defined as giving certain credit to a single ranking.

Optimized Multileaved Comparisons

Above, we described the ingredients of OM. Here and in Algorithm 5 we put them all

together. When a multileaved comparison is performed, the following happens. Each of

the rankers that are to be compared generates a ranking, given the user’s query. A set of

multileavings is generated from these rankings using Algorithm 4. Then, a probability

distribution over these multileavings is computed that obeys the unbiasedness constraints

in Section 4.4.2. Following [143] we use a linear constraint optimization solver to find a

distribution that satisfies these constraints.2 If there is more than one such distribution, we

select the distribution that minimizes the variance in Section 4.4.2. A single multileaving

is sampled from this distribution and shown to the user who issued the query.

1We use the term negative rank even when we refer to OI with linear rank difference.
2We use the Gurobi optimization toolkit, http://www.gurobi.com.

45

http://www.gurobi.com

4. Multileaved Comparisons

Algorithm 5 Optimized multileave (OM).

Require: set of rankings R, multileaving length k, sample size η.

1: L prefix constraint sampling(R, η) // Algorithm 4

2: C ; // initialize set of constraints

3: 8Li 2 L : C C [{0 < pi < 1} // add simplex constraints

4: 8k8x : C C [{
P|L|

i=1

⇣

pi
Pk

j=1 δ(dij , Rx)
⌘

= ck} // add

unbiasedness constraints

5: 8Li 2 L : µi
1

|R|

P|R|
x=1

P|Li|
j=1 f(j) · δ(dij , Rx) // compute means

6: si
P|R|

x=1

⇣⇣

P|Li|
j=1 f(j) · δ(dij , Rx)

⌘

� µi

⌘2

// sensitivity

7: o
P|L|

i=1 pi · si // optimization objective

8: p minimize(o, C) // constrained optimization problem

9: Li sample from L with probability pi
10: return Li

The user’s clicks are used to assign credit to each ranker that participated in the

comparison. As with TDM, we maintain an empirical mean for all P̂ij . We increase the

preference P̂ij if and only if the sum of credit for ranker i was larger than the sum of

credit for ranker j.

4.4.3 Probabilistic Multileave

In this section we derive probabilistic multileave (PM), a multileaving version of proba-

bilistic interleave (PI) [79]. Extending PI to multiple rankers is non-trivial due to three

challenges. First, the interleaving method, which combines multiple rankings into one

list, must be extended to accommodate more than two rankers in a probabilistic way; see

Section 4.4.3. Secondly, we need to represent the outcomes of a multileaved comparison

such that it allows for more than two rankers. Lastly, we need to extend the marginalization

over all assignments3 to the multileave setting without increasing the number of possible

assignments beyond what we can reasonably handle.

Constructing Multileaved Lists

Probabilistic interleaving [79] constructs interleaved lists in a way similar to TDI. For

each rank in the interleaved list a coin is flipped to decide which ranker assigns the

next document. Instead of picking the top document from that ranking, like in TDI, the

document is drawn from a softmax distribution. After a document has been chosen it is

removed from all rankings it occurs in and all softmax distributions are renormalized. An

extension of this approach to the setting with r rankers can be found in Algorithm 6. As

in TDM, and unlike PI, we choose to introduce the notion of rounds on line 4: in each

round all rankers are chosen at random to contribute a document. This way we increase

3Following TDM and PI, documents in a multileaved list are assigned to a rankers’ teams in order to distribute

credit from clicks.

46

4.4. Methods

Algorithm 6 Probabilistic multileave (PM).

Require: rankers R, size k.

1: L [] // initialize interleaved list

2: while True do

3: R0 R
4: while |R0| > 0 do

5: Rj draw from uniform distribution over R0

6: R0 R0 \ {Rj}
7: d draw from Rj with P (d|Rj) // see Equation 4.12

8: L.append(d)
9: if |L| = k then

10: return L
11: for Rj 2 R do

12: Rj .remove(d) // renormalize P (d|Rj)

the change of the multileaved list to include documents from the top of each ranker that is

to be compared while ensuring non-zero probability for all possible multileavings.

Documents d are drawn from ranker Rj with probability

P (d|Rj) =

1
rj(d)τ

P

d02D
1

rj(d0)τ

, (4.12)

where rj(d) denotes the rank of the document in ranker Rj . When documents are removed

from Rj , as is done on line 12, this changes the distribution.

Inferring Preferences

Once the multileaved list has been created and shown to a user and that user has clicked

on zero or more documents, these clicks can be interpreted as preferences for rankers.

Hofmann et al. [79] propose an unbiased estimator of the expected outcome of a

comparison outcome over many such query impressions as

E[o(C,A)] ⇡
1

|Q|

X

q2Q

o(cq, aq). (4.13)

Here, Q denotes a given set of queries, with clicks cq and assignments aq. In the PI

implementation, o(c, a) 2 {�1, 0, 1} is used to denote the outcome of a comparison,

which we change to oj(c, a) 2 N to denote the outcome (credit) for a single ranker Rj .

This outcome simply counts how many clicked documents were assigned to this ranker,

as in TDI or TDM. Changing the outcome notation leads us to also compute the expected

outcome per ranker Rj as

E[oj(C,A)] ⇡
1

|Q|

X

q2Q

oj(cq, aq). (4.14)

The PI algorithm then proposes a marginalization over all possible assignments. The

intuition why this is a good idea for both PI and PM is that through a single interaction

47

4. Multileaved Comparisons

Algorithm 7 Inferring preferences in PM.

Require: multileaved list L, rankers R, clicks C.

1: A {} // assignment tree keeps track of outcome and probabilities

2: A0 {ho [0, ..., 0], p 0i} // init assignment tree, |o| = |R|

3: for d 2 L do

4: A A0, A0 {} // next layer in assignment tree

5: for Rj 2 R do

6: pj P (d|Rj) // see Equation (4.12)

7: Rj .remove(d) // renormalize P (d|Rj)

8: for ho, pi 2 A do

9: for Rj 2 R do

10: if random() > 1
|R| · n

1

|L| then

11: continue // sample, skip branch

12: p0 p+ log(
pj

2) // log probability of assigning d to Rj

13: o0 o // copy outcome vector from parent

14: if d 2 C then

15: o0j o0j + 1 // click on d, increment outcome for Rj

16: A0 A0 [{ho0, p0i} // append to next layer

17: o [0, ..., 0] // init outcome, |o| = |R|

18: for ho0, p0i 2 A0 do

19: o o+ o0 · ep
0

// aggregate outcome vector o weighted with ep
0

20: return o

with users, inferences can be performed as if the R rankers were multileaved many more

times. This allows for highly sensitive comparisons.

We closely follow the marginalization of PI, and marginalize over all possible assign-

ments as

E[oj(C,A)] ⇡
1

|Q|

X

q2Q

X

aq2Ãq

oj(cq, aq) · P (aq|Lq, q). (4.15)

In this equation, P (aq|lq, q) denotes the probability of an assignment aq occurring given

the interleaved list Lq for query q. We borrow this probability directly from the PI

implementation.

A major difference with PI, however, is that we can no longer consider all possible

assignments A as there are generally too many of them, namely |R||L|, which, even

with a small amount of rankers, is prohibitively large. Instead, we limit the number of

assignments by taking a random and uniform sample from them. We denote the sample

as Ã, and control the size n ⇡ |Ã| by, deciding with probability 1
|R| · n

1

|L| whether we

consider a branch in a tree of assignments or not. This sampling happens on line 10

in Algorithm 7 which lists our method for inferring preferences in PM. The algorithm

builds a tree of assignments by considering assigning each document d 2 L (line 3) to

all possible rankers Rj 2 R (line 9) with the probability mentioned before (line 10).

The algorithm keeps track of the outcome for each ranker for each assignment branch

(line 15). It also tracks the probability of each such assignment (line 12). Once the

outcomes oj(cq, aq) have been computed for all assignments aq 2 A0, we aggregate them

48

4.5. Experiments

weighted with their assigned probabilities on line 19 into a single outcome. From this

outcome we construct the preference matrix P̂ij just as is done in TDM.

Note that in our implementation, just as in PI, we use log probabilities and sums to

avoid buffer underflow. Also following PI, as an optimization, we only actually compute

assignments and probabilities up to the lowest clicks.

4.5 Experiments

In this section, we detail our experimental setup in as far as it is different from the setup

described in Chapter 3.

We first describe the data sets that we use in Section 4.5.1. Then, in Section 4.5.2 we

describe how we select rankers. In Section 4.5.3, we detail our click simulation framework,

in Section 4.5.4 we describe our experiments, and in Section 4.5.5 we detail our parameter

settings.

4.5.1 Data Sets

Our experiments for RQ1, RQ3, RQ4, and RQ5 are conducted on all the nine data sets

described in Section 3.2.

4.5.2 Selecting Rankers

For experiments aimed at answering RQ1, RQ3, RQ4, and RQ5, we handpick a set of

features that are known to perform well and treat each of them independently as a ranker.

Among others, we select BM25, LMIR.JM, Sitemap, PageRank, HITS and TF.IDF. Most

of our experiments are run with |R| = 5 rankers; only those experiments that investigate

the impact of the number of rankers use a different number of rankers. We compute

nDCG [89] for each ranker to produce the ground truth Pij for all ranker pairs i, j on the

held-out test fold, as described in Section 4.3. Note that while, for instance, PageRank is

generally not a good ranker on its own (because it does not consider the query), in the

data sets that we use, candidate documents for a query are preselected using a procedure

that does take the query into account. Some average nDCG values of rankers that we

use are 0.46 (BM25), 0.43 (Hyperlink based), 0.11 (PageRank), 0.50 (Sitemap), and 0.39

(LMIR.JM).

To answer RQ2, that is, to understand the impact of the difference between evaluated

rankers on interleaving and multileaved comparison methods, we use synthetic data

generated in a controlled way. We first generate, for each query, a ranking with 10

documents, 4 to 6 of them being relevant, using 3 grades for relevance labels as in, e.g.,

OHSUMED above. Then, we derive additional rankings by altering the initial ranking

depending on the expected difference between them (see Section 4.6.1).

4.5.3 Simulating Clicks

To produce clicks, we use a click simulation framework that is analogous to [83], which

is explained in [161] and in Section 3.3. In this chapter, we use the following four

49

4. Multileaved Comparisons

instantiations of the click model: perfect, navigational, informational and random. Details

can be found in Table 3.2.

4.5.4 Experimental Runs

Our experiments consider the following evaluation methods.

TDI team draft interleave [144], pairwise comparisons (baseline).

TDM team draft multileave, our extension of TDI that performs multileaved comparisons.

OI optimized interleave [143], pairwise comparisons (baseline).

OM optimized multileave, our extension of OI that performs multileaved comparisons.

We experiment with several sample sizes η and the credit function.

PI probabilistic interleave [79], pairwise comparisons (baseline)

PM probabilistic multileave, our extension of PI that performs multileaved comparisons.

Our experiments for RQ1, RQ3, RQ4, and RQ5 are performed as follows. We select a set

of rankers to compare. We then repeatedly sample queries randomly with replacement

from the pool of queries. This simulates a user arriving at our search engine and entering

a query. We assume that there is no dependence between two consecutive queries. When

a query has been selected, it is given to the online evaluation methods. For the pairwise

(baseline) methods, we select a pair of rankers such that all ranker pairs i, j where i 6= j
are compared the same number of times. The multileaved comparison methods, on the

other hand, compare all rankers at the same time. So, either an interleaving of two rankers

or a multileaving of all rankers is shown to the user. We then simulate the user interacting

with the result list and produce clicks according to the given instantiation of the click

model. Using these clicks, for the pairwise (baseline) methods, we update P̂ij only for the

pair of rankers that we compared. For the multileaved comparison methods, we update all

P̂ij for all pairs of rankers.

For RQ2, we follow the above approach as closely as possible. However, since there

is no notion of a ranker that generalizes over queries, we repeatedly (N = 100) issue the

same set of rankings to produce clicks with the click model in order to obtain a stable P̂ij .

The main objective for all experiments is to find the P̂ij that minimizes the error

metric Ebin when compared to ground truth Pij computed using nDCG (see Section 4.3).

We also investigate other properties. We measure the bias of each method by using a

random instantiation of the click model and comparing with Ebin to a ground truth where

Pij = 0.5 for all pairs of rankers. We also measure online performance in terms of nDCG

of the rankings presented to the user. Lastly, we measure the effect of the number of

rankers we compare and the effect of the length of the result list. We test for significant

differences using a two tailed t-test.

4.5.5 Parameter Settings

Lastly, we describe parameters used in our experiments. For OM, we set the number

of multileavings to η = 1, 5, 10, 100. For both OI and OM we test two types of credit

function: negative credit and inverse credit. For OM, we use inverse credit by default

50

4.6. Results and Analysis

and for OI we use negative credit unless stated otherwise as these performed best for the

respective methods. For all experiments except those that investigate the effects of these

parameters, the number of rankers is |R| = 5 and the results lists length is k = 10. Lastly,

for PM the softmax decay is controlled by τ which we set to 3, following PI [79]. TDM

does not have any parameters.

4.6 Results and Analysis

In this section we answer research questions RQ1 through RQ5, posed in Section 1.1.

We start by comparing TDM and OM head to head in Section 4.6.1 and then continue by

comparing PM to TDM, the winning method, in Section 4.6.2.

4.6.1 Team Draft Multileave and Optimized Multileave

Our main result with respect to TDM and OM is depicted in Figure 4.1. It shows the error

measured with Ebin for the two baseline interleaving methods OI and TDI and for two of

our new multileaving methods, OM and TDM. These results are obtained by aggregating

over all the data sets that we consider. Table 4.1 provides an alternative view on the

same results by splitting them per data set. We performed our analysis for three levels of

increasing noise in the feedback: perfect, navigational and informational instantiations of

the click model.

Interestingly, as can be seen in Figure 4.1, the multileaved extensions of the interleav-

ing methods converge to an error close to their interleaving counterparts. Both OI and

OM have difficulties coping with noise in user feedback: the error to which these methods

converge increases when the noise increases. This is in contrast with TDI and TDM: with

increasing noise they are capable of learning the ranker preference almost as well as with

the perfect click model.

In response to RQ1, Figure 4.1 shows clearly that the error of both of our multileaving

methods drops much faster than their interleaving counterparts. This indicates that

multileaved comparison methods can learn preferences between multiple rankers with far

less data (i.e., queries and clicks) than interleaved comparison methods.

Under perfect feedback, TDM and OM learn ranker preferences equally fast. When

noise increases, OM initially learns these preferences faster than TDM does. Under noisy

feedback, TDM keeps improving the learned preferences long after OM has plateaued.

Table 4.1 shows the error Ebin at 500 queries. We choose a rather low number of

queries to emphasize learning speed. Note that the rightmost column is equal to the

Ebin values in a slice of Figure 4.1 after 500 queries. For the multileaving methods,

each P̂ij has had 500 updates by then. The interleaving methods only performed 50

updates of P̂ij for each pair of rankers. The results show that, in general, the multileaving

methods have significantly less error than the interleaving methods. In particular, OM

has less error than OI in 24 out 27 experiments. The exception to this rule are the three

experiments on MQ2007. TDM has less error than TDI in 22 out of 27 experiments. In

two experiments, TDM has a significantly higher error; those experiments are on perfect

and navigational instantiations of the click model on the TD2003 data set. In both these

51

4. Multileaved Comparisons

0 1000 2000 3000 4000 5000
0.0

0.1

0.2

0.3

0.4

0.5

E
b
in

perfect

OM η = 1

OM η = 5

OM η = 10

TDM

OI

TDI

0 1000 2000 3000 4000 5000
0.0

0.1

0.2

0.3

0.4

0.5

E
b

in

navigational

0 1000 2000 3000 4000 5000

queries

0.0

0.1

0.2

0.3

0.4

0.5

E
b
in

informational

Figure 4.1: Average Ebin error of interleaved and multileaved comparison methods OM

and TDM and their baselines. Averaged over 25 repetitions, 9 data sets with 5 folds each.

The plots depict the error (see Equation 4.2) for three instantiations of the click model:

perfect, navigational and informational. Result list length l = 10 and number of rankers

|R| = 5.

52

4.6. Results and Analysis

T
ab

le
4
.1

:
E

b
in

at
5
0
0

q
u
er

ie
s

fo
r

O
M

an
d

T
D

M
v
er

su
s

th
ei

r
re

sp
ec

ti
v
e

b
as

el
in

es
O

I
an

d
T

D
I.

A
v
er

ag
ed

o
v
er

2
5

re
p
et

it
io

n
s

an
d

5
fo

ld
s.

S
ta

n
d
ar

d
d
ev

ia
ti

o
n

is
b
et

w
ee

n
b
ra

ck
et

s.
P

er
d
at

a
se

t
an

d
in

st
an

ti
at

io
n

o
f

th
e

cl
ic

k
m

o
d
el

,
w

e
p
ri

n
t

th
e

b
es

t
m

et
h
o
d

in
b
o
ld

.
S

ta
ti

st
ic

al
ly

si
g

n
ifi

ca
n

t
im

p
ro

v
em

en
ts

(l
o

ss
es

)
o
v
er

th
e

re
sp

ec
ti

v
e

b
as

el
in

es
ar

e
in

d
ic

at
ed

b
y

M
(p

<
0.
05

)
an

d
N

(p
<

0.
01

)
(O

an
d

H
).

M
et

h
o

d
H

P
2

0
0

3
H

P
2

0
0

4
M

Q
2

0
0

7
M

Q
2

0
0

8
N

P
2

0
0

3
N

P
2

0
0

4
O

H
S

U
M

E
D

T
D

2
0

0
3

T
D

2
0

0
4

A
v
er

ag
e

p
er

fe
ct

cl
ic

k
m

o
d

el

O
M

η
=

1
0

.0
0

0
(0

.0
0
)
N

0
.0

0
0

(0
.0

0
)
N

0
.3

2
4

(0
.1

3
)
H

0
.0

4
3

(0
.0

5
)
N

0
.0

6
7

(0
.0

7
)
N

0
.0

8
8

(0
.0

9
)
M

0
.3

4
0

(0
.1

5
)
N

0
.1

9
4

(0
.1

3
)
N

0
.0

9
6

(0
.0

7
)
N

0
.1

2
8

(0
.1

5
)

O
M

η
=

5
0

.0
0

0
(0

.0
0
)
N

0
.0

0
0

(0
.0

0
)
N

0
.2

8
5

(0
.1

1
)
O

0
.0

4
0

(0
.0

5
)
N

0
.0

6
8

(0
.0

7
)
N

0
.0

8
4

(0
.0

8
)
N

0
.3

4
1

(0
.1

4
)
N

0
.1

9
5

(0
.1

3
)
N

0
.1

0
6

(0
.0

8
)
M

0
.1

2
4

(0
.1

5
)
M

O
M

η
=

1
0

0
.0

0
0

(0
.0

0
)
N

0
.0

0
0

(0
.0

0
)
N

0
.2

9
7

(0
.1

1
)
H

0
.0

4
9

(0
.0

6
)
N

0
.0

7
1

(0
.0

7
)
N

0
.0

9
0

(0
.1

0
)
M

0
.3

3
8

(0
.1

4
)
N

0
.1

8
6

(0
.1

2
)
N

0
.1

0
7

(0
.0

8
)
M

0
.1

2
6

(0
.1

5
)
M

O
M

η
=

1
0
0

0
.0

0
0

(0
.0

0
)
N

0
.0

0
0

(0
.0

0
)
N

0
.2

3
3

(0
.1

1
)

0
.0

4
9

(0
.0

5
)
N

0
.0

6
7

(0
.0

6
)
N

0
.0

9
3

(0
.1

0
)

0
.3

3
8

(0
.1

5
)
N

0
.1

9
3

(0
.1

2
)
N

0
.1

1
4

(0
.0

8
)

0
.1

3
6

(0
.1

5
)

O
I

0
.0

1
4

(0
.0

4
)

0
.0

3
5

(0
.0

5
)

0
.2

5
4

(0
.1

2
)

0
.1

5
5

(0
.1

0
)

0
.1

1
1

(0
.0

9
)

0
.1

1
6

(0
.0

9
)

0
.4

4
0

(0
.1

6
)

0
.2

4
3

(0
.1

2
)

0
.1

3
1

(0
.1

0
)

0
.1

6
7

(0
.1

6
)

T
D

M
0

.0
0

5
(0

.0
2
)

0
.0

1
8

(0
.0

4
)

0
.1

6
6

(0
.0

8
)
N

0
.0

5
0

(0
.0

7
)
N

0
.0

8
6

(0
.0

6
)
N

0
.0

9
7

(0
.1

0
)

0
.2

6
5

(0
.1

9
)
N

0
.2

7
0

(0
.1

0
)
O

0
.1

5
9

(0
.0

7
)

0
.1

2
4

(0
.1

3
)

T
D

I
0

.0
0

7
(0

.0
3
)

0
.0

2
4

(0
.0

4
)

0
.3

0
5

(0
.1

3
)

0
.1

3
4

(0
.0

9
)

0
.1

1
4

(0
.0

9
)

0
.1

2
2

(0
.1

0
)

0
.3

5
0

(0
.1

6
)

0
.2

3
5

(0
.1

2
)

0
.1

4
3

(0
.1

0
)

0
.1

5
9

(0
.1

5
)

n
av

ig
at

io
n

al
cl

ic
k

m
o

d
el

O
M

η
=

1
0

.0
0

5
(0

.0
2
)
N

0
.0

0
6

(0
.0

2
)
N

0
.5

3
0

(0
.1

0
)
H

0
.1

3
8

(0
.0

9
)
N

0
.0

6
2

(0
.0

5
)
N

0
.0

8
0

(0
.0

7
)
N

0
.4

3
0

(0
.1

1
)
N

0
.2

2
8

(0
.1

5
)
M

0
.1

5
9

(0
.1

2
)

0
.1

8
2

(0
.2

0
)

O
M

η
=

5
0

.0
1

1
(0

.0
3
)
M

0
.0

1
1

(0
.0

3
)
N

0
.5

1
8

(0
.1

2
)
H

0
.1

3
2

(0
.0

9
)
N

0
.0

6
8

(0
.0

6
)
N

0
.0

8
0

(0
.0

7
)
N

0
.4

3
8

(0
.1

2
)
N

0
.2

2
7

(0
.1

5
)
M

0
.1

5
4

(0
.1

1
)

0
.1

8
2

(0
.2

0
)

O
M

η
=

1
0

0
.0

1
8

(0
.0

4
)

0
.0

1
2

(0
.0

3
)
N

0
.5

0
3

(0
.1

0
)
H

0
.1

3
4

(0
.1

0
)
N

0
.0

6
3

(0
.0

6
)
N

0
.0

8
1

(0
.0

8
)
N

0
.4

1
9

(0
.1

3
)
N

0
.2

3
7

(0
.1

4
)

0
.1

5
8

(0
.1

1
)

0
.1

8
1

(0
.1

9
)

O
M

η
=

1
0
0

0
.0

1
3

(0
.0

3
)

0
.0

1
9

(0
.0

4
)
N

0
.4

6
2

(0
.1

1
)
H

0
.1

3
7

(0
.0

9
)
N

0
.0

6
8

(0
.0

6
)
N

0
.0

8
2

(0
.0

8
)
N

0
.4

3
6

(0
.1

3
)
N

0
.2

5
3

(0
.1

6
)

0
.1

6
7

(0
.1

0
)

0
.2

1
1

(0
.2

0
)

O
I

0
.0

2
2

(0
.0

4
)

0
.0

4
4

(0
.0

6
)

0
.3

9
8

(0
.1

4
)

0
.2

2
9

(0
.1

2
)

0
.1

1
6

(0
.0

8
)

0
.1

3
7

(0
.0

9
)

0
.6

3
5

(0
.1

6
)

0
.2

6
9

(0
.1

2
)

0
.1

6
6

(0
.1

0
)

0
.2

2
4

(0
.2

1
)

T
D

M
0

.0
2

1
(0

.0
4
)

0
.0

2
6

(0
.0

4
)

0
.1

9
0

(0
.0

9
)
N

0
.0

8
2

(0
.0

8
)
N

0
.0

8
6

(0
.0

7
)
N

0
.1

0
6

(0
.1

0
)
N

0
.3

3
0

(0
.1

7
)
N

0
.3

0
8

(0
.1

4
)
O

0
.1

8
8

(0
.0

8
)

0
.1

4
9

(0
.1

5
)

T
D

I
0

.0
1

7
(0

.0
4
)

0
.0

3
0

(0
.0

5
)

0
.3

2
2

(0
.1

4
)

0
.1

9
8

(0
.1

1
)

0
.1

2
6

(0
.0

9
)

0
.1

5
4

(0
.1

0
)

0
.3

8
6

(0
.1

6
)

0
.2

7
2

(0
.1

4
)

0
.1

6
9

(0
.1

0
)

0
.1

8
6

(0
.1

6
)

in
fo

rm
at

io
n

al
cl

ic
k

m
o

d
el

O
M

η
=

1
0

.0
8

9
(0

.0
3
)
N

0
.0

7
1

(0
.0

5
)
N

0
.6

3
5

(0
.1

2
)
H

0
.1

6
9

(0
.1

0
)
N

0
.0

6
4

(0
.0

5
)
N

0
.0

8
3

(0
.0

7
)
N

0
.3

9
7

(0
.0

9
)
N

0
.2

8
9

(0
.1

7
)
N

0
.2

1
3

(0
.1

0
)
N

0
.2

2
3

(0
.2

0
)
N

O
M

η
=

5
0

.0
9

5
(0

.0
2
)
N

0
.0

8
1

(0
.0

5
)
N

0
.6

0
2

(0
.1

3
)
H

0
.1

7
0

(0
.1

2
)
N

0
.0

7
0

(0
.0

6
)
N

0
.0

9
0

(0
.0

7
)
N

0
.3

8
3

(0
.1

0
)
N

0
.2

8
9

(0
.1

6
)
N

0
.1

9
9

(0
.1

0
)
N

0
.2

2
0

(0
.2

0
)
N

O
M

η
=

1
0

0
.0

9
6

(0
.0

2
)
N

0
.0

8
7

(0
.0

4
)
N

0
.5

8
3

(0
.1

5
)
H

0
.1

8
6

(0
.1

1
)
N

0
.0

7
2

(0
.0

5
)
N

0
.0

8
6

(0
.0

7
)
N

0
.3

8
0

(0
.1

1
)
N

0
.2

9
4

(0
.1

6
)
N

0
.1

9
9

(0
.0

9
)
N

0
.2

2
0

(0
.1

9
)
N

O
M

η
=

1
0
0

0
.1

0
0

(0
.0

0
)
N

0
.1

0
1

(0
.0

3
)
N

0
.5

1
8

(0
.1

3
)
H

0
.1

7
8

(0
.1

1
)
N

0
.0

8
0

(0
.0

6
)
N

0
.0

9
5

(0
.0

7
)
N

0
.3

9
3

(0
.1

1
)
N

0
.2

8
2

(0
.1

5
)
N

0
.2

0
0

(0
.0

9
)
N

0
.2

4
3

(0
.1

8
)
N

O
I

0
.2

0
2

(0
.1

2
)

0
.1

9
8

(0
.1

3
)

0
.4

2
1

(0
.1

5
)

0
.3

1
8

(0
.1

4
)

0
.1

8
6

(0
.1

1
)

0
.2

4
6

(0
.1

1
)

0
.6

7
4

(0
.1

4
)

0
.3

8
2

(0
.1

3
)

0
.2

8
0

(0
.1

3
)

0
.3

2
3

(0
.2

0
)

T
D

M
0

.0
6

0
(0

.0
7
)
N

0
.0

6
6

(0
.0

6
)
N

0
.2

7
6

(0
.1

6
)
N

0
.1

7
7

(0
.1

2
)
N

0
.1

3
9

(0
.1

0
)
N

0
.1

4
7

(0
.0

9
)
N

0
.3

6
6

(0
.1

9
)
N

0
.3

1
7

(0
.1

3
)

0
.1

9
8

(0
.1

1
)
N

0
.1

9
4

(0
.1

6
)
N

T
D

I
0

.1
2

0
(0

.1
0
)

0
.1

3
1

(0
.0

9
)

0
.4

1
9

(0
.1

5
)

0
.3

0
7

(0
.1

4
)

0
.1

9
0

(0
.1

0
)

0
.2

0
7

(0
.1

1
)

0
.4

3
8

(0
.1

7
)

0
.3

5
2

(0
.1

6
)

0
.2

4
2

(0
.1

4
)

0
.2

6
7

(0
.1

7
)

53

4. Multileaved Comparisons

Table 4.2: Ebin when the number of rankers |R| is varied for OM and TDM and their

baselines. Result list length k = 10, averaged over 10 repetitions and 5 folds of the

NP2003 data set. Standard deviation of the error is given in brackets.

Method |R| = 3 |R| = 5 |R| = 7 |R| = 10

OM η = 10 0.144 (0.16) 0.154 (0.12) 0.111 (0.06) 0.116 (0.04)

TDM 0.191 (0.18) 0.192 (0.09) 0.190 (0.06) 0.203 (0.05)

OI 0.189 (0.18) 0.200 (0.08) 0.255 (0.06) 0.316 (0.04)

TDI 0.143 (0.13) 0.214 (0.09) 0.246 (0.05) 0.284 (0.04)

exceptions convergence was reached long before 500 queries for all methods. While the

multileaving methods still converged faster, they did so to a slightly higher error.

For OM we see in both Table 4.1 and Figure 4.1 that η, the sample size, does not seem

to have a large effect on the error. Therefore, with a surprisingly small number of samples,

effective and computationally efficient multileaving is possible. Consequently, in most of

the analyses that follow, we report only on OM with η = 10.

Scaling the Number of Rankers with TDM and OM

The motivation for performing multileaved comparisons lies in the fact that it is possible

to compare multiple rankers at once. Most of our experiments in this chapter use a set

of 5 rankers but, in response to RQ4, in this section we analyze what happens when the

number of rankers being compared increases.

Table 4.2 lists how each method performs when the number of rankers to be compared

varies. We kept the result list length fixed at k = 10. Both interleaving methods OI and

TDI are impacted greatly when the number of rankers increases. This is largely due to

the fact that many more comparisons are needed and as such each P̂ij receives fewer

updates. By contrast, OM and TDM do not show significant degradation when the number

of rankers increases.

We suspect that there may be an interaction between the number of rankers that are

compared and the length of the result list shown to the user. Depending on the method,

the result list length may limit the number of rankers that can be represented at once. We

experimented with several settings where we varied the number of rankers to be compared

and the result list length. We considered all combinations of |R| = 3, 5, 7, 10 rankers and

lengths k = 3, 5, 7, 10. Because of computational limitations, we had to limit ourselves

to a single data set, a single user model, with fewer repetitions and fewer queries. We

selected the NP2003 data set with the informational instantiation of the click model with

10 repetitions and 2.5K queries.

In Figure 4.2, we plot the error Ebin against the number of rankers per documents

in the result list. The four rightmost data points, for instance, were produced using 10

rankers and result lists of length 3 only. The leftmost points are from the opposite scenario:

3 rankers were compared with document lists of length 10. Note that there are many ways

in which
|R|
k

can be equal to 1, and that therefore there is a relatively wide spread of error.

We fitted lines for each evaluation method using least squares. Though these lines

54

4.6. Results and Analysis

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Number of rankings per document:
|R|
k

0.0

0.1

0.2

0.3

0.4

0.5

E
b
in

informational

OM η = 10
TDM

OI
TDI

Figure 4.2: Scaling the number of rankers for OM and TDM and their baselines. Average

Ebin against the number of rankers x per result list length k. Computed on all combina-

tions of |R| = 3, 5, 7, 10 and k = 3, 5, 7, 10. Averaged over 10 repetitions and 5 folds of

the NP2003 data set. Standard deviation is indicated with error bars and lines are fitted

using least squares.

are not perfect fits, they give a useful indication of the behavior of the methods when the

ratio between the number of rankers and the number of documents increases. Figure 4.2

shows that the multileaving methods can cope better with an increase in this ratio than

the interleaving baselines. The performance of OM is not impacted by an increase of this

ratio; the two interleaving methods almost double their error when the ratio increases

from 3
10 to 10

3 .

While Table 4.2 shows that TDM is not impacted by the number of rankers, in

Figure 4.2, we see that the error for TDM does increase when the ratio of rankers per

result list length goes up. We attribute this to the fact that team draft methods always

assign a document in an interleaving to a single input ranker. When there are (many)

more rankers than documents to which they can be assigned, then most rankers cannot be

distinguished from one another. Consequently, not all P̂ij can be updated per comparison.

Sensitivity of TDM and OM

In this section, we investigate RQ2. We study the impact of the difference between

evaluated rankers on interleaving and multileaved comparison methods using synthetic

data as discussed in Section 4.5.2. We consider cases when the position of one or more

document(s) changes from one ranking to another (we also investigated cases when one

or more document(s) are replaced by new ones and obtained similar results). In doing so,

we control two things: the number of documents moved as well as the amplitude of the

move, i.e., how far away is the moved document located from its original position. While

we only control the difference w.r.t. a single ranking and not between all pairs of rankings,

by increasing the number and amplitude of the changes, we increase the space of possible

rankings, effectively increasing the chance of them being different from each other.

For each interleaving and multileaved comparison method, we look at the impact

on Ebin at 500 queries of the difference between rankings using the informational click

55

4. Multileaved Comparisons

1

2

3

4

5

6

7

8

9

10

am
p

li
tu

d
e

TDI TDM

1 2 3 4 5 6 7 8 9 10

#documents

1

2

3

4

5

6

7

8

9

10

am
p
li

tu
d
e

OI

1 2 3 4 5 6 7 8 9 10

#documents

OM η = 10

0.10

0.14

0.18

0.22

0.26

0.30

0.34

0.38

0.42

0.46

E
b

in

Figure 4.3: The effect on TDI, TDM, OI, and OM of differences between rankings, the

number of moved documents and the amplitude of the move is controlled. Ebin at 500

queries, 100 issues, averaged over 125 repetitions. We used the informational click model.

model, with |R| = 5 rankers, result lists of length k = 10 and 100 issues of each query.

Results are depicted in Figure 4.3 as a heat map of Ebin depending on the number of

documents moved and the amplitude of the move. We observe that Ebin decreases as

the difference between rankings increases (whether this is the number of moves or the

amplitude of the moves) in the same way for all methods, which means that differences

between rankers affect all methods in the same way. We also observe that OM performs

much better than other methods, which is in line with Figure 4.1 at the 100 query issue

point.

Returning to RQ2, these results show that the sensitivity of multileaving methods

is affected in the same way as for interleaving methods when the differences between

rankers vary. Interestingly, this means that multileaved methods can distinguish between

rankers just as well as interleaving methods even when the differences between them is

very small. Hence, multileaved comparison methods can be used to explore a parameter

space using very small steps.

Bias of TDM and OM

Next, we address RQ3. We evaluate fidelity requirement (2) from [85] which states that,

under random clicks, rankers should tie in expectation. TDI was designed to fulfill this

requirement. We run experiments with the random instantiation of the click model (see

56

4.6. Results and Analysis

0 1000 2000 3000 4000 5000

queries

0.00

0.05

0.10

0.15

0.20

0.25

E
b
in

random OM η = 1

OM η = 5

OM η = 10

OM η = 100

TDM

OI

TDI

Figure 4.4: Bias of OM and TDM and their baselines as measured by measuring the

incorrectly identified preferences under a random click model, with |R| = 5 rankers and

result list of length k = 10. Measured as Ebin versus a ground truth with no preferences,

Pij = 0.5 for all i, j. Averaged over 25 repetitions, 9 data sets with each 5 folds.

Section 4.5.3). When a user clicks on a result list without any preference for relevant

documents, an online evaluation method that interprets these clicks should not detect any

preferences among rankers. We measure how many preferences each comparison method

detects when exposed to a random user by comparing the P̂ij of the method to a ground

truth that consists of Pij = 0.5 for all i, j using Ebin.

The result is shown in Figure 4.4. For all methods, the error quickly drops to rather

low values. Both TDI and TDM steadily converge to values near 0. Within a few hundred

queries, their error is below 5%. In the long run, neither method detects differences among

rankers when it should not. OI takes much longer to drop below 5% and plateaus higher

than both team draft methods. For OM, it turns out that the number of multileavings that

is sampled, η (see Section 4.4.2) has a big impact on the bias of the method. The larger

the sample size, the less bias the OM method has. A more elaborate explanation of this

effect can be found in Section 4.6.1. It may come as a surprise that both OI and OM have

such a large bias since both these methods explicitly restrict themselves to producing

unbiased result lists. The fact that the error increases when η goes up (see Table 4.1) can

be explained by a bias-variance trade-off: when η goes up, the bias goes down at the cost

of variance that is introduced.

Online Performance of TDM and OM

A general concern with online ranker evaluation is that users may be confronted with

inferior systems. The degree to which this happens may vary per evaluation method.

Again, in response to RQ3, we measure online performance of the four evaluation methods

using nDCG [89]. Table 4.3 lists the nDCG for each evaluation method measured on the

result list that was actually shown to the user. On average, TDM produces the highest

online performance, i.e., users were the least affected by the evaluation in which they

participated.

Interestingly, for OM, the nDCG score goes down when the sample size η goes up.

This may be due to the fact that, when the number of sampled multileavings goes up, the

57

4. Multileaved Comparisons

T
ab

le
4

.3
:

O
n

lin
e

p
erfo

rm
an

ce
o

f
O

M
an

d
T

D
M

an
d

th
eir

b
aselin

es
m

easu
red

w
ith

n
D

C
G

(h
ig

h
er

is
b

etter).
A

v
erag

ed
o
v
er

5
K

q
u

eries,
2

5

rep
etitio

n
s

an
d

5
fo

ld
s.

S
tan

d
ard

d
ev

iatio
n

is
b

etw
een

b
rack

ets.
P

er
d

ata
set,

w
e

p
rin

t
th

e
b

est
v
alu

e
in

b
o

ld
.

M
eth

o
d

H
P

2
0

0
3

H
P

2
0

0
4

M
Q

2
0

0
7

M
Q

2
0

0
8

N
P

2
0

0
3

N
P

2
0

0
4

O
H

S
U

M
E

D
T

D
2

0
0

3
T

D
2

0
0

4
to

tal

O
M

η
=

1
0

.5
2

2
(0

.0
1
)

0
.4

6
5

(0
.0

1
)

0
.2

8
9

(0
.0

1
)

0
.3

7
7

(0
.0

2
)

0
.5

0
0

(0
.0

2
)

0
.4

4
5

(0
.0

3
)

0
.3

9
6

(0
.0

2
)

0
.1

8
3

(0
.0

3
)

0
.1

8
0

(0
.0

1
)

0
.3

7
3

(0
.1

2
)

O
M

η
=

5
0

.4
9

1
(0

.0
1
)

0
.4

3
0

(0
.0

1
)

0
.2

8
9

(0
.0

0
)

0
.3

7
4

(0
.0

2
)

0
.4

6
3

(0
.0

2
)

0
.4

1
0

(0
.0

2
)

0
.3

9
6

(0
.0

2
)

0
.1

7
4

(0
.0

2
)

0
.1

7
2

(0
.0

1
)

0
.3

5
5

(0
.1

1
)

O
M

η
=

1
0

0
.4

8
6

(0
.0

1
)

0
.4

2
5

(0
.0

1
)

0
.2

8
9

(0
.0

0
)

0
.3

7
3

(0
.0

2
)

0
.4

6
0

(0
.0

2
)

0
.4

0
7

(0
.0

2
)

0
.3

9
4

(0
.0

2
)

0
.1

7
3

(0
.0

2
)

0
.1

7
0

(0
.0

1
)

0
.3

5
3

(0
.1

1
)

T
D

M
0

.5
3

6
(0

.0
1
)

0
.4

7
6

(0
.0

1
)

0
.2

8
8

(0
.0

1
)

0
.3

7
6

(0
.0

2
)

0
.5

1
3

(0
.0

2
)

0
.4

5
7

(0
.0

3
)

0
.3

9
8

(0
.0

2
)

0
.1

9
6

(0
.0

3
)

0
.1

8
4

(0
.0

1
)

0
.3

8
0

(0
.1

3
)

O
I

0
.5

3
9

(0
.0

1
)

0
.4

7
6

(0
.0

1
)

0
.2

9
7

(0
.0

0
)

0
.3

8
3

(0
.0

2
)

0
.5

0
6

(0
.0

2
)

0
.4

3
2

(0
.0

3
)

0
.3

8
8

(0
.0

2
)

0
.1

7
3

(0
.0

3
)

0
.1

8
8

(0
.0

1
)

0
.3

7
6

(0
.1

3
)

T
D

I
0

.4
9

3
(0

.0
1
)

0
.4

4
6

(0
.0

1
)

0
.2

9
3

(0
.0

0
)

0
.3

8
0

(0
.0

2
)

0
.4

8
2

(0
.0

2
)

0
.4

1
9

(0
.0

3
)

0
.3

9
4

(0
.0

2
)

0
.1

6
6

(0
.0

2
)

0
.1

7
5

(0
.0

1
)

0
.3

6
1

(0
.1

2
)

58

4.6. Results and Analysis

0 1000 2000 3000 4000 5000

queries

0.0

0.1

0.2

0.3

0.4

0.5

E
b

in

informational

OM η = 10

TDM

OI 1 vs all

TDI 1 vs all

Figure 4.5: OM and TDM and their baselines on the task of comparing one ranker versus

many rankers, measured with Ebin of P̂ij against Pij where we keep i fixed. Averaged

over 25 repetitions, 9 data sets and 5 folds.

optimization problem is less overconstrained. As a consequence, it is easier to satisfy

the unbiasedness constraint. Less biased multileavings are more “in between” the input

rankings and therefore they do not represent a strong preference for one ranker. Such

multileavings turn out to have a lower nDCG. TDM does not suffer from this problem.

On some data sets, in particular HP2003, HP2004, NP2003 and NP2004, for OM the

online performance drops considerably when η goes up. Incidentally, on these data sets,

the error also increases when η goes up (see Table 4.1); less biased multileavings have a

lower online performance.

Comparing to a Production Ranker using TDM and OM

Though we focus on efficiently comparing all rankers to each other, other variants are also

useful in practice, as detailed in Section 4.3. Here, we investigate how online evaluation

methods perform on one such variant: comparing a set of rankers to a single benchmark,

e.g., a production ranker. Though our multileaving methods were not specifically designed

for this variant, we can measure their performance on it by computing the error Ebin of

P̂ij against Pij where we keep i fixed. The error is thus computed using only one row of

the preference matrix. We perform this experiment on the informational instantiation of

the click model and we average over 25 repetitions, 9 data sets and 5 folds.

Figure 4.5, which presents the result of this analysis, shows that multileaving methods

outperform the interleaving methods. OM, in particular, continues to learn much more

quickly than the alternatives. Unsurprisingly, when comparing Figure 4.5 to Figure 4.1,

we see that the advantage of multileaving methods over interleaving methods diminishes

when the task changes from learning all cells in P̂ to learning just one row in P̂ . Note

that the multileaving methods do still learn all cells in P̂ .

Parameters of OM and OI

In this section, we investigate some of the design choices made when extending OI to

OM; where possible, we do so by comparing to the impact of our same choices on OI.

59

4. Multileaved Comparisons

Table 4.4: Overconstrainedness of OM η = 10 averaged over 10 repetitions and 5 folds of

the NP2003 data set. Values depict the proportion of experiments that was overconstrained

when run with the indicated parameters. When the constrained optimization problem is

always overconstrained (values close to 1), then there is no room for optimization.

k |R| = 3 |R| = 5 |R| = 7 |R| = 10

3 0.393 (0.21) 0.976 (0.03) 0.999 (0.00) 1.000 (0.00)

5 0.934 (0.18) 0.996 (0.01) 0.999 (0.00) 1.000 (0.00)

7 0.984 (0.05) 0.997 (0.00) 0.999 (0.00) 1.000 (0.00)

10 0.995 (0.01) 0.998 (0.00) 1.000 (0.00) 1.000 (0.00)

0 1000 2000 3000 4000 5000

queries

0.0

0.1

0.2

0.3

0.4

0.5

E
b

in

perfect

OM-inv η = 10

OM-neg η = 10

OI-inv

OI-neg

Figure 4.6: Impact of negative and inverse credit functions (see Section 4.4.2) in OI and

OM on the perfect click model. Averaged over 25 repetitions, 9 data sets with 5 folds

each.

As described in Section 4.4.2, we had to restrict the number of multileavings we can

consider in the optimization problem of OM. As we saw in Section 4.6.1 and to a lesser

extent in Section 4.6.1, the number of sampled multileavings η does have an impact on

the performance of OM. We hypothesized that this is due to the optimization problem

of OM becoming overconstrained when the number of multileavings is small. When we

investigate this effect, we find the following. For smaller sample sizes, η = 1, 5, 10, the

problem was almost always overconstrained on all of the nine data sets. With η = 100,

the problem was overconstrained in 85% of the multileaved comparisons. For OI, we

confirm the claim by Radlinski and Craswell [143] that the optimization problem is

usually underconstrained: we found that the problem was overconstrained in only 1% of

the interleavings.

The above findings were all for the scenario with |R| = 5 rankers and k = 10
documents in the result lists. In Table 4.4, we see what happens when we vary |R| and k
and keep η = 10. Computational limitations prevented us from evaluating what would

happen with values larger than η = 100. As long as the number of rankers is small and the

length of the multileaving is short, a small number of samples is enough to avoid having

an overconstrained problem.

In Figure 4.6, we analyze the impact of the credit function (see Section 4.4.2) on OI

60

4.6. Results and Analysis

Table 4.5: Mean Ebin scores after 500 impressions for PM compared to baselines PI

(first symbol) and TDM (second symbol). The symbol N means statistically better with

p < 0.01 and M for p < 0.05, whereas H and O are their inverses.

perfect navigational informational

PI 0.085 (0.08) 0.137 (0.11) 0.363 (0.15)

TDM 0.037 (0.06) 0.038 (0.05) 0.099 (0.09)

PM(n = 102) 0.062 (0.07) NH 0.073 (0.07) NH 0.162 (0.10) NH

PM(n = 103) 0.054 (0.05) NH 0.060 (0.06) NH 0.117 (0.09) NO

PM(n = 104) 0.046 (0.05) N- 0.054 (0.05) NH 0.090 (0.08) N-

PM(n = 105) 0.046 (0.05) N- 0.039 (0.05) N- 0.087 (0.08) N-

and OM. We see that OM performs best when using the inverse credit function while

the effect of the credit function on OI is smaller than on OM. The observed degraded

performance of the negative credit function for OM is explained by the fact that this credit

function assumes a linear relation between the rank and credit. This effect is stronger in

OM because the credit function does not model the difference but rather absolute values.

4.6.2 Probabilistic Multileave

Now we turn to experimentally evaluating PM, our probabilistic multileaving method,

answering RQ5. We compare PM to TDM as in most of the experiments above TDM

clearly outperformed OM. We evaluate sensitivity, bias and whether PM can scale when

the number of rankers it is comparing increases.

Sensitivity of PM

We first look at sensitivity. In Figure 4.7 we see that for impressions from all three click

models, TDM performs similarly to PM with a large number of samples n, although TDM

performs slightly (but not significantly) better in the long run for the (unrealistic) perfect

click model. The multileaving methods both perform much better than PI, as expected

since the latter can only compare two rankers at a time.4

The binary error for both probabilistic multileaving and interleaving quickly goes

down to almost zero. Performance after 500 queries for the same experiments is found

in Table 4.5 where we also perform statistical significance testing. In the table we see

that PM always has a lower error than PI and when there are enough samples (n � 100)

statistically significantly so. However, when the number of samples is too small, PM is

outperformed significantly by TDM. When the number of samples increases sufficiently,

PM is on par with TDM in terms of sensitivity. Interestingly, when noise increases,

performance of PM decreases less compared to TDM.

4The bump for PI in the first few query impressions, that is mostly visible under informational feedback, is

due to the fact that it takes a while for PI to have preferences for all pairs of rankers.

61

4. Multileaved Comparisons

0 200 400 600 800 1000

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
b
in

perfect

TDM

PM(n = 102)

PM(n = 103)

PI

PM(n = 104)

PM(n = 105)

0 200 400 600 800 1000

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
b
in

navigational

0 200 400 600 800 1000

query impressions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
b
in

informational

Figure 4.7: The binary error Ebin of PM, TDM and PI are plotted against the number

of queries on which the error was evaluated. Clicks are generated by a perfect, naviga-

tional, and informational instantiations of the dependent click model (DCM) [65] (see

Section 3.3).

62

4.7. Discussion off K-Armed Dueling Bandits

0 200 400 600 800 1000

query impressions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
b
in

random

TDM

PM(n = 102)

PM(n = 103)

PI

PM(n = 104)

PM(n = 105)

Figure 4.8: To measure bias of PM when compared to TDM and PI, the error is plotted

against the number of queries. The error was evaluated by comparing to a ground truth of

no preferences (i.e., Pij = 0.5 for all i, j). Clicks are generated by a random instantiation

of the dependent click model (DCM) [65] (see Section 3.3).

Bias of PM

In terms of bias, still answering RQ5, we see in Figure 4.8 that PM is on par with TDM.

Both methods only need about 100 impressions from a random user to conclude that no

preferences between rankers should be inferred. Again naturally, PI needs many more

query impressions to draw the same conclusion because it needs to compare all pairs of

rankers. It simply takes many comparisons to have done so reliably. We conclude that PM

is as unbiased as TDM, irrespective of the number of samples.

Scaling the Number of Rankers with PM

Lastly, still answering RQ5, we investigate what happens when the number of rankers

|R| that are being compared increases from the five rankers used until now. We test this

with |R| = 20 and find that after 500 navigational query impressions for PI the error

Ebin = 0.56, for TDM this is Ebin = 0.15, and for PM(n = 104) we find Ebin = 0.13.

The advantage of multileaving over interleaving is clearly shown by these numbers.

Both multileaving methods have a much lower error. Moreover, PM clearly outperforms

TDM when the number of rankers increases and when the sample size for PM is large

enough. We confirm a finding from Schuth et al. [163] who showed this to be an inherent

disadvantage of TDM as it needs to represent all rankers with teams in the multileaving.

PM, because it marginalizes over all possible team assignments, does not have this

drawback and still performs well when the number of rankers goes up. For this reason,

PM should be preferred over TDM.

4.7 Discussion off K-Armed Dueling Bandits

Multileaved comparison methods could form the basis of a new approach to tackling a

generalization of the K-armed dueling bandit problem, in which the best ranker among a

set is sought (see Section 2.3.4). By measuring the uncertainty associated with each P̂ij ,

63

4. Multileaved Comparisons

Algorithm 8 Multileave RUCB (MRUCB), for details see Zoghi et al. [214, Algorithm 1].

1: W 0KxK

2: for t = 1, . . . , T do

3: U W
W+WT +

q

α ln t
W+WT

4: Select S0 uniformly randomly s.t. US0,j �
1
2

for all j
5: for i = 1, . . . ,m do

6: Si argmaxj
Pi�1

n=0 Uj,Sn

7: Compare rankers RS0
. . . , RSm

using a multileaving method

8: Update W to reflect all pairwise wins from the multileaved comparison

such a method could gradually exclude rankers from the multileaving that are deemed

unlikely to be the best, thereby homing in on the most promising rankers. In this section,

we take few steps towards addressing this problem.

To formalize the task of finding the best ranker among a set of rankers R, we take the

same ground truth as defined earlier in Section 4.3. Except now, following Zoghi et al.

[216], we assume a Condorcet winner [194]. This Condorcet winner is a ranker which,

without loss of generality, we label R1. Then, P1,j > 1
2 for all j > 1 meaning that in

expectation R1 wins from all other rankers. We generalize the notion of regret by Zoghi

et al. [216]. We define regret of comparing a set of rankers S to each other as

P

j2S P1,j

|S|
+

1

2
.

This is the average sub-optimality of S, the set of rankers that is compared. This regret

will go down to zero as soon as S consists of just the Condorcet winner. If interleaving

methods are used for comparisons, at each comparison, S will consist of a pair of rankers,

as in the original dueling bandit problem [216]. However, multileaving methods allow for

S to consist of more than two rankers at a time. Cumulative regret at time T is defined as

the sum of regret, as defined above, over the first T time steps.

The aim of an algorithm that solves this problem is to minimize such cumulative regret.

It can do so by controlling which rankers are chosen to form S at each time step.

K-armed dueling bandit algorithms will have to be adapted to deal with 1) potentially

selecting more than two rankers at a time for a comparison; and 2) with using the outcome

of a multileaving comparison instead of an interleaving comparison. It is natural to

extend the relative upper confidence bound (RUCB) algorithm by Zoghi et al. [214].

We do so in Algorithm 8 where we introduce multileave RUCB (MRUCB). On line 5

and 6 the algorithm selects m rankers greedily by comparing all upper bounds pairwise.

When m = 2, this is equal to what RUCB does. Then on line 7, all these rankers are

compared using a multileaving method. Again, when m = 2 this is equivalent to using

an interleaving method and thus to RUCB. We leave both experimental and theoretical

validation of this method to future work.

64

4.8. Conclusion

4.8 Conclusion

In this chapter, we presented a new paradigm for online evaluation of information retrieval

systems. We have shown that it is possible to extend interleaved comparison methods to

variants that, instead of comparing two rankers, compare multiple rankers at a time.

We introduced three implementations of this paradigm that extend state-of-the-art

interleaving methods to their multileaving counterparts.

The first such method is team draft multileave (TDM) and is an extension of team

draft interleave (TDI). Documents in the combined ranking shown to users are assigned

to teams, so that when clicked, credit can be assigned to rankers.

The second is optimized multileave (OM) and extends optimized interleave (OI). We

have shown in extensive experiments that both multileaving methods have their merits.

OM learns preferences between rankers very quickly while TDM learns them slightly

more slowly, though faster than either of the interleaving methods. However, TDM learns

more accurate preferences in the long run than OM or either of the interleaving methods

to which we compare. On the other hand, OM scales much better than TDM when the

number of rankers increases. Thus, depending on the number of rankers to be compared,

one might prefer one multileaving algorithm over the other but both should be preferred

over interleaving algorithms when more than two rankers are to be compared.

Lastly, probabilistic multileave (PM) extends probabilistic interleave (PI) such that it

can compare more than two rankers at once, while keeping PI’s characteristic of being

able to reuse historical interaction data. We empirically compared PM to PI as well as

TDM. PM infers preferences between rankers by marginalizing over a sample of possible

team assignments. We use a sample of controlled size to keep the computation tractable

and show experimentally that given a large enough sample, our method is both as sensitive

and as unbiased as TDM and more so than PI. That is, PM is capable of quickly finding

meaningful differences between rankers and it does not infer preferences where it should

not. An important implication of the introduction of PM is that historical interactions with

multileaved comparisons can be reused, allowing for ranker comparisons that need much

less user interaction data. Furthermore, we show that our method, as opposed to earlier

sensitive multileaving methods, scales well when the number of rankers increases.

Finally, we are interested in integrating multileaving methods into learning methods

analogous to the dueling bandit gradient descent (DBGD) method [209]. We address this

in Part II of this thesis.

4.9 Future Work

As to future work, currently, in TDM, when documents belonging to the team of a ranker

are clicked, preferences for this ranker over other rankers without clicks are inferred, even

when those other rankers are not even represented by a team in the multileaving. This

may happen when the number of rankers to be compared is larger than the number of

documents in the multileaving. We aim to develop a variant of TDM that avoids this

problem.

Another future direction is to customize TDM and OM to tasks other than comparing

all rankers in a set to each other. When comparing all rankers to a production ranker, as

65

4. Multileaved Comparisons

we do in Section 4.6.1, the definitions of unbiasedness and sensitivity could be adjusted to

take into account the restricted goal of this task variant.

Proper evaluation of how multileaving methods could be applied in a K-armed dueling

bandits problem setting, as quickly touched on in Section 4.7, is needed but left for future

work.

66

5
Predicting A/B Testing with Interleaved

Comparisons

The gold standard for information retrieval (IR) system evaluation is user satisfaction.

However, as online user satisfaction is not directly observable, a significant amount of

research has investigated how to summarize online behavior (such as clicks) into online

metrics that best reflect user satisfaction.

Given a metric, the most common online evaluation methodology is A/B testing. Users

of an online system are assigned to either a control or experimental condition, with

the metric being computed on both populations. However, large numbers of users are

typically necessary to obtain reliable results as this approach has high variance. Interleaved

evaluation is an alternative online approach previously shown to be much more sensitive.

Here, each user is presented a combination of results from both the control and treatment

systems. However, until now interleaved evaluation has not modeled user satisfaction as

reliably as recent A/B metrics, resulting in low agreement with recent A/B metrics given

realistic differences in IR system effectiveness.

In this chapter we present an improvement to interleaving, showing how it can be

optimized to maximize its agreement with any given A/B metric. Our results using 38

large-scale online experiments encompassing over 3 billion clicks in a commercial web

search setting demonstrate substantial improvements in agreement.

This chapter is based on Schuth, Hofmann, and Radlinski [166].

5.1 Introduction

Evaluation has long played a key role in information retrieval. Traditionally, systems

were often evaluated following the Cranfield approach [155]; see Section 2.2.1. Using

this approach, systems are evaluated in terms of document relevance for given queries,

which is assessed by trained experts. While the Cranfield paradigm ensures high internal

validity and repeatability of experiments, it has been shown that the users’ search success

and satisfaction with an IR system are not always accurately reflected by standard IR

metrics [187, 193]. One reason is that the relevance judges typically do not assess queries

and documents that reflect their own information needs, and have to make assumptions

about relevance from an assumed users point of view. Because the true information need

can be difficult to assess, this can cause substantial biases [75, 192, 206].

67

5. Predicting A/B Testing with Interleaved Comparisons

To address the gap between offline evaluation and true use of IR systems, online

evaluation has been used to directly measure observable user behavior on alternative

systems; see Section 2.3. The biggest challenge for online evaluation is to identify metrics

that accurately reflect user satisfaction. This has motivated a large amount of research

on online metrics. While early online evaluation focused on simple metrics such as

click-through rate (click through rate (CTR), the fraction of queries for which users click

a result) or the ranks of clicked documents [93], more sophisticated metrics have been

recently developed. These include observing which results users skip over [200], the

time between search engine visits [52], and focusing on “satisfied” (long-duration) clicks

(which we refer to as SAT clicks) [56].

Given an IR system and an appropriate online metric, the standard experimental

procedure for comparing systems is A/B testing [113]; see Section 2.3.2. This means that

a controlled experiment is conducted on users of a running system. A random sample

of users is exposed to the treatment system, a second sample is exposed to the control

system. Given that the assignment to systems is random and the experimental units (e.g.,

users) can be assumed independent of each other, any differences in online performance

measured on the two samples can be attributed to differences between treatment and

control system. If the measured differences are statistically significant, we can make

highly confident decisions on which system to deploy. Unfortunately, the variance in

user behavior is typically high, which results in low sensitivity of such A/B tests. This

means that, to reach high confidence levels, large samples need to be collected over a long

period of time (e.g., millions of samples) [34]. Considering the effects of exposing users

to potentially lower quality systems over long periods of time, it can be seen that A/B

tests can be extremely expensive.

An alternative online evaluation approach, interleaving, was developed to improve

on the A/B design [93] (see Section 2.3.3). It avoids many of the sources of variance

by combining results from both the treatment and control systems, for all queries. In

particular, the results returned by the two systems are combined in a way that is fair to

both, in the sense that neither system would be preferred in expectation if users were

to click on documents at random. Observed user clicks on the combined result list are

then credited to one of the systems to infer which system would be preferred by the

user [144]. In comparison to A/B tests, interleaved comparisons have been shown to be

substantially more sensitive. For instance, in an empirical comparison of five A/B tests

and corresponding interleaving experiments, Chapelle et al. [34] observed that A/B tests

required 145 times more data than interleaving to achieve statistical significance.

While high sensitivity makes interleaving very attractive for online evaluation, existing

methods have primarily focused on observed clicks, and ignore the richer user satisfaction

signals that have been incorporated into A/B metrics. As a result, it was unclear to what

degree interleaved comparisons agree with user satisfaction, as measured by specifically

designed A/B tests. This is challenging to address because by their very nature interleaving

methods change rankings and attribute credit in a non straightforward way, making it far

from trivial to align them with A/B metrics. The research in this chapter is the first to

address this limitation of interleaving methods.

We present theoretical and experimental results that aim to answer the following research

questions, repeated from Section 1.1.

68

5.2. Related Work

RQ6 How do A/B metrics compare to interleaving in terms of sensitivity and agreement?

RQ7 Can A/B metrics and interleaving be made to agree better without loosing sensivity?

We make the following contributions in this chapter.

Sensitivity Starting with existing A/B and interleaving metrics (defined in Section 5.3),

we propose a new statistical method for assessing the sensitivity of these metrics

from estimated effect sizes (Section 5.4). The resulting method allows a detailed

comparison between metrics in terms of the power of statistical tests at varying

sample sizes. Our analysis shows that A/B tests typically require two orders of

magnitude more data than interleaved comparisons.

Agreement Turning to the agreement between existing metrics, we find that current

interleaved comparisons achieve from random up to 76% agreement with A/B user

satisfaction metrics.

Credit Formulation Motivated by the results of our analysis, we propose novel interleav-

ing credit functions that are (a) designed to closely match the implementation and

parameters of A/B metrics, or (b) are parameterized to allow optimization towards

agreement with arbitrary A/B metrics (Section 5.5). We further propose the first

approach for automatically maximizing agreement between such parameterized

interleaving credit functions and A/B metrics.

Optimization We demonstrate that interleaving credit functions can be automatically

optimized, and that learned parameters generalize to unseen experiments. These

results demonstrate for the first time that interleaving can be augmented with user

satisfaction metrics, to accurately predict the outcomes of A/B tests that would

require one to two orders of magnitude more data.

Large Scale Evaluation Finally, our empirical results, obtained from experiments with

3 billion user impressions and 38 paired (A/B and interleaving) experiments demon-

strate the effectiveness of our proposed approach (Section 5.6). In particular, we

achieve agreement of up to 87%, while maintaining high sensitivity.

We have incorporated the above contributions in Section 1.2 where we give a complete

overview of all contributions of this thesis.

We now present related work to the extend that we have not presented that in Chapter 2

yet, followed by a detailed background on A/B metrics and interleaving in Section 5.3.

This leads to an analysis of the power of different approaches in Section 5.4, followed

by the details of our method in Section 5.5. Section 5.6 presents our results, followed by

conclusions.

5.2 Related Work

We discussed prior work on measuring user satisfaction with online IR systems in Sec-

tion 2.3. Relevant for this chapter is the background on A/B testing and absolute relevance

69

5. Predicting A/B Testing with Interleaved Comparisons

metrics: metrics that measure a single number for a given ranking system (see Sec-

tion 2.3.2). Also relevant is Section 2.3.3 in which we presented online evaluation using

interleaving.

Finally, below we discuss approaches for optimizing online evaluation metrics as

relevant to this chapter (see Section 5.2.1).

5.2.1 Optimizing Interleaving Metrics

The interleaving approaches described above measure which ranker is more likely to

attract user clicks in a fair, paired comparison. However, as described in Section 2.3.2, raw

clicks can be misleading. While the pairwise nature of interleaving removes position bias

and leads to much more reliable comparisons between systems [34, 144], other effects

must also be considered. Previous research has shown that with interleaving there may

be biases due to highlighting in search result titles [211] and other caption effects such

as title and snippet length [80]. Proposed methods to mediate these biases were shown

to improve agreement with offline evaluation [80, 211], but optimizing agreement with

online metrics remains an open challenge.

Also, the above approaches may improve interleaving by removing some click bias,

they still aim to be unbiased rather than predictive of satisfaction. In this chapter, we

show how to create an interleaving evaluation that instead aims to predict the outcome of

an A/B test for any given A/B metric, while maintaining the sensitivity improvements of

interleaving. In particular, we take into account whether clicks are indicators of success

by reimplementing the classifier learned by Kim et al. [110].

The goal of this chapter is also related to prior work on optimizing the sensitivity of

interleaving algorithms, where interleaving algorithms were learned to be more statistically

powerful [210], or to satisfy given choices about the value of any given preference

observed [143]. In contrast, our work is the first that focuses on optimizing “correctness”

of an interleaving outcome as captured in terms of agreement with A/B metrics, while

maintaining high sensitivity. Our results show that in this way agreement between

interleaving and any given A/B metric can be dramatically improved.

5.3 Background

In this section we describe—as far as they have not yet been covered in Section 2.3—the

most commonly used A/B metrics, and the interleaved evaluation approach that we build

on in the remainder of this chapter. We take the presented A/B metrics as the ground truth

user satisfaction metrics we aim to predict with much smaller interleaving samples.

5.3.1 Common A/B Metrics

As described in Section 2.3.2, a large number of A/B metrics have been developed. Most

have in common that clicks are the basic observed interaction with users. Thus this is

our focus too. We note that many common A/B metrics can be categorized as taking into

account particular attributes of clicking behavior. The most common attributes include

70

5.3. Background

(1) estimating clicks as indicative of satisfaction or not, (2) giving particular importance

to clicks at the top position of Web search results, and (3) measuring the time spent by

the user prior to clicking. Consequently, we implement the following A/B metrics. An

overview is given in Table 5.1.

Click-through Rate

Click through rate (CTR) is often used as a baseline A/B metric, e.g., by Chapelle et al.

[34]. It can be implemented as the average number of clicks per search result page, or as

the fraction of pages for which there are any clicks. We follow the second definition. In

Table 5.1, we use |Cq| to denote the number of clicks for query q.

Click Rank

It was noted by Chapelle et al. [34] that of all the A/B metrics studied in a large scale

comparison of A/B tests and interleaving evaluation, the A/B metric that most reliably

agreed with known experimental outcomes was the fraction of search results pages with

a click at the top position. As such, we also use two types of metrics: those which only

consider clicks at the top position (named @1) and those that consider all clicks (the

others). In equations and in Table 5.1 we use rankA(c) to denote the rank of click c in the

results returned by ranker A.

User Satisfaction

While clicks are often directly interpreted as a user preference, they are known to be both

noisy and biased. To remedy the noise, a common approach is to only consider satisfied

(SAT) clicks with dwell time above a fixed cutoff of 30 seconds [206].

However, only using time as a threshold for satisfaction is problematic as some queries

naturally require users to spend more time than others. Recently, Kim et al. [110] showed

that taking more user signals into account leads to better prediction of user satisfaction.

For this chapter, we partially re-implement the SAT click classifier from that work. Our

classifier uses the dwell time, document readability, document topic and query topic

features suggested by Kim et al. [110]. In particular, the features beyond dwell time are

assumed to partially explain the dwell time necessary for a given query and document.

We combine these features using quantile regression forests [131]. The model is trained to

predict the probability of a SAT click, given user signals. It can be turned into a classifier

by selecting a decision threshold, e.g., based on the distribution over classes in the training

set. With training on approximately 3,000 manually labeled clicks, our classifier obtains

an accuracy of 77%, which is marginally lower than the 81% reported by Kim et al. [110].

The major difference between the implementations is that we do not represent dwell time

distributions per topic. Instead, we use raw dwell time values directly as input for our

classifier.

The output of this SAT click classifier is used throughout this chapter. For a given

click c, we define sat(c) as the estimated probability that c indicates user satisfaction.

For succinctness, we also define is sat(c) := true whenever sat(c) > 0.8 (the threshold

based on the class distribution). Half of the A/B metrics we consider use the is sat(c)

71

5. Predicting A/B Testing with Interleaved Comparisons

Table 5.1: A/B metrics implemented as ground truth for comparisons with interleaving.

See Section 5.3.1 for notation. Metrics marked with the symbol † ignore all queries for

which there was no click of the required type. |Cq| denotes the number of clicks for

query q, rank(c) denotes the position of the click. The indicator function 1(·) is used and

evaluates to 1 when the argument is true, and 0 otherwise.

A/B Metric Description Implementation 1

QA

P
q∈QA

...

AB Number of queries that

received at least one click.

1(|Cq| > 1)

AB@1 Number of queries that

received at least one click on

the first position.

1((
P

c∈Cq 1(rank(c) = 1)) > 1)

ABS Number of queries that

received at least one SAT

click.

1((
P

c∈Cq 1(is sat(c))) > 1)

ABS@1 Number of queries that

received at least one SAT

click on the first position.

1((
P

c∈Cq 1(rank(c) = 1) · 1(is sat(c))) > 1)

ABT
† Time from the query being

issued until the first click.

minc∈Cq time(c)

ABT@1 † Time to the first click on the

top position.

minc∈Cq time(c) · 1(rank(c) = 1)

ABT,S
† Time to the first click

classified as SAT.

minc∈Cq time(c) · 1(is sat(c))

ABT,S@1 † Time to the first click on the

top position classified as SAT.

minc∈Cq time(c) · 1(rank(c) = 1) · 1(is sat(c))

signal to filter out clicks c that are not deemed satisfied by our classifier. These A/B

metrics are marked with subscript S.

Time to Click

Another commonly used metric is the time that the user spends on the search result page

before clicking a document. As time spent is the key cost to search system users, reducing

this time is considered good (e.g. [34]). Our metrics that measure time to click are marked

with subscript T . In equations we use time(c) to denote the time from the user issuing

the query until the click c.

Combining all possible choices of A/B metrics leads to the eight metrics shown in

Table 5.1. The first four (AB, AB@1, ABS , ABS@1) focus on the presence of a click,

while the other four capture the time to the first click of a particular type, if such a click

occurred (ABT , ABT@1, ABT,S and ABT,S@1).

5.3.2 Interleaving

In this chapter, we use team draft interleave (TDI) [144] as our interleaving baseline. This

algorithm is most frequently used in practice, and has been empirically shown to be equally

72

5.4. Data Analysis

effective as balanced interleave (BI) [34, 93]. We have detailed TDI in Section 2.3.3 and

extended upon TDI in Chapter 4. Our focus is on replacing the credit function; replacing

the right hand side of Equation 2.1. We introduce our methods in Section 5.5.

5.4 Data Analysis

Many of the common A/B metrics that we introduced in Section 5.3.1 have been developed

recently. Therefore, it is not clear to what degree interleaved comparisons agree with these

metrics. In this section, we conduct an empirical analysis of the sensitivity and directional

agreement between these A/B metrics and TDI. We start by describing the data we use in

this section and in the remainder of this chapter (5.4.1). We then propose a new approach

for comparing the sensitivity (in terms of statistical power) of A/B and TDI comparisons,

and use this method to analyze the relative power of the different approaches (5.4.2). This

also lets us estimate the probability of agreement between approaches at varying sample

sizes. The results of our analysis are presented in Section 5.4.3. They motivate why an

improved approach is needed, as discussed in Section 5.4.4.

5.4.1 Data

For our experiments, we start with a set of 38 pairs of rankers for which both an A/B

comparison and a TDI interleaving comparison were performed. Our data consists of

records of users interacting with a web search engine, Bing. All ranker comparisons

reflect changes that are typical for the normal development of a commercial web search

engine. They consist of changes to the ranking function used to order web search results,

in terms of parameters of the ranking function, modified ranking features, and so forth.

The comparisons were all run in the first 9 months of 2014, in the United States locale.

We only considered traffic on bing.com, with en-US as language, only the web vertical,

only the first result page, only external traffic and we filtered out bots. The experimental

unit consisted of assigning users to individual ranking conditions uniformly at random.

The A/B and interleaving comparisons were run for varying durations, usually around

one week for A/B comparisons and around 4 days for interleaving comparisons. Addi-

tionally, A/B comparisons were typically run with higher volume, resulting in about 80

times more queries for each A/B comparison than each interleaving comparison. In all,

this data consists of over 3 billion clicks. Depending on the experiment, between 2% and

30% of interleaved queries with clicks had at least one click on a result assigned to one of

the teams.

5.4.2 Estimating Power and Agreement

We now propose an approach for assessing the relative power of A/B measurement

compared to TDI, and further show how this approach can be used to estimate agreement

between approaches at varying sample sizes.

As described earlier, A/B tests perform controlled experiments. Users are exposed

to either treatment or control result rankings, rendering this a between subject experi-

ment. In interleaving, each user is exposed to results from both rankers, rendering them

73

bing.com

5. Predicting A/B Testing with Interleaved Comparisons

within subject experiments. We can measure the importance of this difference using a

power computation, which tells us how many independent samples we need to obtain a

statistically significant outcome for each approach, as follows.

We start with A/B comparisons, following the standard methodology described in

[113]: Two independent samples are collected by exposing a random fraction of users to

treatment A, and another to treatment B. An A/B metric is used to assess each sample,

and we are interested in determining whether there is a statistically significant difference

between A and B in terms of this metric. This question is typically addressed using a

two-sample t-test.

Power of A/B Comparisons

Assume that the target metric is approximately normally distributed (this is reasonable due

to the central limit theorem), with means µA and µB and equal variance σAB . Formally,

we have A ⇠ N (µA,σAB) and B ⇠ N (µB ,σAB). We are interested in detecting

whether µA
?
= µB . This gives us the null hypothesis H0 : µA = µB and the alternative

hypothesis H1 : µA 6= µB . We also choose the probability of a Type-I error that we are

willing to accept, e.g., α = 0.05. The t-test then assumes that H0 is true and assesses the

probability of observing differences of at least the observed sample difference |Â� B̂|
under H0.

While Type-I errors are controlled in the significance test, here we are interested in the

power (also called sensitivity) of the conducted test. Assuming H1 is actually true, power

quantifies the probability of correctly rejecting H0. It is affected by the true effect size

δAB = (µA � µB)/
p

1/nA + 1/nBσ, (5.1)

where nA, nB are the respective sample sizes.

We can assess the power of a test as follows. Under H1 (samples are drawn from

normal distributions with means µA 6= µB and shared variance σAB) we observe sample

A,B and compute the test statistic [118]

t(A,B) =
(Ā� B̄)

q

1
nA

+ 1
nB

/

s

P

(Ai � Ā)2 +
P

(Bj � B̄)2

vAB

. (5.2)

The test statistic t(A,B) follows a non-central t distribution Ā�B̄ ⇠ nct(δAB , vAB), with

non-centrality parameter δAB (the effect size) and degrees of freedom vAB = nA+nB�2.

H0 is correctly rejected when |t(A,B)| � C0. Where C0 is the critical value for the

test statistic that corresponds to the chosen α level. The power of the test is the probability

P (reject(H0)|H1) = P (|t(A,B)| � C0) and can be computed (solved using linear

programming1)

P (|t(A,B)| � C0) =

Z 1

C0

nct(δAB , vAB)dy. (5.3)

1We use the python implementation statsmodels.stats.power.tt ind solve power, http:

//statsmodels.sourceforge.net

74

http://statsmodels.sourceforge.net
http://statsmodels.sourceforge.net

5.4. Data Analysis

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
12

Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er

AB

AB@1

ABS

ABS@1

ABT

ABT @1

ABT ,S

ABT ,S@1

TDI

Figure 5.1: Power as a function of sample size, computed using the observed effect

sizes for 38 interleaving and A/B comparisons, averaged over all comparisons (assuming

two-sided t-test with α = 0.05, as described in Section 5.4.2).

Power of Interleaving Comparisons

The analysis for interleaving is closely related, but relies on the typically more powerful

(one-sample) paired t-test. Instead of independent samples, we now observe a single

sample I of paired comparisons, assumed to be normally distributed with I ⇠ N (µI ,σI).
We want to detect whether µI = 0 with H0 : µI = 0 and H1 : µI 6= 0. Given µI and

sample size nI , the test statistic t(I) follows a non-central t-distribution t(I) ⇠ nct(δI , vI)
with non-centrality parameter δI =

p

nµI/σI and vI = nI � 1 degrees of freedom. The

power calculation is2

P (|t(I)| � C0) =

Z 1

C0

nct(δI , vI)dy. (5.4)

Probability of Agreement

Given Equations 5.3 and 5.4, we can compute the probability of comparison outcomes

at varying sample sizes. For example, the probability that an A/B comparison with

parameters µA, µB ,σAB : µA � µB > 0 agrees with the true A/B outcome at sample

sizes nA, nB is computed by plugging into Equation 5.3 and computing P (Ā� B̄ > 0) =
P (t(A,B) > 0). Correspondingly, the probability that an interleaving comparison with

parameters µI ,σI would agree with the true A/B outcome is computed using Equation 5.4

so that P (Ī > 0) = P (t(I) > 0).

5.4.3 Data Analysis Results

In this section we answer RQ6. We apply the analysis methodology described above

to the set of 38 ranking algorithms described in Section 5.4.1. In Figure 5.1 we show

2We use the python implementation statsmodels.stats.power.tt solve power.

75

5. Predicting A/B Testing with Interleaved Comparisons

Table 5.2: Agreement of A/B metrics on our data. We measure agreement with TDI, with

a sub-sample of A/B of the same size as the TDI comparison, and with a sub-sample

of A/B with the same size as the original A/B comparison (this is an upper-bound on

agreement for each A/B metric). Values in bold are statically significantly different from

50%.

self-agreement

A/B Metric TDI ABSub ABUp

AB 0.63 0.63 0.94

AB@1 0.71 0.62 0.95

ABS 0.71 0.61 0.96

ABS@1 0.76 0.60 0.95

ABT 0.53 0.58 0.91

ABT@1 0.45 0.59 0.90

ABT,S 0.47 0.59 0.88

ABT,S@1 0.42 0.60 0.87

the power obtained using A/B comparisons and interleaving comparisons at increasing

sample sizes. We see that on average across the set of 38 experiments, 80% power3 with

A/B experiments is obtained with between 107 and 108 observations (queries). On the

other hand, the same power is obtained with between 105 and 106 observations with TDI.

This difference of approximately two orders of magnitude is consistent with previous

work [34].

Having presented the relative power of the approaches, we return to the key question:

Do the metrics agree on which ranker is better? We use the method developed in the

previous section to estimate agreement between A/B and interleaving comparisons, and

A/B comparisons at varying sample sizes. The first column in Table 5.2 summarizes the

agreement rates of TDI and A/B metrics. We see that agreement rates are generally low.

These observed levels of agreement of TDI with A/B metrics are a baseline that we want

to improve upon in this chapter. In the results in Section 5.6, this baseline is referred to as

simply TDI .

Recall that our goal is to predict the outcome of a large A/B comparison given

the much smaller amount of data used in interleaving comparisons. As such, another

reasonable baseline is to assess how well a smaller A/B comparison predicts the outcome

of the full A/B comparison. We can answer this question using the methodology for

assessing the probability of agreement developed above (Section 5.4.2), by plugging in the

observed effect sizes and setting the sample size to that of the corresponding interleaving

comparison. This is our second baseline, which we refer to as ABSub. Results are given

in the second column of Table 5.2. Generally, these A/B metrics computed on small

subsamples have low agreement with the experiment outcome given the complete data, of

around 60%, never statistically significantly different from 50%.

We also compute an upper bound of agreement with A/B metrics by actually measuring

how well a subsample of the same size as the full A/B, ABUp, would agree with itself,

3Controlled experiments are typically designed for 80–95% power.

76

5.5. Methods

using the same methodology. This can be seen as a measure of how predictable a metric is.

The last column of Table 5.2 shows that the time-based metrics are much less predictable

than count-based A/B metrics. Given these lower and upper bounds on A/B agreement

with itself, we can restate our goal as follows. In this chapter, we aim to augment TDI to

improve over the above two baselines (which we introduced above and refer to as TDI
and ABSub) and to close the gap with the upper bound ABUp.

5.4.4 Implications

Summarizing the results above motivates the rest of the work in this chapter: A/B metrics

have been developed guided by real analysis of user behavior. Yet they usually have rela-

tively low power. Interleaving has much higher power, but low agreement with most A/B

metrics, being blind to richer behavioral signals. Thus, we aim to optimize interleaving

to increase agreement with A/B metrics, while maintaining the statistical power of the

technique. The A/B metric is treated as the gold standard to which interleaving must be

compared.

As noted in the Section 5.2, this goal is similar to that addressed by [210]. However,

they only focused on optimizing sensitivity, while we focus on optimizing correctness

in the sense of agreeing with A/B metrics. It is similar to [80, 211] in the sense that our

method can reduce click bias in interleaved comparisons. However, the earlier work only

considered agreement with offline metrics.

5.5 Methods

In this section we describe how to incorporate user signals into TDI comparisons, to

increase agreement with A/B metrics. We first formalize the notion of interleaving credit

in a way that allows us to incorporate user signals (see Section 5.5.1). We then design a

set of credit functions that closely match user satisfaction A/B metrics (see Section 5.5.2).

Because agreement between interleaving and A/B metrics is not necessarily maximized by

mirroring A/B parameters, we then introduce parameterized credit functions (see Section

5.5.3), and combined credit functions (see Section 5.5.4) designed to be automatically

tuned to maximize agreement. Finally, our methodology for maximizing agreement is

detailed in Section 5.5.5.

5.5.1 Formalizing Interleaving Credit

Formally, for all pairs of rankers A and B, we aim to find an interleaving method that

agrees with the sign of the differences in A/B metrics that we found in an A/B comparison.

The sign of such a difference should be interpreted as a preference for either A, B, or

neither. We denote such a preference, the comparison outcome OAB , of the metric AB
as:

OAB(A,B) = sgn(AB(A)�AB(B)). (5.5)

Instances of A/B metrics are click through rate, clicks at one, and time to click (see

Table 5.1 for details).

77

5. Predicting A/B Testing with Interleaved Comparisons

As opposed to A/B metrics, interleaving methods are directly defined on pairs of

rankers. Following the same notation, the outcome of an interleaving comparison with

TDI can thus be denoted as:

OTDI(A,B) = sgn(TDI(A,B)). (5.6)

Interleaving preferences, when using TDI (cf., Section 5.3.2), come from differences

between credit acquired by each ranker:

TDI(A,B) =
1

|Q|

X

q2Q

δ(Cq
A)� δ(Cq

B). (5.7)

Here, Q is a set of query impressions and δ(CA) a credit function (see the next

Section 5.5.2 for instances of this function) that attributes credit to ranker A depending on

user interactions with the result list. Next, we introduce a new set of credit functions that

is designed to mirror the use of user signals in A/B comparisons.

5.5.2 Matching A/B Credit

We now present instantiations of credit functions δ(CA) designed to match the A/B

metrics in Section 5.3.1. All our interleaving credit functions are defined on a set of clicks

assigned to a ranker (e.g., for ranker A these are c 2 CA), for a query impression. Clicks

are associated with user signals.

The details of our matching credit functions are given in the first part of Table 5.3.

The following signals are used:

• |CA| the number of clicks for ranker A for a query impression. See Section 5.3.1.

• rankA(c) is the rank of the clicked document in the original ranking A (before

interleaving: i.e., rankers A and B can have different documents at rank 1). See

Section 5.3.1 for a description of this signal as used in A/B metrics.

• is sat(c) is a binary indicator that is true if the SAT classifier identified the click as

SAT click. See Section 5.3.1 for details on the SAT click classifier.

• sat(c) is the probability of the click being a SAT click. Again, details are in

Section 5.3.1.

• time(c) is the time from query submission to the observed click, in seconds. See

Section 5.3.1 for the corresponding A/B signal.

Previously proposed interleaved comparison methods, such as TDI, use the credit

function TDI shown in the table. It can be interpreted as a close match to the A/B metric

AB, because it estimates whether a given ranker would have obtained a click in an A/B

comparison.

The credit functions TDI@1, TDIS , and TDIS@1 are designed to closely match the

A/B metrics AB@1, ABS , and ABS@1. For clicks at rank one, we consider whether a

clicked document would have been placed first by the original ranker, as this reflects the

most accurately whether the ranker would be likely to receive a click at the top rank in an

A/B comparison. For SAT clicks, we use the same classifier as for our A/B comparisons

above, as in Section 5.3.1.

78

5.5. Methods

The four time-based credit functions TDIT , TDIT@1, TDIT,S , and TDIT,S@1 are

designed to match the time-based A/B metrics. E.g., TDIT matches the A/B metric ABT .

However, we use the average time to click for a ranker, as it tends to be more robust than

the time to the first click. The remaining three metrics implement filters on which clicks

contribute, parallel to the click-based metrics described above.

5.5.3 Parameterized Credit Functions

Next, we propose a second set of interleaving credit functions that can be parameterized to

allow automatic calibration to maximize agreement with A/B metrics. Effectively calibrat-

ing these credit functions would allow users of interleaved comparisons to automatically

identify credit functions that maximize agreement with arbitrary A/B metrics.

For instance, we define a credit function that captures user satisfaction. We filter out

clicks c that have a low satisfaction probability sat(c) by thresholding this probability

using a threshold ts. This leads to the following credit function:

δ(CA)
ts =

X

c2CA

1(sat(c) > ts). (5.8)

The threshold, ts in this case, of such a parametrized credit function can be tuned to

maximize agreement with A/B metrics. We define two such parameterized functions, the

first click-based, as shown above, the second time-based. We list our parameterized credit

functions in the second part of Table 5.3.

5.5.4 Combined Credit Functions

Now that we have several credit functions, as listed in the first two sections of Table 5.3,

we can take it a step further and start combining them. We propose to combine the

interleaving credit functions in a weighted linear combination:

TDIw(A,B) =
1

|Q|

X

q2Q

X

wi2w

wiδi(C
q
A)� wiδi(C

q
B), (5.9)

where w denotes the weights used to combine several credit functions. We thus define the

interleaving preference as a weighted sum of credit functions we introduced earlier.

In the original TDI, we have a single credit function as defined in the first row of

Table 5.3 and a weight vector of w = (1).

5.5.5 Maximizing Agreement with A/B Metrics

We return to our initial goal, to optimize the agreement between interleaving metrics and

A/B metrics, and present a method for automatically tuning interleaving credit functions

to maximize agreement with a given A/B metric. Together with the parameterized and

combined credit functions presented above, this allows us to tune interleaving to an

arbitrary A/B metric. Our approach treats the A/B metric as a black box presented by an

experimenter who presumably selected this metric for some reason.

79

5. Predicting A/B Testing with Interleaved Comparisons

Table 5.3: Definitions for interleaving credit functions. The δ(CA) functions give credit

to ranker A based on attributes of the clicked documents assigned to ranker A. The last

row computes a combination of credit functions above it. To obtain credit for ranker B,

the function can be called as δ(CB). For details see Section 5.5.2.

Credit functions designed to match A/B metrics (cf., 5.5.2)

δ(CA) =

TDI Number of clicks on

ranker A

|CA|

TDI@1 Number of clicks on

documents that A ranks first

P
c∈CA

1(rankA(c) = 1)

TDIS Number of SAT clicked

documents contributed by A

P
c∈CA

1(is sat(c))

TDIS@1 Number of SAT clicked

document ranked first by A

P
c∈CA

1(is sat(c)) · 1(rankA(c) = 1)

TDIT Time to clicks on documents

contributed by A

P
c∈CA

time(c)

TDIT@1 Time to clicks on documents

ranked first by A

P
c∈CA

1(rankA(c) = 1) · time(c)

TDIT,S Time to SAT clicks on

documents contributed by A

P
c∈CA

1(is sat(c)) · time(c)

TDIT,S@1 Time to SAT clicks on

documents ranked first by A

P
c∈CA

1(rankA(c) = 1) · 1(is sat(c)) · time(c)

Parameterized credit functions (cf., 5.5.3)

δ(CA) =

TDI
ts
S ,

ts ∈

{0.1 . . . 0.9}

Number of clicks with SAT

probability ≥ ts, on

documents contributed by

ranker A

P
c∈CA

1(sat(c) ≥ ts)

TDI
ts
T,S ,

ts ∈

{0.1 . . . 0.9}

Time to clicks with SAT

probability ≥ ts, on

documents contributed by

ranker A ≥ ts

P
c∈CA

1(sat(c) ≥ ts) · time(c)

Combined credit function (cf., 5.5.4) δ(CA) =

TDI
w

T,S ,

wi ∈

{0.1 . . . 0.9}

Weighted combination of the

credit functions above

P
wi∈w

wiδi(CA)

80

5.6. Experiments and Results

Algorithm 9 Maximizing Agreement

Require: Ranker pairs C = ((A1, B1), . . . , (An, Bn)), A/B metric AB
1: Init: test agreements A [], weights W []
2: for all n N do // N repetitions

3: S sample with rep(C, |C|) // bootstrap sample, train set

4: ŵ argmax
w

X

(A,B)2S

1(Ow
TDI(A,B) = OAB(A,B))

5: O C \ S // ‘out of bag’ sample, test set

6: A A+
1

|O|

X

(A,B)2O

1(Oŵ
TDI(A,B) = OAB(A,B))

7: W W + ŵ // append weight vector

8: Output: weights mean(W), agreement mean(A)

The weights introduced in Equation 5.9 can be optimized such that we maximize the

agreement of this interleaving outcome with a given A/B metric:

ŵ = argmax
w

X

(A,B)2S

1(Ow
TDI(A,B) = OAB(A,B)). (5.10)

I.e., we maximize the number of times the outcome of an A/B comparison agrees with the

outcome of an interleaving comparison for all of ranker comparisons S, in our case the 38

comparisons described in Section 5.4.1.

To implement and validate the maximization step in Equation 5.10, we use the boot-

strap procedure presented in Algorithm 9. This takes as input a set C of pairs of rankers

that have been compared (such as those described in described in Section 5.4.1) and an

A/B metric such as AB. For N repetitions, a bootstrap sample S of size |C| is taken from

C. On this sample we compute ŵ using Equation 5.10 for all w we consider. We validate

the agreement that this weight vector ŵ gives on unseen data and we report the mean ŵ

and mean agreement. In our experiments N = 100 and we consider w = (w1, . . . , wn),
where wi 2 {0, 0.01 . . . 1}.

We use the same procedure to optimize the parameters ts of the parameterized credit

functions described in Section 5.5.3. Instead of computing the argmax on line 4 over all

w, we compute the optimal t̂s:

t̂s = argmax
ts

X

(A,B)2S

1(Ots
TDI(A,B) = OAB(A,B)). (5.11)

5.6 Experiments and Results

In Section 5.4, we examined the agreement between TDI and A/B metrics, and the

sensitivity of both types of comparison methods. Depending on the A/B metric, agreement

ranges from random up to 75%, while sensitivity of TDI is on average two orders of

magnitude higher than that of A/B metrics. In this section we evaluate our new interleaving

81

5. Predicting A/B Testing with Interleaved Comparisons

Table 5.4: Agreement of matching interleaving credit functions (designed to match A/B

metric parameters). Boldface indicates values significantly different from 0.5 (two-sided

binomial test, p = 0.05). On the diagonal are metrics for which parameters are designed

to match (gray background). Best agreement per A/B metric (row) is underlined.

Interleaving Credit

A/B Metric TDI TDI@1 TDIS TDIS@1 TDIT TDIT@1 TDIT,S TDIT,S@1

AB 0.63 0.66 0.84 0.66 0.61 0.61 0.58 0.53

AB@1 0.71 0.68 0.76 0.63 0.63 0.47 0.55 0.55

ABS 0.71 0.68 0.87 0.68 0.68 0.58 0.61 0.55

ABS@1 0.76 0.68 0.82 0.63 0.74 0.53 0.61 0.50

ABT 0.53 0.55 0.47 0.55 0.71 0.55 0.68 0.58

ABT@1 0.45 0.47 0.45 0.58 0.63 0.58 0.61 0.61

ABT,S 0.47 0.55 0.53 0.71 0.66 0.66 0.58 0.53

ABT,S@1 0.42 0.50 0.53 0.66 0.61 0.66 0.58 0.58

credit functions. First, we analyze what level of agreement can be reached by matching

interleaving credit functions with the parameters of A/B metrics. Second, we evaluate

our parameterized credit functions, and our method for optimizing agreement with A/B

metrics.

5.6.1 Matching A/B Credit

In our first set of experiments, we evaluate our matching credit functions. These are

designed to match the parameters of the A/B metric that we wish to optimize, as explained

in Section 5.5.2. For instance, for the target A/B metric ABS we classify observed clicks

on interleaving impressions using the same classifier used by the A/B comparison, and

only assign interleaving credit for satisfied clicks. As we study 8 A/B metrics, this gives

rise to 8 possible variants of TDI with matching credit functions.

Table 5.4 shows the agreement between each A/B metric and each variant of TDI.

In the first column, we see the agreement between baseline TDI and each A/B metric,

computing each as previously defined. The lowest agreement is observed between the

original TDI and the A/B metric ABT,S@1, at 42%. The highest agreement is observed

between TDIS and the A/B metric it is designed to optimize (ABS), with 87%. Given

the small sample of 38 comparisons, only the agreement rates above 68% are statistically

significantly different from random agreement, and are shown in bold in the table. These

compare favorably with typical inter-judge agreement rates in offline evaluations of around

65% [196], and with the bounds on A/B self-agreement ABSub, ABUp in Table 5.2.

We note that using different credit functions often increases agreement between A/B

metrics and TDI. However, interestingly the maximal agreement is often not seen when

the A/B metric matches the credit function used for interleaving. This can be observed

by comparing the metrics that match in terms of their parameters (indicated by the gray

cells in Table 5.4), to the ones that achieved highest agreement (underlined). For example,

agreement with ABS is maximized by TDIS , but agreement with ABT,S is maximized by

82

5.6. Experiments and Results

101 102 103 104 105 106 107 108 109 1010 1011 1012

Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

P
o
w
er TDI

TDI@1

TDIS

TDIS@1

TDIT

TDIT@1

TDIT,S

TDIT,S@1

Figure 5.2: Power for TDI with matching credit functions (assuming two-sided t-test with

α = 0.05, as described in Section 5.4.2). The black line denotes ABS , the A/B metric

with most power.

TDIS@1. A reason for this is the interplay between bias and noise. By more aggressively

removing noise in the interleaving comparison (in this case, by only considering SAT

clicks at the top position), we may increase agreement with related A/B metrics, even

those for which there is bias due to a slight mismatch between the interleaving and A/B

metric.

Our results show that agreement between interleaving and A/B comparisons can be

substantially improved by matching interleaving credit parameters to those of the target

A/B metrics. We also need to ensure that in doing so, we do not decrease the sensitivity

of interleaving. Intuitively, removing observations (e.g., clicks beyond the first position)

may reduce sensitivity. On the other hand, if the removed observations are noisy, the

interleaving signal may actually become more discriminative, and sensitivity can be

increased.

Figure 5.2 shows the power for TDI with replaced scoring functions. We see that TDI

with matching credit functions typically has lower power than standard TDI. In particular,

sensitivity decreases for time-based metrics, which may also explain the relatively lower

agreement between time-based interleaving credit functions and A/B metrics. However,

the power of these variants of TDI is still 1 to 2 orders of magnitude larger than the

power of the A/B metric with the most power. Sensitivity is increased by TDIS , the credit

function that also shows highest agreement. This result indicates that focusing interleaving

credit on low-noise clicks is a very promising way to achieve both high sensitivity and

good agreement with user satisfaction metrics.

The results of the analysis in this section motivate the next set of questions. Given a

target A/B metric, what is the best credit function that should be applied to TDI? Just as

the correct credit function may not be the same as the target A/B metric, the parameters

of the credit function may need to be tuned. And, once we automatically optimize the

parameters of interleaving credit functions, to what degree do optimal values generalize

to unseen ranker comparisons? We address these questions next.

83

5. Predicting A/B Testing with Interleaved Comparisons

Table 5.5: Agreement for TDItsS , TDItsT,S , and TDIwT,S . Parameters ts and w are chosen

to maximize agreement with the A/B metrics on held out data, standard deviation is

reported in brackets. Higher agreement than TDI is indicated in bold face. Statistically

significant improvements over TDI are indicated by N (p < 0.01) (losses H).

(a) TDI
ts
S (b) TDI

ts
T,S (c) TDI

w

T,S

A/B Metric TDI Agree ts Agree ts Agree w1 w2

AB 0.63 0.82 N 0.76 (0.09) 0.53 H 0.52 (0.40) 0.84 N 1.00 (0.00) 0.00 (0.00)

AB@1 0.71 0.79 N 0.74 (0.19) 0.54 H 0.40 (0.32) 0.75 N 1.00 (0.00) 0.05 (0.22)

ABS 0.71 0.84 N 0.76 (0.09) 0.48 H 0.29 (0.31) 0.85 N 1.00 (0.00) 0.00 (0.00)

ABS@1 0.76 0.84 N 0.68 (0.24) 0.48 H 0.37 (0.32) 0.82 N 1.00 (0.00) 0.02 (0.14)

ABT 0.53 0.47 H 0.67 (0.28) 0.67 N 0.54 (0.27) 0.68 N 0.99 (0.11) 0.90 (0.30)

ABT@1 0.45 0.49 N 0.57 (0.35) 0.62 N 0.61 (0.34) 0.56 N 0.96 (0.22) 0.79 (0.41)

ABT,S 0.47 0.46 0.46 (0.38) 0.61 N 0.41 (0.30) 0.63 N 0.91 (0.30) 0.88 (0.33)

ABT,S@1 0.42 0.52 N 0.30 (0.39) 0.62 N 0.42 (0.34) 0.50 N 0.06 (0.65) 0.25 (0.41)

5.6.2 Parameterized Credit Functions

One way to increase agreement of TDI with A/B metrics is to take an interleaving credit

function with parameters (see Section 5.5.3) and tune the parameters towards a given A/B

metric. For instance, previous work has shown that it is possible to estimate the probability

that a given click indicates user satisfaction [110]. While an A/B metric such as ABS must

incorporate a threshold below which clicks are not considered to indicate user satisfaction,

the threshold for TDI need not be the same. Rather, we can find the optimal threshold ts
for TDItsS at which to consider a click as satisfied. This optimization procedure might

lead to reduced variance, and thereby increase agreement with A/B metrics.

We use the maximization procedure described in Section 5.5.5 and in particular

Equation 5.11 to find an optimal threshold for each A/B metric we consider. Note that, as

opposed to experiments in the previous section, here we obtain averages over N = 100
iterations of the maximization procedure, instead of averages over the 38 comparisons.

This allows us to perform statistical significance testing using a one-sample two-sided

student’s t-test. In our result table we indicate statistically significant improvements over

TDI by N (p < 0.01) (losses H). Also, as opposed to before, we now measure to what

extend our optimized credit functions generalize to unseen data.

The results for maximizing agreement of TDItsS are shown in column (a) in Table 5.5.

In the table, we see substantially and signficantly increased agreement rates of up to 84%

for the A/B metrics that only depend on clicks, reducing disagreement rates by between

6% and 20%. E.g., in Table 5.5, for ts = 0.76 in the first row means that clicks predicted

to have less than a 76% chance of indicating satisfaction are ignored. This causes 58%

of clicks to be ignored on average. We see that across many folds, the optimal value is

between 0.67 and 0.85, and we found that the precise value does not impact the outcome

significantly.

Interestingly, the optimal threshold at which clicks should be included in the score

84

5.6. Experiments and Results

101 102 103 104 105 106 107 108 109 1010 1011 1012
0.0

0.2

0.4

0.6

0.8

1.0

P
ow
er

(a)

TDItsS (AB)

TDItsS (AB@1)

TDItsS (ABS)

TDItsS (ABS@1)

TDItsS (ABT)

TDItsS (ABT@1)

TDItsS (ABT,S)

TDItsS (ABT,S@1)

101 102 103 104 105 106 107 108 109 1010 1011 1012
0.0

0.2

0.4

0.6

0.8

1.0

(b)

TDItsT,S (AB)

TDItsT,S (AB@1)

TDItsT,S (ABS)

TDItsT,S (ABS@1)

TDItsT,S (ABT)

TDItsT,S (ABT@1)

TDItsT,S (ABT,S)

TDItsT,S (ABT,S@1)

P
ow
er

101 102 103 104 105 106 107 108 109 1010 1011 1012

Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

(c)

TDIwT,S (AB)

TDIwT,S (AB@1)

TDIwT,S (ABS)

TDIwT,S (ABS@1)

TDIwT,S (ABT)

TDIwT,S (ABT@1)

TDIwT,S (ABT,S)

TDIwT,S (ABT,S@1)

P
ow
er

Figure 5.3: Power for (a) TDItsS , (b) TDItsT,S , and (c) TDIwT,S . Parameters ts and w

maximize agreement with A/B metrics (in brackets) on held out data (see Table 5.5). The

upper black line denotes TDI , the lower ABS , the A/B metric with most power. Note

that the differences between methods measured at 0.8 power are typically of interest.

85

5. Predicting A/B Testing with Interleaved Comparisons

calculation are around ts = 0.75, which is lower than the ts = 0.8 which is used in the

ABS and ABS@1 A/B metrics. It is equally interesting that learning such a threshold

changes agreement between TDI and time-based A/B metrics much less but generally

decreases it, and selects a ts threshold that is much lower.

In contrast, if we take the credit function TDItsT,S , that does take time as well as

satisfaction into account and if we learn the same threshold ts, then in column (b) of

Table 5.5 we see a very different result than before in column (a). Now, the agreement be-

tween TDI and A/B metrics that incorporate time increases substantially and significantly

(from 42–53% to 61–67%, a net disagreement error reduction of between 4% and 22%)

while disagreement increases significantly with the non-time based metrics. Now, for the

time based metrics we also outperform the baseline ABSub which uses as many query

impressions as TDI does (see Table 5.2).

These observed changes in agreement exhibit the same pattern as seen when tuning a

simpler threshold on satisfaction (as reported in column (a) in Table 5.5). In particular,

tuning a feature of an interleaving method that does not represent a measure included in

the A/B metric, reduces agreement with this A/B metric. We hypothesize that this is due to

the maximization procedure failing to find a optimal value that generalizes well to unseen

data, as the target A/B metrics that are based only on clicks have low correlation with the

credit function we are optimizing. These results motivate our next approach: optimize a

combination of interleaving credit functions that best matches a given A/B metric.

But first, we look at what happens to the power of TDI when we optimize parameters

of a credit function. Results are in Figures 5.3 (a) and 5.3 (b). We see that again, the power

for our adjusted interleaving credit functions lies between standard TDI and the A/B

metric with the highest power. In other words, we increased agreement while maintaining

an advantage in terms of power over A/B comparisons.

5.6.3 Combined Credit Functions

As we saw in the previous section and in columns (a) and (b) in Table 5.5, for different

types of A/B metrics we need different interleaving credit functions to increase agreement.

Optimizing a single parameter (ts) for a single credit function proved not powerful

enough. In this section we use the maximization procedure described in Section 5.5.5

and in particular Equation 5.10 to find weights w for a weighted combination of already

optimized credit functions that maximizes agreement. That is, for each A/B metric we

take the threshold ts that in the previous section maximized agreement. Note that we only

optimize a weighted combination of two credit functions, namely, we learn w1 for TDI t̂sS
and w2 for TDI t̂sT,S . The intuition behind this simple model is that it should be able to

capture attributes of each of the A/B metrics.

We obtain the results presented in column (c) in Table 5.5. Where in the previous

section, in columns (a) and (b) in Table 5.5, we obtained average agreement of 65% and

57% respectively, now we obtain an average agreement of 70%. Agreement with all

individual A/B metrics increased significantly from 42-76% to 50-85%. Interestingly, we

see that the weights w1 and w2 that are the result of the optimization procedure are mostly

selecting (w2 ⇡ 0) the TDI t̂sS credit function for the click based A/B metrics. While

the time based A/B metrics additionally put weight (w2 � 0) on the time based credit

86

5.7. Conclusion

function TDI t̂sT,S .

Lastly, turning to the sensitivity, in Figure 5.3 (c) we see that also for the combined

credit functions sensitivity stayed 1 to 2 orders of magnitude higher compared to A/B

metrics.

5.7 Conclusion

In this chapter, we showed how to optimize interleaving outcomes to agree better with a

given target A/B metric, while maintaining the sensitivity advantage of interleaved com-

parisons over A/B tests. We started by analyzing the agreement of team draft interleave

(TDI) with a set of 8 A/B metrics based on combinations of click count, click positions,

satisfied clicks, and time to click signals. To enable this analysis, we introduced a method

for comparing A/B and interleaved comparison metrics in terms of power and agreement

across varying sample sizes. We found that, while TDI is very sensitive, its agreement

with user satisfaction A/B metrics on realistic ranking evaluations is low, from random up

to 76%.

Results of this analysis motivated our approach. We proposed to replace the default

credit function of TDI with novel credit functions that take richer user signals into account.

In particular, we designed sets of credit functions that (1) match the parameters of A/B

metrics, (2) are parameterized, and (3) combine (parameterized) credit functions. To

automatically tune the parameters of these last credit functions, we further introduced a

bootstrapping algorithm that can automatically maximize agreement with arbitrary A/B

metrics.

Our empirical results, obtained on 38 paired experiments with a total of 3 billion

clicks, showed that our approach can substantially and significantly increase agreement

with A/B metrics. In particular, learning a combination of parameterized credit functions

resulted in agreement of up to 85%, improving the agreement with A/B metrics by up to

22% (almost halving these disagreements). We also showed that the sensitivity for all our

adapted versions of TDI is still 1 to 2 orders of magnitude higher than that of A/B metrics.

Despite the 3 billion clicks we used, we only studied 38 ranker comparisons. This

constitutes the largest shortcoming of our work. Our 38 data points were often too few to

draw generalizable conclusions.

The most important implication of our results is that it enables, for the first time, the

integration of rich user satisfaction signals with highly sensitive interleaved comparison

methods. This will dramatically reduce the required sample sizes, and therefore cost, of

such online evaluations.

Lastly, there is a sample cost of getting the data needed to train our methods. Our meth-

ods our supervised training methods that can only be applied when AB tests interleaved

comparisons have been performed on the same ranker pairs.

5.8 Future Work

There are a number of opportunities for further work that our results open up. First,

if it were possible to generate larger data set, beyond the 38 ranker comparisons we

87

5. Predicting A/B Testing with Interleaved Comparisons

currently use, it may be possible to learn more sophisticated credit functions with even

higher agreement with the target A/B metric. This would allow us to combine more credit

functions than we currently do without overfitting the learned models. More data would

also open the way to development of yet more sophisticated (learned) credit functions,

e.g., to take into account session-level or task-level features. Also, our approach does not

currently take magnitude and uncertainty in the A/B test label of individual experiments

into account. Lastly, we would like to measure agreement with statistically significant

A/B outcomes. Again, we would require more ranker comparisons for such an analysis.

88

Part II

Online Learning to Rank

89

6
Learning Parameters for Existing Rankers

using Users Interactions

In this chapter we study the problem of optimizing an individual base ranker using clicks.

Surprisingly, while there has been considerable attention for using clicks to optimize linear

combinations of base rankers such as the models described in Section 2.1.3, the problem

of optimizing an individual base ranker using clicks has been ignored. The problem

is different from that of optimizing linear combinations of base rankers as the scoring

function of a base ranker may be highly non-linear. For the sake of concreteness, we focus

on the optimization of a specific base ranker, viz. best match 25 (BM25) [146]. We start by

showing that significant improvements in performance can be obtained when optimizing

the parameters of BM25 for individual data sets. We also show that it is possible to

optimize these parameters from clicks, i.e., without the use of manually annotated data,

reaching or even beating manually tuned parameters.

This chapter is based on a paper by Schuth, Sietsma, Whiteson, and de Rijke [162].

6.1 Introduction

Traditional approaches to evaluating or optimizing rankers are based on manually created

explicit relevance judgments (see Section 2.2). Recent years have witnessed a range of

alternative approaches for the purpose of evaluating or optimizing rankers, which reduce or

even avoid the use of explicit manual judgments. One type of approach is based on pseudo

test collections, where judgments about query-document pairs are automatically generated

by repurposing naturally occurring labels such as hashtags or anchor texts [10, 13, 21].

Another type of approach is based on the use of implicit signals (see Section 2.3). The

use of implicit signals such as click data to evaluate or optimize retrieval systems has long

been a promising alternative or complement to explicit judgments [30, 90, 92, 96, 144].

Evaluation methods that interpret clicks as absolute relevance judgments have often been

found unreliable [144]. In some applications, e.g., for optimizing the click-through rate

in ad placement and web search, it is possible to learn effectively from click data, using

various learning to rank methods, often based on bandit algorithms. Click models can

effectively leverage click data to allow more accurate evaluations with relatively little

editorial data. Moreover, interleaved comparison methods have been developed that use

91

6. Learning Parameters for Existing Rankers using Users Interactions

clicks not to infer absolute judgments but to compare rankers by observing clicks on

interleaved result lists [79] (see Section 2.3.3).

The vast majority of work on click-based evaluation or optimization has focused on

optimizing a linear combination of base rankers, thereby treating those rankers as black

boxes [82, 83, 207]. See Section 2.1.3 for an overview of these retrieval models. Rankers,

as discussed earlier, are functions that map documents to a ranking given a query. Rankers

can either be based on a combination of these retrieval models or a single retrieval model

can be taken as a ranker. In this chapter we do the latter. We take single retrieval models

and refer to them as base rankers.

In this chapter, we try to break open the black boxes that base rankers often are and

examine whether online learning to rank can be leveraged to optimize the base rankers

themselves. Surprisingly, even though a lot of work has been done on improving the

weights of base rankers in a combined learner, there is no previous work on online

learning of the parameters of base rankers and there is a lot of potential gain from

this new form of optimization. We investigate whether individual base rankers can be

optimized using clicks. This question has two key dimensions. First, we aim to use

clicks, an implicit signal, instead of explicit judgments. The topic of optimizing individual

base rankers such as a model called term frequency times inverse document frequency

(TF.IDF) [171], BM25 [146], or divergence from randomness (DFR) [8] has received

considerable attention over the years but that work has almost exclusively used explicit

judgments. Second, we work in an online setting while previous work on optimizing

base rankers has almost exclusively focused on a more or less traditional, Cranfield-style,

offline setting (see Section 2.2.1).

Importantly, the problem of optimizing base rankers is not the limiting case of the

problem of optimizing a linear combination of base rankers where one has just one base

ranker. Unlike the scoring function that represents a typical online learning to rank

solution, the scoring function for a single base ranker is not necessarily linear. A clear

example is provided by the well-known BM25 ranker [146], which has three parameters

that are related in a non-linear manner: k1, k3 and b.
In this chapter, we pursue the problem of optimizing a base ranker using clicks

by focusing on BM25. Currently, it is common practice to choose the parameters of

BM25 according to manually tuned values reported in the literature, or to manually tune

them for a specific setting based on domain knowledge or a sweep over a number of

possible combinations using guidance from an annotated data set [60, 185]. We propose

an alternative by learning the parameters from click data. Our goal is not necessarily to

improve performance over manually tuned parameter settings, but rather to obviate the

need for manual tuning.

Specifically, the research questions we aim to answer in this chapter are as follows, and

repeated from Section 1.1.

RQ8 How good are the manually tuned parameter values of BM25 that are currently

used? Are they optimal for all data sets on average? Are they optimal for individual

data sets?

RQ9 Is it possible to learn good values of the BM25 parameters from clicks? Can we

approximate or even improve the performance of BM25 achieved with manually

92

6.2. Related Work

tuned parameters?

The contributions of this chapter are the following.

Learn Parameters of Base Rankers The insight that we can potentially achieve signifi-

cant improvements of state-of-the-art learning to rank approaches by learning the

parameters of base rankers, as opposed to treating them as black boxes which is

currently the common practice.

Case Study with BM25 A demonstration of how parameters of an individual base rankers

such as BM25 can be learned from clicks using the dueling bandit gradient descent

approach.

Parameter Space of BM25 We provide insight into the parameter space of a base ranker

such as BM25.

We have incorporated the above contributions in Section 1.2 where we give a complete

overview of all contributions of this thesis.

6.2 Related Work

Related work comes in two main flavors: (1) work on ranker evaluation or optimization that

does not use traditional manually created judgments, and (2) specific work on optimizing

BM25 .

We refer to Section 2.3 for an extensive overview of online evaluation methods, also

used in this chapter. Section 2.5 provides background on online learning to rank, relevant

to this chapter. In particular, in that section Algortihm 2 lists the dueling bandit gradient

descent (DBGD) [207] learning method that is used in this chapter. DBGD requires

pairwise preferences as feedback. This can be an interleaved comparison method (see

Section 2.3.3). In this chapter, we use probabilistic interleave (PI) [79], an interleaved

comparison method that uses clicks not to infer absolute judgments but to compare base

rankers by observing clicks on interleaved result lists; we use this relative feedback not

only to optimize a linear combination of base rankers, as has been done before, but also

to optimize an individual ranker. Our optimization method uses this relative feedback

in a dueling bandit algorithm, where pairs of rankers are the arms that can be pulled to

observe a click as relative feedback [82, 83, 207].

Our case study into optimizing an individual base ranker using clicks focuses on

BM25, a parameterized (with parameters k1, k3 and b) combination of term frequency

(TF), inverse document frequency (IDF) and query term frequency (cf. Section 6.3.1).

A good general introduction to this ranker was written by Robertson and Zaragoza

[147], while detailed coverage of early experiments aimed at understanding the model’s

parameters can be found in a paper by Sparck Jones et al. [174]. Improvements to standard

BM25 have previously been investigated by Svore and Burges [179], who apply BM25 to

different document fields and then use a machine learning approach to combine the results

on these different fields. However, there the parameters of BM25 are still set at a fixed

value. Most similar to the work presented here is work by Taylor et al. [185] and Gao

93

6. Learning Parameters for Existing Rankers using Users Interactions

et al. [60]. There, however, the parameters of BM25 are optimized based on relevance

labels, not clicks, in an offline learning setup, so that the parameters learned cannot be

adapted while search takes place. Interestingly, over the years, different values of the

key parameters in BM25 are used as manually tuned “default” values. E.g., Qin et al.

[141] use k1 = 2.5, k3 = 0, b = 0.8 for the .gov collection. They use k1 = 1.2, k3 = 7,

b = 0.75 for the OHSUMED collection, while Robertson and Walker [146] use k1 = 2.0,

b = 0.75.

6.3 Methods

Today’s state-of-the-art ranking models combine the scores produced by many base

rankers and compute a combination of them to arrive at a high-quality ranking. In its

simplest form, this combination can be a weighted sum:

s(q, d) = w1 · s1(q, d) + · · ·+ wn · sn(q, d), (6.1)

where wi is the weight of the base ranker si(q, d) that operates on the query q and docu-

ment d. The base rankers may have internal parameters that influence their performance.

We focus on one particular base ranker, BM25, which has three parameters that determine

the weight applied to term frequency, inverse document frequency and other query or

document properties in the BM25 scoring function.

Below, we first recall BM25 in full detail and then describe how we use clicks to

optimize BM25’s parameters.

6.3.1 Implementation of BM25

Several variants of BM25 are used in the literature. We use the variant that is used to

compute the BM25 feature in the LETOR data set [141] (see Section 3.2). Given a query

q and document d, the BM25 score is computed as a sum of scores for every term qi in

the query that occurs at least once in d:

BM25(q, d) =
X

qi:tf (qi,d)>0

idf (qi) · tf (qi, d) · (k1 + 1)

tf (qi, d) + k1 · (1� b+ b · |d|
avgdl

)
·
(k3 + 1) · qtf (qi, q)

k3 + qtf (qi, q)
(6.2)

The terms used in this formula are:

• idf (qi) (inverse document frequency): computed as

idf (qi) := log

✓

N � df (qi) + 0.5

df (qi) + 0.5

◆

, (6.3)

where N is the total number of documents in the collection and df (qi) is the number

of documents in which the term qi occurs at least once;

• tf (qi, d) (term frequency): the number of times the term qi occurs in the document d;

• qtf (qi, q) (query term frequency): the number of times the term qi occurs in the

query q;

94

6.3. Methods

•
|d|

avgdl
: the length of the document, normalized by the average length of the docu-

ments in the collection;

• k1, b, and k3: the parameters of BM25 that we want to optimize. Usually, k1 is set

to a value between 1 and 3, b is set somewhere around 0.8 and k3 is set to 0. Note

that when k3 is set to 0 the entire right part of the product in Equation 6.2 cancels

out to 1 and can thus be ignored.

6.3.2 Learning from Clicks

Most learning to rank approaches learn from explicit, manually produced relevance

assessments [124]. These assessments are expensive to obtain and usually produced in

an artificial setting. More importantly, it is not always feasible to obtain the assessments

needed. For instance, if we want to adapt a ranker towards a specific user or a group of

users, we cannot ask explicit feedback from these users as it would put an undesirable

burden upon these users.

Instead, we optimize rankers using clicks. It has been shown by Radlinski et al. [144]

that interpreting clicks as absolute relevance judgments is unreliable. Therefore, we use

a dueling bandit approach: the candidate preselection (CPS) method. This method was

shown to be state-of-the-art by Hofmann et al. [83]. It is an extension of the dueling

bandit gradient descent (DBGD) method, proposed in [207]. DBGD has been described

extensively in Section 2.5 and is listed in Algorithm 2. Briefly, DBGD works as follows.

The parameters that are being optimized are initialized. When a query is presented to the

learning system, two rankings are generated: one with the parameters set at the current

best values, another with a perturbation of these parameters. These two rankings are

interleaved using probabilistic interleave [79, 81], which allows for the reuse of historical

interactions. The interleaved list is presented to the user and we observe the clicks

that the user produces, which are then used to determine which of the two generated

rankings was best. If the ranking produced with the perturbed set of parameters wins the

interleaved comparison, then the current best parameters are adapted in the direction of the

perturbation. CPS is a variant of DBGD that produces several candidate perturbations and

compares these on historical click data to decide on the most promising candidate. Only

the ranking produced with the most promising perturbation is then actually interleaved

with the ranking generated with the current best parameters and exposed to the user.

The difference between the current best ranker and the perturbed ranker is controlled

by the parameter δ. The amount of adaptation of the current best ranker in case the

perturbed ranker wins is controlled by a second parameter, α. Together, these parameters

balance the speed and the precision with which the algorithm learns. If they are too big,

the learning algorithm may oscillate, skip over optimal values and never converge to the

optimum. If they are too small, the learning algorithm will not find the global optimum at

all or not in a reasonable amount of time.

We aim to learn the BM25 parameters k1, b and k3 from clicks, using the learning

method described above. Because the parameters are of very different orders of magnitude,

with b typically ranging between 0.45 and 0.9 and k1 typically ranging between 2 and

25, we chose to use a separate δ and α for each parameter. This is necessary because

what may be a reasonable step size for k1 will be far too large for b. Therefore we have,

95

6. Learning Parameters for Existing Rankers using Users Interactions

for example, a separate δk1
and δb. This allows us to govern the size of exploration and

updates in each direction.

6.4 Experiments

In this section, we detail our experimental setup in as far as it is different from the setup

described in Chapter 3.

We design our experiments to answer RQ8 and RQ9. We investigate whether we can

optimize the parameters of a base ranker, BM25, from clicks produced by users interacting

with a search engine. Below, we first describe the data we use to address this question.

Then we describe how our click-streams are generated, and our evaluation setup.

6.4.1 Data Sets

For all our experiments we use features extracted from the .gov collection that is also

included in the LETOR data set [141], described in Section 3.2. The six sets of queries

and relevance assessments we use in this chapter are based on TREC Web track tasks run

from 2003 and 2004.

The data sets HP2003, HP2004, NP2003, and NP2004 implement navigational tasks:

homepage finding and named-page finding, respectively. TD2003 and TD2004 implement

an informational task: topic distillation. All six data sets contain between 50 and 150

queries and approximately 1,000 judged documents per query. These data sets have binary

relevance.

We index the original .gov collection to extract the low-level features such as term

frequency and inverse document frequency that are needed for BM25. While indexing,

we do not perform any pre-processing (e.g., no stemming, no stop word removal). We

only extract features for the documents in the LETOR data set [141]. All the data sets we

use are split by query for 5-fold cross validation.

6.4.2 Clicks

To produce clicks, we use a click simulation framework that is analogous to [83], which is

explained in [161] and in Section 3.3. Our framework simulates clicks using the dependent

click model (DCM) [65].

Again following [83], we instantiate P (C|R) and P (S|R) as in Table 3.2. We only use

the extreme instantiations as the data sets used in this chapter only have binary relevance.

In this chapter, we use four instantiations of the click model: the perfect click model; the

navigational click model; the informational; and the almost random click model.

6.4.3 Parameter Settings

We employ the learning approach described in Section 6.3.2. For CPS we use the

parameters suggested by [83]: we use η = 6 candidate perturbations and we use the

λ = 10 most recent queries. We initialize the weights of both the BM25 model and the

LETOR features randomly. For the learning of BM25 in isolation, we set αb = 0.05 and

δb = 0.5. We computed the average ratio between k1 and δ across the parameter values

96

6.5. Results and Analysis

that were optimal for the different data sets, and set αk1
and δk1

accordingly. This ratio

was 1 to 13.3, so we set αk1
= 0.665 and δk1

= 6.65. These learning parameters have

been tuned on a held out development set.

6.4.4 Evaluation and Significance Testing

As evaluation metric, we use normalized discounted cumulative gain (nDCG) [89] on

the top 10 results, measured on the test sets, following, for instance, [179, 185] (see

Section 3.4). For each learning experiment, for each data set, we run the experiment for

2,000 interactions with the click model. We repeat each experiment 25 times and average

results over the 5 folds and these repetitions. We test for significant differences using the

paired t-test in answering RQ8 and the independent measures t-test for RQ9.

6.5 Results and Analysis

We address our two research questions, RQ8 and RQ9, in the following two subsections.

6.5.1 Measuring the Performance of BM25 with Manually Tuned
Parameters

In order to answer RQ8, we compute the performance of BM25 with the parameters used

in the LETOR data set [141]. The parameter values used there differ between the two

document collections in the data set. The values that were chosen for the .gov collection

were k1 = 2.5, b = 0.8 and k3 = 0. The values that were chosen for the OHSUMED

collection were k1 = 1.2, b = 0.75 and k3 = 7. We refer to these values as the manually

tuned .gov or OHSUMED parameter values, respectively. Note that the manually tuned

.gov parameter values were tuned to perform well on average, over all data sets.

The results of running BM25 with the .gov manual parameters (as described in

Section 6.4) are in the first row of Table 6.1. We also experiment with different values of

k1, b and k3. We first tried a range of values for k1 and b. For k1 the range is from �1 to

30 with steps of 0.1 and for b the range is for �0.5 to 1 with steps of 0.05. The results are

in Table 6.1. For each of the data sets, we include the parameter values that gave maximal

nDCG scores (in bold face). For each value of k1 and b, we show the performance on

each data set and the average performance over all data sets.

The results show that when we average over all data sets, no significant improvements

to the manually tuned .gov parameter values can be found. This is to be expected, and

merely shows that the manual tuning was done well. However, for four out of six data

sets, a significant improvement can be achieved by deviating from the manually tuned

.gov parameter values for that particular data set. Furthermore, if we take the average

optimal nDCG, weighted with the number of queries in each data set, we find an overall

performance of 0.644 nDCG versus 0.613 nDCG when manually tuned parameters would

be used. Thus, it pays off to optimize the parameters for specific data sets.

In cases where both k1 and b were different from the manually tuned .gov values, we

also consider the results of combining k1 with the manually tuned .gov value for b and

vice-versa. E.g., when k1 = 4.0 and b = 0.5, for the NP2004 data set the value of b has a

97

6. Learning Parameters for Existing Rankers using Users Interactions

Table 6.1: nDCG scores for various values of BM25 parameters k1 and b, optimized

for different data sets. The first and last row give the scores with parameters that have

been manually tuned for the .gov and OHSUMED collections, respectively [141]. Other

parameter values are chosen to produce maximal scores, printed in boldface, for the

different data sets listed in the first column. For all results, k3 = 0. Statistically significant

improvements (losses) over the values manually tuned for .gov are indicated by M (p <
0.05) and N (p < 0.01) (O and H).

k1 b HP2003 HP2004 NP2003 NP2004 TD2003 TD2004 Overall

.gov 2.50 0.80 0.674 0.629 0.693 0.599 0.404 0.469 0.613

HP2003 7.40 0.80 0.692 0.650 0.661H 0.591 0.423N 0.477 0.614

HP2004 7.30 0.85 0.688 0.672M 0.657H 0.575 0.423N 0.482M 0.613

2.50 0.85 0.671 0.613 0.682 0.579O 0.404 0.473 0.605O

7.30 0.80 0.690 0.647 0.661H 0.592 0.423N 0.477 0.613

NP2003 2.60 0.45 0.661 0.572O 0.719 0.635 0.374H 0.441H 0.607

2.50 0.45 0.660 0.572O 0.718 0.635 0.374H 0.441H 0.607

2.60 0.80 0.675 0.629 0.692 0.601 0.403 0.470 0.613

NP2004 4.00 0.50 0.663 0.584 0.705 0.647M 0.386O 0.446H 0.609

2.50 0.50 0.663 0.573O 0.713 0.635 0.381H 0.444H 0.607

4.00 0.80 0.680 0.645 0.683 0.605 0.414M 0.474 0.616

TD2003 25.90 0.90 0.660 0.597 0.515H 0.478H 0.456M 0.489M 0.550H

2.50 0.90 0.676 0.607 0.672 0.560H 0.405 0.471 0.600H

25.90 0.80 0.645 0.576 0.535H 0.493H 0.445 0.482 0.549H

TD2004 24.00 0.90 0.664 0.604 0.520H 0.481H 0.449M 0.491M 0.553H

2.50 0.90 0.676 0.607 0.672 0.560H 0.405 0.471 0.600H

24.00 0.80 0.645 0.578 0.538H 0.496H 0.446 0.482 0.550H

OHSUMED 1.20 0.75 0.662O 0.589H 0.703 0.591 0.398 0.461H 0.605O

bigger impact than the value of k1: changing k1 back to the manually tuned value causes

a decrease of nDCG of 0.012 points, while changing b to the manually tuned value gives

a decrease of 0.042 points. However, in other cases the value of k1 seems to be more

important. E.g., for the TD2003 data set we can achieve an improvement of 0.041 points

by changing k1 to 25.9, while keeping b at the manually tuned 0.8.

The bottom row in Table 6.1 shows the results of a BM25 ranker with the manually

tuned OHSUMED parameter values. This ranker performs worse than the manually tuned

.gov values averaged over all data sets, which, again, shows that it makes sense to tune

these parameters, rather than just taking a standard value from the literature.

For the third parameter k3, we performed similar experiments, ranging the parameter

value from 0 to 1, 000. There were no significant differences in the resulting nDCG scores.

The small differences that were present were in favor of the manually tuned value 0. The

fact that k3 hardly has any influence on the performance is to be expected, considering

the fact that k3 weights the query term frequency (cf. Equation 6.2), the number of times

one word appears in the query. For most query terms, the query term frequency will be 1.

98

6.5. Results and Analysis

Figure 6.1: Optimization landscape for two parameters of BM25, k1 and b, for the NP2004

data set measured with nDCG. White crosses indicate where individual runs of the learning

algorithm plateaued when learning from clicks produced with the perfect click model. For

the other five data set we experimented with we obtained a similar landscape with the

peak on a different location.

Hence, the weight of this feature does not greatly affect the result.

Using these results, we are ready to answer our first research question RQ8. The

manually tuned .gov values for k1 and b are quite good when we look at a combination

of all data sets. When looking at different data sets separately, significant improvement

can be reached by deviating from the values that were manually tuned for the entire

collection. This shows that tuning of the parameters to a specific setting is a promising

idea. Considering the last parameter k3, the standard value was optimal for the data sets

we investigated.

6.5.2 Learning Parameters of BM25 Using Clicks

In this section we answer RQ9: can we learn the parameters of BM25 from clicks? We

aim to learn the parameters per data set from clicks. Our primary goal is not to beat the

performance of the manually tuned .gov parameters. Should optimizing a base ranker such

as BM25 prove successful, i.e., reach or even beat manually tuned values, the advantage is

rather that optimizing the parameters no longer requires human annotations. Furthermore,

learning of the parameters eliminates the need for domain-specific knowledge, which

is not always available, or sweeps over possible parameter values, which cost time and

cannot be done in an online setting.

To begin, we visualize the optimization landscape for the two BM25 parameters

that matter: k1 and b. We use the data obtained from the parameter sweep described

in Section 6.5.1. The optimization landscape is unimodal and generally smooth when

averaged over many queries, as illustrated by Figure 6.1 for the NP2004 data set. We find

similar landscapes with peaks at different locations (listed in Table 6.1) for other data sets.

This observation suggests that a gradient descent approach such as DBGD is a suitable

99

6. Learning Parameters for Existing Rankers using Users Interactions

learning algorithm. Note, however, that the online learning algorithm will never actu-

ally observe this landscape: it can only observe relative feedback from the interleaved

comparisons and moreover, this feedback is observed on a per query basis.

Next, we optimize k1 and b for each individual data set using the four instantiations of

our click model: perfect, navigational, informational, and almost random. The learning

curves are depicted in Figure 6.2. Irrespective of the noise in the feedback, the learning

method is able to dramatically improve the performance of BM25. For the perfect click

model the final performance after 2000 queries is either on par with the manually tuned

values used by Qin et al. [141] or above. We can, however, not always recover the gain

we observe in the parameter sweep in Table 6.1 completely when learning from clicks.

For the NP2004 data set we plot the final parameter values that have been learned

using the perfect click model in Figure 6.1. The final parameter values are clustered near

the optimal value indicating that the learning method is indeed capable of finding the peak

in the landscape. Final parameters for individual runs using each data set are depicted in

Figure 6.3. We see that for each data set, the parameters converge to a different region.

We also see that the manually tuned parameters are not included in any of these regions.

Performance generally degrades when clicks become less reliable. However, perfor-

mance of the navigational click model is not much lower than the performance of the

perfect click model. This is a promising result, since feedback from actual users will be

noisy and our learning method should be able to deal with that.

The above experiments are all initialized with random starting parameters. If one

knew a good starting point, learning could be sped up. E.g., we also initialized learning

with the manually tuned .gov parameters (k1 = 2.5 and b = 0.8) and observed that the

plateau that was found was not different from the one we found with random initialization.

It was, however, found in fewer than 200 queries, depending on the data set.

In conclusion, we can give a positive answer to the first part of RQ9. Learning good

values for the BM25 parameters from user clicks is possible. As to the second part

of RQ9, the optimized parameters learned form clicks lead to a performance of BM25

that approaches, equals or even surpasses the performance achieved using manually tuned

parameters for all data sets.

6.6 Conclusion

In this chapter we investigated the effectiveness of using clicks to optimize base rankers

in an online learning to rank setting. State-of-the-art learning to rank approaches use a

linear combination of several base rankers to compute an optimal ranking. Rather than

learning the optimal weights for this combination, we optimize the internal parameters of

these base rankers. We focussed on the base ranker BM25 and aimed at learning these

parameters of BM25 in an online setting using clicks.

Our results show that learning good parameters of BM25 from clicks is indeed

possible. As a consequence, it is not necessary to hand tune these parameters or use human

assessors to obtain labeled data. Learning with a dueling bandit gradient descent approach

converges to near-optimal parameters after training with relative click feedback on about

1,000 queries. Furthermore, the performance of BM25 with these learned parameters

approaches, equals or even surpasses the performance achieved using manually tuned

100

6.6. Conclusion

Figure 6.2: Learning curves when learning the parameters of BM25 using DBGD from

clicks. Measured in nDCG on a holdout data set averaged over 5-fold cross validation

and 25 repetitions. The clicks used for learning are produced by the perfect, navigational,

informational and almost random click model. The horizontal gray lines indicate the

performance for the manually tuned .gov (solid) and OHSUMED (dotted) parameters.

101

6. Learning Parameters for Existing Rankers using Users Interactions

Figure 6.3: Parameter settings where individual runs of the learning algorithm plateaued

when learning with the perfect click model for 2,000 queries.

parameters for all data sets. The advantage of our approach lies in the fact that the

parameters can be learned automatically from implicit feedback, and that the parameters

can be tuned specifically for different settings. The parameters learned from the data in the

different data sets differ greatly from each other. More importantly, the performance gains

we observed by tuning the parameters for a specific data set were significant for many

of the data sets considered. We could, however, not always recover this gain completely

when learning from clicks.

6.7 Future Work

For future work, it is interesting to see how the click-optimized versions of BM25 can

improve the performance of a state-of-the-art learning to rank algorithm when BM25 is

used as one query-document feature among many.

There are several ways in which the process of optimizing a base ranker can be

integrated with state-of-the-art online learning to rank:

• First learn the optimal parameters of the base rankers in isolation, then use the

optimized base rankers and learn the optimal weights of a linear combination of

these base rankers.

• First learn the optimal weights of a linear combination of base rankers using either

optimized or default parameter values for the individual base rankers and then learn

the optimal parameters of the individual base rankers based on user clicks in reply

to the outcome of the ensemble learning-to-rank algorithm.

• Learn the parameters of the base rankers and the weights of the ensemble together

based on user clicks in reply to the outcome of the ensemble.

It would be interesting to see whether we can integrate this with the learning methods in

Chapter 7. Those methods use the multileaved comparisons from Chapter 4. This allows

102

6.7. Future Work

for exploring many more alternative rankers. This in turn may allow for learning the

parameters of base rankers and the combination of base rankers simultaneously.

Additionally, we would like to investigate whether and to what extent parameters of

other base rankers can be learned through the same procedure as we used in this chapter.

103

7
Learning from Multileaved Comparisons

Modern search systems are based on dozens or even hundreds of ranking features such

as the retrieval models described in Section 2.1.3. The dueling bandit gradient descent

(DBGD) algorithm has been shown to effectively learn combinations of these features

solely from user interactions (see Algorithm 2 on page 29). DBGD explores the search

space by comparing a possibly improved ranker to the current production ranker. To

this end, it uses interleaved comparison methods, which can infer with high sensitivity a

preference between two rankings based only on interaction data (see Section 2.3.3). Re-

cently introduced multileaved comparison methods, which can compare a set of rankings

instead of just a pair, have been found to be even more sensitive, i.e., they require even

less interaction data for reliable ranker comparisons (see Chapter 4).

In this chapter we propose an online learning to rank algorithm called multileave

gradient descent (MGD) that extends DBGD to learn from multileaved comparison

methods. We show experimentally that MGD allows for better selection of candidates than

DBGD without the need for more comparisons involving users. An important implication

of our results is that orders of magnitude less user interaction data is required to find

good rankers when multileaved comparisons are used within online learning to rank. As a

consequence, fewer users need to be exposed to possibly inferior rankers and our method

allows search engines to adapt more quickly to changes in user preferences.

This chapter is based on work by Schuth, Oosterhuis, Whiteson, and de Rijke [167].

7.1 Introduction

Modern search engines base their rankings on combinations of dozens or even hundreds

of features [124]. Learning to rank, i.e., finding an optimal combination of such features,

is an active area of research (see Section 2.4).

Traditionally, learning was done offline by optimizing for performance on a training set

consisting of queries and relevance assessments produced by human assessors. However,

as described in Section 2.5, such data sets are time consuming and expensive to produce.

Moreover, these assessments are not always in line with actual user preferences [155]. And

since data of users interacting with a search engine are often readily available, research

is focussing more on learning online instead [82, 92, 144, 207]. Online learning to rank

methods optimize combinations of rankers while interacting with users of a search engine.

While interacting with the search engine, users leave a trace of interaction data, e.g.,

105

7. Learning from Multileaved Comparisons

query reformulations, mouse movements, and clicks, that can be used to infer preferences.

Clicks have proven to be a valuable source of information when interpreted as a preference

between either rankings [144] or documents [92]. In particular, when clicks are interpreted

using interleaved comparison methods, they can reliably infer preferences between a pair

of rankers [34, 92, 93].

Dueling bandit gradient descent (DBGD) [207] is an online learning to rank algorithm

that learns from these interleaved comparisons. It uses the inferred preferences to estimate

a gradient, which is followed to find a locally optimal ranker. At every learning step,

DBGD estimates this gradient with respect to a single exploratory ranker and updates its

solution if the exploratory ranker seems better. Exploring more than one ranker before

updating towards a promising one could lead to finding a better ranker using fewer updates.

However, when using interleaved comparisons, this would be too costly, since it would

require pairwise comparisons involving users between all exploratory rankers. Instead,

we propose to learn from comparisons of multiple rankers at once, using a single user

interaction. In this way, our proposed method, multileave gradient descent (MGD), aims

to speed up online learning to rank.

We propose two variants of MGD that differ in how they estimate the gradient. In MGD

winner takes all (MGD-W), the gradient is estimated using one ranker randomly sampled

from those who won the multileaved comparison. In MGD mean winner (MGD-M), the

gradient is estimated using the mean of all winning rankers.

In this chapter, we answer the following research questions, repeated from Section 1.1.

RQ10 Can MGD learn faster from user feedback (i.e., using fewer clicks) than DBGD

does?

RQ11 Does MGD find a better local optimum than DBGD?

RQ12 Which update approach, MGD-W or MGD-M, learns faster? Which finds a better

local optimum?

Our contributions in this chapter are the following.

Online Learning to Rank Methods Two approaches, MGD-W and MGD-M, to using

multileaved comparison outcomes in an online learning to rank method.

Extensive Evaluation Extensive empirical validation of our new methods via experi-

ments on nine learning to rank data sets, showing that MGD-W and MGD-M

outperform the state of the art in online learning to rank.

We have incorporated the above contributions in Section 1.2 where we give a complete

overview of all contributions of this thesis.

In Section 7.2 we discuss related work. In Section 7.3 we introduce multileave gradient

descent. In Section 7.4 we detail our experimental setup. Section 7.5 provides both results

and their analysis. We conclude in Section 7.6.

106

7.2. Related Work

7.2 Related Work

Related work for this chapter comes in two areas. First, there are learning to rank methods

that have been introduced in Section 2.5. Particularly important for this chapter is the

dueling bandit gradient descent (DBGD) method, which is described in more detail in

that section and listed in Algorithm 2 on page 29. Second, there are evaluation methods in

Section 2.3, of which the interleaving and multileaving methods play a crucial role in this

chapter. Interleaving methods are described in more detail in Section 2.3.3.

In thesis, interleaving methods have been extended to multileaving methods that allow

for comparisons of more than two rankers at once (see Chapter 4 and the work by Schuth

et al. [163]). In particular, we extended team draft interleave (TDI) [144] to team draft

multileave (TDM) and optimized interleave (OI) [143] to optimized multileave (OM).

TDM forms part of our motivation of this chapter and is discussed in detail in Chapter 4

where multileaving methods are introduced.

If n rankers must be compared, an interleaving method such as TDI needs n · (n� 1)
queries to determine how they all relate to each other. By contrast, for TDM, a user’s

query is passed to all n rankers at once. These rankers each produce their rankings, which

are integrated into a single ranking using a team selection process similar to that of TDI.

However, there now are n teams that take turns.1 This implies that, in case n is larger than

the number of slots in the interleaved list, some teams may not be represented. Inferring

which team wins is now done by counting the number of clicked documents for each team.

The result is a partial ordering over the n rankers. Thus, only a single query, instead of

n · (n� 1) queries, is needed to compare all n rankers. Of course, many queries are still

needed for a reliable comparison, and potentially more so than with TDI. However, it was

shown that this tradeoff can be quite favorable for TDM [163]. Note that TDM reduces to

TDI for n = 1.

Our work in this chapter is different from the work mentioned above in that our online

learning to rank methods are the first to learn from multileaving comparison feedback.

So far, online learning to rank methods only learned from pairwise preferences between

either documents or rankers. Our methods are the first to learn from n-way preferences

between rankers.

7.3 Multileave Gradient Descent

In this section, we propose a new algorithm called multileave gradient descent (MGD).

7.3.1 Extending DBGD with Multileaving

MGD is shown in Algorithm 10. As in DBGD, which is shown in Algorithm 2, MGD

learns from online feedback and uses a current best ranker, which is updated based on

user feedback. For each query, MGD uses the current best ranker to create a ranking.

Subsequently, on lines 4 through 7, n exploratory candidate rankers are generated along

with their corresponding rankings. Unlike DBGD, which is restricted to a single candidate

1As in TDI, documents belonging to a prefix that is common to all n rankings are not assigned to teams.

107

7. Learning from Multileaved Comparisons

Algorithm 10 Multileave Gradient Descent (MGD).

Require: n, α, δ, w0
0, update(w,α, {b}, {u})

1: for t 1..1 do

2: qt receive query(t) // obtain a query from a user

3: l0 generate list(w0
t , qt) // ranking of current best

4: for i 1...n do

5: u
i
t sample unit vector()

6: w
i
t w

0
t + δui

t // create a candidate ranker

7: l
i
t generate list(wi

t, qt) // exploratory ranking

8: mt, tt TDM multileave(lt) // multileaving and teams

9: ct receive clicks(mt) // show multileaving to the user

10: bt TDM infer(tt, ct) // set of winning candidates

11: if w0
t 2 bt then

12: w
0
t+1 w

0
t // if current best among winners, no update

13: else

14: w
0
t+1 update(w0

t ,α,bt,ut) // Algorithm 11 or 12

Algorithm 11 MGD update function: winner takes all (MGD-W).

Require: w, α, b, u // in b are only winners

1: b
j pick random uniformly(b)

2: return w + αuj

ranker during comparison, MGD can handle multiple candidate rankers because it uses

multileaving, which on line 8 creates a single document list out of the n rankings. After

observing user clicks on this ranker, on line 9, a set of rankers that won the comparison is

inferred. In our case, TDM is used and thus the set of winners contains the candidate(s)

that received the greatest number of clicks. If the current best ranker is among the winners,

then no candidate is considered to be better and no update is performed. However, if

not, the current best ranker is updated accordingly on line 14, using one of two update

methods described in Section 7.3.2. In this way, MGD incrementally improves the current

best ranker.

By comparing multiple candidates at each iteration the probability of finding a better

candidate ranker than the current best is expected to increase. Furthermore, adding more

rankers to the comparison increases the expected value of the resulting ranker, since the

candidate rankers will also compete with each other. Correspondingly, the intuition behind

MGD is that the use of multileaving improves the learning speed compared to DBGD. It

should be noted, though, that the quality of the document list presented to the user may

decrease: as MGD is more exploratory than DBGD, i.e., multileaving lets more candidate

rankers add documents to the list, thus the current best ranker is exploited less than in the

DBGD case.

7.3.2 Multileave Approaches to Gradient Descent

DBGD generates each candidate ranker by sampling a unit sphere uniformly and adding

108

7.4. Experiments

Algorithm 12 MGD update function: mean winner (MGD-M).

Require: w, α, b, u // in b are only winners

1: return w + α 1
|u|

P

bj2b u
j

the resulting unit vector to the current best ranker. For the MGD approaches in this chapter

this procedure was repeated n times to create a set of n candidate rankers. However,

this approach might have the drawback that it can produce identical or very similar

candidate rankers. Thus it is possible that during an iteration identical candidates are

compared, potentially compromising the exploratory benefits of using MGD. But since

the dimensionality of the feature space is expected to be much greater than the number of

candidates, it is most unlikely that the set contains similar rankers.

The simple update method of DBGD is only applicable to a single winning candidate

ranker. Conversely, MGD requires an approach to infer an update from a winning set of

candidate rankers. We introduce two approaches for performing updates: MGD winner

takes all (MGD-W) and MGD mean winner (MGD-M) displayed in Algorithms 11 and 12,

respectively. MGD-W picks a random candidate ranker out of the set of winners and

performs the DBGD update as if it were the only winner. This has the disadvantage that

all other winning candidates are discarded, but it has the advantage that the update is

performed towards a candidate that was part of the comparison. MGD-M, on the other

hand, takes the mean of the winning candidate rankers and performs the DBGD update

as if the mean was the only winner. In contrast with MGD-W, MGD-M uses all the

winning candidates in its update. However, the update is performed towards the mean of

the winning rankers, thereby assuming that the mean of all winners is preferred over the

current best ranker, despite the two not having been directly compared. Thus, updates

could actually harm the current best ranker. However, this risk also exists for MGD-W

since user interaction is expected to contain noise and can result in poor candidate ranker

winning a comparison. Note that both methods reduce to DBGD for n = 1.

An alternative way of comparing many candidate rankers without having to do many

comparisons with users involved, is DBGD with candidate pre-selection (CPS) [83].

However, this method reuses historical interaction data which it requires to be generated

stochastically using potentially unsafe rankings [143]. MGD is a new way of comparing

candidates that does not have this drawback.

7.4 Experiments

In this section, we detail our experimental setup in as far as it is different from the

general setup described in Chapter 3. Our experiments are designed to answer the research

questions posed in Section 7.1. We are interested in whether and how our newly introduced

algorithm MGD (RQ10) learns faster than DBGD; (RQ11) converges to a better optimum

compared to DBGD; and (RQ12) how the two variants MGD-W and MGD-M compare to

each other.

All our experiments assume a stream of independent queries coming from users

interacting with the system we are training. Users are presented with a result list in

response to their query and may or may not interact with the list by clicking on one or

109

7. Learning from Multileaved Comparisons

more documents. The queries come from static data sets (Section 7.4.1) and the clicks

from a click model (Section 7.4.2). In Section 7.4.3 we describe the experiments we run.

Our evaluation measures are described in Section 7.4.4.

7.4.1 Data Sets

Our experiments in this chapter are conducted on all nine data sets described in Section 3.2.

7.4.2 Simulating Clicks

We use the setup described by Hofmann [77] to simulate user interactions. For details see

Section 3.3. In this chapter, we use four instantiations of the cascade click model (CCM)

as listed in Table 3.2: perfect, navigational, informational and almost random.

7.4.3 Experimental Runs

To evaluate the effect of the number of candidates n that are being contrasted in a

multileave experiment, both flavors of multileave gradient descent, MGD-W and MGD-M,

are run with n 2 {1, 2, 6, 9, 20}. We included n = 9 to capture the case where all

documents in the top top κ = 10 come from different rankers. We write MGD-W-n
(MGD-M-n) to indicate settings in which we run MGD-W (MGD-M) with n candidates.

In our experiments we contrast the performance of MGD-W and MGD-M with each

other as well as with the DBGD baseline. A run of both MGD methods with n = 1 is

included to verify wether this setting has no significant difference with DBGD. All but one

of our experiments consist of 1,000 iterations (i.e., simulated user impressions). We repeat

each experiment 25 times on each data fold resulting in 125 runs over each data set. We

run one set experiment with many more iterations to test convergence. This experiment

was run with 100,000 query impressions and the same number of repetitions. In total, our

results are based on over 86M simulated query impressions.

The parameters of the MGD algorithm are set according to the current standard for

DBGD [207]. Accordingly, the candidates were generated with δ = 1, updates for DBGD

were performed with α = 0.01, and zeros used for initialization of w0
0. For MGD we

increased the learning rate to α = 0.03 by tuning it on NP2003 (see Section 7.5.4).

7.4.4 Evaluation

As evaluation metric, we use normalized discounted cumulative gain (nDCG) [89] on

the top 10 results, measured on the test sets, following, for instance, [179, 185] (see

Section 3.4). For each learning experiment, for each data set, we run the experiment for

1,000 interactions with the click model.

We measure offline performance by computing the average nDCG score of the current

best ranker over a held-out set. Furthermore, since the user experience with MGD may

be inferior to the existing DBGD algorithm, online performance is also assessed, by

computing the cumulative nDCG over the results shown to the user.

To verify whether differences are statistically significantly different, a two tailed

Student’s t-test is used both for the offline and the the online condition.

110

7.4. Experiments

Table 7.1: Offline score (nDCG) after 1,000 query impressions of each of the algorithms

for the 3 instantiations of the DCM [65] (see Table 3.2). Bold values indicate maximum

performance per data set and click model. Statistically significant improvements (losses)

over the DBGD baseline are indicated by M (p < 0.05) and N (p < 0.01) (O and H).

H
P

2
0

0
3

N
P

2
0

0
3

T
D

2
0

0
3

H
P

2
0

0
4

N
P

2
0

0
4

T
D

2
0

0
4

M
Q

2
0

0
7

M
Q

2
0

0
8

O
H

S
U

M
E

D

perfect click model

DBGD 0.766 0.710 0.299 0.730 0.715 0.303 0.381 0.476 0.443

MGD-W-2 0.771 0.705 0.314 0.731 0.726 0.306 0.392 N 0.480 0.445

MGD-W-4 0.771 0.712 0.318 0.742 0.732 0.310 0.396 N 0.481 0.447

MGD-W-6 0.778 0.712 0.314 0.745 0.725 0.308 0.398 N 0.479 0.444

MGD-W-9 0.774 0.713 0.314 0.744 0.725 0.311 0.400 N 0.481 0.430 O

MGD-W-20 0.776 0.710 0.314 0.749 M 0.726 0.308 0.396 N 0.480 0.438

MGD-M-2 0.771 0.712 0.312 0.743 0.730 0.311 0.392 N 0.480 0.443

MGD-M-4 0.777 0.711 0.317 0.742 0.729 0.315 N 0.400 N 0.482 0.447

MGD-M-6 0.779 0.716 0.320 0.747 M 0.725 0.312 M 0.402 N 0.481 0.447

MGD-M-9 0.780 0.714 0.322 M 0.747 M 0.726 0.311 0.406 N 0.484 0.437

MGD-M-20 0.777 0.714 0.321 M 0.747 M 0.724 0.316 N 0.408 N 0.484 0.446

navigational click model

DBGD 0.725 0.672 0.281 0.676 0.693 0.281 0.370 0.460 0.433

MGD-W-2 0.766 N 0.702 N 0.306 M 0.732 N 0.715 M 0.303 N 0.372 0.466 0.438

MGD-W-4 0.769 N 0.708 N 0.314 N 0.735 N 0.720 N 0.307 N 0.380 N 0.469 0.437

MGD-W-6 0.772 N 0.705 N 0.312 N 0.738 N 0.721 N 0.304 N 0.382 N 0.468 0.431

MGD-W-9 0.771 N 0.708 N 0.304 M 0.738 N 0.725 N 0.304 N 0.388 N 0.470 M 0.431

MGD-W-20 0.771 N 0.710 N 0.314 N 0.738 N 0.721 N 0.304 N 0.386 N 0.470 0.432

MGD-M-2 0.766 N 0.703 N 0.302 0.726 N 0.717 M 0.301 N 0.376 0.467 0.435

MGD-M-4 0.768 N 0.705 N 0.312 N 0.738 N 0.721 N 0.305 N 0.385 N 0.468 0.435

MGD-M-6 0.772 N 0.707 N 0.309 N 0.736 N 0.723 N 0.305 N 0.387 N 0.473 N 0.437

MGD-M-9 0.771 N 0.710 N 0.317 N 0.741 N 0.724 N 0.302 N 0.391 N 0.472 M 0.436

MGD-M-20 0.769 N 0.711 N 0.318 N 0.741 N 0.720 N 0.306 N 0.390 N 0.472 M 0.437

informational click model

DBGD 0.460 0.418 0.167 0.401 0.489 0.197 0.323 0.419 0.407

MGD-W-2 0.677 N 0.585 N 0.223 N 0.625 N 0.629 N 0.233 N 0.338 M 0.427 0.418

MGD-W-4 0.722 N 0.636 N 0.253 N 0.667 N 0.662 N 0.258 N 0.343 N 0.440 N 0.422 M

MGD-W-6 0.727 N 0.652 N 0.249 N 0.674 N 0.669 N 0.272 N 0.344 N 0.441 N 0.423 M

MGD-W-9 0.727 N 0.656 N 0.264 N 0.679 N 0.670 N 0.259 N 0.339 N 0.434 M 0.418

MGD-W-20 0.729 N 0.649 N 0.252 N 0.675 N 0.664 N 0.260 N 0.341 N 0.434 M 0.415

MGD-M-2 0.696 N 0.606 N 0.241 N 0.634 N 0.645 N 0.246 N 0.333 0.430 0.421 M

MGD-M-4 0.736 N 0.659 N 0.276 N 0.685 N 0.682 N 0.271 N 0.350 N 0.443 N 0.427 N

MGD-M-6 0.742 N 0.667 N 0.275 N 0.692 N 0.687 N 0.278 N 0.351 N 0.448 N 0.427 N

MGD-M-9 0.745 N 0.681 N 0.283 N 0.710 N 0.698 N 0.284 N 0.361 N 0.454 N 0.425 N

MGD-M-20 0.752 N 0.677 N 0.295 N 0.703 N 0.703 N 0.291 N 0.356 N 0.452 N 0.430 N

111

7. Learning from Multileaved Comparisons

Table 7.2: Online score (discounted cumulative nDCG, see Section 7.4.4) for the 3 instan-

tiations of the DCM [65] (see Table 3.2). Bold values indicate maximum performance per

data set and click model. Statistically significant improvements (losses) over the DBGD

baseline are indicated by M (p < 0.05) and N (p < 0.01) (O and H).
H

P
2

0
0

3

N
P

2
0

0
3

T
D

2
0

0
3

H
P

2
0

0
4

N
P

2
0

0
4

T
D

2
0

0
4

M
Q

2
0

0
7

M
Q

2
0

0
8

O
H

S
U

M
E

D

perfect click model

DBGD 95.88 97.79 36.28 97.93 102.92 42.92 60.11 78.17 70.43

MGD-W-2 110.77 N 101.71 N 41.19 N 100.92 106.69 N 38.15 H 60.49 78.79 72.58 N

MGD-W-4 112.96 N 103.42 N 42.36 N 104.44 N 108.94 N 38.50 H 61.33 M 78.52 72.73 N

MGD-W-6 113.37 N 104.13 N 43.00 N 104.79 N 110.02 N 38.13 H 61.22 M 78.76 72.73 N

MGD-W-9 114.66 N 105.79 N 43.53 N 107.22 N 110.27 N 38.39 H 60.62 78.12 70.32

MGD-W-20 116.25 N 104.96 N 44.43 N 106.23 N 109.94 N 39.79 O 60.28 78.07 72.42 N

MGD-M-2 111.23 N 101.42 N 41.26 N 101.67 M 108.24 N 37.51 H 61.43 M 79.08 72.74 N

MGD-M-4 113.91 N 103.48 N 42.64 N 103.58 N 109.70 N 38.39 H 61.85 N 79.11 72.84 N

MGD-M-6 113.46 N 104.25 N 43.22 N 105.31 N 109.80 N 38.68 H 61.00 78.97 72.78 N

MGD-M-9 115.81 N 105.09 N 44.02 N 106.79 N 110.88 N 38.38 H 60.64 77.88 70.97

MGD-M-20 115.67 N 104.75 N 44.50 N 107.05 N 110.51 N 40.18 O 61.57 N 78.69 72.51 N

navigational click model

DBGD 78.79 85.83 32.21 80.61 90.92 37.46 58.07 76.04 66.99

MGD-W-2 105.53 N 95.55 N 38.54 N 92.59 N 100.96 N 35.72 59.24 M 77.18 71.34 N

MGD-W-4 110.07 N 100.22 N 41.58 N 100.37 N 105.81 N 37.90 59.57 M 78.18 N 72.00 N

MGD-W-6 109.97 N 101.36 N 41.66 N 101.00 N 107.07 N 38.21 60.18 N 77.88 N 72.62 N

MGD-W-9 113.17 N 101.71 N 43.03 N 102.54 N 106.63 N 39.04 60.71 N 77.91 N 72.69 N

MGD-W-20 112.18 N 101.85 N 42.24 N 102.82 N 107.02 N 39.28 60.55 N 77.77 N 72.39 N

MGD-M-2 106.27 N 94.34 N 39.21 N 94.70 N 103.34 N 36.40 59.65 N 77.72 N 71.04 N

MGD-M-4 109.44 N 99.22 N 41.02 N 99.01 N 105.82 N 38.09 60.25 N 78.16 N 72.49 N

MGD-M-6 110.70 N 100.56 N 42.45 N 102.04 N 106.04 N 38.28 60.31 N 77.84 N 72.79 N

MGD-M-9 112.30 N 102.95 N 42.74 N 103.96 N 107.41 N 39.55 60.36 N 77.89 N 72.71 N

MGD-M-20 111.38 N 102.23 N 43.10 N 102.88 N 106.78 N 38.79 60.21 N 78.23 N 72.53 N

informational click model

DBGD 48.23 50.42 22.46 43.36 59.58 27.76 55.60 71.94 62.99

MGD-W-2 72.76 N 64.09 N 25.94 N 62.61 N 69.48 N 26.52 55.83 73.33 M 66.39 N

MGD-W-4 78.49 N 73.02 N 29.34 N 70.73 N 78.97 N 28.21 56.04 74.31 N 67.70 N

MGD-W-6 81.96 N 73.66 N 30.84 N 70.90 N 81.44 N 29.12 56.24 74.86 N 67.75 N

MGD-W-9 85.14 N 77.57 N 30.26 N 73.60 N 82.86 N 28.45 56.09 73.64 M 68.48 N

MGD-W-20 84.44 N 74.65 N 29.91 N 69.06 N 81.78 N 28.56 56.18 73.09 67.51 N

MGD-M-2 70.70 N 66.03 N 27.33 N 61.78 N 71.30 N 27.29 56.28 73.35 M 67.15 N

MGD-M-4 84.38 N 76.41 N 28.98 N 72.82 N 82.12 N 28.44 56.58 74.45 N 68.75 N

MGD-M-6 85.51 N 76.37 N 31.55 N 73.52 N 83.05 N 28.59 56.88 74.26 N 67.97 N

MGD-M-9 87.84 N 81.04 N 32.45 N 75.81 N 86.05 N 30.21 M 55.91 74.50 N 68.65 N

MGD-M-20 86.73 N 80.99 N 32.07 N 76.72 N 82.92 N 29.68 56.57 73.99 N 68.50 N

112

7.4. Experiments

0 200 400 600 800 1000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

n
D
C
G

perfect

DBGD

MGD-W-1

MGD-W-2

MGD-W-6

MGD-W-9

MGD-W-20

MGD-M-1

MGD-M-2

MGD-M-6

MGD-M-9

MGD-M-20

0 200 400 600 800 1000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

n
D
C
G

navigational

0 200 400 600 800 1000
impressions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

n
D
C
G

informational

Figure 7.1: Offline performance (nDCG) on MGD-W and MGD-M with varying number

of candidates compared to DBGD on the NP2003 data set for the perfect, navigational

and informational click model.

113

7. Learning from Multileaved Comparisons

0 200 400 600 800 1000
0

20

40

60

80

100
cu
m
u
la
ti
v
e
n
D
C
G

perfect

DBGD

MGD-W-1

MGD-W-2

MGD-W-6

MGD-W-9

MGD-W-20

MGD-M-1

MGD-M-2

MGD-M-6

MGD-M-9

MGD-M-20

0 200 400 600 800 1000
0

20

40

60

80

100

cu
m
u
la
ti
v
e
n
D
C
G

navigational

0 200 400 600 800 1000
impressions

0

20

40

60

80

100

cu
m
u
la
ti
v
e
n
D
C
G

informational

Figure 7.2: Online performance (discounted cumulative nDCG) on MGD-W and MGD-M

with varying number of candidates compared to DBGD on the NP2003 data set for perfect,

navigational and informational click model instantiations.

114

7.5. Results and Analysis

7.5 Results and Analysis

In this section we present the results of our experiments and answer the research questions

posed in Section 7.1. Furthermore, in Section 7.5.4, we investigate the effect of n, the

number of candidates, and α, the learning rate.

7.5.1 Learning Speed

We start by answering RQ10: whether MGD learns faster than DBGD. The plots in

Figure 7.1 show how offline performance, measured as nDCG on a held-out fold, increases

as the learning methods observe more queries. These plots are based only on queries from

NP2003 and are illustrative of performance on all other data sets. We see that when n, the

number of candidates that are being multileaved, increases, offline performance of both

MGD-M-n and MGD-W-n improves monotonically. Furthermore, systems with more

candidates learn much faster.

In the case of perfect feedback, there is less of an effect as there is less to gain over

an already well performing baseline. But when the noise in user feedback increases, the

advantage of MGD over DBGD becomes stronger. Interestingly, for n = 20, the MGD

methods obtain an nDCG value on informational feedback that is close to the converged

performance on perfect feedback. In other words, the inclusion of more candidates

counters the noise introduced by the click model. In Table 7.1 we see the same effect for

all data sets: generally, under perfect feedback converged performance does not change

much; however, if the feedback is noisier, then the more candidates are added, the more

MGD improves over the baseline. Offline performance for MGD goes up dramatically for

noisy feedback compared to the baseline and the standard deviation (between brackets in

the table) drops dramatically. This indicates much more stable performance for MGD. As

a sanity check, we see in Figure 7.1 that both MGD-W-1 and MGD-M-1 perform very

close to the DBGD baseline. This is to be expected because, besides their learning rates,

both methods are algorithmically identical to the baseline for n = 1.

Offline performance, however, only tells half the story in an online learning to rank

setting. Users are exposed to interleaved and multileaved lists that are used by the systems

to infer preferences. Since the quality of these lists may vary, it is critical to measure

the impact on users. Note that the quality of these lists varies due to a combination of

two factors: the quality of the rankers learned so far and the impact of the interleaving or

multileaving method. We measure online performance by computing the nDCG score of

the lists that users observe and discounting it over time (see Section 7.4.4). The online and

offline metrics together thus tell us how the system dealt with the exploration-exploitation

trade off [178]. Figure 7.2 displays the online performance for all systems, again on

a single data set. Just like with offline performance, MGD outperforms DBGD more

when the noise in the feedback increases. In fact, Table 7.2 shows that under perfect

feedback, online performance for one data set actually decreases compared to the baseline.

This suggests that, for feedback without noise, increasing exploration, which is a direct

consequence of adding candidates, is not as helpful for maximizing online performance.

In other words, while adding candidates increases offline performance, in the absence of

feedback noise it may harm online performance through the introduction of excessive

exploration. However, generally, whether there is noise in the click feedback or not, MGD

115

7. Learning from Multileaved Comparisons

0 20000 40000 60000 80000 100000
impressions

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

n
D
C
G

informational

DBGD

MGD-W-9

MGD-M-9

Figure 7.3: Offline performance (nDCG) on MGD-W and MGD-M with 9 candidates

compared to DBGD on the NP2003 data set an informational click model.

outperforms DBGD. Also for online performance, the standard deviation of MGD is much

lower than for DBGD, irrespective of the noise.

Our answer to RQ10 is thus that MGD with increasing numbers of candidates learns

increasingly faster than DBGD in terms of offline performance. In terms of online

performance, MGD is on par with or outperforms DBGD when feedback has more

realistic levels of noise.

7.5.2 Convergence

In this section, we answer RQ11: whether MGD converges to a better optimum than

DBGD. To do so, we investigate converged offline performance only. Table 7.1 shows

converged performance after 1,000 query impressions for all the data sets that we consider.

Note that for NP2003 these values correspond to the points on the right vertical axis of

Figure 7.1. These graphs are also illustrative of all data sets and show that increasing the

number of candidates results in a better converged offline performance. In the case of

perfect feedback, the effect of the number of candidates is not very strong; for most data

sets and algorithms no significant improvement over the baseline is apparent. However,

when noise in the feedback increases, and thus when feedback becomes more realistic

compared to the perfect instantiation, the effect becomes much stronger as more candidates

are used. In general, as Table 7.1 shows, this effect is significant and substantial as soon

as more than one candidate is used. For many data sets, performance of MGD after

1,000 query impressions is almost on par with DBGD trained without noise. However, as

Figure 7.1 and Table 7.1 show, MGD with enough candidates always outperforms DBGD

after 1,000 queries.

The graphs in Figure 7.1 clearly suggest that not all systems converge within 1,000

impressions. For this reason, we ran an additional longer experiment with 100,000 queries

with informational feedback. Figure 7.3 shows the results with the same setup as in

Figure 7.1 but over a larger number of queries. The graph shows that even after 100,000

queries DBGD has not converged, and MGD still performs better. Nonetheless, the

116

7.5. Results and Analysis

Table 7.3: Performance, in terms of nDCG and discounted cumulative nDCG, of MGD-M,

MGD-W and normalized MGD-M each with 9 candidates for the three instantiations

of the dependent click model (DCM) [65] (see Table 3.2). Run on the NP2003 data set;

performance evaluated after 1,000 impressions.

perfect navigational informational
o

ffl
in

e MGD-W 0.713 (0.05) 0.708 (0.05) 0.656 (0.07)

MGD-M 0.714 (0.05) 0.710 (0.05) 0.681 (0.06)

Norm MGD-M 0.711 (0.04) 0.710 (0.04) 0.667 (0.06)

o
n

li
n

e MGD-W 105.785 (5.88) 101.708 (5.19) 77.568 (10.24)

MGD-M 105.087 (4.71) 102.953 (5.62) 81.037 (8.74)

Norm MGD-M 105.844 (5.21) 102.686 (5.32) 81.676 (9.46)

difference between the algorithms decreases over time, until they converge to a similar

level of performance. Thus, both algorithms seem to converge to the same optimum but

DBGD requires many more queries than MGD to do so.

Hence, we answer RQ11 as follows: MGD converges to an optimum which is at least

as good as the optimum DBGD finds. However, on the data sets that we have examined,

MGD does so much faster, as shown in Section 7.5.1.

7.5.3 Comparing Outcome Interpretations

In this section we answer RQ12: how MGD-W and MGD-M compare to each other.

Figure 7.1, which shows the learning curves of both methods for varying click models,

indicates that, in terms of offline performance, there is no substantial difference between

MGD-W and MGD-M for the perfect and navigational click models. However, for the

informational click model, which has noisier feedback, MGD-M consistently outperforms

MGD-W. The same applies to all data sets we considered (see Table 7.1). In the offline

setting, MGD-M is the better approach as it is more capable of handling noise than

MGD-W.

In terms of online performance, MGD-M also usually outperforms MGD-W (see

Figure 7.2 and Table 7.2). Again, the effect is stronger when there is more noise in the

feedback. Generally, MGD-M has lower standard deviation than MGD-W indicating that

it is more stable.

Note that the informational click model has a high probability to produce multiple

clicks because its stop probabilities are low (see Table 3.2). This typically leads to

multiple winners of a TDM comparison, which in turn allows MGD-M to be different

from MGD-W. Thus, a potential reason for MGD-M to outperform MGD-W is that the

mean of several unit vectors is shorter than a unit vector. As a result, MGD-M updates the

current best weight vector with smaller steps. In other words, for DBGD and MGD-W we

hypothesize that |w0
t � w0

t+1| = α · δ, while for MGD-M |w0
t � w0

t+1| α · δ.

We tested this hypothesis by normalizing the mean vector to a unit vector before

updating using MGD-M. Algorithm 12 was effectively changed such that |w0
t � w0

t+1| =
α · δ. The result is depicted in Table 7.3, where we see how MGD-M with normalized

117

7. Learning from Multileaved Comparisons

update directions indeed performs slightly worse than MGD-M without normalization

for the informational click model in terms of offline performance, confirming that some

of its advantage indeed comes from the smaller update step. Nonetheless, MGD-M

with normalization still either performs on par with or better than MGD-W. Not all of

its performance advantage can be attributed to smaller updates. This implies that the

direction of the update taken by MGD-M is better than that of MGD-W.

To answer RQ12, while in general both MGD methods outperform DBGD, MGD-M

is better at handling high noise levels, making it more effective than MGD-W overall. The

advantage of MGD-M over MGD-W comes from both the update direction and a smaller

update size.

7.5.4 Number of Candidates and Learning Rate

In this section, we investigate some remaining questions.

Number of Candidates

In Section 7.5.1 we have already discussed the interplay between the amount of noise in

the feedback and the optimal number of candidates in MGD. Figure 7.4 shows the effect of

increasing the number of candidates even further to a maximum of 1,000 candidates. Note

that as soon as the number of candidate rankers goes beyond the length of the result shown

to users, the only effect of increasing it even further is that the probability of including the

current best ranker decreases.2 We see in Figure 7.4, Table 7.1 and Table 7.2 that both

offline and online performance generally go up when the number of candidates goes up.

However, beyond approximately 10 candidates this either stabilizes or fluctuates slightly,

depending on the amount of noise in the click model. This matches κ = 10, the result

list length in our experiments. We increase the noise further than we did until now by

including results for an almost random click model instantiation. Still in Figure 7.4 (the

green curves near the bottom in both plots), we see that the more noise we add, the more

MGD benefits from adding candidates.

In conclusion, both offline and online performance increase with the number of

candidates when noise is present, but this effect appears to be limited by the length of the

result list shown to users.

Learning Rate

Our MGD algorithms are sufficiently different from DBGD to warrant a new investigation

of the learning rate α. The results in Section 7.5.3 suggest that some of MGD-M’s superior

performance over MGD-W could be explained by the smaller steps this algorithm takes.

To further investigate this effect, we vary the learning rate.

Figure 7.5, which shows a sweep over learning rates, again shows a considerable

difference between MGD-M and MGD-W. Furthermore, for most algorithms online

performance increases when α goes up while offline performance drops slowly. With a

learning rate close to zero, MGD performs notably worse than DBGD because multileaving

2This is an artifact of the way we generate candidates and the fact that we use TDM as our multileaving

method.

118

7.5. Results and Analysis

100 101 102 103
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

n
D
C
G

offline

per MGD-W

per MGD-M

nav MGD-W

nav MGD-M

inf MGD-W

inf MGD-M

a.ra MGD-W

a.ra MGD-M

DBGD

100 101 102 103

number of candidates

40

50

60

70

80

90

100

110

c
u
m
u
la
t
iv
e
n
D
C
G

online

Figure 7.4: Sweep over the number of candidates in terms of offline and online perfor-

mance for MGD-M and MGD-W after 1,000 impressions. Performed on the NP2003 data

set using all four instantiations of the click model. DBGD is displayed by the black dots

on the left axis. Note the log scale on the horizontal axis.

interferes more with the ranking presented to the user, while the low learning rates prevents

it from adapting quickly. Conversely, when the learning rate increases, MGD greatly

outperforms DBGD in terms of online performance for all three click models. This

illustrates the tradeoff MGD makes: multileaving distorts the ranking shown to the user,

but when the learning rate increases it compensates by adapting to the user faster. So,

interestingly, also when there is no noise in the feedback, MGD can greatly outperform

DBGD if the learning rate is chosen appropriately. Note that, for all our earlier experiments,

we chose a fixed value of α = 0.03 for MGD based on these plots. This point denotes a

reasonable tradeoff between offline and online performance. This is a different optimum

than DBGD and, since DBGD is equal to MGD with a single candidate, it seems the

optimal learning rate depends on the number of candidates. Ideally, one would find a

learning rate that is optimal for each number of candidates. Doing so would only increase

MGD’s performance advantage.

In sum, this experiment shows that DBGD and MGD have different optimal learning

rates and that MGD can greatly outperform DBGD, both offline and online, when the

119

7. Learning from Multileaved Comparisons

0.0 0.1 0.2 0.3 0.4 0.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

n
D
C
G

offline

per DBGD

per MGD-W

per MGD-M

nav DBGD

nav MGD-W

nav MGD-M

inf DBGD

inf MGD-W

inf MGD-M

0.0 0.1 0.2 0.3 0.4 0.5
learning rate α

0

20

40

60

80

100

120

cu
m

u
la

ti
v
e

n
D

C
G

online

Figure 7.5: Sweep over learning rate values in terms of offline and online performance after

1,000 impressions for MGD-M and MGD-W with 9 candidates and DBGD. Performed on

the NP2003 data set using three different click models with varying degrees of noise.

learning rate is chosen appropriately.

7.6 Conclusion

We proposed an extension of dueling bandit gradient descent (DBGD), an online learning

to rank method. DBGD is limited to exploring only a single candidate ranker at a time.

Where DBGD uses interleaved comparisons to infer pairwise preferences, our newly intro-

duced method—multileave gradient descent (MGD)—learns from comparisons between

a set of rankers to infer n-way preferences between n candidate ranker improvements. We

proposed two specific ways of using these preferences for updating a current best ranker.

The first variant, MGD-W, picks a ranker to update towards at random from among the

rankers that win a comparison; the second variant, MGD-M, updates towards the mean of

all winners of the comparison.

Our empirical results, based on extensive experiments on nine learning to rank data

sets encompassing 86M user interactions, show that either variant dramatically improves

120

7.7. Future Work

over the DBGD baseline. In particular, when the noise in user feedback increases, we find

that both MGD-W and MGD-M are capable of learning better rankers much faster than the

baseline does. When the number of candidate rankers we consider increases from 1 (as in

the baseline), offline performance—measured on held-out data—and online performance—

measured on the results shown to users—consistently go up until it converges at around

10 candidate rankers. After 1,000 query impressions with noisy feedback, MGD performs

almost on par with DBGD trained on feedback without any noise. We further show that

MGD obtains at least the same converged performance that DBGD ultimately obatins, but

that it does so using orders of magnitude less user interaction data. From the two variants

we compared, MGD-M performs either equal to, or outperforms MGD-W. The advantage

of MGD-M over MGD-W comes from both the update direction and smaller update size.

An important implication of our results is that orders of magnitude less user interaction

data is required to find good rankers when multileaved comparisons are used as feedback

mechanism for online learning to rank. This results in far fewer users being exposed to

inferior rankers and it allows search engines to adapt faster to changes in user preferences.

7.7 Future Work

Our findings give rise to several directions that remain to be explored.

Firstly, we sampled candidate rankers randomly uniformly from a unit sphere around

the current best ranker. Alternatively, one could consider selecting rankers such that all

directions are covered, which may speed up learning even further.

Secondly, currently we have two strategies for interpreting multileave comparison

outcomes, MGD-M and MGD-W. We could consider an additional strategy that takes a

weighted combination of all the compared rankers, potentially even down weighting the

directions for loosing candidate rankers.

Thirdly, we noticed that often, in particular closer to convergence, many of the

compared rankers become very similar. One could consider adapting the multileaving

algorithm to not attempt to infer preferences between rankers that produce the same

rankings, but rather, consider all these to be the same rankers.

It may seem that increasing the number of candidates increases the amount of required

computation. However, when using team draft multileave (TDM), the number of rankers

that can contribute a document to the multileaved list is bound by its length. If it is decided

beforehand which rankers can contribute a document than only these rankers actually have

to materialize their rankings.

One could imagine learning from feedback using probabilistic multileave (PM), the

probabilistic multileave method introduced in Chapter 4, which would not limit the number

of rankers that can be compared at once. An initial study of this idea has recently been

published by Oosterhuis et al. [138].

Our ideas in this chapter have been experimentally validated using the simulation

setup described in Chapter 3 using the framework described in Chapter 8. Validating them

on real users using real search engines, for instance using OpenSearch, the methodology

described in Chapter 9, is left for future work.

Finally, a theoretical analysis of the convergence properties of MGD and its variants,

in comparison to DBGD, would give valuable insights in the broader applicability.

121

Part III

Resources and Methodology

123

8
Lerot: Simulating Users

This third part of the thesis is of a different nature than the earlier two parts. This part is

more practical and describes two evaluation methodologies and shared resources.

The research presented so far, in Parts I and II of this thesis, was on methods and

algorithms for online evaluation and online learning to rank (LTR). See Sections 2.3

and 2.5 for background on these two topics. What online evaluation and online LTR have

in common is that both require users interacting with a search engine. This is something

that is not typically available to academic researchers and even researchers or engineers

with access to users may not always be willing to try out a new idea by exposing real users

to it.

For this purpose, in this chapter, we propose an online evaluation framework that

allows for simulating users interacting with a search engine. Most of our experiments, in

Chapters 4, 6, and 7, have been conducted using this framework. In this online evaluation

framework, implemented in the software package learning and evaluating rankers online

toolkit (Lerot), we have bundled all ingredients needed for experimenting with online

evaluation and learning to rank for information retrieval (IR). Lerot includes several

online learning algorithms, interleaving methods and a full suite of ways to evaluate these

methods. In the absence of real users, the evaluation method bundled in the software

package is based on simulations of users interacting with the search engine.

The framework presented in this chapter has been used to verify findings of more than

fifteen papers at major information retrieval venues over the last few years [36, 39, 41, 77–

79, 81–84, 138, 162, 163, 165, 167, 216]. The experimental setup in the papers that use

Lerot has been described in Chapter 3 of this thesis.

This chapter is based on a paper by Schuth, Hofmann, Whiteson, and de Rijke [161].

8.1 Introduction

As discussed in Section 2.4, adapting IR systems to a specific user, group of users, or

deployment setting has become possible and popular due to learning to rank (LTR) tech-

niques [124]. Generally speaking, a LTR method learns function that maps a document-

query pair described by a feature vector to a value that is used to rank documents for a

given query. We refer to such a function with instantiated weights as a ranker. Most cur-

rent approaches learn offline, i.e., before deployment rankers are estimated from manually

annotated training data.

125

8. Lerot: Simulating Users

As detailed in Section 2.5, in contrast, an online learning to rank method learns directly

from interactions with users, e.g., using click feedback. For instance, an online learning

to rank approach such as dueling bandit gradient descent (DBGD) [82, 207] or multileave

gradient descent (MGD) (see Chapter 7) aims to find a high quality ranker while interacting

with a user. In each step, the current best ranker is perturbed, and then the original and

perturbed rankers are compared using an interleaved comparison method [144] or using

an multileaved comparison method (see Chapter 4). The original and candidate rankers

are combined and presented to the user, whose clicks determine which ranker wins the

comparison. If a perturbed ranker wins, the original ranker is adjusted slightly in its

direction. See Section 2.5 for details on these learning algorithms (. These and many more

algorithms can only be experimentally validated through interactions with users. However,

users are typically not available to academic researchers and even researchers or engineers

with access to users may not always be willing to try out a new idea by exposing real users

to it.

Lerot, the implementation of the framework presented in this chapter, offers a solution

for evaluating and experimenting with online learning to rank algorithms using simulations

of users. Simulation experiments make it possible to expose simulated users to arbitrary

search results lists, without the risk of adversely affecting the experience of real users in a

production system. This allows researchers to try out new ideas that could otherwise not

be tried out. Simulation experiments with Lerot may typically complement or precede

experimentation in a setup for online learning to rank with real users. In Chapter 9 of this

thesis we discuss the scenario that does involve real users.

While there are several other libraries and frameworks for learning to rank such as

SVMRank1 [94], RankLib2 and Sofia-ml3 [168], these all focus on offline learning to rank.

By contrast, Lerot focuses on online learning to rank (see Section 2.5). Lerot implements

DBGD and extensions of DBGD such as candidate preselection (CPS) [83] and MGD

(see Chapter 7) in an easily decomposable fashion.

In this chapter, we present all the components that are included in Lerot. The frame-

work has all batteries included (except for the data), to replicate experiments; no code

needs to be written.

Lerot and its predecessors have been used to verify the findings in numerous pub-

lications [36, 39, 41, 77–79, 81–84, 138, 162, 163, 165, 167, 216] at major IR venues.

The framework is easily extensible to compare the implemented methods to new online

evaluation and online learning approaches.

Our contribution in this chapter is the following.

Implementation We contribute Lerot, an open source implementation of our online

learning to rank framework that has all batteries included. The framework is easily

extensible to compare the implemented methods to new online evaluation and online

learning approaches.

1http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
2http://people.cs.umass.edu/˜vdang/ranklib.html
3https://code.google.com/p/sofia-ml/

126

http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
http://people.cs.umass.edu/~vdang/ranklib.html
https://code.google.com/p/sofia-ml/

8.2. Framework

Listing 8.1: Minimal example of an online learning experiment that uses a list wise

learning algorithm and a cascade user model to simulate clicks. Arguments for many

classes have been omitted for readability, they are included in the actual example code

that is part of the package.

import sys, random

import retrieval_system, environment, evaluation,

query

learner = retrieval_system.ListwiseLearningSystem(

[...])

user_model = environment.CascadeUserModel([...])

evaluation = evaluation.NdcgEval([...])

train = query.load_queries(sys.argv[1], [...])

test = query.load_queries(sys.argv[2], [...])

while True:

q = train[random.choice(train.keys())]

l = learner.get_ranked_list(q)

c = user_model.get_clicks(l, q.get_labels())

s = learner.update_solution(c)

print evaluation.evaluate_all(s, test)

8.2 Framework

In broad terms, Lerot can be used to run two types of experiments: online learning experi-

ments and online evaluation experiments. Learning experiments operate in a continuous

space of possible solutions and evolve rankers over time to find an optimal one. Evaluation

experiments, on the other hand, operate on a fixed set of rankers and are designed to

identify the best ranker among this set using, for instance, interleaved comparisons. Eval-

uation experiments are discussed at length in Part I of this thesis. Learning experiments

are discussed in Part II.

This chapter mostly focuses on describing the learning experiments as they encompass

the evaluation component as well.

A minimal example4 of a learning algorithm embedded in a simulation with a user

model is shown in Listing 8.1. The example defines a learner (see Section 8.2.1), a user

model (see Section 8.2.3), an evaluation method (see Section 8.2.4), and lists of training

and test queries with labels. Potentially, if real users would be available, they would be

the source of the training queries and the clicks; we describe a setting where real users

are available in Chapter 9. In Lerot, we provide an environment to connect Lerot to the

setting we describe in that chapter.

In the absence of users, the queries are sampled from a data set and the clicks are

generated by a click model that uses relevance judgements. The queries q are observed

in a random order, a ranked list l is produced by a learning algorithm such as DBGD or

MGD. This ranking l is sent to the click model and the clicks c it produces, in turn, are

4This code serves as an illustration (but is included in Lerot in src/scripts/run-example.py).

A version of this algorithm that also interprets the configuration files explained in Section 8.3.2 is preferred over

simple version.

127

8. Lerot: Simulating Users

observed by the learner so that it can update the solution. The updated solution s is then

evaluated on the test queries. In theory, this process continues indefinitely.

8.2.1 Learning Algorithms

The learner in Listing 8.1 can be instantiated in many ways. Our framework has

implementations for the following algorithms.

1. Learning from document-pairwise feedback [77, 92, 168, 212];

2. Learning from listwise feedback, such as dueling bandit gradient descent (DBGD)

[207] (see Section 2.5.1); and

3. Extensions of DBGD, such as candidate preselection (CPS) [83] which we discuss

in Section 2.5.2; and

4. Multileave gradient descent (MGD) as introduced in Chapter 7 of this thesis.

All the above learning algorithms have the exact same interface; they implement three

functions, two of which are called in our example in Listing 8.1.

• l = get_ranked_list(q)

Returns a list l of documents in response to query q.

• s = update_solution(c)

Updates the current solution using clicks c and returns the updated solution s.

• s = get_solution()

Returns the updated solution s.

Listing 8.2 shows the implementation of the learning algorithm used by DBGD; we

provide pseudocode of this algorithm in Algorithm 2.5 During initialization (which we

omitted from the listing) self.ranker is randomly initialized. When query q is observed,

it arrives at get_ranked_list(). In DBGD this function creates a candidate ranker

that is a variation of self.ranker. Both these rankers are given to an interleaved

comparison method (see Section 8.2.2) and after storing all intermediate results, the

interleaved list l is returned. As soon as the user interacts with this list, the clicks c

arrive at the function update_solution(). This function delegates the computation

of the outcome o of the interleaved comparison to the interleaving method. Based on o,

self.ranker is updated towards the candidate.

8.2.2 Interleaved Comparison Methods

In recent years, several methods for interleaved comparisons have been developed. As

we pointed out in Section 2.3.3, interleaving methods can be viewed as online evaluation

methods that can be applied—as opposed to Cranfield-style evaluation—without manual

labeling of relevant documents. Instead, the clicks of real users (or, in our case, simulated

5The actual implementation of DBGD included in Lerot is slightly more involved as it is configurable.

128

8.2. Framework

Listing 8.2: Listwise learning algorithm, that in combination with Listing 8.1, constitutes

DBGD [207] (see Section 2.5.1 and in particular Algorithm 2).

class ListwiseLearningSystem(AbstractLearningSystem):

def __init__(self): [...]

def get_ranked_list(self, q):

u = utils.sample_unit_sphere()

candidate = self.ranker + self.delta * u

l, a = self.comparison.interleave(

self.ranker, candidate, q, self.n)

self.l, self.a, self.q, self.u = l, a, q, u

return l

def update_solution(self, c):

o = self.comparison.infer_outcome(

self.l, self.a, c, self.q)

if o > 0:

self.ranker += self.alpha * self.u

return self.ranker

def get_solution(self):

return self.ranker

clicks) of the search engine are interpreted to compare two ranking algorithms. We

describe interleaved comparison methods in detail in Section 2.3.3.

In the context of online learning, interleaved comparisons are mainly used to decide

whether a candidate ranker is an improvement over the current best ranker or not. In

comparison to absolute click metrics typically used in A/B testing, interleaved comparison

methods reduce variance (briefly, this is because they perform within-subject as opposed

to between-subject comparisons) [144], and make different assumptions about how clicks

should be interpreted (as relative, as opposed to absolute feedback) [77]. We discuss this

subject at length in Chapter 5 of this thesis.

In the Lerot framework, the following interleaving methods have been implemented.

• Balanced interleave (BI) [95, 144];

• Team draft interleave (TDI) [144];

• Document constraints interleave (DCI) [72];

• Probabilistic interleave (PI) [79];

• Optimized interleave (OI) [143]; and

• Vertical aware team draft interleave (TDI-VA) [36].

These methods also have the exact same interface; they implement the two functions that

are called in Listing 8.2.

129

8. Lerot: Simulating Users

• l, a = interleave(A, B, q, n)

Returns an interleaved list of documents l with length n of rankings produced by

systems A and B for query q. The return value a can be used to store, for instance,

team assignments in the case TDI is used.

• o = infer_outcome(l, a, c, q)

Returns the outcome o in (�1, 1) of the interleaved comparison based on clicks c

for query q, and interleaved list l. If o < 0 then system A wins the comparison,

else if o > 0 then B wins the comparison, otherwise the systems tie.

The probabilistic interleave (PI) method requires the ranking systems to be probabilistic;

the others expect a deterministic ranker. The TDI-VA method requires documents to be

annotated with the vertical to which they belong.

Additionally, the three multileaving methods introduced in Chapter 4 are included in

the framework as well.

• Team draft multileave (TDM) [163];

• Optimized multileave (OM) [163]; and

• Probabilistic multileave (PM) [165].

Multileaving methods are very similar to interleaving methods but they have a slightly

different interface, simply because they extend beyond the two rankers A and B expected

by the interleaved comparison methods:

• l, a = multileave([R1, ..., Rn], q, n)

Returns a multileaved list of documents l with length n of rankings produced by

systems R1 through Rn for query q. The return value a can be used to store, for

instance, team assignments in the case TDM is used.

• o = infer_outcome(l, a, c, q)

Returns the outcome o of the multileaved comparison based on clicks c for query

q, and multileaved list l. The outcome o is a list with values for each ranker that

participated in the comparisons. These values define a ranking over rankers.

8.2.3 User Models

A user model is used to simulate user’s clicking behavior. Click models are a subclass

of such models that are aimed at predicting what users would click on given a result list

with relevance judgments in response to a query. We describe several click models in

Section 2.3.6 and Chuklin et al. [40] provide an extensive overview.

The click models need data sets that are annotated with relevance to condition their

click on. In Section 8.3.2 we list some data sets that are suited. In Lerot, we have

implemented the following click models:

• Dependent click model (DCM) [64, 65], a generalization of the cascade click

model [47]. This is the click model used in most experiments in this thesis that

were based on simulations;

130

8.3. Implementation

• Random click model (RCM) which mimics a user not having any preference, this

click model is to validate the absence of bias in evaluation methods; and

• Federated click model (FCM) [35], in particular we implement the attention bias

model which model the attraction of vertical results in a search result list.

These models implement the user_model in Listing 8.1 and, again, these models all

have the exact same interface; they implement the following function.

• c = get_clicks(l, r)

Returns a list of clicks c on documents in result list l given a list of relevance labels

r for these documents.

Like TDI-VA, the FCM requires documents to be annotated with their vertical. The click

models only model the assumptions regarding how users examine result pages. They

still have to be instantiated to match the situation that has to be simulated. For several

instantiations of DCM, see work by Hofmann [77], and for instantiations of FCM, see

work by Chuklin et al. [36].

8.2.4 Evaluation

Evaluation can be done both online and offline, as described in Section 3.4. Online

evaluation measures what a user experiences; i.e., the quality of interleaved lists that the

user (or user model) interacts with. It is measured as a discounted sum over time. Offline

evaluation measures how the current best ranker would perform on a held-out data set.

Metrics implemented in Lerot are normalized discounted cumulative gain (nDCG) [24]

and a slight variation LetorNDCG [89]. Listing 8.1 illustrates how and when offline

metrics would be calculated in a learning setting. Extending Lerot with more metrics is a

matter of creating a new class that implements the following two functions.

• score = evaluate_ranking(l, q)

Returns a score for the ranking l with respect to query q.

• mean_score = evaluate_all(s, queries)

Returns the mean_score for all queries if they where ranked with solution s.

8.3 Implementation

Lastly, we provide details on the implementation of Lerot. Lerot is implemented in

Python and consists of several packages (retrieval system, comparison, evaluation, etc).

Each package has an abstract class that defines the expected interface (as described in

Section 8.2) of the classes that implement it. Extending the framework is a matter of

implementing such a class and changing the configuration file (see Section 8.3.2) to point

to the new class. Lerot is available under the GNU Lesser General Public License.

131

8. Lerot: Simulating Users

8.3.1 Installation

Prerequisites needed for running Lerot are the following versions of Python and Python

packages.

• Python 2.7;

• PyYaml;

• Numpy;

• Scipy;

• Celery (when MetaExperiment is used to distribute over several machines, see

Section 8.3.3); and

• Gurobi6 (when either OI or OM is used as the comparison method).

Once Python (and pip) have been installed, Lerot can be installed using these commands:

$ git clone https://bitbucket.org/ilps/lerot.git

$ cd lerot

$ pip install -r requirements.txt

$ python setup.py install

This will copy the source of Lerot into a directory called lerot in your current working

directory and it will be available system wide to import into python. All requirements will

also automatically be installed.

8.3.2 Configuration

Lerot can be flexibly configured using yaml files. A full example of a configuration file

can be found in Listing 8.3. For instance, to pick dependent click model (DCM) as the user

model, user_model can be pointing to the environment.CascadeUserModel class.

Lerot requires training and test query files in SVMLight format (plain or gzipped) [91].

The framework has been shown to run with the LETOR 3.0 and LETOR 4.0 collec-

tions [125], and the Yahoo! Learning to Rank Challenge [31] and MSLR-WEB30k data

sets. These data sets all consist of a number of query-documents pairs, each represented

by a sparse feature vector and the relevance for each document with respect to the query

is judged by professional human annotators. Relevance scales can be binary or graded.

We described these data sets in more detail in Section 3.2.

The data set mentioned in Listing 8.3, e.g., MQ2007 from the LETOR 4.0 collections,

can be downloaded and unpacked as follows:

$ mkdir data

$ wget http://research.microsoft.com/en-us/um/

beijing/projects/letor/LETOR4.0/Data/MQ2007.rar

-O data/MQ2007.rar

$ unrar x data/MQ2007.rar data/

6Download from http://www.gurobi.com with a free academic trial license.

132

http://www.gurobi.com

8.3. Implementation

Listing 8.3: An example configuration file for a learning experiment. This particular

configuration defines a setup that uses DBGD [207] (see Section 2.5.1). It also defines

that clicks are simulated by a DCM [64, 65] (see Section 3.3).

training_queries: data/MQ2007/Fold1/train.txt

test_queries: data/MQ2007/Fold1/test.txt

feature_count: 46

num_runs: 1

num_queries: 10

query_sampling_method: random

output_dir: outdir

output_prefix: Fold1

user_model: environment.CascadeUserModel

user_model_args:

--p_click 0:0.0,1:0.5,2:1.0

--p_stop 0:0.0,1:0.0,2:0.0

system: retrieval_system.ListwiseLearningSystem

system_args:

--init_weights random

--sample_weights sample_unit_sphere

--comparison comparison.ProbabilisticInterleave

--delta 0.1

--alpha 0.01

--ranker ranker.ProbabilisticRankingFunction

--ranker_arg 3

--ranker_tie random

evaluation:

- evaluation.NdcgEval

8.3.3 Running

After a configuration file has been created and the data has been prepared, a learning

experiment can be run as follows:

$ python src/scripts/learning-experiment.py

-f config/config.yml

With --help, we can see all the options it accepts. Settings from the configuration file

can be overwritten using the command line. When Lerot is run, a backup copy of the

actual configuration it runs is always kept alongside the results it produces.

Running experiments with many repetitions over several data sets and user models

is computationally expensive. With Lerot, it is possible to distribute computation over

many machines. Lerot uses Celery to handle the bookkeeping of the distribution. The

configuration file has to be extended with some additional information regarding the data

sets and user models over which the experiment should be run. An example configuration

is included with Lerot.

$ python src/scripts/meta-experiment.py

-f config/meta-config.yml

133

8. Lerot: Simulating Users

Again, we can see all the options it accepts with --help. In order to rerun the last

experiment, e.g., in case some parts failed, we can specify --rerun.

8.4 Conclusion

Online learning to rank is a rapidly evolving area in information retrieval and the experi-

mental validation of online learning to rank algorithms is vital to the field. While several

libraries exist for offline learning to rank, in this chapter we introduced Lerot, the first

framework for online learning to rank.

In this chapter, we described in detail the workings of Lerot. We also described all

functions that need to be implemented in order to extend Lerot to new learning algorithms,

to new user models and to new evaluation metrics.

The framework has been used in many recent publications and reproducing results

from those papers only requires a user of the framework to run it with the appropriate

configuration file.

8.5 Future Work

Lerot invites several directions of development. First, it allows for experiments with

simulated users. The user models it currently implements reflect our current understanding

of user behavior; they can easily be extended or replaced by evaluations under different

sets of assumptions. Chuklin et al. [40] provide an overview of click models, we mention

several in Section 2.3.6. Including these and even newer models would be valuable.

Second, Lerot provides components that implement complete online learning to rank

solutions for use as part of an evaluation setup that involves real users. To this end it

connects to ideas introduced in Chapter 9. This connection so far has not been extensively

used and integration with all learning method remains to be resolved. For instance, the

current setup of Lerot expects sequential events in the sense that user interactions are

expected immediately. Real users take their time to interact with search engines. This

delayed feedback has not been studied yet and has not been properly integrated into Lerot

either.

134

9
OpenSearch: Actual Users

In Parts I and II of this thesis, we introduced methods and algorithms for online evaluation

and online learning to rank (LTR). Earlier in this part of the thesis, in Chapter 8, we

introduced a methodology to validate the methods and algorithms from the first two parts

experimentally. Lerot, the framework we introduced in that chapter, uses simulations for

this purpose. While this provides a flexible platform for repeatable experimentation, it is

not the same as learning from real users of real search engines. The simulations in Lerot

have assumptions that are violated in practice by real users.

In this chapter we propose OpenSearch, a new living labs evaluation paradigm for

information retrieval (IR) that does allow for experimentation with real users of real

search engines. We define OpenSearch as follows:

OpenSearch is a new evaluation paradigm for IR. The experimentation plat-

form is an existing search engine. Researchers have the opportunity to replace

components of this search engine and evaluate these components using inter-

actions with real, unsuspecting users of this search engine.

This definition is generic, on purpose, to allow for the replacement of, and experimentation

with, any part of a search engine (including, e.g., result presentation). Our immediate

focus, however, lies at the very core of a search engine: the ranking method.

Our new paradigm is a first step towards more realistic evaluation of IR and is the first

of its kind. Our aim was have this paradigm adopted by the IR research community as we

believe it to be important that evaluation of IR is as close to reality as possible for it to

be meaningful. To do so, we created an actual implementation of a shared platform for

all researchers in the IR research community. We believe we succeeded as our platform,

and thereby the OpenSearch paradigm, has been adopted by both theliving labs for IR

evaluation lab at CLEF (LL4IR) [164] initiative and the upcoming OpenSearch track at

TREC [197]. Through these two platforms, researchers now have direct access to real

users of real search engines. This allows these researchers to perform research that was

not possible using traditional evaluation paradigms.

We provide and describe an instantiation of OpenSearch, a benchmarking platform,

for researchers to evaluate their ranking systems in a live setting with real users in their

natural task environments. Our initiative is the first to offer such an experimental platform

to the IR research community in the form of a community challenge.

This chapter is based on two papers by Balog, Kelly, and Schuth [15] and Schuth,

Balog, and Kelly [164]. Details on our implementation and the results from the LL4IR

135

9. OpenSearch: Actual Users

experiments run with the OpenSearch paradigm can be found in the paper by Schuth,

Balog, and Kelly [164]. In this chapter we present the idea behind OpenSearch. We

provide details on the architecture with which it is entangled. We describe the limitations

of our current setup and we finish with conclusions and directions for future work.

9.1 Introduction

As we explained in Section 2.2.1, the Cranfield methodology [45] offers researchers a

way to perform cross-comparable evaluation of IR systems, using a document collection,

queries, and relevance assessments. Ever since the introduction of the methodologyl, as

we argue in Section 2.3, researchers have strived to make IR evaluations more “realistic,”

i.e., centered on real users, their needs, and behaviors. Living labs have been proposed

as a way for researchers to perform in situ evaluations, with real users performing real

tasks using real-world applications [103]. This concept has already been used for a

number of years as an important instrument for technology development in industrial

settings. For example, A/B testing procedures are employed heavily by major web search

providers [113]. This form of evaluation, however, is currently only available to those

working at the said organizations. Living labs already exist for other and widely varying

fields of research [6]. However, OpenSearch is the first living lab aimed specifically at IR

evaluation for any researcher.

We quote Azzopardi and Balog [12] with their definition of a living lab: “The basic

idea of living labs for IR is that rather than individual research groups independently

developing experimental search infrastructures and gathering their own groups of test

searchers for IR evaluations, a central and shared experimental environment is developed

to facilitate the sharing of resources.” The potential benefits of living labs to the IR commu-

nity are profound, including the availability of interaction and usage data for researchers

and greater knowledge transfer between industry and academia [14]. Progress towards

realizing actual living labs for IR evaluation, in an academic setting, has nevertheless been

limited until the LL4IR initiative and the OpenSearch track at text retrieval conference

(TREC). Azzopardi and Balog [12] discuss a number of search and recommendation

tasks in an online shopping environment and present an idealized architecture based on

web services. There are many challenges associated with operationalizing these ideas,

including architecture, hosting, maintenance, security, privacy, participant recruiting, and

scenarios and tasks for use development [12].

In this chapter we present OpenSearch, a concrete implementation of a living lab

for IR evaluation benchmarking platform. We argue that mid-sized organizations with a

search engine that lack their own R&D department are good potential collaborators. Such

collaborators, which we refer to as sites, have the opportunity to gain much improved

retrieval approaches (and, as a consequence, increased revenue). We have so far conducted

experiments with two specific sites for ad-hoc search: product search on an e-commerce

site and web search on large scale web search engine. These sites represent a setting with

at least two major challenges: (1) relatively low search volume (for the product search

site); and (2) means to facilitate experimentation by “third parties” in live, production

systems. We postulate that focusing on head queries, i.e., queries most frequently issued

to the site organizations’ search engines, can help overcome these challenges. The choice

136

9.2. Related Work

of head queries is critical because it removes a harsh requirement of providing rankings

in real-time for query requests. Instead, experimental search systems (developed by

benchmark participants) can generate ranked results lists for these queries offline. These

participant rankings can then be used by the live system when head queries are next

issued. Finally, feedback is made available to experimental search systems to facilitate

improved offline ranking generation. Data exchange between live systems and participants

is facilitated by a web-based API.

In summary, we make the following contributions in this chapter.

Paradigm We introduce OpenSearch, the first living labs for IR evaluation, a completely

new evaluation paradigm for IR.

Implementation An implementation of OpenSearch that was used to run the LL4IR

evaluation lab at CLEF 2015 and that will be used to run TREC OpenSearch in

2016. This includes the development of the architecture as well as implementation

of the OpenSearch API, made available as open source software.1

We have incorporated the above contributions in Section 1.2 where we give a complete

overview of all contributions of this thesis.

The remainder of this chapter is organized as follows. In Section 9.2 we briefly discuss

related work. Next, in Section 9.3, we introduce our evaluation platform and methodology.

Limitations and directions for future research are discussed in Section 9.5. Finally, we

conclude in Section 9.6.

9.2 Related Work

The need for more realistic IR evaluation, involving real users, was reiterated at recent

IR workshops [4, 14, 98] and also stated in Section 2.3 of this thesis. Approaches that

attempt to incorporate user behavior into batch-style evaluations can be divided into two

main categories. One is to create effectiveness measures that better model user behavior,

e.g., [28, 89, 133, 150]. Another approach is to develop models that simulate user

behavior and then validate these models against actual usage data, e.g., [9, 11, 17, 202]

(see also Section 2.3 and Chapter 8). These ideas have been implemented in a number of

community benchmarking efforts, including the TREC Interactive [51], HARD [3], and

Session tracks [99], and the INEX Interactive track [191]. While user simulation is a great

instrument for fine-tuning systems, it cannot substitute for the real user as simulations

necessarily make assumptions that are violated in practice. Crowdsourcing, using, e.g.,

Mechanical Turk, enables the sourcing of individuals in the online community to perform

various relevance assessment and annotation tasks [7]. However, these individuals do not

constitute real users performing real tasks driven by a real information need. Living labs

such as OpenSearch, as discussed in this chapter, offer this potential.

In the information-seeking support space (ISSS) the living labs notion was first

proposed in the context of IR by Kelly et al. [103]: “Such a lab might contain resources

and tools for evaluation as well as infrastructure for collaborative studies. It might also

1https://bitbucket.org/living-labs/ll-api

137

https://bitbucket.org/living-labs/ll-api

9. OpenSearch: Actual Users

SystemSiteSiteSitequery query
System

Queries

Documents

Queries

Documents

OpenSearch

API

Figure 9.1: Schematic representation of interaction with the OpenSearch API. Users issue

queries to sites. A site shares a set of queries and for each query a set of documents

with the OpenSearch API. Systems of participants can take these queries and documents

and upload rankings for each query. When a user issues a participating query to the site

then the site asks the OpenSearch API for a ranking. These can immediately be returned,

interleaved and shown to the user. User interactions are again shared with the API and the

system.

function as a point of contact with those interested in participating in ISSS studies.”

Azzopardi and Balog [12] provided greater insight into what this might be in the IR space:

“A living lab would provide a common data repository and evaluation environment giving

researchers (in particular from academia) the data required to undertake meaningful and

applicable research.” Kelly et al. [104] then showed a practical interpretation of this for

personal desktop search. However, until OpenSearch, there have been no attempts at

operationalizing a living labs benchmark in the IR space. The nearest to this has been

the CLEF NEWSREEL lab2 and the Plista contest,3 addressing the problem of news

recommendation. Participants are expected to implement their recommender system as a

service that can handle a large number of (recommendation) requests. Their response to a

request is shown to a user and resulting clicks are then made available to participants so

that they can update their system. One major difference between this and OpenSearch is

the task itself: OpenSearch focuses on retrieval as opposed to recommendation. There are

also important architectural differences stemming from the nature of our experimental

environment; in our setup participants do not get full control over the results shown to the

user, they are always interleaved with those of the production system.

9.3 OpenSearch Architecture

OpenSearch, our livings labs evaluation methodology, heavily depends on a novel archi-

tecture which we describe in this section. We start with an overview, we then introduce

the organization of our lab.

2http://www.clef-newsreel.org
3http://contest.plista.com

138

http://www.clef-newsreel.org
http://contest.plista.com

9.3. OpenSearch Architecture

9.3.1 Overview

Before we provide an overview of our architecture we will first introduce the terminal we

use in the context of OpenSearch.

Site We use the term site to refer to a search engine that provides the interaction data.

These sites are real search engines with real users that collaborate with OpenSearch

in that for a selection of queries they show rankings coming from the OpenSearch

API.

Participant We refer to teams of researchers that use OpenSearch as their experimenta-

tion platform as participant.

User We reserve the term user for user of our sites. These are real user of these real

search engines. The users are not (necessarily) aware they are part of an experiment,

as opposed to for instance crowd workers.

For each of the sites participants take part in a live evaluation process. For this they

use a set of frequent queries as training queries and a separate set of frequent queries

as test queries. Candidate documents are provided for each query along with historical

information associated with the queries. When participants produce their rankings for

a query, they upload these through the provided OpenSearch API. The commercial

provider then interleaves a given participant’s ranked list with their own ranking, and

presents the user with the interleaved result list. See Section 2.3.3 for background on

interleaving. Participants take turns in having their ranked list interleaved with the

commercial provider’s ranked list. This process of interleaving a single experimental

system with the production system at a time is orchestrated by the OpenSearch API, such

that each participant gets about the same number of impressions. The actions performed

by the users of the commercial provider’s system are then made available to the participant

(whose ranking was shown) through the API, i.e., the interleaved ranking, resulting clicks,

and (aggregated) interleaving outcomes.

Figure 9.1 shows the OpenSearch architecture and how a participant’s system interacts

with the sites (the search engines) through the provided API. As can be seen, frequent

queries (Queries) with candidate documents for each query (Documents) are sent from a

site through the API to the experimental systems of participants. These systems upload

their rankings for each query to the API. When a user of the site issues one of these

frequent queries, then the site requests a ranking from the API and presents it interleaved

to the users. Any interactions such as clicks of the user with this ranking are sent back to

the API. Systems can then obtain these interactions from the API and update their ranking

if they wish. Darker arrows indicate that there is a need for realt-time interactions. Lighter

arrows do not have this requirement.

Participants are provided with example code and guidelines to ease the adaptation to

the OpenSearch setup.4

4http://doc.trec-open-search.org/en/latest/guide-participant.html

139

http://doc.trec-open-search.org/en/latest/guide-participant.html

9. OpenSearch: Actual Users

Head Queries

The distribution of search queries typically follows a power law [175], where a relatively

small set of head queries are frequently posed by many users and there is a long tail of

queries that appear in the logs only a few times (often only once). In OpenSearch, our

living labs setting, we focus exclusively on head queries for a number of reasons:

1. This allows us to evaluate experimental search systems on the same set of queries.

2. These queries have a stable volume level, even for mid-sized sites (cf. [15]).

3. Historical click and usage data is available in meaningful quantities.

4. Most importantly, because we use head queries, participants’ systems do not need

to respond in real-time to user queries (cf. [15]). Since the set of queries is fixed

beforehand, participants can upload their rankings to the API at any time and at any

speed. After uploading their is no need for them to be online. The API will always

immediately show users the latest ranking from a participant and participants can

upload their rankings any time they want.

9.3.2 Lab Organization

Much like any other (information retrieval or machine learning) evaluation campaign, we

split our data into training and test parts. Given that we perform online evaluation, it is

slightly more involved than simply providing disjoint data sets. We describe our setup

here.

Training Phase

During the training phase, participants are free to update their rankings using feedback

information. This feedback information is made available to them as soon as it arrives at

the OpenSearch API. Their rankings can be updated at any time and as often as desired.

Both click feedback and aggregated outcomes are made available directly and are updated

constantly.

Test Phase

Just before the test phase starts, participants receive another set of frequent queries as test

queries. Again, the associated historical click information as well as candidate results for

these queries are made available. After downloading the test queries, participants can only

upload their rankings until the test phase starts or only once after it started. The reason

for this is that per test phase we only want to evaluate a single underlying system per

participant.

The test rankings are, as soon as they are uploaded, treated in the same way as

training queries. That is, they are interleaved with the commercial providers’ rankings

for several weeks. As for the training phase, in the test phase each participant is given

an approximately equal number of impressions. A major difference is that for the test

queries, the click feedback is not made available. Aggregated outcomes are provided only

after the test phase ends.

140

9.3. OpenSearch Architecture

9.3.3 Evaluation Metric

The overall evaluation of participants’ systems is based on the final system performance,

and additionally on how the systems performed at each query issue. The primary metric

used is aggregated interleaving outcomes, and in particular we are interested in the

fractions of winning system comparisons.

Interleaved Comparisons

In Section 2.3.3 of this thesis we provided details on how interleaving, and in particular

team draft interleave (TDI) [144], works. There are two reasons for using interleaved

comparisons. Firstly, interleaved comparisons were shown to be two orders of magnitude

more sensitive than other ways of performing online evaluation such as A/B testing [34,

166]. Secondly, interleaved comparisons ensure that at least half the ranking shown to

users comes from the production system. This reduces the risk of showing bad rankings

to users.

Aggregated Outcomes

We use the following aggregated interleaving metrics, where Outcome serves as the

primary metric for comparing participants rankings. These aggregations are constantly

updated for training queries. For the test phase they are only computed after the phase is

over.

#Wins is defined as the number of wins of the participant against the production system,

where a win is defined as the experimental system having more clicks on results

assigned to it by TDI than clicks on results assigned to the production system;

#Losses is defined as the number of losses against the production system;

#Ties is defined as the number of ties with the production system;

#Impressions is the total number of times when rankings (for any of the test queries)

from the participant have been displayed to users of the production system; and

Outcome is defined as the fraction of wins, so #Wins/(#Wins+#Losses).

An Outcome value below the expected outcome (typically 0.5) means that the participant

system performed worse than the production system (i.e., overall it has more losses than

wins). Significance of outcomes is tested using a two-sided binomial test which uses the

expected outcome; p-values are reported.

Note that using these metrics, we are in theory only able to say something about the

relationship between the participant’s system and the production system. However, Radlin-

ski et al. [144] show experimentally that it is not unreasonable to assume transitivity. This

allows us to also draw conclusions about how systems compare to each other. Ideally,

instead of interleaving, we would have used multileaved comparison methods [163, 165]

which would directly give an ordering over rankers by comparing them all at once for

each query. However, multileaved comparisons could potentially impact users more than

they would be impacted by interleaving. Moreover, multileaved comparison methods are

not yet as established as an evaluation method.

141

9. OpenSearch: Actual Users

9.4 Implementation and Results

Details on our implementation and the results from the LL4IR experiments run with the

OpenSearch paradigm can be found in the paper by Schuth, Balog, and Kelly [164].

9.5 Limitations

OpenSearch is a new evaluation paradigm and represents an important step towards making

the living labs evaluation accessible to the wider IR research community. Nevertheless, it

is not without limitations. Next, we briefly consider some of these limitations and look at

ways in which they could be addressed.

L1) Head queries only. While head queries constitute a considerable portion of a

site’s traffic, they are representative of only one type of request, that is, popular

information needs.

L2) Lack of context. The search algorithm has no knowledge of the searcher’s context,

such as location, previous searches, etc. This means that currently there is no room

for personalization of results.

L3) No real-time feedback. While the proposed API does provide detailed feedback, it

is not immediate. Thus, it cannot directly be used in the given search session.

L4) Limited control. Experimentation is limited to single searches, where results are

interleaved with those of the production system. I.e., there is no control over the

entire result list.

L5) Ultimate measure of success. Having better search facilities is usually only a means

to an end—it is not the ultimate goal. For example, in the e-commerce case, and

from the company’s perspective, the ultimate measure of success is the profit made

on purchases. Evaluation metrics should reflect this overall goal.

L1–L4 could be overcome by a live architecture, in which control is given to benchmark

participants over entire sessions, with real-time access to context and feedback. However,

it is still a very much open question how to ensure availability, response time, and quality

of the experimental methods in production environments. Safety mechanisms are needed

for “experiment shutdown” in which case methods can default back to the production

system. L5 could be addressed by providing a “utility” score for documents (products);

this could already be done with the existing architecture.

9.6 Conclusion

The OpenSearch methodology introduced in this chapter offers great potential to evaluate

information retrieval systems in live settings with real users. The living labs for IR

evaluation lab at CLEF (LL4IR) represents the first attempt at an implementation of the

OpenSearch idea.

142

9.7. Future Work

The first edition of LL4IR at conference and labs of the evaluation forum (CLEF)

2015 focused on two sites that provided interactions with real users: product search and

web search. Our product search site was a commercial e-commerce website, REGIO. Our

web search site a commercial web search engine, Seznam. A major contribution of the

LL4IR lab is the development of the necessary OpenSearch API infrastructure, which is

made publicly available.

Overall, we regard our effort successful in showing the feasibility and potential of this

form of evaluatio‘ both sites, there was an experimental system that outperformed the

corresponding production system significantly. It is somewhat unfortunate that in both

cases that experimental system was a baseline approach provided by the lab organizers;

nevertheless, it demonstrates the potential benefits to site owners as well.

The OpenSearch API infrastructure developed for the LL4IR Lab offers the potential

to host ongoing IR evaluations in a live setting. As such, these “challenges” will continue

on an ongoing basis at both CLEF and as the OpenSearch track at TREC 2016, with an

expanding number of sites as well as refinements to the existing sites.

9.7 Future Work

One particular issue, that surfaced in our LL4IR lab at CLEF 2015, for the product search

site is the frequent changes in inventory. This appears to be more severe than we first

anticipated and represents some challenges, both technical and methodological. This is

not only a problem for sites with inventories that change rapidly. Also for other documents

collections the available documents for queries may change fast, depending on the type of

query. Solving this issue in a general enough way, so that it can be applied to any search

engine that decides to participate, will lead to much wider applicability of the OpenSearch

methodology.

Another important direction for future research is work towards the inclusion of

context. One way to include context in the current setup would be by providing several

common contexts alongside the query. Participants could then prepare rankings for each

of these possible contexts. Examples of common contexts would be common preceding

queries, types of users or localization on a high enough granularity.

Lastly, currently our OpenSearch efforts only focused on replacing the ranking compo-

nent of a search engine. We would be very interested in investigating the replacement of

other components of the search engine. Obvious candidates are query suggestion, query

autocompletion and snippet generation.

143

10
Conclusions

In this thesis we investigated whether, how and to what degree search engines can learn

from their users. We started in Part I by investigating how user interactions with search

engines can be used to evaluate these search engines. In particular, in Chapter 4 we

introduced a new online evaluation paradigm called multileaving. With multileaving,

many rankers can be compared at once by combining document lists from these rankers

into a single result list and attributing user interactions with this list to the rankers. Then,

in Chapter 5, we investigated the relation between A/B testing and interleaved comparison

methods.

In Part II we turned to online learning to rank. We learned from the evaluation methods

introduced and extended upon in the previous part. In Chapter 6 we learned the parameters

of base rankers based from user interactions. In Chapter 7 we used the multileaving

methods from Chapter 4 as feedback in our learning method, leading to much faster

convergence.

The last part of this thesis is of a different nature than the earlier two parts. Progress

in information retrieval (IR) research was always driven by a combination of algorithms,

shared resources, and evaluation. In Part III we focussed on the latter two. We introduced a

new shared resource and a new evaluation paradigm. Lerot, in Chapter 8, is an online eval-

uation framework that allows us to simulate users interacting with a search engine. Lerot

has been released as open source software and is currently used by researchers around the

world. Chapter 9, also in the last part, introduced a new evaluation paradigm involving

real users of real search engines. In that chapter we also described an implementation of

this paradigm that has been adopted widely by the research community.

In this concluding chapter we first look back at the questions asked in the first chapter of

this thesis, in Section 1.1, and summarize the answers to our research questions asked

in Parts I and II. We summarize the research of Part III were we did not have research

questions. We summarize all our findings once more in Section 10.2 and close by looking

forward in Section 10.3.

10.1 Main Findings

We investigated whether, how and to what degree search engines can learn from their

users. Part I discussed the evaluation of search engines. In particular we focused on

145

10. Conclusions

online evaluation, where preferences are interpreted from users interacting with the search

engine. It was shown earlier that interleaved comparison [92, 93] methods enable such

evaluations with greater data efficiency than A/B testing [144]. In Chapter 4 we introduced

extensions of interleaving methods called multileaving. Multileaved comparison methods

make it possible to compare more than two rankers at once. Multileaved comparisons can

provide detailed feedback about how multiple candidate rankers compare to each other

using much less interaction data than would be required using interleaved comparisons.

In particular, we first proposed two specific implementations of multileaved comparisons.

The first, which we call team draft multileave (TDM), builds on team draft interleave

(TDI) [144]. The second method is called optimized multileave (OM) and builds on

optimized interleave (OI) [143]

We asked ourselves the following questions:

RQ1 Can multileaved comparison methods identify preferences between rankers faster

than interleaved comparison methods?

RQ2 How does the sensitivity of multileaving methods compare to that of interleaving

methods?

RQ3 Do multileaving methods improve over interleaving methods in terms of unbiased-

ness and online performance?

In response to RQ1, our experimental results clearly showed that the error of both of

our multileaving methods drops much faster than their interleaving counterparts. This

indicates that multileaved comparison methods can learn preferences between multiple

rankers with far less data (i.e., queries and clicks) than interleaved comparison methods.

Addressing RQ2, our results showed that the sensitivity of multileaving methods is affected

in the same way as for interleaving methods when the differences between rankers vary.

Interestingly, this means that multileaved methods can distinguish between rankers just as

well as interleaving methods even when the differences between them are small. Hence,

multileaved comparison methods can be used to explore a parameter space using very

small steps. With regard to RQ3, TDM was shown to be unbiased. OM, our other

multileaving method, had as large a bias as OI, its interleaving counterpart. TDM showed

the highest online performance, i.e., users were the least affected by the evaluation in

which they participated.

We asked the following:

RQ4 Does OM scale better with the number of rankers than TDM?

In response to this question, we analyzed what happens when the number of rankers being

compared increases. Both interleaving methods OI and TDI are impacted greatly when the

number of rankers increases. This is largely due to the fact that many more comparisons

are needed and as such each pair of rankers receives fewer comparisons. By contrast, OM

and TDM do not show significant degradation when the number of rankers increases.

Next, we proposed probabilistic multileave (PM) which builds on probabilistic inter-

leave (PI) [79]. We asked ourself the following question:

RQ5 How does PM compare to TDM and OM in terms of sensitivity, bias and scaling?

146

10.1. Main Findings

We showed empirically that PM is highly sensitive and unbiased. An important implication

of this result is that, like with PI, historical interactions with multileaved comparisons

can be reused, allowing for ranker comparisons that need much less user interaction

data. Furthermore, we show that our method, as opposed to earlier sensitive multileaving

methods, scales well when the number of rankers increases.

Despite the advantages of interleaving and multileaving in terms of sensitivity, the most

common online evaluation methodology is still A/B testing [112]. A downside of A/B

testing is that large numbers of users are typically necessary to obtain reliable results as

this approach has high variance. Interleaved comparisons have much lower variance and

need fewer interactions. However, there is low agreement in terms of preferences with

recent A/B metrics given realistic differences in IR system effectiveness.

In Chapter 5 we asked ourself the following questions:

RQ6 How do A/B metrics compare to interleaving in terms of sensitivity and agreement?

RQ7 Can A/B metrics and interleaving be made to agree better without losing sensivity?

To answer RQ6 we proposed a new statistical method for assessing the sensitivity of these

metrics from estimated effect sizes. The resulting method allows for a detailed comparison

between metrics in terms of the power of statistical tests at varying sample sizes. Our

analysis showed that A/B tests typically require two orders of magnitude more data than

interleaved comparisons. While answering RQ7, we proposed novel interleaving credit

functions that are (1) designed to closely match the implementation and parameters of A/B

metrics, or (2) are parameterized to allow optimization towards agreement with arbitrary

A/B metrics. Our empirical results, obtained on 38 paired experiments with a total of

3 billion clicks, showed that our approach can substantially and significantly increase

agreement of interleaving with A/B metrics while maintaining the advantages in terms of

sensitivity. Our adapted interleaved comparisons methods are still one to two orders of

magnitude more sensitive when compared to A/B testing.

In Part II of this thesis, we turned to learning using the online evaluation methods from

Part I. In Chapter 6 we pursued the problem of optimizing a base ranker using clicks

by focusing on best match 25 (BM25). Currently, it is common practice to choose the

parameters of BM25 according to manually tuned values reported in the literature, or

to manually tune them for a specific setting based on domain knowledge or a sweep

over a number of possible combinations using guidance from an annotated data set [147].

We proposed an alternative by learning the parameters from click data using a learning

algorithm called dueling bandit gradient descent (DBGD) [207].

Specifically, the research questions we aimed to answer were as follows.

RQ8 How good are the manually tuned parameter values of BM25 that are currently

used? Are they optimal for all data sets on average? Are they optimal for individual

data sets?

RQ9 Is it possible to learn good values of the BM25 parameters from clicks? Can we

approximate or even improve the performance of BM25 achieved with manually

tuned parameters?

147

10. Conclusions

In response to RQ8 we provided insight into the parameter space of a base ranker such as

BM25. We showed that each data set requires a different set of parameters for optimal

performance. Answering RQ9 we showed that significant improvements can be achieved

if parameters of base rankers are learned as opposed to treating them as black boxes which

is currently the common practice.

Dueling bandit gradient descent (DBGD) [207] is an online learning to rank method.

At every learning step, DBGD estimates a gradient to follow with respect to a single

exploratory ranker and updates its solution if the exploratory ranker seems better according

to an interleaved comparison. We proposed, instead, to use multileaved comparisons

methods as introduced in Chapter 4 so that we can explore gradients in multiple directions

at once. Our proposed method, multileave gradient descent (MGD), aims to speed up

online learning to rank.

We asked ourself the following questions:

RQ10 Can MGD learn faster from user feedback (i.e., using fewer clicks) than DBGD

does?

RQ11 Does MGD find a better local optimum than DBGD?

Our answer to RQ10 is that MGD with increasing numbers of candidates learns increas-

ingly faster than DBGD in terms of offline performance. In terms of online performance,

MGD is on par with or outperforms DBGD when feedback has realistic levels of noise.

We answer RQ11 as follows: MGD converges to an optimum which is at least as good as

the optimum DBGD finds. However, MGD does so much faster.

We introduced two variants of MGD that differ in how they estimate the gradient. In

MGD winner takes all (MGD-W), the gradient is estimated using one ranker randomly

sampled from those that won the multileaved comparison. In MGD mean winner (MGD-

M), the gradient is estimated using the mean of all winning rankers. We asked the

following question:

RQ12 Which update approach, MGD-W or MGD-M, learns faster? Which finds a better

local optimum?

To answer RQ12, while in general both MGD methods outperform DBGD, MGD-M is

better at handling high noise levels, making it more effective than MGD-W overall. The

advantage of MGD-M over MGD-W comes from both the update direction and a smaller

update size.

Lastly, Part III of thesis was of a different nature than the earlier two parts. As opposed

to the earlier chapters, in this part we no longer studied algorithms. IR research has

always been driven by a combination of algorithms, shared resources, and evaluation. In

Part III we introduced a new shared resource in the form of a learning framework. We

also introduced a new evaluation paradigm. Our research in this last part of the thesis was

not centered around research questions but rather around designing these shared resources

and designing a new evaluation methodology.

In Chapter 8, we introduced Lerot, an online evaluation framework which allows us to

simulate users interacting with a search engine. Several libraries existed for offline learning

148

10.2. Summary of Findings

to rank, Lerot is the first framework for online learning to rank and online evaluation. In

Chapter 8, we described in detail the workings of Lerot. We also described all functions

that need to be implemented in order to extend Lerot to new learning algorithms, to new

user models and to new evaluation metrics. The framework has been used in over 15

recent publications and reproducing results from those papers only requires a user of

the framework to run it with the appropriate configuration file. This has the potential of

rapidly furthering the research field.

In Chapter 9 we introduced OpenSearch, a new evaluation paradigm for IR involving

real users of real search engines. We describe in detail the living labs for IR evaluation

lab at CLEF (LL4IR) which represents the first implementation of the OpenSearch

methodology. A major contribution of the LL4IR lab is the development of the necessary

API infrastructure, which is made publicly available. This OpenSearch API infrastructure

offers the potential to host ongoing IR evaluations in a live setting. As such, these

“challenges” will continue on an ongoing basis at both conference and labs of the evaluation

forum (CLEF) and as the OpenSearch track at text retrieval conference (TREC) , with an

expanding number of participating search engines.

10.2 Summary of Findings

We now summarize our findings in this thesis. We introduced a new and highly sensitive

online evaluation paradigm called multileaved comparisons. This paradigm allows for the

comparison of many rankers at once which in turn allows for search engines that learn

from their users much more efficient than was possible before. This urge for efficiency also

led us to investigate the relationship between A/B testing and interleaving. Interleaving is

much more efficient in that it requires much less user interaction data to infer a preferences

between two rankers. While this is a desired property, the correctness of the preference is

also important. We introduced a method to compare two rankers using interleaving such

that the preference is in line with the preference of an A/B testing metric. This method and

our multileaved comparison method are both highly sensitive ways of inferring preferences

from users interacting with a search engine. This result implies that orders of magnitude

less user interaction data is required to compare rankers allowing for much faster ranker

development. Moreover, it leads to less users being exposed to inferior rankers.

We have interpreted these efficient ranker preferences as guidance for learning al-

gorithms. We have shown how parameters that used to be hand tuned can instead be

learned automatically from users. We have further shown how our multileaved compar-

ison methods can guide a highly efficient online learning to rank algorithm towards an

optimal ranker. An important implication of these results is that good rankers can be

found efficiently by interacting with users. This results in far fewer users being exposed to

inferior rankers and it allows search engines to adapt faster to changes in user preferences.

Besides the above algorithmic contributions, we also contributed a shared resource and

a new evaluation paradigm. We introduced Lerot, an online learning to rank framework, a

shared resource for the IR research community. The framework allows for reproducible

experimentation with online learning to rank and with online evaluation. Lastly, we

introduced OpenSearch, an entirely new IR evaluation paradigm that allows any researcher

to experiment on a real search engine and with real users. OpenSearch comes with an

149

10. Conclusions

implementation and is adopted widely by the IR community.

10.3 Future Work

The research presented in this thesis has many important implications, as described above.

However, there are a number of opportunities for further work. In this section we select

the most prominent directions, summarize them and expand on them.

10.3.1 Online Evaluation

Adapting our newly introduced multileaving paradigm to online evaluation tasks other than

comparing all rankers in a set to each other could prove promising. When, for instance,

one would instead compare all rankers to a single production ranker the definitions of

unbiasedness and sensitivity could be adjusted to take into account the restricted goal of

this task variant. Proper investigation of how multileaving methods could be applied in a

K-armed dueling bandits problem setting constitutes another promising research direction.

Both these directions could lead to breakthroughs on their respective sub-tasks of online

ranker evaluation.

Our research that brought ranker preferences inferred by interleaved comparison

method closer to those inferred by A/B tests, was the first of its kind. Many directions for

future work remain. Firstly, more data in the form of ranker comparisons would open the

way to development of yet more sophisticated (learned) credit functions, e.g., to take into

account session-level or task-level features. Secondly, our approach does not currently

take magnitude and uncertainty in the A/B test preferences into account. For future work,

we would like to measure agreement with statistically significant A/B outcomes. Again,

we would require more ranker comparisons for such an analysis.

Both our contributions to online evaluation of IR only consider so called single shot

queries: a query followed by a result list and interactions with this list. In reality, a user

typically issues many queries over a longer period of time. Incorporating information

from sessions into interleaving or multileaving methods is a completely open and very

promising area of research.

10.3.2 Online Learning to Rank

For future work, it is interesting to see how the click-optimized versions of BM25 can

improve the performance of a state-of-the-art learning to rank algorithm when BM25 is

used as one query-document feature among many features. Furthermore, it would be

interesting to see whether we can integrate the learning of parameters for base rankers such

as BM25 while we learn how to combine such base rankers at the same time. Potentially,

our multileave gradient descent methods could be of help here as this allows for exploring

many more alternative rankers. Additionally, we would like to investigate whether and to

what extent parameters of other base rankers can be learned through the same procedure

as we used in Chapter 6.

Our new learning method that uses multileaved comparison methods invites many

directions for future work. Firstly, we sampled candidate rankers randomly uniformly

150

10.3. Future Work

from a unit sphere around the current best ranker. Alternatively, one could consider

selecting rankers such that all directions are covered, which may speed up learning even

further. Secondly, currently we have two strategies for interpreting multileave comparison

outcomes, MGD-M and MGD-W. We could consider an additional strategy that takes a

weighted combination of all the compared rankers, potentially even down-weighting the

directions for losing candidate rankers. Thirdly, we noticed that often, in particular closer

to convergence, many of the compared rankers become very similar. One could adapt the

multileaving algorithm to not attempt to infer preferences between rankers that produce

the same rankings, but rather, consider all these to be the same rankers. It may seem

that increasing the number of candidates increases the amount of required computation.

However, when using TDM, the number of rankers that can contribute a document to

the multileaved list is bound by its length. If it is decided beforehand which rankers can

contribute a document then only these rankers actually have to materialize their rankings.

Finally, a theoretical analysis of the convergence properties of MGD and its variants, in

comparison to DBGD, would give valuable insights in the broader applicability of our

new method.

Both our contributions to online learning to rank only consider fairly simple ranking

models. In offline learning to rank much more sophisticated models are the current

state-of-the-art. Learning such complicated models from user feedback remains future

work.

Our learning methods make the simplifying assumption that users arrive at the search

engine sequentially, never more than a single user at the same time. What is more, our

approaches assume that the user finishes their interactions with a result page before the

next query is issued. Naturally these are unrealistic assumptions and lifting these would

be interesting future work.

10.3.3 Online Learning and Evaluation Methodology

Lerot, our online learning and evaluation framework, is highly successful as a shared

research tool. Currently, the source code of Lerot has been forked 16 times, the repository

sees between 100 and 700 unique users per month and 15 people have contributed to the

code.

Lerot invites several directions of development. First, it allows for experiments with

simulated users. The user models it currently implements reflect our current understanding

of user behavior; they can easily be extended or replaced by evaluations under different

sets of assumptions. Secondly, Lerot provides components that implement complete online

learning to rank solutions for use as part of an evaluation setup that involves real users.

To this end it connects to OpenSearch, also introduced in this thesis. This connection so

far has not been extensively used and integration with all learning methods remains to be

resolved. For instance, the current setup of Lerot expects sequential events in the sense

that user interactions are expected immediately after the query issue, before a new query

is issued by any other user. Real users do take their time to interact with search engines.

This delayed feedback has not been studied yet and has not been properly integrated into

Lerot either.

151

10. Conclusions

More even than Lerot, OpenSearch has rapidly been adopted by the IR community,

witnessed by the lab at CLEF and the OpenSearch track at TREC 2016.

An important direction for future research around OpenSearch is work towards the

inclusion of context. One way to include context in the current setup would be by providing

several common contexts alongside the query. Participants could then prepare rankings

for each of these possible contexts. Examples of common contexts would be common

preceding queries, types of users or localization on a high enough granularity. Currently,

our OpenSearch efforts only focused on replacing the ranking component of a search

engine. We would be interested in investigating the replacement of other components of

the search engine. Obvious candidates are query suggestion, query autocompletion and

snippet generation.

This would, for the very first time, allow academic researchers to experiment on such

components and would open up entire new and exciting research directions.

152

Bibliography

[1] R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong. Diversifying search results. In WSDM ’09. ACM

Press, 2009. (Cited on page 17.)

[2] K. Ali and C. Chang. On the relationship between click-rate and relevance for search engines. Proc. of

Data-Mining and Information Engineering, 2006. (Cited on page 19.)

[3] J. Allan. HARD track overview in TREC 2003 high accuracy retrieval from documents. Technical report,

2005. (Cited on page 137.)

[4] J. Allan, W. B. Croft, A. Moffat, and M. Sanderson. Frontiers, Challenges, and Opportunities for

Information Retrieval: Report from SWIRL 2012 the Second Strategic Workshop on Information

Retrieval in Lorne. SIGIR Forum, 46(1), 2012. (Cited on page 137.)

[5] M. Allegretti, Y. Moshfeghi, M. Hadjigeorgieva, F. E. Pollick, J. M. Jose, and G. Pasi. When Relevance

Judgement is Happening?: An EEG-based Study. In SIGIR ’15. ACM Press, 2015. (Cited on page 18.)

[6] E. Almirall and J. Wareham. Living Labs: arbiters of mid- and ground-level innovation. Technology

Analysis & Strategic Management, 23(1), 2011. (Cited on page 136.)

[7] O. Alonso, D. E. Rose, and B. Stewart. Crowdsourcing for Relevance Evaluation. SIGIR Forum, 42(2),

2008. (Cited on pages 2 and 137.)

[8] G. Amati. Probability models for information retrieval based on divergence from randomness. PhD

thesis, University of Glasgow, 2003. (Cited on pages 16, 92, and 164.)

[9] P. Arvola, J. Kekäläinen, and M. Junkkari. Expected Reading Effort in Focused Retrieval Evaluation.

Information Retrieval, 13(5), 2010. (Cited on page 137.)

[10] N. Asadi, D. Metzler, T. Elsayed, and J. Lin. Pseudo test collections for learning web search ranking

functions. In SIGIR ’11. ACM, 2011. (Cited on pages 5, 18, and 91.)

[11] L. Azzopardi. The Economics in Interactive Information Retrieval. In SIGIR ’11, 2011. (Cited on

page 137.)

[12] L. Azzopardi and K. Balog. Towards a Living Lab for Information Retrieval Research and Development.

A Proposal for a Living Lab for Product Search Tasks. In CLEF ’11, 2011. (Cited on pages 136 and 138.)

[13] L. Azzopardi, M. de Rijke, and K. Balog. Building simulated queries for known-item topics: an analysis

using six european languages. In SIGIR ’07. ACM, 2007. (Cited on pages 18 and 91.)

[14] K. Balog, D. Elsweiler, E. Kanoulas, L. Kelly, and M. D. Smucker. Report on the CIKM Workshop

on Living Labs for Information Retrieval Evaluation. SIGIR Forum, 48(1), 2014. (Cited on pages 136

and 137.)

[15] K. Balog, L. Kelly, and A. Schuth. Head First: Living Labs for Ad-hoc Search Evaluation. In CIKM ’14.

ACM Press, 2014. (Cited on pages 11, 12, 135, and 140.)

[16] S. Bao, G.-R. Xue, X. Wu, Y. Yu, B. Fei, and Z. Su. Optimizing web search using social annotations. In

WWW ’07. ACM Press, 2007. (Cited on page 16.)

[17] F. Baskaya, H. Keskustalo, and K. Järvelin. Time Drives Interaction: Simulating Sessions in Diverse

Searching Environments. In SIGIR ’12, 2012. (Cited on page 137.)

[18] N. Belkin, R. Oddy, and H. Brooks. ASK for information retrieval: Part I. Background and theory.

Journal of documentation, 1982. (Cited on page 15.)

[19] P. N. Bennett, F. Radlinski, R. W. White, and E. Yilmaz. Inferring and using location metadata to

personalize web search. In SIGIR ’11. ACM Press, 2011. (Cited on page 16.)

[20] P. N. Bennett, R. W. White, W. Chu, S. T. Dumais, P. Bailey, F. Borisyuk, and X. Cui. Modeling the

impact of short- and long-term behavior on search personalization. In SIGIR ’12. ACM Press, 2012.

(Cited on page 16.)

[21] R. Berendsen, M. Tsagkias, W. Weerkamp, and M. de Rijke. Pseudo Test Collections for Training and

Tuning Microblog Rankers. In SIGIR ’13. ACM, 2013. (Cited on pages 5, 18, and 91.)

153

10. Bibliography

[22] L. Bottou and J. Peters. Counterfactual reasoning and learning systems: The example of computational

advertising. The Journal of Machine Learning Research, 2013. (Cited on page 24.)

[23] A. Broder. A taxonomy of web search. SIGIR Forum, 36(2), 2002. (Cited on pages 16 and 33.)

[24] C. J. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender. Learning to

rank using gradient descent. In ICML ’05, 2005. (Cited on pages 17, 27, and 131.)

[25] C. J. Burges, R. Ragno, and Q. Le. Learning to Rank with Nonsmooth Cost Functions. In NIPS ’06,

2006. (Cited on page 27.)

[26] V. Bush. As We May Think, 1945. (Cited on page 14.)

[27] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. Learning to rank: From Pairwise Approach to Listwise

Approach. In ICML ’07. ACM, 2007. (Cited on page 26.)

[28] B. Carterette. System Effectiveness, User Models, and User Utility: A Conceptual Framework for

Investigation. In SIGIR ’11, 2011. (Cited on page 137.)

[29] B. Carterette and J. Allan. Incremental test collections. In CIKM ’05. ACM, 2005. (Cited on page 18.)

[30] B. Carterette and R. Jones. Evaluating search engines by modeling the relationship between relevance

and clicks. In NIPS ’07. MIT Press, 2008. (Cited on pages 6, 20, and 91.)

[31] O. Chapelle and Y. Chang. Yahoo! Learning to Rank Challenge Overview. Journal of Machine Learning

Research, 2011. (Cited on page 132.)

[32] O. Chapelle and Y. Zhang. A dynamic bayesian network click model for web search ranking. 2009.

(Cited on pages 25 and 164.)

[33] O. Chapelle, D. Metzler, Y. Zhang, and P. Grinspan. Expected reciprocal rank for graded relevance. In

CIKM ’09. ACM, 2009. (Cited on pages 17 and 164.)

[34] O. Chapelle, T. Joachims, F. Radlinski, and Y. Yue. Large-scale validation and analysis of interleaved

search evaluation. ACM Transactions on Information Systems (TOIS), 30(1), 2012. (Cited on pages 7, 21,

22, 23, 68, 70, 71, 72, 73, 76, 106, and 141.)

[35] D. Chen, W. Chen, and H. Wang. Beyond ten blue links: enabling user click modeling in federated web

search. In WSDM ’12. ACM, 2012. (Cited on pages 131 and 164.)

[36] A. Chuklin, A. Schuth, K. Hofmann, P. Serdyukov, and M. de Rijke. Evaluating Aggregated Search

Using Interleaving. In CIKM ’13. ACM Press, 2013. (Cited on pages 12, 22, 31, 125, 126, 129, 131,

and 166.)

[37] A. Chuklin, P. Serdyukov, and M. de Rijke. Click model-based information retrieval metrics. In SIGIR

’13. ACM Press, 2013. (Cited on page 26.)

[38] A. Chuklin, P. Serdyukov, and M. de Rijke. Modeling clicks beyond the first result page. In CIKM ’13.

ACM Press, 2013. (Cited on page 25.)

[39] A. Chuklin, K. Zhou, A. Schuth, F. Sietsma, and M. de Rijke. Evaluating Intuitiveness of Vertical-Aware

Click Models. In SIGIR ’14, 2014. (Cited on pages 12, 31, 125, and 126.)

[40] A. Chuklin, I. Markov, and M. de Rijke. Click Models for Web Search, 2015. (Cited on pages 25, 130,

and 134.)

[41] A. Chuklin, A. Schuth, K. Zhou, and M. de Rijke. A comparative analysis of interleaving methods for

aggregated search. ACM Transactions on Information Systems (TOIS), 2015. (Cited on pages 12, 31, 125,

and 126.)

[42] C. L. Clarke, M. Kolla, G. V. Cormack, O. Vechtomova, A. Ashkan, S. Büttcher, and I. MacKinnon.

Novelty and diversity in information retrieval evaluation. In SIGIR ’08, SIGIR ’08. ACM, 2008. (Cited

on page 17.)

[43] C. W. Cleverdon. Report on the testing and analysis of an investigation into the comparative efficiency of

indexing systems. 1962. (Cited on pages 14 and 17.)

[44] C. W. Cleverdon. The Cranfield tests on index language devices. Aslib proceedings, 1967. (Cited on

154

page 14.)

[45] C. W. Cleverdon and M. Keen. Factors Determining the Performance of Indexing Systems. Technical

report, 1966. (Cited on pages 1, 14, 17, and 136.)

[46] ComScore. comScore Releases January 2015 U.S. Desktop Search Engine Rankings,

2015. URL http://www.comscore.com/Insights/Market-Rankings/comScore-

Releases-January-2015-US-Desktop-Search-Engine-Rankings. Accessed 17-

October-2015. (Cited on pages 1 and 18.)

[47] N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey. An experimental comparison of click position-bias

models. In WSDM ’08. ACM Press, 2008. (Cited on pages 25, 130, and 163.)

[48] F. Diaz, R. W. White, G. Buscher, and D. Liebling. Robust Models of Mouse Movement on Dynamic

Web Search Results Pages. In CIKM ’13. ACM Press, 2013. (Cited on pages 19 and 20.)

[49] P. Donmez and J. G. Carbonell. Active Sampling for Rank Learning via Optimizing the Area under the

ROC Curve. In Advances in Information Retrieval, 2009. (Cited on page 28.)

[50] L. B. Doyle. Semantic Road Maps for Literature Searchers. Journal of the ACM, 8(4), 1961. (Cited on

page 14.)

[51] S. T. Dumais and N. J. Belkin. The TREC interactive tracks: Putting the user into search. TREC:

Experiment and evaluation in information retrieval, 2005. (Cited on page 137.)

[52] G. E. Dupret and M. Lalmas. Absence time and user engagement: Evaluating ranking functions. In

WSDM ’13, 2013. (Cited on page 68.)

[53] G. E. Dupret and B. Piwowarski. A user browsing model to predict search engine click data from past

observations. In SIGIR ’08, 2008. (Cited on pages 25 and 166.)

[54] Edelman. Trust Around the World, 2015. URL http://www.edelman.com/insights/

intellectual-property/2015-edelman-trust-barometer/trust-around-

world/. Accessed 17-October-2015. (Cited on page 1.)

[55] S. Eliot and J. Rose. A Companion to the History of the Book. 2009. (Cited on page 13.)

[56] S. Fox, K. Karnawat, M. Mydland, S. T. Dumais, and T. White. Evaluating Implicit Measures to Improve

Web Search. ACM Transactions on Information Systems (TOIS), 23, 2005. (Cited on page 68.)

[57] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm for combining

preferences. Journal of Machine Learning Research, 4, 2003. (Cited on page 27.)

[58] N. Fuhr. Optimum polynomial retrieval functions based on the probability ranking principle. ACM

Transactions on Information Systems, 7(3), 1989. (Cited on page 26.)

[59] J. Fürnkranz and E. Hüllermeier. Preference learning. 2010. (Cited on page 27.)

[60] N. Gao, Z.-H. Deng, H. Yu, and J.-J. Jiang. ListOPT: Learning to Optimize for XML Ranking. In

Advances in Knowledge Discovery and Data Mining, LNCS. Springer, 2011. (Cited on pages 92 and 94.)

[61] E. Garfield. Science Citation Index-A new dimension in indexing. Science, 1964. (Cited on page 16.)

[62] E. Goldberg. Statistical machine. US Patent 1,838,389, 1931. (Cited on page 13.)

[63] L. A. Granka, T. Joachims, and G. Gay. Eye-tracking analysis of user behavior in WWW search. In

SIGIR ’04. ACM Press, 2004. (Cited on page 18.)

[64] F. Guo, L. Li, and C. Faloutsos. Tailoring click models to user goals. In WSCD ’09, 2009. (Cited on

pages 130 and 133.)

[65] F. Guo, C. Liu, and Y. M. Wang. Efficient multiple-click models in web search. In WSDM ’09, 2009.

(Cited on pages 25, 33, 62, 63, 96, 111, 112, 117, 130, 133, and 164.)

[66] Q. Guo and E. Agichtein. Understanding “Abandoned” Ads: Towards Personalized Commercial Intent

Inference via Mouse Movement Analysis. SIGIR-IRA, 2008. (Cited on pages 19 and 20.)

[67] Q. Guo and E. Agichtein. Towards predicting web searcher gaze position from mouse movements. In

155

http://www.comscore.com/Insights/Market-Rankings/comScore-Releases-January-2015-US-Desktop-Search-Engine-Rankings
http://www.comscore.com/Insights/Market-Rankings/comScore-Releases-January-2015-US-Desktop-Search-Engine-Rankings
http://www.edelman.com/insights/intellectual-property/2015-edelman-trust-barometer/trust-around-world/
http://www.edelman.com/insights/intellectual-property/2015-edelman-trust-barometer/trust-around-world/
http://www.edelman.com/insights/intellectual-property/2015-edelman-trust-barometer/trust-around-world/

10. Bibliography

CHI EA ’10. ACM Press, 2010. (Cited on pages 19 and 20.)

[68] D. K. Harman. Overview of the second text retrieval conference (TREC-2). HLT ’94, 1994. (Cited on

pages 17 and 165.)

[69] S. Harter. A probabilistic approach to automatic keyword indexing. PhD thesis, University of Chicago,

1974. (Cited on page 16.)

[70] A. Hassan, R. Jones, and K. L. Klinkner. Beyond DCG: user behavior as a predictor of a successful

search. In WSDM ’10, 2010. (Cited on page 21.)

[71] A. Hassan, X. Shi, N. Craswell, and B. Ramsey. Beyond clicks: query reformulation as a predictor of

search satisfaction. In CIKM ’13, 2013. (Cited on pages 19 and 20.)

[72] J. He, C. Zhai, and X. Li. Evaluation of methods for relative comparison of retrieval systems based on

clickthroughs. In CIKM ’09. ACM Press, 2009. (Cited on pages 21, 129, and 164.)

[73] Y. He and K. Wang. Inferring search behaviors using partially observable markov model with duration

(POMD). In WSDM ’11. ACM Press, 2011. (Cited on pages 19 and 20.)

[74] R. Herbrich, T. Graepel, and K. Obermayer. Support vector learning for ordinal regression. In ICANN

’99, volume 1, 1999. (Cited on page 27.)

[75] W. Hersh, A. H. Turpin, S. Price, B. Chan, D. Kramer, L. Sacherek, and D. Olson. Do batch and user

evaluations give the same results? In SIGIR ’00. ACM Press, 2000. (Cited on pages 18, 28, and 67.)

[76] D. Hiemstra. A linguistically motivated probabilistic model of information retrieval. Research and

advanced technology for digital libraries, 1998. (Cited on pages 16 and 164.)

[77] K. Hofmann. Fast and Reliably Online Learning to Rank for Information Retrieval. PhD thesis, University

of Amsterdam, 2013. (Cited on pages 6, 17, 33, 34, 110, 125, 126, 128, 129, and 131.)

[78] K. Hofmann, S. Whiteson, and M. de Rijke. Contextual Bandits for Information Retrieval. NIPS ’11,

2011.

[79] K. Hofmann, S. Whiteson, and M. de Rijke. A probabilistic method for inferring preferences from clicks.

In CIKM ’11. ACM Press, 2011. (Cited on pages 5, 21, 24, 25, 29, 39, 46, 47, 50, 51, 92, 93, 95, 125,

126, 129, 146, and 165.)

[80] K. Hofmann, F. Behr, and F. Radlinski. On Caption Bias in Interleaving Experiments. In CIKM ’12,

2012. (Cited on pages 70 and 77.)

[81] K. Hofmann, S. Whiteson, and M. de Rijke. Estimating Interleaved Comparison Outcomes from Historical

Click Data. In CIKM ’12, 2012. (Cited on pages 95, 125, and 126.)

[82] K. Hofmann, S. Whiteson, and M. de Rijke. Balancing Exploration and Exploitation in Listwise and

Pairwise Online Learning to Rank for Information Retrieval. Information Retrieval, 16(1), 2012. (Cited

on pages 3, 28, 92, 93, 105, and 126.)

[83] K. Hofmann, A. Schuth, S. Whiteson, and M. de Rijke. Reusing Historical Interaction Data for Faster

Online Learning to Rank for IR. In WSDM ’13, 2013. (Cited on pages 6, 12, 22, 28, 29, 30, 31, 32, 39,

49, 92, 93, 95, 96, 109, 126, 128, and 163.)

[84] K. Hofmann, A. Schuth, A. Bellogı́n, and M. de Rijke. Effects of Position Bias on Click-Based

Recommender Evaluation. In ECIR ’14, 2014. (Cited on pages 12, 31, 125, and 126.)

[85] K. Hofmann, S. Whiteson, and M. de Rijke. Fidelity, Soundness, and Efciency of Interleaved Comparison

Methods. ACM Transactions on Information Systems (TOIS), 31(3), 2014. (Cited on pages 43 and 56.)

[86] K. Hofmann, S. Whiteson, A. Schuth, and M. de Rijke. Learning to rank for information retrieval from

user interactions. ACM SIGWEB Newsletter, 2014. (Cited on page 12.)

[87] H. Hollerith. The electrical tabulating machine. Journal of the Royal Statistical Society, 1894. (Cited on

page 13.)

[88] J. Huang, T. Lin, and R. W. White. No search result left behind. In WSDM ’12. ACM Press, 2012. (Cited

on page 20.)

156

[89] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of IR techniques. ACM Transactions on

Information Systems (TOIS), 20(4), 2002. (Cited on pages 17, 34, 40, 49, 57, 97, 110, 131, 137, and 165.)

[90] S. Ji, K. Zhou, C. Liao, Z. Zheng, G.-R. Xue, O. Chapelle, G. Sun, and H. Zha. Global ranking by

exploiting user clicks. In SIGIR ’09. ACM, 2009. (Cited on page 91.)

[91] T. Joachims. Making Large-Scale SVM Learning Practical. Advances in Kernel Methods - Support

Vector Learning, 1999. (Cited on page 132.)

[92] T. Joachims. Optimizing search engines using clickthrough data. In KDD ’02, 2002. (Cited on pages 3,

4, 7, 27, 28, 38, 91, 105, 106, 128, and 146.)

[93] T. Joachims. Evaluating Retrieval Performance using Clickthrough Data. In Text Mining. Physica/Springer,

2003. (Cited on pages 4, 7, 21, 24, 38, 68, 73, 106, and 146.)

[94] T. Joachims. Training linear SVMs in linear time. In KDD ’06. ACM Press, 2006. (Cited on page 126.)

[95] T. Joachims, L. A. Granka, B. Pan, H. Hembrooke, F. Radlinski, and G. Gay. Evaluating the accuracy of

implicit feedback from clicks and query reformulations in Web search. ACM Transactions on Information

Systems (TOIS), 25(2), 2007. (Cited on pages 6, 19, 20, 21, 129, and 163.)

[96] S. Jung, J. L. Herlocker, and J. Webster. Click data as implicit relevance feedback in web search.

Information Processing & Management (IPM), 43(3), 2007. (Cited on page 91.)

[97] M. H. Kalos and P. A. Whitlock. Monte Carlo methods. Vol. 1: basics. 1986. (Cited on page 24.)

[98] J. Kamps, S. Geva, C. Peters, T. Sakai, A. Trotman, and E. M. Voorhees. Report on the SIGIR 2009

Workshop on the Future of IR Evaluation. SIGIR Forum, 43(2), 2009. (Cited on page 137.)

[99] E. Kanoulas, P. Clough, B. Carterette, and M. Sanderson. Session track at TREC 2010. SIGIR Workshop

on the Simulation of Interaction, 2010. (Cited on page 137.)

[100] G. Kazai, E. Yilmaz, N. Craswell, and S. Tahaghoghi. User intent and assessor disagreement in web

search evaluation. In CIKM ’13. ACM Press, 2013. (Cited on pages 18 and 28.)

[101] D. Kelly. Methods for Evaluating Interactive Information Retrieval Systems with Users. Foundations

and Trends in Information Retrieval, 3(1–2), 2009. (Cited on page 18.)

[102] D. Kelly and J. Teevan. Implicit Feedback for Inferring User Preference: A Bibliography. SIGIR Forum,

37(2), 2003. (Cited on pages 19 and 21.)

[103] D. Kelly, S. T. Dumais, and J. O. Pedersen. Evaluation Challenges and Directions for Information-Seeking

Support Systems. Computer, 42(3), 2009. (Cited on pages 136 and 137.)

[104] L. Kelly, P. Bunbury, and G. J. F. Jones. Evaluating Personal Information Retrieval. In ECIR ’12, 2012.

(Cited on page 138.)

[105] E. Kharitonov. Improving offline and online web search evaluation by modelling the user behaviour. In

SIGIR ’14. ACM Press, 2014. (Cited on page 26.)

[106] E. Kharitonov, C. Macdonald, P. Serdyukov, I. Ounis, Ounis, Iadh, and I. Ounis. Using Historical Click

Data to Increase Interleaving Sensitivity. In CIKM ’13. ACM Press, 2013. (Cited on pages 22 and 166.)

[107] E. Kharitonov, C. Macdonald, P. Serdyukov, and I. Ounis. Generalized Team Draft Interleaving. In CIKM

’15. ACM, 2015. (Cited on pages 22 and 164.)

[108] E. Kharitonov, C. Macdonald, P. Serdyukov, and I. Ounis. Optimised Scheduling of Online Experiments.

In SIGIR ’15. ACM Press, 2015. (Cited on pages 19 and 20.)

[109] E. Kharitonov, A. Vorobev, C. Macdonald, P. Serdyukov, and I. Ounis. Sequential Testing for Early

Stopping of Online Experiments. In SIGIR ’15. ACM Press, 2015. (Cited on pages 19 and 20.)

[110] Y. Kim, A. Hassan, R. W. White, and I. Zitouni. Modeling dwell time to predict click-level satisfaction.

In WSDM ’14, 2014. (Cited on pages 20, 70, 71, and 84.)

[111] J. M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the ACM, 46(5), 1999.

(Cited on page 16.)

157

10. Bibliography

[112] R. Kohavi. Online Controlled Experiments. In Proceedings of the 1st workshop on User engagement

optimization. ACM, 2013. (Cited on pages 5, 37, and 147.)

[113] R. Kohavi, R. Longbotham, D. Sommerfield, and R. Henne. Controlled experiments on the web: survey

and practical guide. Data Mining and Knowledge Discovery, 18(1), 2009. (Cited on pages 19, 20, 68, 74,

and 136.)

[114] C. Kuhlthau. Inside the search process: Information seeking from the user’s perspective. JASIS, 1991.

(Cited on page 2.)

[115] D. Lagun, C. H. Hsieh, D. Webster, and V. Navalpakkam. Towards Better Measurement of Attention and

Satisfaction in Mobile Search. In SIGIR ’14, 2014. (Cited on pages 19 and 20.)

[116] F. Lancaster and E. Fayen. Information Retrieval On-Line, Melville Publ. Co., Los Angeles, Calif, 1973.

(Cited on pages 15 and 163.)

[117] U. Lee, Z. Liu, and J. Cho. Automatic identification of user goals in Web search. In WWW ’05. ACM

Press, 2005. (Cited on page 16.)

[118] E. L. Lehmann and J. P. Romano. Testing statistical hypotheses. springer, 2006. (Cited on page 74.)

[119] J. Li, S. Huffman, and A. Tokuda. Good Abandonment in Mobile and PC Internet Search. In SIGIR ’09,

2009. (Cited on page 20.)

[120] L. Li, W. Chu, J. Langford, and X. Wang. Unbiased offline evaluation of contextual-bandit-based news

article recommendation algorithms. In WSDM ’11, 2011. (Cited on pages 25, 28, and 31.)

[121] M. Li, H. Li, and Z.-H. Zhou. Semi-supervised document retrieval. Information Processing & Manage-

ment (IPM), 45(3), 2009. (Cited on page 20.)

[122] W.-H. Lin and A. Hauptmann. Revisiting the effect of topic set size on retrieval error. In SIGIR ’05.

ACM Press, 2005. (Cited on page 17.)

[123] A. Lipani, M. Lupu, and A. Hanbury. Splitting Water: Precision and Anti-Precision to Reduce Pool Bias.

SIGIR ’15, 2015. (Cited on page 17.)

[124] T.-Y. Liu. Learning to rank for information retrieval, volume 3. Now Pub, 2009. (Cited on pages 3, 26,

27, 95, 105, 125, and 165.)

[125] T.-Y. Liu, J. Xu, T. Qin, W. Xiong, and H. Li. LETOR: Benchmark Dataset for Research on Learning to

Rank for Information Retrieval. In LR4IR ’07, 2007. (Cited on pages 31, 32, and 132.)

[126] H. Luhn. A statistical approach to mechanized encoding and searching of literary information. IBM

Journal of research and development, 1957. (Cited on pages 15 and 166.)

[127] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to information retrieval. Cambridge University

Press, 2008. (Cited on pages 14, 15, 16, and 164.)

[128] I. Markov, E. Kharitonov, V. Nikulin, P. Serdyukov, M. de Rijke, and F. Crestani. Vertical-Aware Click

Model-Based Effectiveness Metrics. In CIKM ’14. ACM Press, 2014. (Cited on page 25.)

[129] M. Marx and A. Schuth. DutchParl The Parliamentary Documents in Dutch. LREC ’10, 5(1), 2010.

(Cited on page 12.)

[130] M. Marx, N. Aders, and A. Schuth. Digital sustainable publication of legacy parliamentary proceedings.

AI Magazine, 18(4), 2010. (Cited on page 12.)

[131] N. Meinshausen. Quantile Regression Forests. Journal of Machine Learning Research, 7, 2006. (Cited

on page 71.)

[132] S. Mizzaro. Relevance: The whole history. JASIS, 1997. (Cited on page 15.)

[133] A. Moffat and J. Zobel. Rank-biased precision for measurement of retrieval effectiveness. ACM

Transactions on Information Systems (TOIS), 27(1), 2008. (Cited on page 137.)

[134] C. Mooers. The theory of digital handling of non-numerical information and its implications to machine

economics. 1950. (Cited on pages 14 and 16.)

158

[135] C. Mooers. The next twenty years in information retrieval; some goals and predictions. American

Documentation, 1960. (Cited on page 14.)

[136] R. Nallapati. Discriminative models for information retrieval. In SIGIR ’04. ACM Press, 2004. (Cited on

page 26.)

[137] A. Nusselder, H. Peetz, A. Schuth, and M. Marx. Helping people to choose for whom to vote. a web

information system for the 2009 European elections. 2009. (Cited on page 12.)

[138] H. Oosterhuis, A. Schuth, and M. de Rijke. Probabilistic Multileave Gradient Descent. In ECIR ’16.

Springer, 2016. (Cited on pages 12, 31, 121, 125, and 126.)

[139] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking: Bringing Order to the

Web. World Wide Web Internet And Web Information Systems, 54(1999-66), 1998. (Cited on pages 3

and 16.)

[140] J. Ponte and W. B. Croft. A language modeling approach to information retrieval. SIGIR ’98, 1998.

(Cited on pages 16 and 164.)

[141] T. Qin, T.-Y. Liu, J. Xu, and H. Li. LETOR: A benchmark collection for research on learning to rank

for information retrieval. Information Retrieval, 13(4), 2010. (Cited on pages 31, 32, 94, 96, 97, 98,

and 100.)

[142] F. Radlinski and N. Craswell. Comparing the sensitivity of information retrieval metrics. In SIGIR ’10,

2010. (Cited on pages 17 and 22.)

[143] F. Radlinski and N. Craswell. Optimized interleaving for online retrieval evaluation. In WSDM ’13. ACM

Press, 2013. (Cited on pages 4, 22, 38, 41, 42, 43, 44, 45, 50, 60, 70, 107, 109, 129, 146, and 165.)

[144] F. Radlinski, M. Kurup, and T. Joachims. How does clickthrough data reflect retrieval quality? In CIKM

’08. ACM Press, 2008. (Cited on pages 3, 4, 6, 7, 21, 23, 28, 29, 38, 41, 50, 68, 70, 72, 91, 95, 105, 106,

107, 126, 129, 141, 146, and 166.)

[145] S. Robertson. The probability ranking principle in IR. Journal of documentation, 1977. (Cited on

page 15.)

[146] S. Robertson and S. Walker. Okapi at TREC-3. NIST SPECIAL PUBLICATION SP, 1995. (Cited on

pages 3, 6, 15, 91, 92, 94, and 163.)

[147] S. Robertson and H. Zaragoza. The Probabilistic Relevance Framework: BM25 and Beyond. Foundations

and Trends in Information Retrieval, 3(4), 2009. (Cited on pages 6, 93, and 147.)

[148] J. Rocchio. Relevance feedback in information retrieval. 1971. (Cited on page 19.)

[149] I. Ruthven and M. Lalmas. A survey on the use of relevance feedback for information access systems.

The Knowledge Engineering Review, 2003. (Cited on page 19.)

[150] T. Sakai and Z. Dou. Summaries, Ranked Retrieval and Sessions: A Unified Framework for Information

Access Evaluation. In SIGIR ’13, 2013. (Cited on page 137.)

[151] G. Salton. Automatic information organization and retrieval. 1968. (Cited on page 14.)

[152] G. Salton. Historical note: The past thirty years in information retrieval. American Documentation, 11

(3), 1987. (Cited on page 16.)

[153] G. Salton, A. Wong, and C. Yang. A vector space model for automatic indexing. Communications of the

ACM, 1975. (Cited on pages 15 and 166.)

[154] G. Salton, E. Fox, and H. Wu. Extended Boolean information retrieval. Communications of the ACM,

1983. (Cited on page 15.)

[155] M. Sanderson. Test Collection Based Evaluation of Information Retrieval Systems. Foundations and

Trends in Information Retrieval, 4(4), 2010. (Cited on pages 1, 2, 3, 4, 7, 17, 18, 26, 28, 38, 67, and 105.)

[156] M. Sanderson and W. B. Croft. The History of Information Retrieval Research. Proceedings of the IEEE,

100(Special Centennial Issue), 2012. (Cited on pages 13 and 16.)

[157] M. Sanderson and H. Joho. Forming test collections with no system pooling. In SIGIR ’04. ACM, 2004.

159

10. Bibliography

(Cited on page 18.)

[158] T. Schnabel, A. Swaminathan, and T. Joachims. Unbiased Ranking Evaluation on a Budget. WWW ’15,

2015. (Cited on page 25.)

[159] A. Schuth and M. Marx. Evaluation methods for rankings of facetvalues for faceted search. In CLEF ’11,

volume 6941. Springer Berlin Heidelberg, 2011. (Cited on pages 12 and 17.)

[160] A. Schuth, M. Marx, and M. de Rijke. Extracting the discussion structure in comments on news-articles.

In WIDM ’07, 2007. (Cited on page 12.)

[161] A. Schuth, K. Hofmann, S. Whiteson, and M. de Rijke. Lerot: an Online Learning to Rank Framework.

In LivingLab ’13. ACM Press, 2013. (Cited on pages 11, 12, 31, 32, 49, 96, and 125.)

[162] A. Schuth, F. Sietsma, S. Whiteson, and M. de Rijke. Optimizing Base Rankers Using Clicks: A Case

Study using BM25. In ECIR ’14, 2014. (Cited on pages 12, 31, 91, 125, and 126.)

[163] A. Schuth, F. Sietsma, S. Whiteson, D. Lefortier, and M. de Rijke. Multileaved Comparisons for Fast

Online Evaluation. In CIKM ’14. ACM Press, 2014. (Cited on pages 11, 31, 37, 63, 107, 125, 126, 130,

and 141.)

[164] A. Schuth, K. Balog, and L. Kelly. Extended Overview of the Living Labs for Information Retrieval

Evaluation (LL4IR) CLEF Lab 2015. In CLEF 2015 Online Working Notes, 2015. (Cited on pages 12,

135, 136, 142, and 164.)

[165] A. Schuth, R.-J. R. Bruintjes, F. Büttner, J. van Doorn, C. Groenland, H. Oosterhuis, C.-N. Tran,

B. Veeling, J. van der Velde, R. Wechsler, D. Woudenberg, and M. de Rijke. Probabilistic Multileave for

Online Retrieval Evaluation. In SIGIR ’15, 2015. (Cited on pages 12, 31, 37, 125, 126, 130, and 141.)

[166] A. Schuth, K. Hofmann, and F. Radlinski. Predicting Search Satisfaction Metrics with Interleaved

Comparisons. In SIGIR ’15, 2015. (Cited on pages 12, 21, 67, and 141.)

[167] A. Schuth, H. Oosterhuis, S. Whiteson, and M. de Rijke. Multileave Gradient Descent for Fast Online

Learning to Rank. In WSDM ’16, 2016. (Cited on pages 11, 12, 31, 105, 125, and 126.)

[168] D. Sculley. Large scale learning to rank. In NIPS 2009 Workshop on Advances in Ranking, 2009. (Cited

on pages 27, 126, and 128.)

[169] M. Smucker, J. Allan, and B. Carterette. A comparison of statistical significance tests for information

retrieval evaluation. In CIKM ’07. ACM Press, 2007. (Cited on page 34.)

[170] Y. Song, X. Shi, R. W. White, and A. Hassan. Context-Aware Web Search Abandonment Prediction. In

SIGIR ’14, 2014. (Cited on page 20.)

[171] K. Sparck Jones. A statistical interpretation of term specificity and its application in retrieval. Journal of

documentation, 1972. (Cited on pages 15, 92, 164, and 166.)

[172] K. Sparck Jones. Information retrieval experiment. Butterworth-Heinemann, 1981. (Cited on page 14.)

[173] K. Sparck Jones. Readings in information retrieval. Morgan Kaufmann, 1997. (Cited on page 16.)

[174] K. Sparck Jones, S. Walker, and S. Robertson. A probabilistic model of information retrieval: Develop-

ment and comparative experiments. Information Processing & Management (IPM), 36, 2000. (Cited on

page 93.)

[175] A. Spink, D. Wolfram, M. B. J. Jansen, and T. Saracevic. Searching the Web: The Public and Their

Queries. J. Am. Soc. Inf. Sci. Technol., 52(3), 2001. (Cited on page 140.)

[176] A. Strehl, J. Langford, L. Li, and S. M. Kakade. Learning from Logged Implicit Exploration Data. In

NIPS ’10, 2010. (Cited on page 25.)

[177] A. L. Strehl, C. Mesterharm, M. L. Littman, and H. Hirsh. Experience-efficient learning in associative

bandit problems. In ICML ’06, 2006. (Cited on page 28.)

[178] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT Press, 1998. (Cited on

pages 28, 34, 115, and 166.)

[179] K. M. Svore and C. J. Burges. A machine learning approach for improved BM25 retrieval. In CIKM ’09.

160

ACM Press, 2009. (Cited on pages 93, 97, and 110.)

[180] A. Swaminathan and T. Joachims. Counterfactual Risk Minimization: Learning from Logged Bandit

Feedback. arXiv:1502.02362, 2015. (Cited on page 25.)

[181] A. Swaminathan and T. Joachims. Counterfactual Risk Minimization. WWW ’15, 2015. (Cited on

page 25.)

[182] M. Szummer and E. Yilmaz. Semi-supervised learning to rank with preference regularization. In CIKM

’11. ACM, 2011. (Cited on pages 26 and 28.)

[183] J. M. Tague, M. J. Nelson, and H. Wu. Problems in the simulation of bibliographic retrieval systems. In

SIGIR ’80, 1980. (Cited on page 18.)

[184] H. Tavani. Search Engines and Ethics. In The Stanford Encyclopedia of Philosophy. 2014. (Cited on

page 1.)

[185] M. Taylor, H. Zaragoza, N. Craswell, S. Robertson, and C. J. Burges. Optimisation methods for ranking

functions with multiple parameters. In CIKM ’06. ACM Press, 2006. (Cited on pages 92, 93, 97, and 110.)

[186] R. Taylor. The process of asking questions. American documentation, 1962. (Cited on page 14.)

[187] J. Teevan, S. T. Dumais, and E. Horvitz. The potential value of personalizing search. In SIGIR ’07, 2007.

(Cited on pages 1 and 67.)

[188] J. Teevan, S. T. Dumais, and E. Horvitz. Potential for personalization. TOCHI ’10, 17(1), 2010. (Cited

on page 16.)

[189] P. Thomas and D. Hawking. Evaluation by comparing result sets in context. In CIKM ’06. ACM, 2006.

(Cited on page 19.)

[190] W. Thomson. Electrical units of measurement. Popular lectures and addresses, 1883. (Cited on pages 1

and 3.)

[191] A. Tombros, B. Larsen, and S. Malik. The interactive track at INEX 2004. Advances in XML Information

Retrieval, 2005. (Cited on page 137.)

[192] A. H. Turpin and W. Hersh. Why batch and user evaluations do not give the same results. In SIGIR ’01.

ACM Press, 2001. (Cited on pages 18, 28, and 67.)

[193] A. H. Turpin and F. Scholar. User performance versus precision measures for simple search tasks. In

SIGIR ’06, 2006. (Cited on pages 1 and 67.)

[194] T. Urvoy, F. Clerot, R. Féraud, and S. Naamane. Generic Exploration and K-armed Voting Bandits. In

ICML ’13, 2013. (Cited on pages 24 and 64.)

[195] B. Vickery. The structure of information retrieval systems. Proceedings of the International Conference

on Scientific Information, 1959. (Cited on page 15.)

[196] E. M. Voorhees. Variations in relevance judgments and the measurement of retrieval effectiveness.

Information Processing & Management (IPM), 36(5), 2000. (Cited on pages 2 and 82.)

[197] E. M. Voorhees. The philosophy of information retrieval evaluation. Evaluation of cross-language

information retrieval systems, 2002. (Cited on pages 17, 135, and 166.)

[198] E. M. Voorhees and D. K. Harman. TREC: Experiment and Evaluation in Information Retrieval. Digital

Libraries and Electronic Publishing. MIT Press, 2005. (Cited on page 17.)

[199] H. Wang, Y. Song, M. W. Chang, X. He, A. Hassan, and R. W. White. Modeling Action-level Satisfaction

for Search Task Satisfaction Prediction. In SIGIR ’14, 2014. (Cited on page 21.)

[200] K. Wang, T. Walker, and Z. Zheng. PSkip: Estimating Relevance Ranking Quality from Web Search

Clickthrough Data. In KDD ’09, 2009. (Cited on pages 20 and 68.)

[201] K. Wang, N. Gloy, and X. Li. Inferring search behaviors using partially observable Markov (POM) model.

In WSDM ’10. ACM Press, 2010. (Cited on pages 19 and 20.)

[202] R. W. White, J. M. Jose, C. J. V. Rijsbergen, and I. Ruthven. A simulated study of implicit feedback

161

10. Bibliography

models. In ECIR ’04, 2004. (Cited on page 137.)

[203] R. W. White, P. N. Bennett, and S. T. Dumais. Predicting short-term interests using activity-based search

context. In CIKM ’10. ACM Press, 2010. (Cited on page 16.)

[204] Wikipedia. List of countries by number of Internet users, 2015. URL https://en.

wikipedia.org/wiki/List_of_countries_by_number_of_Internet_users. Ac-

cessed 17-October-2015. (Cited on pages 1 and 18.)

[205] Z. Xu, R. Akella, and Y. Zhang. Incorporating Diversity and Density in Active Learning for Relevance

Feedback. In ECIR ’07, 2007. (Cited on page 28.)

[206] E. Yilmaz, M. Verma, N. Craswell, F. Radlinski, and P. Bailey. Relevance and Effort: An Analysis of

Document Utility. In CIKM ’14. ACM, 2014. (Cited on pages 18, 19, 20, 28, 67, 71, and 166.)

[207] Y. Yue and T. Joachims. Interactively optimizing information retrieval systems as a dueling bandits

problem. In ICML ’09, 2009. (Cited on pages 3, 6, 7, 17, 24, 28, 92, 93, 95, 105, 106, 110, 126, 128, 129,

133, 147, 148, and 163.)

[208] Y. Yue and T. Joachims. Beat the mean bandit. In ICML ’11, 2011. (Cited on pages 24 and 163.)

[209] Y. Yue, J. Broder, R. Kleinberg, and T. Joachims. The K-armed dueling bandits problem. Journal of

Computer and System Sciences, 78(5), 2009. (Cited on pages 24, 28, and 65.)

[210] Y. Yue, Y. Gao, O. Chapelle, Y. Zhang, and T. Joachims. Learning more powerful test statistics for

click-based retrieval evaluation. In SIGIR ’10, 2010. (Cited on pages 70 and 77.)

[211] Y. Yue, R. Patel, and H. Roehrig. Beyond position bias: examining result attractiveness as a source of

presentation bias in clickthrough data. In WWW ’10. ACM Press, 2010. (Cited on pages 70 and 77.)

[212] T. Zhang. Solving large scale linear prediction problems using stochastic gradient descent algorithms. In

ICML ’04. ACM, 2004. (Cited on page 128.)

[213] M. Zoghi, S. Whiteson, M. de Rijke, and R. Munos. Using Confidence Bounds for Efficient On-Line

Ranker Evaluation. In WSDM ’14. ACM, 2014. (Cited on page 24.)

[214] M. Zoghi, S. Whiteson, R. Munos, and M. de Rijke. Relative Upper Confidence Bound for the K-Armed

Dueling Bandit Problem. In ICML ’14, 2014. (Cited on pages 24, 64, and 166.)

[215] M. Zoghi, Z. S. Karnin, S. Whiteson, and M. de Rijke. Copeland Dueling Bandits. In NIPS ’15, 2015.

(Cited on page 24.)

[216] M. Zoghi, S. Whiteson, and M. de Rijke. MergeRUCB: A method for large-scale online ranker evaluation.

In WSDM ’15. ACM Press, 2015. (Cited on pages 24, 31, 64, 125, 126, and 165.)

162

https://en.wikipedia.org/wiki/List_of_countries_by_number_of_Internet_users
https://en.wikipedia.org/wiki/List_of_countries_by_number_of_Internet_users

List of Terms

A/B metric Absolute user interaction metric used in A/B testing. Computed for system

A and B, after which a t-test is used to select a winner. Examples are CTR, time

to click, and abandonment rate. See Section 2.3.2. (Used on pages 5, 8, 9, 20–22,

67–74, 76–79, 81–88, 147.)

A/B test Controlled experiment conducted on users of a running system. A random

sample of users is exposed to the treatment system, a second sample is exposed to

the control system. Any differences in online performance measured on the two

samples can be attributed to differences between treatment and control system. See

Section 2.3.2. (Used on pages 4, 5, 8–10, 19–21, 24, 38, 67–71, 73, 87, 88, 129,

136, 141, 145–147, 149, 150, 163.)

BI balanced interleave. The first interleaved comparison method by Joachims et al. [95].

This method was shown to be biased which was corrected in TDI. See Section 2.3.3.

(Used on pages 21, 73, 129.)

BM boolean model. Retrieval model by Lancaster and Fayen [116] that uses Boolean

logic, described in Section 2.1.3. (Used on pages 15, 16.)

BM25 best match 25. Widely used retrieval model by Robertson and Walker [146], a

weighted variant of TF.IDF, described in Section 2.1.3. See also Chapter 6. (Used

on pages 6, 7, 9–11, 15, 16, 26, 32, 49, 91–102, 147, 148, 150.)

BTM beat the mean. Algorithm by Yue and Joachims [208] for the K-armed dueling

bandits problem, see Section 2.3.4. (Used on pages 24.)

CCM cascade click model. Click model by Craswell et al. [47] that assumes users scan

a result list from top to bottom and click on a result as soon as it seems to satisfy

their information need, see Section 2.3.6. (Used on pages 25, 110, 164.)

CLEF conference and labs of the evaluation forum. The CLEF Initiative is a self-

organized body whose main mission is to promote research, innovation, and de-

velopment of information access systems with an emphasis on multilingual and

multimodal information with various levels of structure. (Used on pages 137, 138,

143, 149, 152, 164.)

CPS candidate preselection. Extension of DBGD by Hofmann et al. [83] that uses PI

to select a promising candidate using historical interaction data. See Section 2.5.2.

(Used on pages 29, 95, 96, 126, 128.)

CTR click through rate. A common A/B metric: the number of result lists with a click

over the total number of impressions. (Used on pages 20, 68, 71, 163.)

DBGD dueling bandit gradient descent. Online learning to rank method by Yue and

Joachims [207], see Section 2.5.1 for details. We extend DBGD to MGD in

Chapter 7. (Used on pages 7, 24, 28–30, 65, 95, 99, 101, 105–121, 126–129, 133,

147, 148, 151, 163, 165.)

163

List of Terms

DBN dynamic bayesian network model. Click model by Chapelle and Zhang [32] that

extends CCM, see Section 2.3.6. (Used on pages 25.)

DCI document constraints interleave. Interleaving method by He et al. [72] which infers

constraints on documents pairs based on the rank of the documents and on user

interactions. See Section 2.3.3. (Used on pages 21, 129.)

DCM dependent click model. This cascading click model by Guo et al. [65] is used

throughout this thesis to simulate clicks. See Section 2.3.6 for details and see

Table 3.2 for instantiations. (Used on pages 25, 32–34, 96, 111, 112, 117, 130–133.)

DFR divergence from randomness. Retrieval model by Amati [8] based on the 2-Poisson

indexing model, described in Section 2.1.3. (Used on pages 6, 16, 92.)

ERR expected reciprocal rank. Offline evaluation metric by Chapelle et al. [33], see

Section 2.2.1. (Used on pages 17, 38.)

FCM federated click model. Click model by [35] that takes attraction of vertical docu-

ments into account, see Section 2.3.6 and Section 8.2.3. (Used on pages 131.)

GTDI generalized team draft interleave. Interleaving method by Kharitonov et al. [107]

which jointly optimizes for credit assignment and an interleaving policy. See

Section 2.3.3. (Used on pages 22.)

IDF inverse document frequency. “The specificity of a term can be quantified as an

inverse function of the number of documents in which it occurs” by Sparck Jones

[171], described in Section 2.1.3. (Used on pages 15, 93, 166.)

IR information retrieval. “Information retrieval is finding material (usually documents)

of an unstructured nature (usually text) that satisfies an information need from

within large collections (usually stored on computers).” by Manning et al. [127].

See Section 2.1. (Used on pages 1, 6–9, 11, 13–17, 21, 26–28, 67–69, 125, 126,

135–138, 145, 147–150, 152, 165.)

Lerot learning and evaluating rankers online toolkit. Implementation of the online

evaluation framework introduced in Chapter 8. (Used on pages 8, 10, 12, 125–135,

145, 148, 149, 151, 152.)

LL4IR living labs for IR evaluation lab at CLEF. LL4IR is the CLEF lab [164] that uses

the OpenSearch methodology introduced in Chapter 9 of this thesis. (Used on pages

135–137, 142, 143, 149.)

LM language model. Ranking model in which documents and queries are modeled

as sequences drawn from a probability distribution over sequences. Documents

are then ranked by the probability that document and query come from the same

underlying distribution [76, 140]. See Section 2.1.3. (Used on pages 16, 26, 32.)

164

List of Terms

LTR learning to rank. LTR is about finding an optimal combination of ranking features

using machine learning techniques [124]. See Section 2.4. (Used on pages 3, 26–28,

125, 135.)

MAP mean average precisions. Offline evaluation metric by Harman [68], see Sec-

tion 2.2.1. (Used on pages 17, 38.)

MGD multileave gradient descent. Online learning to rank extension of DBGD that

learns from multileaving methods such as TDM, introduced in Chapter 7 of this

thesis. (Used on pages 7, 9, 105–110, 115–121, 126–128, 148, 151, 163, 165.)

MGD-M MGD mean winner. Variant of MGD that updates towards the mean of all

winners, introduced in Chapter 7 of this thesis. (Used on pages 7, 10, 106, 109, 110,

113–121, 148, 151.)

MGD-W MGD winner takes all. Variant of MGD that randomly selects a winner,

introduced in Chapter 7 of this thesis. (Used on pages 7, 10, 106, 109, 110, 113–

121, 148, 151.)

MRUCB multileave RUCB. Variant of RUCB by Zoghi et al. [216], an algorithm for the

K-armed dueling bandits problem, see Section 2.3.4. (Used on pages 64.)

nDCG normalized discounted cumulative gain. Offline evaluation metric by Järvelin and

Kekäläinen [89] that is used throughout this thesis, see Section 2.2.1 and Section 3.4.

(Used on pages 17, 20, 34, 38, 40, 49, 50, 57–59, 97–99, 101, 110–117, 131.)

OI optimized interleave. Recent interleaving method by Radlinski and Craswell [143]

that optimizes for sensitivity. See Section 2.3.3. We extended OI to OM. (Used on

pages 4, 9, 10, 22, 37, 38, 41, 50, 51, 53, 54, 56–61, 65, 107, 129, 146, 165.)

OM optimized multileave. Multileaving method introduced in Chapter 4 of this thesis.

OM extends OI. (Used on pages 4, 5, 8–10, 37–39, 41, 43, 45, 46, 50–61, 65, 107,

130, 146, 165.)

OpenSearch OpenSearch is a new evaluation paradigm for IR. The experimentation

platform is an existing search engine. Researchers have the opportunity to replace

components of this search engine and evaluate these components using interactions

with real, unsuspecting users of this search engine. See Chapter 9. (Used on pages

8, 9, 11, 12, 121, 135–140, 142, 143, 149, 151, 152, 164.)

PI probabilistic interleave. An probabilistic generalization of TDI by Hofmann et al. [79].

This interleaving method has a non-zero probability of any interleaving occurring

as documents are sampled from a softmax distribution over the ranking instead of a

deterministic ranking. See Section 2.3.3. We extended PI to PM. (Used on pages 5,

8, 21, 22, 24, 29, 37, 39, 46–50, 61–63, 65, 129, 130, 146, 147, 163, 165.)

PM probabilistic multileave. PM is a multileaving method that extends PI and is intro-

duced in Chapter 4 of this thesis. (Used on pages 5, 8, 10, 37, 39–41, 46–48, 50, 51,

61–63, 65, 121, 130, 146, 147, 165.)

165

List of Terms

RCM random click model. A click model that mimics a user not having any preference,

this click model is used to validate the absence of bias in evaluation methods, see

Section 2.3.6 and Section 8.2.3. (Used on pages 131.)

RL reinforcement learning. Machine learning from interactions with users, see the book

by Sutton and Barto [178]. (Used on pages 28, 34.)

RUCB relative upper confidence bound. Algorithm by Zoghi et al. [214] for the K-armed

dueling bandits problem, see Section 2.3.4. (Used on pages 24, 64, 165.)

SAT satisfied. Click that satisfied the user, typically with dwell time above a fixed cutoff

of 30 seconds [206]. See Section 5.3.1. (Used on pages 71, 78, 83.)

TDI team draft interleave. Popular interleaving method by Radlinski et al. [144]. See

Section 2.3.3. We extended TDI to TDM. (Used on pages 4, 9, 10, 21–23, 28, 29,

37, 38, 41, 46, 47, 50, 51, 53, 54, 56–58, 65, 72, 73, 76–79, 81–84, 86, 87, 107,

129, 141, 146, 163, 165, 166.)

TDI-VA vertical aware team draft interleave. Extension of TDI by [36] that can inter-

leave result lists with verticals. (Used on pages 129, 131.)

TDM team draft multileave. TDM is a multileaving method that extends TDI and is

introduced in Chapter 4 of this thesis. (Used on pages 4, 5, 7–10, 37–39, 41, 42, 46,

47, 49–59, 61–63, 65, 107, 108, 118, 121, 130, 146, 151, 165, 166.)

TF term frequency. The number of occurrences of a term in a document, by Luhn [126].

Can be used as a retrieval model, see Section 2.1.3. (Used on pages 15, 93, 166.)

TF.IDF term frequency times inverse document frequency. Retrieval model by Sparck

Jones [171] that multiplies the TF with the IDF. (Used on pages 6, 15, 16, 49, 92,

163.)

TREC text retrieval conference. The text retrieval conference has been organized as a

yearly conference for over 25 years [197]. (Used on pages 17, 32, 96, 135–137,

143, 149, 152.)

UBI upper bound interleave. Interleaving method by Kharitonov et al. [106] that uses

historical click data to increase the sensitivity of interleaving. See Section 2.3.3.

(Used on pages 22.)

UBM user browsing model. Click model by Dupret and Piwowarski [53] that assumes

that the examination probability of a document depends on previous clicks, see

Section 2.3.6. (Used on pages 25.)

VSM vector space model. The vector space model by Salton et al. [153] represents both

documents and queries in a space of terms. Documents can then be ranked by how

close they are to the query in this space. See Section 2.1.3. (Used on pages 15, 16.)

166

Samenvatting

Ruim de helft van de wereldbevolking gebruikt tegenwoordig webzoekmachines. Dage-

lijks worden meer dan een half miljard zoekvragen gesteld. Zoekmachines zoals Baidu,

Bing, Google, en Yandex zijn voor veel mensen het eerste waar ze zich toe wenden als ze

een vraag hebben. Sterker nog, zoekmachines zijn voor veel mensen de meest betrouwbare

route naar informatie geworden, betrouwbaarder zelfs dan traditionele media zoals kranten,

nieuwswebsites en het nieuws op televisie. Mensen worden sterk beı̈nvloed door hetgeen

zoekmachines ze voorschotelen. Het beı̈nvloedt hun gedachten, meningen, beslissingen

en acties. Met dit in gedachten, en vanuit het perspectief van het vakgebied information

retrieval (IR), zijn twee zaken belangrijk. Ten eerste is het belangrijk om te begrijpen

hoe goed zoekmachines presteren. Ten tweede moeten we ons inzicht hierin gebruiken

om zoekmachines te verbeteren. Dit proefschrift gaat over deze twee onderwerpen: de

evaluatie van zoekmachines en lerende zoekmachines.

In het eerste deel van dit proefschrift onderzoeken we hoe interacties van zoekmachine-

gebruikers ingezet kunnen worden om zoekmachines te evalueren. We introduceren een

nieuw online evaluatieparadigma dat we multileaving noemen. Multileaving is een

uitbreiding op interleaving: in plaats van slechts twee rankers kunnen met multileaving

meerdere rankers tegelijkertijd met elkaar vergeleken worden. Multileaving combineert de

resultaatlijsten van al deze rankers tot een enkele lijst. De interacties van gebruikers met

die lijst worden geı̈nterpreteerd om te bepalen hoe die rankers zich tot elkaar verhouden.

Daarnaast bestuderen we de relatie tussen A/B testen en interleaving methoden. Beide

studies leiden tot veel hogere gevoeligheid van de evaluatiemethoden. Dit betekent dat

met onze methoden veel minder gebruikers-interacties nodig zijn om tot betrouwbare

conclusies te komen. Een belangrijke implicatie hiervan is dat veel minder gebruikers

worden blootgesteld aan inferieure zoekmachines.

In het tweede deel richten we ons op lerende zoekmachines. We leren van de evalua-

tiemethoden die we in het eerste deel hebben geintroduceerd. We leren de parameters van

basisrankers door naar gebruikerinteracties te kijken. Verder gebruiken we de multileaving

methoden uit het eerste deel als feedbackmechanisme in onze leermethode. Dit leidt tot

veel snellere convergentie dan bij bestaande methoden. Wederom is een belangrijke impli-

catie dat minder gebruikers blootgesteld worden aan mogelijk inferieure zoekmachines

doordat deze zich nu sneller aanpassen aan de voorkeuren van gebruikers.

Het laatste deel van dit proefschrift is van heel andere aard. In tegenstelling tot de

eerste twee delen bestuderen we niet langer algoritmen. Vooruitgang in IR werd altijd al

gedreven door een combinatie van algoritmen, gedeelde hulpmiddelen en evaluatie. In het

laatste deel besteden we aandacht aan de laatste twee onderwerpen. We introduceren een

nieuw gedeeld hulpmiddel en een nieuw evaluatieparadigma. Ten eerste introduceren we

Lerot, een online evaluatieraamwerk dat het mogelijk maakt om gebruikers-interactie met

zoekmachines te simuleren. Lerot is als opensource-software uitgebracht en wordt door

onderzoekers over de hele wereld gebruikt. Ten tweede introduceren we OpenSearch,

een nieuw evaluatieparadigma dat gebruikmaakt van echte gebruikers van echte zoek-

machines. We beschrijven een implementatie van dit paradigma dat inmiddels door de

onderzoeksgemeenschap gebruikt wordt bij zowel CLEF als TREC.

167

SIKS Dissertation Series

1998

1 Johan van den Akker (CWI) DEGAS: An Active,

Temporal Database of Autonomous Objects

2 Floris Wiesman (UM) Information Retrieval by

Graphically Browsing Meta-Information

3 Ans Steuten (TUD) A Contribution to the Linguis-

tic Analysis of Business Conversations

4 Dennis Breuker (UM) Memory versus Search in

Games

5 E. W. Oskamp (RUL) Computerondersteuning bij

Straftoemeting

1999

1 Mark Sloof (VUA) Physiology of Quality Change

Modelling: Automated modelling of

2 Rob Potharst (EUR) Classification using decision

trees and neural nets

3 Don Beal (UM) The Nature of Minimax Search

4 Jacques Penders (UM) The practical Art of Moving

Physical Objects

5 Aldo de Moor (KUB) Empowering Communities:

A Method for the Legitimate User-Driven

6 Niek J. E. Wijngaards (VUA) Re-design of compo-

sitional systems

7 David Spelt (UT) Verification support for object

database design

8 Jacques H. J. Lenting (UM) Informed Gambling:

Conception and Analysis of a Multi-Agent Mecha-

nism

2000

1 Frank Niessink (VUA) Perspectives on Improving

Software Maintenance

2 Koen Holtman (TUe) Prototyping of CMS Storage

Management

3 Carolien M. T. Metselaar (UvA) Sociaal-

organisatorische gevolgen van kennistechnologie

4 Geert de Haan (VUA) ETAG, A Formal Model of

Competence Knowledge for User Interface

5 Ruud van der Pol (UM) Knowledge-based Query

Formulation in Information Retrieval

6 Rogier van Eijk (UU) Programming Languages

for Agent Communication

7 Niels Peek (UU) Decision-theoretic Planning of

Clinical Patient Management

8 Veerle Coupé (EUR) Sensitivity Analyis of

Decision-Theoretic Networks

9 Florian Waas (CWI) Principles of Probabilistic

Query Optimization

10 Niels Nes (CWI) Image Database Management

System Design Considerations, Algorithms and

Architecture

11 Jonas Karlsson (CWI) Scalable Distributed Data

Structures for Database Management

2001

1 Silja Renooij (UU) Qualitative Approaches to

Quantifying Probabilistic Networks

2 Koen Hindriks (UU) Agent Programming Lan-

guages: Programming with Mental Models

3 Maarten van Someren (UvA) Learning as problem

solving

4 Evgueni Smirnov (UM) Conjunctive and Disjunc-

tive Version Spaces with Instance-Based Boundary

Sets

5 Jacco van Ossenbruggen (VUA) Processing Struc-

tured Hypermedia: A Matter of Style

6 Martijn van Welie (VUA) Task-based User Inter-

face Design

7 Bastiaan Schonhage (VUA) Diva: Architectural

Perspectives on Information Visualization

8 Pascal van Eck (VUA) A Compositional Semantic

Structure for Multi-Agent Systems Dynamics

9 Pieter Jan ’t Hoen (RUL) Towards Distributed De-

velopment of Large Object-Oriented Models

10 Maarten Sierhuis (UvA) Modeling and Simulating

Work Practice

11 Tom M. van Engers (VUA) Knowledge Manage-

ment

2002

1 Nico Lassing (VUA) Architecture-Level Modifia-

bility Analysis

2 Roelof van Zwol (UT) Modelling and searching

web-based document collections

3 Henk Ernst Blok (UT) Database Optimization As-

pects for Information Retrieval

4 Juan Roberto Castelo Valdueza (UU) The Discrete

Acyclic Digraph Markov Model in Data Mining

5 Radu Serban (VUA) The Private Cyberspace Mod-

eling Electronic

6 Laurens Mommers (UL) Applied legal epistemol-

ogy: Building a knowledge-based ontology of

7 Peter Boncz (CWI) Monet: A Next-Generation

DBMS Kernel For Query-Intensive

8 Jaap Gordijn (VUA) Value Based Requirements

Engineering: Exploring Innovative

9 Willem-Jan van den Heuvel (KUB) Integrating

Modern Business Applications with Objectified

Legacy

10 Brian Sheppard (UM) Towards Perfect Play of

Scrabble

11 Wouter C. A. Wijngaards (VUA) Agent Based

Modelling of Dynamics: Biological and Organ-

isational Applications

12 Albrecht Schmidt (UvA) Processing XML in

Database Systems

169

SIKS Dissertation Series

13 Hongjing Wu (TUe) A Reference Architecture for

Adaptive Hypermedia Applications

14 Wieke de Vries (UU) Agent Interaction: Abstract

Approaches to Modelling, Programming and Veri-

fying Multi-Agent Systems

15 Rik Eshuis (UT) Semantics and Verification of

UML Activity Diagrams for Workflow Modelling

16 Pieter van Langen (VUA) The Anatomy of Design:

Foundations, Models and Applications

17 Stefan Manegold (UvA) Understanding, Model-

ing, and Improving Main-Memory Database Per-

formance

2003

1 Heiner Stuckenschmidt (VUA) Ontology-Based

Information Sharing in Weakly Structured Environ-

ments

2 Jan Broersen (VUA) Modal Action Logics for Rea-

soning About Reactive Systems

3 Martijn Schuemie (TUD) Human-Computer Inter-

action and Presence in Virtual Reality Exposure

Therapy

4 Milan Petkovic (UT) Content-Based Video Re-

trieval Supported by Database Technology

5 Jos Lehmann (UvA) Causation in Artificial Intelli-

gence and Law: A modelling approach

6 Boris van Schooten (UT) Development and speci-

fication of virtual environments

7 Machiel Jansen (UvA) Formal Explorations of

Knowledge Intensive Tasks

8 Yongping Ran (UM) Repair Based Scheduling

9 Rens Kortmann (UM) The resolution of visually

guided behaviour

10 Andreas Lincke (UvT) Electronic Business Nego-

tiation: Some experimental studies on the inter-

action between medium, innovation context and

culture

11 Simon Keizer (UT) Reasoning under Uncertainty

in Natural Language Dialogue using Bayesian Net-

works

12 Roeland Ordelman (UT) Dutch speech recognition

in multimedia information retrieval

13 Jeroen Donkers (UM) Nosce Hostem: Searching

with Opponent Models

14 Stijn Hoppenbrouwers (KUN) Freezing Lan-

guage: Conceptualisation Processes across ICT-

Supported Organisations

15 Mathijs de Weerdt (TUD) Plan Merging in Multi-

Agent Systems

16 Menzo Windhouwer (CWI) Feature Grammar Sys-

tems: Incremental Maintenance of Indexes to Dig-

ital Media Warehouses

17 David Jansen (UT) Extensions of Statecharts with

Probability, Time, and Stochastic Timing

18 Levente Kocsis (UM) Learning Search Decisions

2004

1 Virginia Dignum (UU) A Model for Organiza-

tional Interaction: Based on Agents, Founded in

Logic

2 Lai Xu (UvT) Monitoring Multi-party Contracts

for E-business

3 Perry Groot (VUA) A Theoretical and Empirical

Analysis of Approximation in Symbolic Problem

Solving

4 Chris van Aart (UvA) Organizational Principles

for Multi-Agent Architectures

5 Viara Popova (EUR) Knowledge discovery and

monotonicity

6 Bart-Jan Hommes (TUD) The Evaluation of Busi-

ness Process Modeling Techniques

7 Elise Boltjes (UM) Voorbeeldig onderwijs: voor-

beeldgestuurd onderwijs, een opstap naar abstract

denken, vooral voor meisjes

8 Joop Verbeek (UM) Politie en de Nieuwe Interna-

tionale Informatiemarkt, Grensregionale politiële

gegevensuitwisseling en digitale expertise

9 Martin Caminada (VUA) For the Sake of the Argu-

ment: explorations into argument-based reasoning

10 Suzanne Kabel (UvA) Knowledge-rich indexing of

learning-objects

11 Michel Klein (VUA) Change Management for Dis-

tributed Ontologies

12 The Duy Bui (UT) Creating emotions and facial

expressions for embodied agents

13 Wojciech Jamroga (UT) Using Multiple Models of

Reality: On Agents who Know how to Play

14 Paul Harrenstein (UU) Logic in Conflict. Logical

Explorations in Strategic Equilibrium

15 Arno Knobbe (UU) Multi-Relational Data Mining

16 Federico Divina (VUA) Hybrid Genetic Relational

Search for Inductive Learning

17 Mark Winands (UM) Informed Search in Complex

Games

18 Vania Bessa Machado (UvA) Supporting the Con-

struction of Qualitative Knowledge Models

19 Thijs Westerveld (UT) Using generative proba-

bilistic models for multimedia retrieval

20 Madelon Evers (Nyenrode) Learning from Design:

facilitating multidisciplinary design teams

2005

1 Floor Verdenius (UvA) Methodological Aspects of

Designing Induction-Based Applications

2 Erik van der Werf (UM) AI techniques for the game

of Go

3 Franc Grootjen (RUN) A Pragmatic Approach to

the Conceptualisation of Language

4 Nirvana Meratnia (UT) Towards Database Support

for Moving Object data

5 Gabriel Infante-Lopez (UvA) Two-Level Proba-

bilistic Grammars for Natural Language Parsing

170

SIKS Dissertation Series

6 Pieter Spronck (UM) Adaptive Game AI

7 Flavius Frasincar (TUe) Hypermedia Presentation

Generation for Semantic Web Information Systems

8 Richard Vdovjak (TUe) A Model-driven Approach

for Building Distributed Ontology-based Web Ap-

plications

9 Jeen Broekstra (VUA) Storage, Querying and In-

ferencing for Semantic Web Languages

10 Anders Bouwer (UvA) Explaining Behaviour: Us-

ing Qualitative Simulation in Interactive Learning

Environments

11 Elth Ogston (VUA) Agent Based Matchmaking

and Clustering: A Decentralized Approach to

Search

12 Csaba Boer (EUR) Distributed Simulation in In-

dustry

13 Fred Hamburg (UL) Een Computermodel voor het

Ondersteunen van Euthanasiebeslissingen

14 Borys Omelayenko (VUA) Web-Service configura-

tion on the Semantic Web: Exploring how seman-

tics meets pragmatics

15 Tibor Bosse (VUA) Analysis of the Dynamics of

Cognitive Processes

16 Joris Graaumans (UU) Usability of XML Query

Languages

17 Boris Shishkov (TUD) Software Specification

Based on Re-usable Business Components

18 Danielle Sent (UU) Test-selection strategies for

probabilistic networks

19 Michel van Dartel (UM) Situated Representation

20 Cristina Coteanu (UL) Cyber Consumer Law, State

of the Art and Perspectives

21 Wijnand Derks (UT) Improving Concurrency and

Recovery in Database Systems by Exploiting Ap-

plication Semantics

2006

1 Samuil Angelov (TUe) Foundations of B2B Elec-

tronic Contracting

2 Cristina Chisalita (VUA) Contextual issues in the

design and use of information technology in orga-

nizations

3 Noor Christoph (UvA) The role of metacognitive

skills in learning to solve problems

4 Marta Sabou (VUA) Building Web Service Ontolo-

gies

5 Cees Pierik (UU) Validation Techniques for Object-

Oriented Proof Outlines

6 Ziv Baida (VUA) Software-aided Service

Bundling: Intelligent Methods & Tools for Graphi-

cal Service Modeling

7 Marko Smiljanic (UT) XML schema matching:

balancing efficiency and effectiveness by means

of clustering

8 Eelco Herder (UT) Forward, Back and Home

Again: Analyzing User Behavior on the Web

9 Mohamed Wahdan (UM) Automatic Formulation

of the Auditor’s Opinion

10 Ronny Siebes (VUA) Semantic Routing in Peer-to-

Peer Systems

11 Joeri van Ruth (UT) Flattening Queries over

Nested Data Types

12 Bert Bongers (VUA) Interactivation: Towards an

e-cology of people, our technological environment,

and the arts

13 Henk-Jan Lebbink (UU) Dialogue and Decision

Games for Information Exchanging Agents

14 Johan Hoorn (VUA) Software Requirements: Up-

date, Upgrade, Redesign - towards a Theory of

Requirements Change

15 Rainer Malik (UU) CONAN: Text Mining in the

Biomedical Domain

16 Carsten Riggelsen (UU) Approximation Methods

for Efficient Learning of Bayesian Networks

17 Stacey Nagata (UU) User Assistance for Multitask-

ing with Interruptions on a Mobile Device

18 Valentin Zhizhkun (UvA) Graph transformation

for Natural Language Processing

19 Birna van Riemsdijk (UU) Cognitive Agent Pro-

gramming: A Semantic Approach

20 Marina Velikova (UvT) Monotone models for pre-

diction in data mining

21 Bas van Gils (RUN) Aptness on the Web

22 Paul de Vrieze (RUN) Fundaments of Adaptive

Personalisation

23 Ion Juvina (UU) Development of Cognitive Model

for Navigating on the Web

24 Laura Hollink (VUA) Semantic Annotation for Re-

trieval of Visual Resources

25 Madalina Drugan (UU) Conditional log-likelihood

MDL and Evolutionary MCMC

26 Vojkan Mihajlovic (UT) Score Region Algebra:

A Flexible Framework for Structured Information

Retrieval

27 Stefano Bocconi (CWI) Vox Populi: generating

video documentaries from semantically annotated

media repositories

28 Borkur Sigurbjornsson (UvA) Focused Informa-

tion Access using XML Element Retrieval

2007

1 Kees Leune (UvT) Access Control and Service-

Oriented Architectures

2 Wouter Teepe (RUG) Reconciling Information Ex-

change and Confidentiality: A Formal Approach

3 Peter Mika (VUA) Social Networks and the Se-

mantic Web

4 Jurriaan van Diggelen (UU) Achieving Seman-

tic Interoperability in Multi-agent Systems: a

dialogue-based approach

5 Bart Schermer (UL) Software Agents, Surveillance,

and the Right to Privacy: a Legislative Framework

for Agent-enabled Surveillance

171

SIKS Dissertation Series

6 Gilad Mishne (UvA) Applied Text Analytics for

Blogs

7 Natasa Jovanovic’ (UT) To Whom It May Concern:

Addressee Identification in Face-to-Face Meetings

8 Mark Hoogendoorn (VUA) Modeling of Change

in Multi-Agent Organizations

9 David Mobach (VUA) Agent-Based Mediated Ser-

vice Negotiation

10 Huib Aldewereld (UU) Autonomy vs. Conformity:

an Institutional Perspective on Norms and Proto-

cols

11 Natalia Stash (TUe) Incorporating Cogni-

tive/Learning Styles in a General-Purpose Adap-

tive Hypermedia System

12 Marcel van Gerven (RUN) Bayesian Networks for

Clinical Decision Support: A Rational Approach

to Dynamic Decision-Making under Uncertainty

13 Rutger Rienks (UT) Meetings in Smart Environ-

ments: Implications of Progressing Technology

14 Niek Bergboer (UM) Context-Based Image Analy-

sis

15 Joyca Lacroix (UM) NIM: a Situated Computa-

tional Memory Model

16 Davide Grossi (UU) Designing Invisible Hand-

cuffs. Formal investigations in Institutions and

Organizations for Multi-agent Systems

17 Theodore Charitos (UU) Reasoning with Dynamic

Networks in Practice

18 Bart Orriens (UvT) On the development an man-

agement of adaptive business collaborations

19 David Levy (UM) Intimate relationships with arti-

ficial partners

20 Slinger Jansen (UU) Customer Configuration Up-

dating in a Software Supply Network

21 Karianne Vermaas (UU) Fast diffusion and broad-

ening use: A research on residential adoption and

usage of broadband internet in the Netherlands

between 2001 and 2005

22 Zlatko Zlatev (UT) Goal-oriented design of value

and process models from patterns

23 Peter Barna (TUe) Specification of Application

Logic in Web Information Systems

24 Georgina Ramı́rez Camps (CWI) Structural Fea-

tures in XML Retrieval

25 Joost Schalken (VUA) Empirical Investigations in

Software Process Improvement

2008

1 Katalin Boer-Sorbán (EUR) Agent-Based Simula-

tion of Financial Markets: A modular, continuous-

time approach

2 Alexei Sharpanskykh (VUA) On Computer-Aided

Methods for Modeling and Analysis of Organiza-

tions

3 Vera Hollink (UvA) Optimizing hierarchical

menus: a usage-based approach

4 Ander de Keijzer (UT) Management of Uncertain

Data: towards unattended integration

5 Bela Mutschler (UT) Modeling and simulating

causal dependencies on process-aware informa-

tion systems from a cost perspective

6 Arjen Hommersom (RUN) On the Application of

Formal Methods to Clinical Guidelines, an Artifi-

cial Intelligence Perspective

7 Peter van Rosmalen (OU) Supporting the tutor in

the design and support of adaptive e-learning

8 Janneke Bolt (UU) Bayesian Networks: Aspects of

Approximate Inference

9 Christof van Nimwegen (UU) The paradox of the

guided user: assistance can be counter-effective

10 Wauter Bosma (UT) Discourse oriented summa-

rization

11 Vera Kartseva (VUA) Designing Controls for Net-

work Organizations: A Value-Based Approach

12 Jozsef Farkas (RUN) A Semiotically Oriented Cog-

nitive Model of Knowledge Representation

13 Caterina Carraciolo (UvA) Topic Driven Access to

Scientific Handbooks

14 Arthur van Bunningen (UT) Context-Aware Query-

ing: Better Answers with Less Effort

15 Martijn van Otterlo (UT) The Logic of Adaptive

Behavior: Knowledge Representation and Algo-

rithms for the Markov Decision Process Frame-

work in First-Order Domains

16 Henriette van Vugt (VUA) Embodied agents from

a user’s perspective

17 Martin Op ’t Land (TUD) Applying Architecture

and Ontology to the Splitting and Allying of Enter-

prises

18 Guido de Croon (UM) Adaptive Active Vision

19 Henning Rode (UT) From Document to Entity Re-

trieval: Improving Precision and Performance of

Focused Text Search

20 Rex Arendsen (UvA) Geen bericht, goed bericht.

Een onderzoek naar de effecten van de introductie

van elektronisch berichtenverkeer met de overheid

op de administratieve lasten van bedrijven

21 Krisztian Balog (UvA) People Search in the Enter-

prise

22 Henk Koning (UU) Communication of IT-

Architecture

23 Stefan Visscher (UU) Bayesian network models

for the management of ventilator-associated pneu-

monia

24 Zharko Aleksovski (VUA) Using background

knowledge in ontology matching

25 Geert Jonker (UU) Efficient and Equitable Ex-

change in Air Traffic Management Plan Repair

using Spender-signed Currency

26 Marijn Huijbregts (UT) Segmentation, Diarization

and Speech Transcription: Surprise Data Unrav-

eled

172

SIKS Dissertation Series

27 Hubert Vogten (OU) Design and Implementation

Strategies for IMS Learning Design

28 Ildiko Flesch (RUN) On the Use of Independence

Relations in Bayesian Networks

29 Dennis Reidsma (UT) Annotations and Subjec-

tive Machines: Of Annotators, Embodied Agents,

Users, and Other Humans

30 Wouter van Atteveldt (VUA) Semantic Network

Analysis: Techniques for Extracting, Representing

and Querying Media Content

31 Loes Braun (UM) Pro-Active Medical Information

Retrieval

32 Trung H. Bui (UT) Toward Affective Dialogue

Management using Partially Observable Markov

Decision Processes

33 Frank Terpstra (UvA) Scientific Workflow Design:

theoretical and practical issues

34 Jeroen de Knijf (UU) Studies in Frequent Tree

Mining

35 Ben Torben Nielsen (UvT) Dendritic morpholo-

gies: function shapes structure

2009

1 Rasa Jurgelenaite (RUN) Symmetric Causal Inde-

pendence Models

2 Willem Robert van Hage (VUA) Evaluating

Ontology-Alignment Techniques

3 Hans Stol (UvT) A Framework for Evidence-based

Policy Making Using IT

4 Josephine Nabukenya (RUN) Improving the Qual-

ity of Organisational Policy Making using Collab-

oration Engineering

5 Sietse Overbeek (RUN) Bridging Supply and De-

mand for Knowledge Intensive Tasks: Based on

Knowledge, Cognition, and Quality

6 Muhammad Subianto (UU) Understanding Classi-

fication

7 Ronald Poppe (UT) Discriminative Vision-Based

Recovery and Recognition of Human Motion

8 Volker Nannen (VUA) Evolutionary Agent-Based

Policy Analysis in Dynamic Environments

9 Benjamin Kanagwa (RUN) Design, Discovery and

Construction of Service-oriented Systems

10 Jan Wielemaker (UvA) Logic programming for

knowledge-intensive interactive applications

11 Alexander Boer (UvA) Legal Theory, Sources of

Law & the Semantic Web

12 Peter Massuthe (TUE, Humboldt-Universitaet zu

Berlin) Operating Guidelines for Services

13 Steven de Jong (UM) Fairness in Multi-Agent Sys-

tems

14 Maksym Korotkiy (VUA) From ontology-enabled

services to service-enabled ontologies (making on-

tologies work in e-science with ONTO-SOA)

15 Rinke Hoekstra (UvA) Ontology Representation:

Design Patterns and Ontologies that Make Sense

16 Fritz Reul (UvT) New Architectures in Computer

Chess

17 Laurens van der Maaten (UvT) Feature Extraction

from Visual Data

18 Fabian Groffen (CWI) Armada, An Evolving

Database System

19 Valentin Robu (CWI) Modeling Preferences,

Strategic Reasoning and Collaboration in Agent-

Mediated Electronic Markets

20 Bob van der Vecht (UU) Adjustable Autonomy:

Controling Influences on Decision Making

21 Stijn Vanderlooy (UM) Ranking and Reliable Clas-

sification

22 Pavel Serdyukov (UT) Search For Expertise: Go-

ing beyond direct evidence

23 Peter Hofgesang (VUA) Modelling Web Usage in

a Changing Environment

24 Annerieke Heuvelink (VUA) Cognitive Models for

Training Simulations

25 Alex van Ballegooij (CWI) RAM: Array Database

Management through Relational Mapping

26 Fernando Koch (UU) An Agent-Based Model for

the Development of Intelligent Mobile Services

27 Christian Glahn (OU) Contextual Support of social

Engagement and Reflection on the Web

28 Sander Evers (UT) Sensor Data Management with

Probabilistic Models

29 Stanislav Pokraev (UT) Model-Driven Semantic

Integration of Service-Oriented Applications

30 Marcin Zukowski (CWI) Balancing vectorized

query execution with bandwidth-optimized storage

31 Sofiya Katrenko (UvA) A Closer Look at Learning

Relations from Text

32 Rik Farenhorst (VUA) Architectural Knowledge

Management: Supporting Architects and Auditors

33 Khiet Truong (UT) How Does Real Affect Affect

Affect Recognition In Speech?

34 Inge van de Weerd (UU) Advancing in Software

Product Management: An Incremental Method En-

gineering Approach

35 Wouter Koelewijn (UL) Privacy en Poli-

tiegegevens: Over geautomatiseerde normatieve

informatie-uitwisseling

36 Marco Kalz (OUN) Placement Support for Learn-

ers in Learning Networks

37 Hendrik Drachsler (OUN) Navigation Support for

Learners in Informal Learning Networks

38 Riina Vuorikari (OU) Tags and self-organisation:

a metadata ecology for learning resources in a

multilingual context

39 Christian Stahl (TUE, Humboldt-Universitaet zu

Berlin) Service Substitution: A Behavioral Ap-

proach Based on Petri Nets

40 Stephan Raaijmakers (UvT) Multinomial Lan-

guage Learning: Investigations into the Geometry

of Language

41 Igor Berezhnyy (UvT) Digital Analysis of Paint-

ings

173

SIKS Dissertation Series

42 Toine Bogers (UvT) Recommender Systems for

Social Bookmarking

43 Virginia Nunes Leal Franqueira (UT) Finding

Multi-step Attacks in Computer Networks using

Heuristic Search and Mobile Ambients

44 Roberto Santana Tapia (UT) Assessing Business-IT

Alignment in Networked Organizations

45 Jilles Vreeken (UU) Making Pattern Mining Use-

ful

46 Loredana Afanasiev (UvA) Querying XML: Bench-

marks and Recursion

2010

1 Matthijs van Leeuwen (UU) Patterns that Matter

2 Ingo Wassink (UT) Work flows in Life Science

3 Joost Geurts (CWI) A Document Engineering

Model and Processing Framework for Multime-

dia documents

4 Olga Kulyk (UT) Do You Know What I Know?

Situational Awareness of Co-located Teams in Mul-

tidisplay Environments

5 Claudia Hauff (UT) Predicting the Effectiveness

of Queries and Retrieval Systems

6 Sander Bakkes (UvT) Rapid Adaptation of Video

Game AI

7 Wim Fikkert (UT) Gesture interaction at a Dis-

tance

8 Krzysztof Siewicz (UL) Towards an Improved Reg-

ulatory Framework of Free Software. Protecting

user freedoms in a world of software communities

and eGovernments

9 Hugo Kielman (UL) A Politiele gegevensverwerk-

ing en Privacy, Naar een effectieve waarborging

10 Rebecca Ong (UL) Mobile Communication and

Protection of Children

11 Adriaan Ter Mors (TUD) The world according to

MARP: Multi-Agent Route Planning

12 Susan van den Braak (UU) Sensemaking software

for crime analysis

13 Gianluigi Folino (RUN) High Performance Data

Mining using Bio-inspired techniques

14 Sander van Splunter (VUA) Automated Web Ser-

vice Reconfiguration

15 Lianne Bodenstaff (UT) Managing Dependency

Relations in Inter-Organizational Models

16 Sicco Verwer (TUD) Efficient Identification of

Timed Automata, theory and practice

17 Spyros Kotoulas (VUA) Scalable Discovery of Net-

worked Resources: Algorithms, Infrastructure, Ap-

plications

18 Charlotte Gerritsen (VUA) Caught in the Act: In-

vestigating Crime by Agent-Based Simulation

19 Henriette Cramer (UvA) People’s Responses to

Autonomous and Adaptive Systems

20 Ivo Swartjes (UT) Whose Story Is It Anyway? How

Improv Informs Agency and Authorship of Emer-

gent Narrative

21 Harold van Heerde (UT) Privacy-aware data man-

agement by means of data degradation

22 Michiel Hildebrand (CWI) End-user Support for

Access to

Heterogeneous Linked Data

23 Bas Steunebrink (UU) The Logical Structure of

Emotions

24 Zulfiqar Ali Memon (VUA) Modelling Human-

Awareness for Ambient Agents: A Human Min-

dreading Perspective

25 Ying Zhang (CWI) XRPC: Efficient Distributed

Query Processing on Heterogeneous XQuery En-

gines

26 Marten Voulon (UL) Automatisch contracteren

27 Arne Koopman (UU) Characteristic Relational

Patterns

28 Stratos Idreos (CWI) Database Cracking: Towards

Auto-tuning Database Kernels

29 Marieke van Erp (UvT) Accessing Natural His-

tory: Discoveries in data cleaning, structuring,

and retrieval

30 Victor de Boer (UvA) Ontology Enrichment from

Heterogeneous Sources on the Web

31 Marcel Hiel (UvT) An Adaptive Service Oriented

Architecture: Automatically solving Interoperabil-

ity Problems

32 Robin Aly (UT) Modeling Representation Uncer-

tainty in Concept-Based Multimedia Retrieval

33 Teduh Dirgahayu (UT) Interaction Design in Ser-

vice Compositions

34 Dolf Trieschnigg (UT) Proof of Concept: Concept-

based Biomedical Information Retrieval

35 Jose Janssen (OU) Paving the Way for Lifelong

Learning: Facilitating competence development

through a learning path specification

36 Niels Lohmann (TUe) Correctness of services and

their composition

37 Dirk Fahland (TUe) From Scenarios to compo-

nents

38 Ghazanfar Farooq Siddiqui (VUA) Integrative

modeling of emotions in virtual agents

39 Mark van Assem (VUA) Converting and Integrat-

ing Vocabularies for the Semantic Web

40 Guillaume Chaslot (UM) Monte-Carlo Tree

Search

41 Sybren de Kinderen (VUA) Needs-driven service

bundling in a multi-supplier setting: the computa-

tional e3-service approach

42 Peter van Kranenburg (UU) A Computational Ap-

proach to Content-Based Retrieval of Folk Song

Melodies

43 Pieter Bellekens (TUe) An Approach towards

Context-sensitive and User-adapted Access to Het-

erogeneous Data Sources, Illustrated in the Televi-

sion Domain

44 Vasilios Andrikopoulos (UvT) A theory and model

for the evolution of software services

174

SIKS Dissertation Series

45 Vincent Pijpers (VUA) e3alignment: Exploring

Inter-Organizational Business-ICT Alignment

46 Chen Li (UT) Mining Process Model Variants:

Challenges, Techniques, Examples

47 Jahn-Takeshi Saito (UM) Solving difficult game

positions

48 Bouke Huurnink (UvA) Search in Audiovisual

Broadcast Archives

49 Alia Khairia Amin (CWI) Understanding and

supporting information seeking tasks in multiple

sources

50 Peter-Paul van Maanen (VUA) Adaptive Support

for Human-Computer Teams: Exploring the Use

of Cognitive Models of Trust and Attention

51 Edgar Meij (UvA) Combining Concepts and Lan-

guage Models for Information Access

2011

1 Botond Cseke (RUN) Variational Algorithms for

Bayesian Inference in Latent Gaussian Models

2 Nick Tinnemeier (UU) Organizing Agent Organi-

zations. Syntax and Operational Semantics of an

Organization-Oriented Programming Language

3 Jan Martijn van der Werf (TUe) Compositional

Design and Verification of Component-Based In-

formation Systems

4 Hado van Hasselt (UU) Insights in Reinforcement

Learning: Formal analysis and empirical evalua-

tion of temporal-difference

5 Base van der Raadt (VUA) Enterprise Architecture

Coming of Age: Increasing the Performance of an

Emerging Discipline

6 Yiwen Wang (TUe) Semantically-Enhanced Rec-

ommendations in Cultural Heritage

7 Yujia Cao (UT) Multimodal Information Presenta-

tion for High Load Human Computer Interaction

8 Nieske Vergunst (UU) BDI-based Generation of

Robust Task-Oriented Dialogues

9 Tim de Jong (OU) Contextualised Mobile Media

for Learning

10 Bart Bogaert (UvT) Cloud Content Contention

11 Dhaval Vyas (UT) Designing for Awareness: An

Experience-focused HCI Perspective

12 Carmen Bratosin (TUe) Grid Architecture for Dis-

tributed Process Mining

13 Xiaoyu Mao (UvT) Airport under Control. Multi-

agent Scheduling for Airport Ground Handling

14 Milan Lovric (EUR) Behavioral Finance and

Agent-Based Artificial Markets

15 Marijn Koolen (UvA) The Meaning of Structure:

the Value of Link Evidence for Information Re-

trieval

16 Maarten Schadd (UM) Selective Search in Games

of Different Complexity

17 Jiyin He (UvA) Exploring Topic Structure: Coher-

ence, Diversity and Relatedness

18 Mark Ponsen (UM) Strategic Decision-Making in

complex games

19 Ellen Rusman (OU) The Mind ’ s Eye on Personal

Profiles

20 Qing Gu (VUA) Guiding service-oriented software

engineering: A view-based approach

21 Linda Terlouw (TUD) Modularization and Specifi-

cation of Service-Oriented Systems

22 Junte Zhang (UvA) System Evaluation of Archival

Description and Access

23 Wouter Weerkamp (UvA) Finding People and

their Utterances in Social Media

24 Herwin van Welbergen (UT) Behavior Genera-

tion for Interpersonal Coordination with Virtual

Humans On Specifying, Scheduling and Realizing

Multimodal Virtual Human Behavior

25 Syed Waqar ul Qounain Jaffry (VUA) Analysis

and Validation of Models for Trust Dynamics

26 Matthijs Aart Pontier (VUA) Virtual Agents for

Human Communication: Emotion Regulation and

Involvement-Distance Trade-Offs in Embodied

Conversational Agents and Robots

27 Aniel Bhulai (VUA) Dynamic website optimiza-

tion through autonomous management of design

patterns

28 Rianne Kaptein (UvA) Effective Focused Retrieval

by Exploiting Query Context and Document Struc-

ture

29 Faisal Kamiran (TUe) Discrimination-aware Clas-

sification

30 Egon van den Broek (UT) Affective Signal Process-

ing (ASP): Unraveling the mystery of emotions

31 Ludo Waltman (EUR) Computational and Game-

Theoretic Approaches for Modeling Bounded Ra-

tionality

32 Nees-Jan van Eck (EUR) Methodological Ad-

vances in Bibliometric Mapping of Science

33 Tom van der Weide (UU) Arguing to Motivate De-

cisions

34 Paolo Turrini (UU) Strategic Reasoning in Interde-

pendence: Logical and Game-theoretical Investi-

gations

35 Maaike Harbers (UU) Explaining Agent Behavior

in Virtual Training

36 Erik van der Spek (UU) Experiments in serious

game design: a cognitive approach

37 Adriana Burlutiu (RUN) Machine Learning for

Pairwise Data, Applications for Preference Learn-

ing and Supervised Network Inference

38 Nyree Lemmens (UM) Bee-inspired Distributed

Optimization

39 Joost Westra (UU) Organizing Adaptation using

Agents in Serious Games

40 Viktor Clerc (VUA) Architectural Knowledge

Management in Global Software Development

41 Luan Ibraimi (UT) Cryptographically Enforced

Distributed Data Access Control

42 Michal Sindlar (UU) Explaining Behavior through

Mental State Attribution

175

SIKS Dissertation Series

43 Henk van der Schuur (UU) Process Improvement

through Software Operation Knowledge

44 Boris Reuderink (UT) Robust Brain-Computer In-

terfaces

45 Herman Stehouwer (UvT) Statistical Language

Models for Alternative Sequence Selection

46 Beibei Hu (TUD) Towards Contextualized Infor-

mation Delivery: A Rule-based Architecture for

the Domain of Mobile Police Work

47 Azizi Bin Ab Aziz (VUA) Exploring Computa-

tional Models for Intelligent Support of Persons

with Depression

48 Mark Ter Maat (UT) Response Selection and Turn-

taking for a Sensitive Artificial Listening Agent

49 Andreea Niculescu (UT) Conversational inter-

faces for task-oriented spoken dialogues: design

aspects influencing interaction quality

2012

1 Terry Kakeeto (UvT) Relationship Marketing for

SMEs in Uganda

2 Muhammad Umair (VUA) Adaptivity, emotion,

and Rationality in Human and Ambient Agent Mod-

els

3 Adam Vanya (VUA) Supporting Architecture Evo-

lution by Mining Software Repositories

4 Jurriaan Souer (UU) Development of Content Man-

agement System-based Web Applications

5 Marijn Plomp (UU) Maturing Interorganisational

Information Systems

6 Wolfgang Reinhardt (OU) Awareness Support for

Knowledge Workers in Research Networks

7 Rianne van Lambalgen (VUA) When the Going

Gets Tough: Exploring Agent-based Models of Hu-

man Performance under Demanding Conditions

8 Gerben de Vries (UvA) Kernel Methods for Vessel

Trajectories

9 Ricardo Neisse (UT) Trust and Privacy Manage-

ment Support for Context-Aware Service Platforms

10 David Smits (TUe) Towards a Generic Distributed

Adaptive Hypermedia Environment

11 J. C. B. Rantham Prabhakara (TUe) Process Min-

ing in the Large: Preprocessing, Discovery, and

Diagnostics

12 Kees van der Sluijs (TUe) Model Driven Design

and Data Integration in Semantic Web Information

Systems

13 Suleman Shahid (UvT) Fun and Face: Exploring

non-verbal expressions of emotion during playful

interactions

14 Evgeny Knutov (TUe) Generic Adaptation Frame-

work for Unifying Adaptive Web-based Systems

15 Natalie van der Wal (VUA) Social Agents. Agent-

Based Modelling of Integrated Internal and Social

Dynamics of Cognitive and Affective Processes

16 Fiemke Both (VUA) Helping people by under-

standing them: Ambient Agents supporting task

execution and depression treatment

17 Amal Elgammal (UvT) Towards a Comprehensive

Framework for Business Process Compliance

18 Eltjo Poort (VUA) Improving Solution Architect-

ing Practices

19 Helen Schonenberg (TUe) What’s Next? Opera-

tional Support for Business Process Execution

20 Ali Bahramisharif (RUN) Covert Visual Spatial

Attention, a Robust Paradigm for Brain-Computer

Interfacing

21 Roberto Cornacchia (TUD) Querying Sparse Ma-

trices for Information Retrieval

22 Thijs Vis (UvT) Intelligence, politie en veilighei-

dsdienst: verenigbare grootheden?

23 Christian Muehl (UT) Toward Affective Brain-

Computer Interfaces: Exploring the Neurophys-

iology of Affect during Human Media Interaction

24 Laurens van der Werff (UT) Evaluation of Noisy

Transcripts for Spoken Document Retrieval

25 Silja Eckartz (UT) Managing the Business Case

Development in Inter-Organizational IT Projects:

A Methodology and its Application

26 Emile de Maat (UvA) Making Sense of Legal Text

27 Hayrettin Gurkok (UT) Mind the Sheep! User Ex-

perience Evaluation & Brain-Computer Interface

Games

28 Nancy Pascall (UvT) Engendering Technology Em-

powering Women

29 Almer Tigelaar (UT) Peer-to-Peer Information Re-

trieval

30 Alina Pommeranz (TUD) Designing Human-

Centered Systems for Reflective Decision Making

31 Emily Bagarukayo (RUN) A Learning by Con-

struction Approach for Higher Order Cognitive

Skills Improvement, Building Capacity and Infras-

tructure

32 Wietske Visser (TUD) Qualitative multi-criteria

preference representation and reasoning

33 Rory Sie (OUN) Coalitions in Cooperation Net-

works (COCOON)

34 Pavol Jancura (RUN) Evolutionary analysis in PPI

networks and applications

35 Evert Haasdijk (VUA) Never Too Old To Learn:

On-line Evolution of Controllers in Swarm- and

Modular Robotics

36 Denis Ssebugwawo (RUN) Analysis and Evalua-

tion of Collaborative Modeling Processes

37 Agnes Nakakawa (RUN) A Collaboration Process

for Enterprise Architecture Creation

38 Selmar Smit (VUA) Parameter Tuning and Scien-

tific Testing in Evolutionary Algorithms

39 Hassan Fatemi (UT) Risk-aware design of value

and coordination networks

40 Agus Gunawan (UvT) Information Access for

SMEs in Indonesia

176

SIKS Dissertation Series

41 Sebastian Kelle (OU) Game Design Patterns for

Learning

42 Dominique Verpoorten (OU) Reflection Amplifiers

in self-regulated Learning

43 Anna Tordai (VUA) On Combining Alignment

Techniques

44 Benedikt Kratz (UvT) A Model and Language for

Business-aware Transactions

45 Simon Carter (UvA) Exploration and Exploitation

of Multilingual Data for Statistical Machine Trans-

lation

46 Manos Tsagkias (UvA) Mining Social Media:

Tracking Content and Predicting Behavior

47 Jorn Bakker (TUe) Handling Abrupt Changes in

Evolving Time-series Data

48 Michael Kaisers (UM) Learning against Learning:

Evolutionary dynamics of reinforcement learning

algorithms in strategic interactions

49 Steven van Kervel (TUD) Ontologogy driven En-

terprise Information Systems Engineering

50 Jeroen de Jong (TUD) Heuristics in Dynamic

Sceduling: a practical framework with a case

study in elevator dispatching

2013

1 Viorel Milea (EUR) News Analytics for Financial

Decision Support

2 Erietta Liarou (CWI) MonetDB/DataCell: Lever-

aging the Column-store Database Technology for

Efficient and Scalable Stream Processing

3 Szymon Klarman (VUA) Reasoning with Contexts

in Description Logics

4 Chetan Yadati (TUD) Coordinating autonomous

planning and scheduling

5 Dulce Pumareja (UT) Groupware Requirements

Evolutions Patterns

6 Romulo Goncalves (CWI) The Data Cyclotron:

Juggling Data and Queries for a Data Warehouse

Audience

7 Giel van Lankveld (UvT) Quantifying Individual

Player Differences

8 Robbert-Jan Merk (VUA) Making enemies: cogni-

tive modeling for opponent agents in fighter pilot

simulators

9 Fabio Gori (RUN) Metagenomic Data Analysis:

Computational Methods and Applications

10 Jeewanie Jayasinghe Arachchige (UvT) A Unified

Modeling Framework for Service Design

11 Evangelos Pournaras (TUD) Multi-level Reconfig-

urable Self-organization in Overlay Services

12 Marian Razavian (VUA) Knowledge-driven Mi-

gration to Services

13 Mohammad Safiri (UT) Service Tailoring: User-

centric creation of integrated IT-based homecare

services to support independent living of elderly

14 Jafar Tanha (UvA) Ensemble Approaches to Semi-

Supervised Learning Learning

15 Daniel Hennes (UM) Multiagent Learning: Dy-

namic Games and Applications

16 Eric Kok (UU) Exploring the practical benefits of

argumentation in multi-agent deliberation

17 Koen Kok (VUA) The PowerMatcher: Smart Co-

ordination for the Smart Electricity Grid

18 Jeroen Janssens (UvT) Outlier Selection and One-

Class Classification

19 Renze Steenhuizen (TUD) Coordinated Multi-

Agent Planning and Scheduling

20 Katja Hofmann (UvA) Fast and Reliable Online

Learning to Rank for Information Retrieval

21 Sander Wubben (UvT) Text-to-text generation by

monolingual machine translation

22 Tom Claassen (RUN) Causal Discovery and Logic

23 Patricio de Alencar Silva (UvT) Value Activity

Monitoring

24 Haitham Bou Ammar (UM) Automated Transfer

in Reinforcement Learning

25 Agnieszka Anna Latoszek-Berendsen (UM)

Intention-based Decision Support. A new way of

representing and implementing clinical guidelines

in a Decision Support System

26 Alireza Zarghami (UT) Architectural Support for

Dynamic Homecare Service Provisioning

27 Mohammad Huq (UT) Inference-based Frame-

work Managing Data Provenance

28 Frans van der Sluis (UT) When Complexity be-

comes Interesting: An Inquiry into the Information

eXperience

29 Iwan de Kok (UT) Listening Heads

30 Joyce Nakatumba (TUe) Resource-Aware Business

Process Management: Analysis and Support

31 Dinh Khoa Nguyen (UvT) Blueprint Model and

Language for Engineering Cloud Applications

32 Kamakshi Rajagopal (OUN) Networking For

Learning: The role of Networking in a Lifelong

Learner’s Professional Development

33 Qi Gao (TUD) User Modeling and Personalization

in the Microblogging Sphere

34 Kien Tjin-Kam-Jet (UT) Distributed Deep Web

Search

35 Abdallah El Ali (UvA) Minimal Mobile Human

Computer Interaction

36 Than Lam Hoang (TUe) Pattern Mining in Data

Streams

37 Dirk Börner (OUN) Ambient Learning Displays

38 Eelco den Heijer (VUA) Autonomous Evolution-

ary Art

39 Joop de Jong (TUD) A Method for Enterprise On-

tology based Design of Enterprise Information Sys-

tems

40 Pim Nijssen (UM) Monte-Carlo Tree Search for

Multi-Player Games

41 Jochem Liem (UvA) Supporting the Conceptual

Modelling of Dynamic Systems: A Knowledge En-

gineering Perspective on Qualitative Reasoning

177

SIKS Dissertation Series

42 Léon Planken (TUD) Algorithms for Simple Tem-

poral Reasoning

43 Marc Bron (UvA) Exploration and Contextualiza-

tion through Interaction and Concepts

2014

1 Nicola Barile (UU) Studies in Learning Monotone

Models from Data

2 Fiona Tuliyano (RUN) Combining System Dynam-

ics with a Domain Modeling Method

3 Sergio Raul Duarte Torres (UT) Information Re-

trieval for Children: Search Behavior and Solu-

tions

4 Hanna Jochmann-Mannak (UT) Websites for chil-

dren: search strategies and interface design -

Three studies on children’s search performance

and evaluation

5 Jurriaan van Reijsen (UU) Knowledge Perspectives

on Advancing Dynamic Capability

6 Damian Tamburri (VUA) Supporting Networked

Software Development

7 Arya Adriansyah (TUe) Aligning Observed and

Modeled Behavior

8 Samur Araujo (TUD) Data Integration over Dis-

tributed and Heterogeneous Data Endpoints

9 Philip Jackson (UvT) Toward Human-Level Artifi-

cial Intelligence: Representation and Computation

of Meaning in Natural Language

10 Ivan Salvador Razo Zapata (VUA) Service Value

Networks

11 Janneke van der Zwaan (TUD) An Empathic Vir-

tual Buddy for Social Support

12 Willem van Willigen (VUA) Look Ma, No Hands:

Aspects of Autonomous Vehicle Control

13 Arlette van Wissen (VUA) Agent-Based Support

for Behavior Change: Models and Applications in

Health and Safety Domains

14 Yangyang Shi (TUD) Language Models With Meta-

information

15 Natalya Mogles (VUA) Agent-Based Analysis and

Support of Human Functioning in Complex Socio-

Technical Systems: Applications in Safety and

Healthcare

16 Krystyna Milian (VUA) Supporting trial recruit-

ment and design by automatically interpreting eli-

gibility criteria

17 Kathrin Dentler (VUA) Computing healthcare

quality indicators automatically: Secondary Use

of Patient Data and Semantic Interoperability

18 Mattijs Ghijsen (UvA) Methods and Models for

the Design and Study of Dynamic Agent Organiza-

tions

19 Vinicius Ramos (TUe) Adaptive Hypermedia

Courses: Qualitative and Quantitative Evaluation

and Tool Support

20 Mena Habib (UT) Named Entity Extraction and

Disambiguation for Informal Text: The Missing

Link

21 Kassidy Clark (TUD) Negotiation and Monitoring

in Open Environments

22 Marieke Peeters (UU) Personalized Educational

Games: Developing agent-supported scenario-

based training

23 Eleftherios Sidirourgos (UvA/CWI) Space Effi-

cient Indexes for the Big Data Era

24 Davide Ceolin (VUA) Trusting Semi-structured

Web Data

25 Martijn Lappenschaar (RUN) New network models

for the analysis of disease interaction

26 Tim Baarslag (TUD) What to Bid and When to

Stop

27 Rui Jorge Almeida (EUR) Conditional Density

Models Integrating Fuzzy and Probabilistic Repre-

sentations of Uncertainty

28 Anna Chmielowiec (VUA) Decentralized k-Clique

Matching

29 Jaap Kabbedijk (UU) Variability in Multi-Tenant

Enterprise Software

30 Peter de Cock (UvT) Anticipating Criminal Be-

haviour

31 Leo van Moergestel (UU) Agent Technology in

Agile Multiparallel Manufacturing and Product

Support

32 Naser Ayat (UvA) On Entity Resolution in Proba-

bilistic Data

33 Tesfa Tegegne (RUN) Service Discovery in

eHealth

34 Christina Manteli (VUA) The Effect of Governance

in Global Software Development: Analyzing Trans-

active Memory Systems

35 Joost van Ooijen (UU) Cognitive Agents in Virtual

Worlds: A Middleware Design Approach

36 Joos Buijs (TUe) Flexible Evolutionary Algo-

rithms for Mining Structured Process Models

37 Maral Dadvar (UT) Experts and Machines United

Against Cyberbullying

38 Danny Plass-Oude Bos (UT) Making brain-

computer interfaces better: improving usability

through post-processing

39 Jasmina Maric (UvT) Web Communities, Immigra-

tion, and Social Capital

40 Walter Omona (RUN) A Framework for Knowl-

edge Management Using ICT in Higher Education

41 Frederic Hogenboom (EUR) Automated Detection

of Financial Events in News Text

42 Carsten Eijckhof (CWI/TUD) Contextual Multidi-

mensional Relevance Models

43 Kevin Vlaanderen (UU) Supporting Process Im-

provement using Method Increments

44 Paulien Meesters (UvT) Intelligent Blauw:

Intelligence-gestuurde politiezorg in gebiedsge-

bonden eenheden

178

SIKS Dissertation Series

45 Birgit Schmitz (OUN) Mobile Games for Learn-

ing: A Pattern-Based Approach

46 Ke Tao (TUD) Social Web Data Analytics: Rele-

vance, Redundancy, Diversity

47 Shangsong Liang (UvA) Fusion and Diversifica-

tion in Information Retrieval

2015

1 Niels Netten (UvA) Machine Learning for Rele-

vance of Information in Crisis Response

2 Faiza Bukhsh (UvT) Smart auditing: Innovative

Compliance Checking in Customs Controls

3 Twan van Laarhoven (RUN) Machine learning for

network data

4 Howard Spoelstra (OUN) Collaborations in Open

Learning Environments

5 Christoph Bösch (UT) Cryptographically En-

forced Search Pattern Hiding

6 Farideh Heidari (TUD) Business Process Qual-

ity Computation: Computing Non-Functional Re-

quirements to Improve Business Processes

7 Maria-Hendrike Peetz (UvA) Time-Aware Online

Reputation Analysis

8 Jie Jiang (TUD) Organizational Compliance: An

agent-based model for designing and evaluating

organizational interactions

9 Randy Klaassen (UT) HCI Perspectives on Behav-

ior Change Support Systems

10 Henry Hermans (OUN) OpenU: design of an inte-

grated system to support lifelong learning

11 Yongming Luo (TUe) Designing algorithms for

big graph datasets: A study of computing bisimu-

lation and joins

12 Julie M. Birkholz (VUA) Modi Operandi of So-

cial Network Dynamics: The Effect of Context on

Scientific Collaboration Networks

13 Giuseppe Procaccianti (VUA) Energy-Efficient

Software

14 Bart van Straalen (UT) A cognitive approach to

modeling bad news conversations

15 Klaas Andries de Graaf (VUA) Ontology-based

Software Architecture Documentation

16 Changyun Wei (UT) Cognitive Coordination for

Cooperative Multi-Robot Teamwork

17 André van Cleeff (UT) Physical and Digital Secu-

rity Mechanisms: Properties, Combinations and

Trade-offs

18 Holger Pirk (CWI) Waste Not, Want Not!: Manag-

ing Relational Data in Asymmetric Memories

19 Bernardo Tabuenca (OUN) Ubiquitous Technology

for Lifelong Learners

20 Loı̈s Vanhée (UU) Using Culture and Values to

Support Flexible Coordination

21 Sibren Fetter (OUN) Using Peer-Support to Ex-

pand and Stabilize Online Learning

22 Zhemin Zhu (UT) Co-occurrence Rate Networks

23 Luit Gazendam (VUA) Cataloguer Support in Cul-

tural Heritage

24 Richard Berendsen (UvA) Finding People, Papers,

and Posts: Vertical Search Algorithms and Evalu-

ation

25 Steven Woudenberg (UU) Bayesian Tools for

Early Disease Detection

26 Alexander Hogenboom (EUR) Sentiment Analysis

of Text Guided by Semantics and Structure

27 Sándor Héman (CWI) Updating compressed

column-stores

28 Janet Bagorogoza (TiU) Knowledge Management

and High Performance: The Uganda Financial

Institutions Model for HPO

29 Hendrik Baier (UM) Monte-Carlo Tree Search En-

hancements for One-Player and Two-Player Do-

mains

30 Kiavash Bahreini (OUN) Real-time Multimodal

Emotion Recognition in E-Learning

31 Yakup Koç (TUD) On Robustness of Power Grids

32 Jerome Gard (UL) Corporate Venture Manage-

ment in SMEs

33 Frederik Schadd (UM) Ontology Mapping with

Auxiliary Resources

34 Victor de Graaff (UT) Geosocial Recommender

Systems

35 Junchao Xu (TUD) Affective Body Language of

Humanoid Robots: Perception and Effects in Hu-

man Robot Interaction

2016

1 Syed Saiden Abbas (RUN) Recognition of Shapes

by Humans and Machines

2 Michiel Christiaan Meulendijk (UU) Optimizing

medication reviews through decision support: pre-

scribing a better pill to swallow

3 Maya Sappelli (RUN) Knowledge Work in Context:

User Centered Knowledge Worker Support

4 Laurens Rietveld (VUA) Publishing and Consum-

ing Linked Data

5 Evgeny Sherkhonov (UvA) Expanded Acyclic

Queries: Containment and an Application in Ex-

plaining Missing Answers

6 Michel Wilson (TUD) Robust scheduling in an

uncertain environment

7 Jeroen de Man (VUA) Measuring and modeling

negative emotions for virtual training

8 Matje van de Camp (TiU) A Link to the Past: Con-

structing Historical Social Networks from Unstruc-

tured Data

9 Archana Nottamkandath (VUA) Trusting Crowd-

sourced Information on Cultural Artefacts

10 George Karafotias (VUA) Parameter Control for

Evolutionary Algorithms

11 Anne Schuth (UvA) Search Engines that Learn

from Their Users

179

9 789461 826749

ISBN 978-94-6182-674-9

	Introduction
	Research Outline and Questions
	Evaluation of Search Engines
	Learning Search Engines
	Online Evaluation and Learning Methodology

	Main Contributions
	Algorithmic Contributions
	Theoretical Contributions
	Empirical Contributions
	Software Contributions

	Thesis Overview
	Origins

	Background
	Information Retrieval
	A Brief History of Information Retrieval
	Modern Information Retrieval
	Retrieval Models

	Offline Evaluation
	Cranfield-style Evaluation
	User Studies

	Online Evaluation
	Interpreting User Interactions
	A/B Testing
	Interleaving
	K-Armed Dueling Bandits Problem
	Counterfactual Analysis
	Click Models

	Offline Learning to Rank
	Pointwise Learning to Rank
	Pairwise Learning to Rank
	Listwise Learning to Rank

	Online Learning to Rank
	Dueling Bandit Gradient Descent
	Reusing Historical Interaction Data

	Experimental Methodology
	Experimental Setup
	Data Sets
	Simulating Users
	Evaluation

	I Online Evaluation
	Multileaved Comparisons
	Introduction
	Related Work
	Problem Definition
	Methods
	Team Draft Multileave
	Optimized Multileave
	Probabilistic Multileave

	Experiments
	Data Sets
	Selecting Rankers
	Simulating Clicks
	Experimental Runs
	Parameter Settings

	Results and Analysis
	Team Draft Multileave and Optimized Multileave
	Probabilistic Multileave

	Discussion off K-Armed Dueling Bandits
	Conclusion
	Future Work

	Predicting A/B Testing with Interleaved Comparisons
	Introduction
	Related Work
	Optimizing Interleaving Metrics

	Background
	Common A/B Metrics
	Interleaving

	Data Analysis
	Data
	Estimating Power and Agreement
	Data Analysis Results
	Implications

	Methods
	Formalizing Interleaving Credit
	Matching A/B Credit
	Parameterized Credit Functions
	Combined Credit Functions
	Maximizing Agreement with A/B Metrics

	Experiments and Results
	Matching A/B Credit
	Parameterized Credit Functions
	Combined Credit Functions

	Conclusion
	Future Work

	II Online Learning to Rank
	Learning Parameters for Existing Rankers using Users Interactions
	Introduction
	Related Work
	Methods
	Implementation of BM25
	Learning from Clicks

	Experiments
	Data Sets
	Clicks
	Parameter Settings
	Evaluation and Significance Testing

	Results and Analysis
	Measuring the Performance of BM25 with Manually Tuned Parameters
	Learning Parameters of BM25 Using Clicks

	Conclusion
	Future Work

	Learning from Multileaved Comparisons
	Introduction
	Related Work
	Multileave Gradient Descent
	Extending DBGD with Multileaving
	Multileave Approaches to Gradient Descent

	Experiments
	Data Sets
	Simulating Clicks
	Experimental Runs
	Evaluation

	Results and Analysis
	Learning Speed
	Convergence
	Comparing Outcome Interpretations
	Number of Candidates and Learning Rate

	Conclusion
	Future Work

	III Resources and Methodology
	Lerot: Simulating Users
	Introduction
	Framework
	Learning Algorithms
	Interleaved Comparison Methods
	User Models
	Evaluation

	Implementation
	Installation
	Configuration
	Running

	Conclusion
	Future Work

	OpenSearch: Actual Users
	Introduction
	Related Work
	OpenSearch Architecture
	Overview
	Lab Organization
	Evaluation Metric

	Implementation and Results
	Limitations
	Conclusion
	Future Work

	Conclusions
	Main Findings
	Summary of Findings
	Future Work
	Online Evaluation
	Online Learning to Rank
	Online Learning and Evaluation Methodology

	Bibliography
	List of Terms
	Samenvatting

