Title
Search for D0-D0 mixing and branching-ratio measurement in the decay D0--\>K+ pi- piO.

Permalink

https://escholarship.org/uc/item/3p17w366

Journal

Physical review letters, 97(22)
ISSN
0031-9007

Authors

Aubert, B
Barate, R
Bona, M
et al.

Publication Date

2006-12-01
DOI
10.1103/physrevlett.97.221803

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Search for $\boldsymbol{D}^{\mathbf{0}} \bar{D}^{\mathbf{0}}$ Mixing and Branching-Ratio Measurement in the Decay $\boldsymbol{D}^{\mathbf{0}} \rightarrow \boldsymbol{K}^{+} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{\mathbf{0}}$

B. Aubert, ${ }^{1}$ R. Barate, ${ }^{1}$ M. Bona, ${ }^{1}$ D. Boutigny, ${ }^{1}$ F. Couderc, ${ }^{1}$ Y. Karyotakis, ${ }^{1}$ J. P. Lees, ${ }^{1}$ V. Poireau, ${ }^{1}$ V. Tisserand, ${ }^{1}$ A. Zghiche, ${ }^{1}$ E. Grauges, ${ }^{2}$ A. Palano, ${ }^{3}$ J. C. Chen, ${ }^{4}$ N. D. Qi, ${ }^{4}$ G. Rong, ${ }^{4}$ P. Wang, ${ }^{4}$ Y. S. Zhu, ${ }^{4}$ G. Eigen, ${ }^{5}$ I. Ofte, ${ }^{5}$ B. Stugu, ${ }^{5}$ G. S. Abrams, ${ }^{6}$ M. Battaglia, ${ }^{6}$ D. N. Brown, ${ }^{6}$ J. Button-Shafer, ${ }^{6}$ R. N. Cahn, ${ }^{6}$ E. Charles, ${ }^{6}$ M. S. Gill, ${ }^{6}$ Y. Groysman, ${ }^{6}$ R. G. Jacobsen, ${ }^{6}$ J. A. Kadyk, ${ }^{6}$ L. T. Kerth, ${ }^{6}$ Yu. G. Kolomensky, ${ }^{6}$ G. Kukartsev, ${ }^{6}$ G. Lynch, ${ }^{6}$ L. M. Mir, ${ }^{6}$ T. J. Orimoto, ${ }^{6}$ M. Pripstein, ${ }^{6}$ N. A. Roe, ${ }^{6}$ M. T. Ronan, ${ }^{6}$ W. A. Wenzel, ${ }^{6}$ P. del Amo Sanchez, ${ }^{7}$ M. Barrett, ${ }^{7}$ K. E. Ford, ${ }^{7}$ T. J. Harrison, ${ }^{7}$ A. J. Hart, ${ }^{7}$ C. M. Hawkes, ${ }^{7}$ S. E. Morgan, ${ }^{7}$ A. T. Watson, ${ }^{7}$ T. Held, ${ }^{8}$ H. Koch, ${ }^{8}$ B. Lewandowski, ${ }^{8}$ M. Pelizaeus, ${ }^{8}$ K. Peters, ${ }^{8}$
T. Schroeder, ${ }^{8}$ M. Steinke, ${ }^{8}$ J. T. Boyd, ${ }^{9}$ J. P. Burke, ${ }^{9}$ W. N. Cottingham, ${ }^{9}$ D. Walker, ${ }^{9}$ T. Cuhadar-Donszelmann, ${ }^{10}$ B. G. Fulsom, ${ }^{10}$ C. Hearty, ${ }^{10}$ N.S. Knecht, ${ }^{10}$ T. S. Mattison, ${ }^{10}$ J. A. McKenna, ${ }^{10}$ A. Khan, ${ }^{11}$ P. Kyberd, ${ }^{11}$ M. Saleem, ${ }^{11}$ D. J. Sherwood, ${ }^{11}$ L. Teodorescu, ${ }^{11}$ V. E. Blinov, ${ }^{12}$ A. D. Bukin, ${ }^{12}$ V. P. Druzhinin, ${ }^{12}$ V. B. Golubev, ${ }^{12}$ A. P. Onuchin, ${ }^{12}$ S. I. Serednyakov, ${ }^{12}$ Yu. I. Skovpen, ${ }^{12}$ E. P. Solodov, ${ }^{12}$ K. Yu. Todyshev, ${ }^{12}$ D. S. Best, ${ }^{13}$ M. Bondioli, ${ }^{13}$ M. Bruinsma, ${ }^{13}$ M. Chao, ${ }^{13}$ S. Curry, ${ }^{13}$ I. Eschrich, ${ }^{13}$ D. Kirkby, ${ }^{13}$ A. J. Lankford, ${ }^{13}$ P. Lund, ${ }^{13}$ M. Mandelkern, ${ }^{13}$ R. K. Mommsen, ${ }^{13}$ W. Roethel, ${ }^{13}$ D. P. Stoker, ${ }^{13}$ S. Abachi, ${ }^{14}$ C. Buchanan, ${ }^{14}$ S. D. Foulkes, ${ }^{15}$ J. W. Gary, ${ }^{15}$ O. Long, ${ }^{15}$ B. C. Shen, ${ }^{15}$ K. Wang, ${ }^{15}$ L. Zhang, ${ }^{15}$ H. K. Hadavand, ${ }^{16}$ E. J. Hill, ${ }^{16}$ H. P. Paar, ${ }^{16}$ S. Rahatlou, ${ }^{16}$ V. Sharma, ${ }^{16}$ J. W. Berryhill, ${ }^{17}$ C. Campagnari, ${ }^{17}$ A. Cunha, ${ }^{17}$ B. Dahmes, ${ }^{17}$ T. M. Hong, ${ }^{17}$ D. Kovalskyi, ${ }^{17}$ J. D. Richman, ${ }^{17}$ T. W. Beck, ${ }^{18}$ A. M. Eisner, ${ }^{18}$ C. J. Flacco, ${ }^{18}$ C. A. Heusch, ${ }^{18}$ J. Kroseberg, ${ }^{18}$ W. S. Lockman, ${ }^{18}$ G. Nesom,,18 T. Schalk, ${ }^{18}$ B. A. Schumm, ${ }^{18}$ A. Seiden, ${ }^{18}$ P. Spradlin, ${ }^{18}$ D. C. Williams, ${ }^{18}$ M. G. Wilson, ${ }^{18}$ J. Albert, ${ }^{19}$ E. Chen, ${ }^{19}$ A. Dvoretskii, ${ }^{19}$ F. Fang, ${ }^{19}$ D. G. Hitlin, ${ }^{19}$ I. Narsky, ${ }^{19}$ T. Piatenko, ${ }^{19}$ F. C. Porter, ${ }^{19}$ A. Ryd, ${ }^{19}$ A. Samuel, ${ }^{19}$ G. Mancinelli, ${ }^{20}$ B. T. Meadows, ${ }^{20}$ K. Mishra, ${ }^{20}$ M. D. Sokoloff, ${ }^{20}$ F. Blanc, ${ }^{21}$ P. C. Bloom, ${ }^{21}$ S. Chen, ${ }^{21}$ W. T. Ford, ${ }^{21}$ J. F. Hirschauer, ${ }^{21}$ A. Kreisel, ${ }^{21}$ M. Nagel, ${ }^{21}$ U. Nauenberg, ${ }^{21}$ A. Olivas, ${ }^{21}$ W. O. Ruddick, ${ }^{21}$ J. G. Smith, ${ }^{21}$ K. A. Ulmer, ${ }^{21}$ S. R. Wagner, ${ }^{21}$ J. Zhang, ${ }^{21}$ A. Chen, ${ }^{22}$ E. A. Eckhart, ${ }^{22}$ A. Soffer,,22 W. H. Toki, ${ }^{22}$ R. J. Wilson, ${ }^{22}$ F. Winklmeier, ${ }^{22}$ Q. Zeng, ${ }^{22}$ D. D. Altenburg, ${ }^{23}$ E. Feltresi, ${ }^{23}$ A. Hauke, ${ }^{23}$ H. Jasper, ${ }^{23}$ A. Petzold, ${ }^{23}$ B. Spaan, ${ }^{23}$ T. Brandt, ${ }^{24}$ V. Klose, ${ }^{24}$ H. M. Lacker, ${ }^{24}$ W. F. Mader, ${ }^{24}$ R. Nogowski, ${ }^{24}$ J. Schubert, ${ }^{24}$ K. R. Schubert, ${ }^{24}$ R. Schwierz, ${ }^{24}$ J. E. Sundermann, ${ }^{24}$ A. Volk, ${ }^{24}$ D. Bernard, ${ }^{25}$ G. R. Bonneaud, ${ }^{25}$ P. Grenier, ${ }^{25, *}$ E. Latour, ${ }^{25}$ Ch. Thiebaux, ${ }^{25}$ M. Verderi, ${ }^{25}$ P. J. Clark, ${ }^{26}$ W. Gradl, ${ }^{26}$ F. Muheim, ${ }^{26}$ S. Playfer, ${ }^{26}$ A. I. Robertson, ${ }^{26}$ Y. Xie, ${ }^{26}$ M. Andreotti, ${ }^{27}$ D. Bettoni, ${ }^{27}$ C. Bozzi, ${ }^{27}$ R. Calabrese,,${ }^{27}$ G. Cibinetto, ${ }^{27}$ E. Luppi, ${ }^{27}$ M. Negrini, ${ }^{27}$ A. Petrella, ${ }^{27}$ L. Piemontese, ${ }^{27}$ E. Prencipe, ${ }^{27}$ F. Anulli, ${ }^{28}$ R. Baldini-Ferroli, ${ }^{28}$ A. Calcaterra, ${ }^{28}$ R. de Sangro, ${ }^{28}$ G. Finocchiaro, ${ }^{28}$ S. Pacetti, ${ }^{28}$ P. Patteri, ${ }^{28}$ I. M. Peruzzi, ${ }^{28, \dagger}$ M. Piccolo, ${ }^{28}$ M. Rama, ${ }^{28}$ A. Zallo, ${ }^{28}$ A. Buzzo, ${ }^{29}$ R. Capra, ${ }^{29}$ R. Contri, ${ }^{29}$ M. Lo Vetere, ${ }^{29}$ M. M. Macri, ${ }^{29}$ M. R. Monge, ${ }^{29}$ S. Passaggio, ${ }^{29}$ C. Patrignani, ${ }^{29}$ E. Robutti, ${ }^{29}$ A. Santroni, ${ }^{29}$ S. Tosi, ${ }^{29}$ G. Brandenburg, ${ }^{30}$ K. S. Chaisanguanthum, ${ }^{30}$ M. Morii, ${ }^{30}$ J. Wu, ${ }^{30}$ R. S. Dubitzky, ${ }^{31}$ J. Marks, ${ }^{31}$ S. Schenk, ${ }^{31}$ U. Uwer, ${ }^{31}$ D. J. Bard, ${ }^{32}$ W. Bhimji, ${ }^{32}$ D. A. Bowerman, ${ }^{32}$ P. D. Dauncey, ${ }^{32}$ U. Egede, ${ }^{32}$ R. L. Flack, ${ }^{32}$ J. A. Nash, ${ }^{32}$ M. B. Nikolich, ${ }^{32}$ W. Panduro Vazquez, ${ }^{32}$ P. K. Behera, ${ }^{33}$ X. Chai, ${ }^{33}$ M. J. Charles, ${ }^{33}$ U. Mallik, ${ }^{33}$ N. T. Meyer, ${ }^{33}$ V. Ziegler, ${ }^{33}$ J. Cochran, ${ }^{34}$ H. B. Crawley, ${ }^{34}$ L. Dong, ${ }^{34}$ V. Eyges, ${ }^{34}$ W. T. Meyer, ${ }^{34}$ S. Prell, ${ }^{34}$ E. I. Rosenberg, ${ }^{34}$ A. E. Rubin, ${ }^{34}$ A. V. Gritsan, ${ }^{35}$ A. G. Denig, ${ }^{36}$ M. Fritsch, ${ }^{36}$ G. Schott,,${ }^{36}$ N. Arnaud, ${ }^{37}$ M. Davier, ${ }^{37}$ G. Grosdidier, ${ }^{37}$ A. Höcker, ${ }^{37}$ F. Le Diberder, ${ }^{37}$ V. Lepeltier, ${ }^{37}$ A. M. Lutz, ${ }^{37}$ A. Oyanguren, ${ }^{37}$ S. Pruvot, ${ }^{37}$ S. Rodier, ${ }^{37}$ P. Roudeau, ${ }^{37}$ M. H. Schune, ${ }^{37}$ A. Stocchi, ${ }^{37}$ W. F. Wang, ${ }^{37}$ G. Wormser, ${ }^{37}$ C. H. Cheng, ${ }^{38}$ D. J. Lange, ${ }^{38}$ D. M. Wright, ${ }^{38}$ C. A. Chavez, ${ }^{39}$ I. J. Forster, ${ }^{39}$ J. R. Fry, ${ }^{39}$ E. Gabathuler, ${ }^{39}$ R. Gamet, ${ }^{39}$ K. A. George, ${ }^{39}$ D. E. Hutchcroft, ${ }^{39}$ D. J. Payne, ${ }^{39}$ K. C. Schofield, ${ }^{39}$ C. Touramanis, ${ }^{39}$ A. J. Bevan, ${ }^{40}$ F. Di Lodovico, ${ }^{40}$ W. Menges, ${ }^{40}$ R. Sacco, ${ }^{40}$ G. Cowan, ${ }^{41}$ H. U. Flaecher, ${ }^{41}$ D. A. Hopkins, ${ }^{41}$ P. S. Jackson, ${ }^{41}$ T. R. McMahon, ${ }^{41}$ S. Ricciardi, ${ }^{41}$ F. Salvatore, ${ }^{41}$ A. C. Wren, ${ }^{41}$ D. N. Brown, ${ }^{42}$ C. L. Davis, ${ }^{42}$ J. Allison, ${ }^{43}$ N. R. Barlow, ${ }^{43}$ R. J. Barlow, ${ }^{43}$ Y. M. Chia, ${ }^{43}$ C. L. Edgar, ${ }^{43}$ G. D. Lafferty, ${ }^{43}$ M. T. Naisbit, ${ }^{43}$ J. C. Williams, ${ }^{43}$ J. I. Yi, ${ }^{43}$ C. Chen, ${ }^{44}$ W. D. Hulsbergen, ${ }^{44}$ A. Jawahery ${ }^{44}$ C. K. Lae, ${ }^{44}$ D. A. Roberts, ${ }^{44}$ G. Simi, ${ }^{44}$ G. Blaylock, ${ }^{45}$ C. Dallapiccola, ${ }^{45}$ S. S. Hertzbach, ${ }^{45}$ X. Li, ${ }^{45}$ T. B. Moore, ${ }^{45}$ S. Saremi, ${ }^{45}$ H. Staengle, ${ }^{45}$ R. Cowan, ${ }^{46}$ G. Sciolla, ${ }^{46}$ S. J. Sekula, ${ }^{46}$ M. Spitznagel, ${ }^{46}$ F. Taylor, ${ }^{46}$ R. K. Yamamoto, ${ }^{46}$ H. Kim,,${ }^{47}$ S. E. Mclachlin, ${ }^{47}$
P. M. Patel, ${ }^{47}$ S. H. Robertson, ${ }^{47}$ A. Lazzaro, ${ }^{48}$ V. Lombardo, ${ }^{48}$ F. Palombo, ${ }^{48}$ J. M. Bauer, ${ }^{49}$ L. Cremaldi, ${ }^{49}$ V. Eschenburg, ${ }^{49}$ R. Godang, ${ }^{49}$ R. Kroeger, ${ }^{49}$ D. A. Sanders, ${ }^{49}$ D. J. Summers, ${ }^{49}$ H. W. Zhao, ${ }^{49}$ S. Brunet, ${ }^{50}$ D. Côté, ${ }^{50}$ M. Simard, ${ }^{50}$ P. Taras, ${ }^{50}$ F. B. Viaud, ${ }^{50}$ H. Nicholson, ${ }^{51}$ N. Cavallo, ${ }^{52, \ddagger}$ G. De Nardo, ${ }^{52}$ F. Fabozzi, ${ }^{52, \#}$ C. Gatto, ${ }^{52}$ L. Lista, ${ }^{52}$ D. Monorchio, ${ }^{52}$ P. Paolucci, ${ }^{52}$ D. Piccolo, ${ }^{52}$ C. Sciacca, ${ }^{52}$ M. Baak, ${ }^{53}$ G. Raven, ${ }^{53}$ H. L. Snoek, ${ }^{53}$ C. P. Jessop, ${ }^{54}$ J. M. LoSecco, ${ }^{54}$ T. Allmendinger, ${ }^{55}$ G. Benelli, ${ }^{55}$ K. K. Gan, ${ }^{55}$ K. Honscheid, ${ }^{55}$ D. Hufnagel, ${ }^{55}$ P. D. Jackson, ${ }^{55}$ H. Kagan, ${ }^{55}$ R. Kass, ${ }^{55}$ A. M. Rahimi, ${ }^{55}$ R. Ter-Antonyan, ${ }^{55}$ Q. K. Wong, ${ }^{55}$ N. L. Blount, ${ }^{56}$ J. Brau, ${ }^{56}$ R. Frey, ${ }^{56}$ O. Igonkina, ${ }^{56}$ M. Lu, ${ }^{56}$ R. Rahmat, ${ }^{56}$ N. B. Sinev, ${ }^{56}$ D. Strom, ${ }^{56}$ J. Strube, ${ }^{56}$ E. Torrence, ${ }^{56}$ A. Gaz, ${ }^{57}$ M. Margoni, ${ }^{57}$
M. Morandin, ${ }^{57}$ A. Pompili, ${ }^{57}$ M. Posocco, ${ }^{57}$ M. Rotondo, ${ }^{57}$ F. Simonetto, ${ }^{57}$ R. Stroili, ${ }^{57}$ C. Voci, ${ }^{57}$ M. Benayoun, ${ }^{58}$ J. Chauveau, ${ }^{58}$ H. Briand, ${ }^{58}$ P. David, ${ }^{58}$ L. Del Buono, ${ }^{58}$ Ch. de la Vaissière, ${ }^{58}$ O. Hamon, ${ }^{58}$ B. L. Hartfiel, ${ }^{58}$ M. J. J. John, ${ }^{58}$ Ph. Leruste, ${ }^{58}$ J. Malclès, ${ }^{58}$ J. Ocariz, ${ }^{58}$ L. Roos, ${ }^{58}$ G. Therin, ${ }^{58}$ L. Gladney, ${ }^{59}$ J. Panetta, ${ }^{59}$ M. Biasini, ${ }^{60}$ R. Covarelli, ${ }^{60}$ C. Angelini, ${ }^{61}$ G. Batignani, ${ }^{61}$ S. Bettarini, ${ }^{61}$ F. Bucci, ${ }^{61}$ G. Calderini, ${ }^{61}$ M. Carpinelli, ${ }^{61}$ R. Cenci, ${ }^{61}$ F. Forti, ${ }^{61}$ M. A. Giorgi, ${ }^{61}$ A. Lusiani, ${ }^{61}$ G. Marchiori, ${ }^{61}$ M. A. Mazur, ${ }^{61}$ M. Morganti, ${ }^{61}$ N. Neri, ${ }^{61}$ E. Paoloni, ${ }^{61}$ G. Rizzo, ${ }^{61}$ J. J. Walsh, ${ }^{61}$ M. Haire, ${ }^{62}$ D. Judd, ${ }^{62}$ D. E. Wagoner, ${ }^{62}$ J. Biesiada, ${ }^{63}$ N. Danielson, ${ }^{63}$ P. Elmer, ${ }^{63}$ Y. P. Lau, ${ }^{63}$ C. Lu, ${ }^{63}$ J. Olsen, ${ }^{63}$ A. J. S. Smith, ${ }^{63}$ A. V. Telnov, ${ }^{63}$ F. Bellini, ${ }^{64}$ G. Cavoto, ${ }^{64}$ A. D’Orazio, ${ }^{64}$ D. del Re, ${ }^{64}$ E. Di Marco, ${ }^{64}$ R. Faccini, ${ }^{64}$ F. Ferrarotto, ${ }^{64}$ F. Ferroni, ${ }^{64}$ M. Gaspero, ${ }^{64}$ L. Li Gioi, ${ }^{64}$ M. A. Mazzoni, ${ }^{64}$ S. Morganti, ${ }^{64}$ G. Piredda, ${ }^{64}$ F. Polci, ${ }^{64}$ F. Safai Tehrani, ${ }^{64}$ C. Voena, ${ }^{64}$ M. Ebert, ${ }^{65}$ H. Schröder, ${ }^{65}$ R. Waldi, ${ }^{65}$ T. Adye, ${ }^{66}$ N. De Groot, ${ }^{66}$ B. Franek, ${ }^{66}$ E. O. Olaiya,,66 F. F. Wilson, ${ }^{66}$ R. Aleksan, ${ }^{67}$ S. Emery, ${ }^{67}$ A. Gaidot, ${ }^{67}$ S. F. Ganzhur, ${ }^{67}$ G. Hamel de Monchenault, ${ }^{67}$ W. Kozanecki, ${ }^{67}$ M. Legendre, ${ }^{67}$ G. Vasseur, ${ }^{67}$ Ch. Yèche, ${ }^{67}$ M. Zito, ${ }^{67}$ X. R. Chen, ${ }^{68}$ H. Liu, ${ }^{68}$ W. Park, ${ }^{68}$ M. V. Purohit, ${ }^{68}$ J. R. Wilson, ${ }^{68}$ M. T. Allen, ${ }^{69}$ D. Aston, ${ }^{69}$ R. Bartoldus, ${ }^{69}$ P. Bechtle, ${ }^{69}$ N. Berger, ${ }^{69}$ R. Claus, ${ }^{69}$ J. P. Coleman, ${ }^{69}$ M. R. Convery, ${ }^{69}$ M. Cristinziani, ${ }^{69}$ J. C. Dingfelder, ${ }^{69}$ J. Dorfan, ${ }^{69}$ G. P. Dubois-Felsmann, ${ }^{69}$ D. Dujmic, ${ }^{69}$ W. Dunwoodie, ${ }^{69}$ R. C. Field, ${ }^{69}$ T. Glanzman, ${ }^{69}$ S. J. Gowdy, ${ }^{69}$ M. T. Graham, ${ }^{69}$ V. Halyo, ${ }^{69}$ C. Hast, ${ }^{69}$ T. Hryn'ova, ${ }^{69}$ W. R. Innes, ${ }^{69}$ M. H. Kelsey, ${ }^{69}$ P. Kim, ${ }^{69}$ D. W. G. S. Leith, ${ }^{69}$ S. Li, ${ }^{69}$ S. Luitz, ${ }^{69}$ V. Luth, ${ }^{69}$ H. L. Lynch, ${ }^{69}$ D. B. MacFarlane, ${ }^{69}$ H. Marsiske, ${ }^{69}$ R. Messner, ${ }^{69}$ D. R. Muller, ${ }^{69}$ C. P. O'Grady, ${ }^{69}$ V. E. Ozcan, ${ }^{69}$ A. Perazzo, ${ }^{69}$ M. Perl, ${ }^{69}$ T. Pulliam, ${ }^{69}$ B. N. Ratcliff, ${ }^{69}$ A. Roodman, ${ }^{69}$ A. A. Salnikov, ${ }^{69}$ R. H. Schindler, ${ }^{69}$ J. Schwiening, ${ }^{69}$ A. Snyder, ${ }^{69}$ J. Stelzer, ${ }^{69}$ D. Su, ${ }^{69}$ M. K. Sullivan, ${ }^{69}$ K. Suzuki, ${ }^{69}$ S. K. Swain, ${ }^{69}$ J. M. Thompson, ${ }^{69}$ J. Va’vra, ${ }^{69}$ N. van Bakel, ${ }^{69}$ M. Weaver, ${ }^{69}$ A. J. R. Weinstein, ${ }^{69}$ W. J. Wisniewski, ${ }^{69}$ M. Wittgen, ${ }^{69}$ D. H. Wright, ${ }^{69}$ A. K. Yarritu, ${ }^{69}$ K. Yi, ${ }^{69}$ C. C. Young,,69 P. R. Burchat, ${ }^{70}$ A. J. Edwards, ${ }^{70}$ S. A. Majewski, ${ }^{70}$ B. A. Petersen, ${ }^{70}$ C. Roat, ${ }^{70}$ L. Wilden, ${ }^{70}$ S. Ahmed, ${ }^{71}$ M. S. Alam, ${ }^{71}$ R. Bula, ${ }^{71}$ J. A. Ernst, ${ }^{71}$ V. Jain, ${ }^{71}$ B. Pan, ${ }^{71}$ M. A. Saeed, ${ }^{71}$ F. R. Wappler, ${ }^{71}$ S. B. Zain, ${ }^{71}$ W. Bugg, ${ }^{72}$ M. Krishnamurthy, ${ }^{72}$ S. M. Spanier, ${ }^{72}$ R. Eckmann, ${ }^{73}$ J. L. Ritchie, ${ }^{73}$ A. Satpathy, ${ }^{73}$ C. J. Schilling, ${ }^{73}$ R.F. Schwitters, ${ }^{73}$ J. M. Izen, ${ }^{74}$ X. C. Lou, ${ }^{74}$ S. Ye, ${ }^{74}$ F. Bianchi, ${ }^{75}$ F. Gallo, ${ }^{75}$ D. Gamba, ${ }^{75}$ M. Bomben, ${ }^{76}$ L. Bosisio, ${ }^{76}$ C. Cartaro, ${ }^{76}$ F. Cossutti, ${ }^{76}$ G. Della Ricca, ${ }^{76}$ S. Dittongo, ${ }^{76}$ L. Lanceri, ${ }^{76}$ L. Vitale, ${ }^{76}$ V. Azzolini, ${ }^{77}$ F. Martinez-Vidal, ${ }^{77}$ Sw. Banerjee, ${ }^{78}$ B. Bhuyan, ${ }^{78}$ C. M. Brown, ${ }^{78}$ D. Fortin, ${ }^{78}$ K. Hamano, ${ }^{78}$ R. Kowalewski, ${ }^{78}$ I. M. Nugent, ${ }^{78}$ J. M. Roney, ${ }^{78}$ R. J. Sobie, ${ }^{78}$ J. J. Back, ${ }^{79}$ P. F. Harrison, ${ }^{79}$ T. E. Latham, ${ }^{79}$ G. B. Mohanty, ${ }^{79}$ M. Pappagallo, ${ }^{79}$ H. R. Band, ${ }^{80}$ X. Chen, ${ }^{80}$ B. Cheng, ${ }^{80}$ S. Dasu, ${ }^{80}$ M. Datta, ${ }^{80}$ K. T. Flood, ${ }^{80}$ J. J. Hollar, ${ }^{80}$ P. E. Kutter, ${ }^{80}$ B. Mellado, ${ }^{80}$ A. Mihalyi, ${ }^{80}$ Y. Pan, ${ }^{80}$ M. Pierini, ${ }^{80}$ R. Prepost, ${ }^{80}$ S.L. Wu, ${ }^{80}$ Z. Yu, ${ }^{80}$ and H. Neal ${ }^{81}$
(BABAR Collaboration)

${ }^{1}$ Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
${ }^{2}$ Facultat de Fisica, Departament ECM, Universitat de Barcelona, E-08028 Barcelona, Spain
${ }^{3}$ Dipartimento di Fisica and INFN, Università di Bari, I-70126 Bari, Italy ${ }^{4}$ Institute of High Energy Physics, Beijing 100039, China
${ }^{5}$ Institute of Physics, University of Bergen, N-5007 Bergen, Norway
${ }^{6}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
${ }^{7}$ University of Birmingham, Birmingham, B15 2TT, United Kingdom
${ }^{8}$ Institut für Experimentalphysik 1, Ruhr Universität Bochum, D-44780 Bochum, Germany
${ }^{9}$ University of Bristol, Bristol BS8 1TL, United Kingdom
${ }^{10}$ University of British Columbia, Vancouver, British Columbia, Canada V6T $1 Z 1$
${ }^{11}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
${ }^{12}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
${ }^{13}$ University of California at Irvine, Irvine, California 92697, USA
${ }^{14}$ University of California at Los Angeles, Los Angeles, California 90024, USA
${ }^{15}$ University of California at Riverside, Riverside, California 92521, USA
${ }^{16}$ University of California at San Diego, La Jolla, California 92093, USA
${ }^{17}$ University of California at Santa Barbara, Santa Barbara, California 93106, USA
${ }^{18}$ Institute for Particle Physics, University of California at Santa Cruz, Santa Cruz, California 95064, USA
${ }^{19}$ California Institute of Technology, Pasadena, California 91125, USA
${ }^{20}$ University of Cincinnati, Cincinnati, Ohio 45221, USA
${ }^{21}$ University of Colorado, Boulder, Colorado 80309, USA
${ }^{22}$ Colorado State University, Fort Collins, Colorado 80523, USA
${ }^{23}$ Institut für Physik, Universität Dortmund, D-44221 Dortmund, Germany
${ }^{24}$ Institut für Kern- und Teilchenphysik, Technische Universität Dresden, D-01062 Dresden, Germany

${ }^{25}$ Ecole Polytechnique, Laboratoire Leprince-Ringuet, F-91128 Palaiseau, France
${ }^{26}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
${ }^{27}$ Dipartimento di Fisica and INFN, Università di Ferrara, I-44100 Ferrara, Italy
${ }^{28}$ Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy
${ }^{29}$ Dipartimento di Fisica and INFN, Università di Genova, I-16146 Genova, Italy
${ }^{30}$ Harvard University, Cambridge, Massachusetts 02138, USA
${ }^{31}$ Physikalisches Institut, Universität Heidelberg, Philosophenweg 12, D-69120 Heidelberg, Germany
${ }^{32}$ Imperial College London, London, SW7 2AZ, United Kingdom
${ }^{33}$ University of Iowa, Iowa City, Iowa 52242, USA
${ }^{34}$ Iowa State University, Ames, Iowa 50011-3160, USA
${ }^{35}$ Johns Hopkins University, Baltimore, Maryland 21218, USA
${ }^{36}$ Institut für Experimentelle Kernphysik, Universität Karlsruhe, D-76021 Karlsruhe, Germany
${ }^{37}$ Laboratoire de l'Accélérateur Linéaire, IN2P3-CNRS et Université Paris-Sud 11, Centre Scientifique d'Orsay, B.P. 34, F-91898 ORSAY Cedex, France
${ }^{38}$ Lawrence Livermore National Laboratory, Livermore, California 94550, USA
${ }^{39}$ University of Liverpool, Liverpool L69 7ZE, United Kingdom
${ }^{40}$ Queen Mary, University of London, E1 4NS, United Kingdom
${ }^{41}$ University of London, Royal Holloway, and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
${ }^{42}$ University of Louisville, Louisville, Kentucky 40292, USA
${ }^{43}$ University of Manchester, Manchester M13 9PL, United Kingdom
${ }^{44}$ University of Maryland, College Park, Maryland 20742, USA
${ }^{45}$ University of Massachusetts, Amherst, Massachusetts 01003, USA
${ }^{46}$ Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
${ }^{47}$ McGill University, Montréal, Québec, Canada H3A $2 T 8$
${ }^{48}$ Dipartimento di Fisica and INFN, Università di Milano, I-20133 Milano, Italy
${ }^{49}$ University of Mississippi, University, Mississippi 38677, USA
${ }^{50}$ Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
${ }^{51}$ Mount Holyoke College, South Hadley, Massachusetts 01075, USA
${ }^{52}$ Dipartimento di Scienze Fisiche and INFN, Università di Napoli Federico II, I-80126, Napoli, Italy
${ }^{53}$ NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
${ }^{54}$ University of Notre Dame, Notre Dame, Indiana 46556, USA
${ }^{55}$ Ohio State University, Columbus, Ohio 43210, USA
${ }^{56}$ University of Oregon, Eugene, Oregon 97403, USA
${ }^{57}$ Dipartimento di Fisica and INFN, Università di Padova, I-35131 Padova, Italy
${ }^{58}$ Laboratoire de Physique Nucléaire et de Hautes Energies, Universités Paris VI et VII, F-75252 Paris, France
${ }^{59}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
${ }^{60}$ Dipartimento di Fisica and INFN, Università di Perugia, I-06100 Perugia, Italy
${ }^{61}$ Dipartimento di Fisica, Scuola Normale Superiore and INFN, Università di Pisa, I-56127 Pisa, Italy
${ }^{62}$ Prairie View A\&M University, Prairie View, Texas 77446, USA
${ }^{63}$ Princeton University, Princeton, New Jersey 08544, USA
${ }^{64}$ Dipartimento di Fisica and INFN, Università di Roma La Sapienza, I-00185 Roma, Italy
${ }^{65}$ Universität Rostock, D-18051 Rostock, Germany
${ }^{66}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
${ }^{67}$ DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
${ }^{68}$ University of South Carolina, Columbia, South Carolina 29208, USA
${ }^{69}$ Stanford Linear Accelerator Center, Stanford, California 94309, USA
${ }^{70}$ Stanford University, Stanford, California 94305-4060, USA
${ }^{71}$ State University of New York, Albany, New York 12222, USA
${ }^{72}$ University of Tennessee, Knoxville, Tennessee 37996, USA
${ }^{73}$ University of Texas at Austin, Austin, Texas 78712, USA
${ }^{74}$ University of Texas at Dallas, Richardson, Texas 75083, USA
${ }^{75}$ Dipartimento di Fisica Sperimentale and INFN, Università di Torino, I-10125 Torino, Italy
${ }^{76}$ Dipartimento di Fisica and INFN, Università di Trieste, I-34127 Trieste, Italy
${ }^{77}$ IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
${ }^{78}$ University of Victoria, Victoria, British Columbia, Canada V8W 3P6
${ }^{79}$ Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
${ }^{80}$ University of Wisconsin, Madison, Wisconsin 53706, USA
${ }^{81}$ Yale University, New Haven, Connecticut 06511, USA
(Received 2 August 2006; published 30 November 2006)

We analyze $230.4 \mathrm{fb}^{-1}$ of data collected with the BABAR detector at the PEP-II $e^{+} e^{-}$collider at SLAC to search for evidence of $D^{0}-\bar{D}^{0}$ mixing using regions of phase space in the decay $D^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$. We measure the time-integrated mixing rate $R_{M}=\left(0.023_{-0.014}^{+0.018}\right.$ (stat.) ± 0.004 (syst.) $) \%$, and $R_{M}<0.054 \%$ at the 95% confidence level, assuming $C P$ invariance. The data are consistent with no mixing at the 4.5% confidence level. We also measure the branching ratio for $D^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$ relative to $D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}$ to be $(0.214 \pm 0.008$ (stat.) ± 0.008 (syst. $)) \%$.

DOI: 10.1103/PhysRevLett.97.221803
PACS numbers: $13.25 . \mathrm{Ft}, 11.30 . \mathrm{Er}, 12.15 . \mathrm{Mm}, 14.40 . \mathrm{Lb}$

Mixing of the strong eigenstates $\left|D^{0}\right\rangle$ and $\left|\bar{D}^{0}\right\rangle$, involving transitions of the charm quark to a down-type quark, is expected to have a very small rate in the standard model (SM). Accurate estimates of this rate must consider longdistance effects [1], and typical theoretical values of the time-integrated mixing rate are $R_{M} \sim \mathcal{O}\left(10^{-6}-10^{-4}\right)$. The most stringent constraint to date is $R_{M}<0.040 \%$ at the 95% confidence level [2]. Because SM D mixing involves only the first two quark generations to a very good approximation, the mixing-amplitude scale is set by flavor$\mathrm{SU}(3)$ breaking, and $C P$ violation is undetectable [1].

We search for the process $\left|D^{0}\right\rangle \rightarrow\left|\bar{D}^{0}\right\rangle$ by analyzing the decay of a particle known to be created as a $\left|D^{0}\right\rangle$ [3]. We reconstruct the wrong-sign (WS) decay $D^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$, and we distinguish doubly Cabibbo-suppressed (DCS) contributions from Cabibbo-favored (CF) mixed contributions in the decay-time distribution. Because mixing amplitudes are small, the greatest sensitivity to mixing is found when the amplitude for a particular DCS decay is comparably small. We increase our overall sensitivity to mixing by selecting regions of phase space (i.e., the Dalitz plot) where the relative number of DCS decays to CF decays is small. This technique cannot be performed with the two-body decay $D^{0} \rightarrow K^{+} \pi^{-}$, and it has not been used to date. While the ratio of DCS to CF decay rates depends on position in the Dalitz plot, the mixing rate does not. From inspection of the Dalitz plots, we note that DCS decays proceed primarily through the resonance $D^{0} \rightarrow$ $K^{*+} \boldsymbol{\pi}^{-}$, while CF decays proceed primarily through $D^{0} \rightarrow$ $K^{-} \rho^{+}$[4].

We present the first search for D mixing in the decay $D^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$. The analysis method introduced increases experimental accessibility to interference between DCS decay and mixing without a full phase-space parametrization. Such interference effects can be used to search for new physics contributions to $C P$ violation.

The two mass eigenstates

$$
\begin{equation*}
\left|D_{A, B}\right\rangle=p\left|D^{0}\right\rangle \pm q\left|\bar{D}^{0}\right\rangle \tag{1}
\end{equation*}
$$

generated by mixing dynamics have different masses $\left(m_{A, B}\right)$ and widths $\left(\Gamma_{A, B}\right)$, and we parametrize the mixing process with the quantities

$$
\begin{equation*}
x \equiv 2 \frac{m_{B}-m_{A}}{\Gamma_{B}+\Gamma_{A}}, \quad y \equiv \frac{\Gamma_{B}-\Gamma_{A}}{\Gamma_{B}+\Gamma_{A}} . \tag{2}
\end{equation*}
$$

If $C P$ is not violated, then $|p / q|=1$. For a nonleptonic multibody WS decay, the time-dependent decay rate,
$\Gamma_{\mathrm{WS}}(t)$, relative to a corresponding right-sign (RS) rate, $\Gamma_{\mathrm{RS}}(t)$, is approximated by [5]

$$
\begin{equation*}
\frac{\Gamma_{\mathrm{WS}}(t)}{\Gamma_{\mathrm{RS}}(t)}=\tilde{R}_{D}+\alpha \tilde{y}^{\prime} \sqrt{\tilde{R}_{D}}(\Gamma t)+\frac{\tilde{x}^{\prime 2}+\tilde{y}^{\prime 2}}{4}(\Gamma t)^{2}, \quad 0 \leq \alpha \leq 1 \tag{3}
\end{equation*}
$$

The tilde indicates quantities that have been integrated over any choice of phase-space regions. \tilde{R}_{D} is the integrated DCS branching ratio, $\tilde{y}^{\prime}=y \cos \tilde{\delta}-x \sin \tilde{\delta}$ and $\tilde{x}^{\prime}=$ $x \cos \tilde{\delta}+y \sin \tilde{\delta}$, where $\tilde{\delta}$ is an integrated strong-phase difference between the CF and the DCS decay amplitudes, α is a suppression factor that accounts for strong-phase variation over the regions, and Γ is the average width. The time-integrated mixing rate $R_{M}=\left(\tilde{x}^{\prime 2}+\tilde{y}^{\prime 2}\right) / 2=$ $\left(x^{2}+y^{2}\right) / 2$ is independent of decay mode.

We search for $C P$-violating effects by fitting to the $D^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$ and $\bar{D}^{0} \rightarrow K^{-} \pi^{+} \pi^{0}$ samples separately. We consider $C P$ violation in the interference between the DCS channel and mixing, parametrized by an integrated $C P$-violating-phase difference $\tilde{\phi}$, as well as $C P$ violation in mixing, parametrized by $|p / q|$. We assume $C P$ invariance in the DCS and CF decay rates. The substitutions

$$
\begin{gather*}
\alpha \tilde{y}^{\prime} \rightarrow|p / q|^{ \pm 1}\left(\alpha \tilde{y}^{\prime} \cos \tilde{\phi} \pm \beta \tilde{x}^{\prime} \sin \tilde{\phi}\right) \tag{4}\\
\left(x^{2}+y^{2}\right) \rightarrow|p / q|^{ \pm 2}\left(x^{2}+y^{2}\right) \tag{5}
\end{gather*}
$$

are applied to Eq. (3), using (+) for $\Gamma\left(\bar{D}^{0} \rightarrow\right.$ $\left.K^{-} \pi^{+} \pi^{0}\right) / \Gamma\left(D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}\right)$ and (-) for the chargeconjugate ratio. The parameter β is a suppression factor that accounts for ϕ variation in the selected regions.

We use $230.4 \mathrm{fb}^{-1}$ of data collected with the $B A B A R$ detector [6] at the PEP-II $e^{+} e^{-}$collider at SLAC. The production vertices of charged particles are measured with a silicon-strip detector (SVT), and their momenta are measured by the SVT and a drift chamber (DCH) in a 1.5 T magnetic field. Particle types are identified using energy deposition measurements from the SVT and DCH along with information from a Cherenkov-radiation detector. The energies of photons are measured by an electromagnetic calorimeter. All selection criteria were finalized before searching for evidence of mixing in the data. Selection criteria were determined from both study of the RS sample and past experience with other charm samples [7].

We reconstruct the decay $D^{*+} \rightarrow D^{0} \pi_{s}^{+}$and determine the flavor of the D^{0} candidate from the charge of the low-
momentum pion denoted by $\pi_{s}^{ \pm}$. We require $\pi_{s}^{ \pm}$candidates to have momentum transverse to the beam axis $p_{t}>$ $120 \mathrm{MeV} / c$. We require D^{0} candidates to have center-ofmass momenta greater than $2.4 \mathrm{GeV} / c$, and the charged D^{0} daughters must satisfy a likelihood-based particleidentification selection. The identification efficiency for both K and π is 90%, and the misidentification rate is $3 \%(1 \%)$ for $K(\pi)$ candidates. We require photons from π^{0} decays to have a laboratory energy $E_{\gamma}>100 \mathrm{MeV}$, and π^{0} candidates to have a laboratory momentum $p_{\pi^{0}}>$ $350 \mathrm{MeV} / \mathrm{c}$ and a mass-constrained-fit χ^{2} probability >0.01. The experimental width of the π^{0}-mass peak is $\sigma_{m(\gamma \gamma)} \approx 6 \mathrm{MeV} / c^{2}$. We accept candidates with an invariant mass $1.74<m_{K \pi \pi^{0}}<1.98 \mathrm{GeV} / c^{2}$ and an invariant mass difference $0.140<\Delta m<0.155 \mathrm{GeV} / c^{2}$, where $\Delta m \equiv m_{K \pi \pi^{0} \pi_{s}}-m_{K \pi \pi^{0}}$. We enhance contributions from $D^{0} \rightarrow K^{-} \rho^{+}$and reduce the ratio of DCS to CF decays by excluding events with two-body invariant masses in the ranges $850<m\left(K \pi^{ \pm}, K \pi^{0}\right)<950 \mathrm{MeV} / c^{2}$. Figure 1 shows the Dalitz plots for these decays.

The D^{*+} mass, D^{0} mass, and D^{0} decay time are derived from a track-vertex fit [8]. A mass constraint is applied to the π^{0} candidate, and the D^{*+}-decay vertex is constrained to the beamspot region, of size $\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right) \approx$ ($150 \mu \mathrm{~m}, 10 \mu \mathrm{~m}, 7 \mathrm{~mm}$). We select events for which the fit χ^{2} probability >0.01. From this fit, a D^{0} decay time, t, and uncertainty, σ_{t}, are calculated using the threedimensional flight path. The full covariance matrix, including correlations between the D^{*+} and D^{0} vertices, is used in the σ_{t} estimate. For signal events, the typical value of σ_{t} is near 0.23 ps . We accept decays with $\sigma_{t}<0.5 \mathrm{ps}$. The D^{0} lifetime is (410.1 ± 1.5) fs [9].

FIG. 1. Dalitz plots and projections for RS (left) and WS (right) data. An additional selection is made to reduce peaking background in the events shown here, and no σ_{t} selection is made. A statistical background subtraction [11] and a phasespace dependent efficiency correction have been applied (i.e., candidates have been weighted).

We first extract the signal yields from a twodimensional, unbinned, extended maximum likelihood fit to the $m_{K \pi \pi^{0}}$ and Δm distributions, performed on the RS and WS samples simultaneously. The signal-shape parameters of the probability density function (PDF) describing the WS sample are precisely determined by the large RS sample, and all associated systematic uncertainties are suppressed. The width of the Δm peak is uncorrelated with the width of the $m_{K \pi \pi^{0}}$ peak, dominated by π^{0}-momentum resolution, to first order. However, there is a second-order correlation in the signal between the two distributions. Thus, the signal PDF has a width in Δm that varies quadratically with $m_{K \pi \pi^{0}}$. This feature significantly reduces the signal yield uncertainty.

Three background categories are included in the likelihood: (1) correctly reconstructed D^{0} candidates with a misassociated π_{s}^{+}, (2) D^{*+} decays with a correctly associated π_{s}^{+}and a misreconstructed D^{0}, and (3) remaining combinatorial backgrounds. The first category has distributions in $m_{K \pi \pi^{0}}$ and t of RS signal decays and is distinguished using Δm. The second category, peaking in Δm and distinguished using $m_{K \pi \pi^{0}}$, has a t distribution similar to RS signal with a different characteristic lifetime. The third category does not peak in either $m_{K \pi \pi^{0}}$ or Δm and has a t distribution empirically described by a Gaussian with a power-law tail. Although the functional forms of the background PDFs are motivated by simulations, all shape parameters are obtained from a fit to the data. The $m_{K \pi \pi^{0}}$ and Δm projections of the two-dimensional fit to the WS sample are shown in Fig. 2(a) and 2(b).

The signal yields from the fit to the $\left(m_{K \pi \pi^{0}}, \Delta m\right)$ plane are listed in Table I. Considering the entire allowed phase space, and without the σ_{t} selection, we measure the branching ratio for $D^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$ relative to the decay $\quad D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}$ to be $(0.214 \pm 0.008$ (stat.) \pm 0.008 (syst.))\%. This result is consistent with previous measurements [10] of this quantity and is significantly more precise. For this measurement, a phase-space dependent efficiency correction is applied to account for the different resonant populations in CF and DCS decays. The average efficiency of the WS sample relative to the

TABLE I. Signal-candidate yields determined by the twodimensional fit to the ($m_{K \pi \pi^{0}}, \Delta m$) distributions for the WS and RS samples. Yields are shown (a) for the selected phasespace regions used in this analysis and (b) for the entire allowed phase-space region. Uncertainties are those calculated from the fit, and no efficiency corrections have been applied.

		D^{0} Candidate	\bar{D}^{0} Candidate
(a)	WS	$(3.84 \pm 0.36) \times 10^{2}$	$(3.79 \pm 0.36) \times 10^{2}$
	RS	$(2.518 \pm 0.006) \times 10^{5}$	$(2.512 \pm 0.006) \times 10^{5}$
(b)	WS	$(7.5 \pm 0.5) \times 10^{2}$	$(8.1 \pm 0.5) \times 10^{2}$
	RS	$(3.648 \pm 0.007) \times 10^{5}$	$(3.646 \pm 0.007) \times 10^{5}$

FIG. 2. Distributions of WS data (points with error bars) with fitted PDFs (dashed line) overlaid. The $m_{K \pi \pi^{0}}$ distribution (a) requires $0.1444<\Delta m<0.1464 \mathrm{GeV} / c^{2}$; the Δm distribution (b) requires $1.85<m_{K \pi \pi^{0}}<1.88 \mathrm{GeV} / c^{2}$; and the t distribution (c) requires both mass selections. The data points in (d) show the t distribution after applying a channel-likelihood signal projection [11,12], and the signal PDF is overlaid. The error bars in (d) reflect Poissonian signal fluctuations only. In (a)-(d), the white regions represent signal events, the light gray misassociated $\pi_{s}^{ \pm}$events, the medium gray correctly associated $\pi_{s}^{ \pm}$with misreconstructed D^{0} events, and the dark gray remaining combinatorial background.

RS samples is 97%. Phase-space dependent π^{0} selection efficiencies dominate the systematic uncertainty.

The fitted shape parameters from $m_{K \pi \pi^{0}}$ and Δm are used to determine the signal probability of each event in a three-dimensional likelihood, \mathcal{L}, that is optimized in a onedimensional fit to t. The RS signal PDF in t is represented by an exponential function convolved with a threeGaussian detector-resolution function. The Gaussians have a common mean, but different widths. The width of
each Gaussian is a scale factor multiplied by σ_{t}, and σ_{t} is determined for each event. The three different scale factors, as well as the fraction of events described by each Gaussian, are determined from the fit to the data. We find a D^{0} lifetime consistent with the nominal value.

The WS PDF in t is based on Eq. (3) convolved with the same resolution function as in the RS PDF. The D^{0} lifetime and resolution scale factors, determined by the fit to the RS t distribution, are fixed. We fit the WS PDF to the t distribution allowing yields and background-shape parameters to vary. The fit to the t distribution is shown for the WS sample in Fig. 2(c) and 2(d).

The results of the decay-time fit, with and without the assumption of $C P$ conservation, are listed in Table II. The statistical uncertainty of a particular parameter is obtained by finding its extrema for $\Delta \ln \mathcal{L}=0.5$. Contours of constant $\Delta \ln \mathcal{L}=1.15$, 3 , enclosing two-dimensional coverage probabilities of 68.3% and 95.0%, respectively, are shown in Fig. 3. With a Bayesian interpretation of \mathcal{L}, we find an upper limit $R_{M}<0.054 \%$ at the 95% confidence level, assuming $C P$ conservation.

In one dimension, $\Delta \ln \mathcal{L}$ changes its behavior near $R_{M}=0$ because the interference term [the term linear in t in Eq. (3)] becomes unconstrained. Therefore, we estimate the consistency of the data with no-mixing using a frequentist method. We generate 1000 simulated data sets with no mixing but otherwise according to the fitted PDF, each with 58800 events representing signal and background in the quantities $m_{K \pi \pi^{0}}, \Delta m$, and t. We find 4.5% of simulated data sets have a fitted value of R_{M} greater than that observed in the data. Thus, the observed data are consistent with no mixing at the 4.5% confidence level.

We quantify systematic uncertainties by repeating the fits with the following elements changed, in order of significance: the background PDF shape in the $m_{K \pi \pi^{0}}$ distribution, the selection of events based on σ_{t}, the decay-time resolution function, and the measured D^{0} lifetime value. Additionally, for \tilde{R}_{D}, we consider the absence of any Dalitz-plot efficiency correction. The combined systematic uncertainties are smaller than statistical uncertainties by

TABLE II. Mixing results assuming $C P$ conservation (D^{0} and \bar{D}^{0} samples are not separated) and manifestly permitting $C P$ violation (D^{0} and \bar{D}^{0} samples are fit separately). The first listed uncertainty is statistical, and the second is systematic. Quantities that have been integrated over the selected phase-space regions are indicated with tildes. \tilde{R}_{D} is not reported when allowing for $C P$ violation because precise $\pi_{s}^{ \pm}$efficiency asymmetries are unknown.

$C P$ conserved	$C P$ violation allowed
$R_{M}=\left(0.023_{-0.014}^{+0.018} \pm 0.004\right) \%$	$R_{M}=\left(0.010_{-0.007}^{+0.022} \pm 0.003\right) \%$
$\tilde{R}_{D}=\left(0.164_{-0.022}^{+0.026} \pm 0.012\right) \%$	
$\alpha \tilde{y}^{\prime}=-0.012_{-0.008}^{+0.006} \pm 0.002$	$\alpha \tilde{y}^{\prime} \cos \tilde{\phi}=-0.012_{-0.007}^{+0.006} \pm 0.002$
	$\beta \tilde{x}^{\prime} \sin \tilde{\phi}=0.003_{-0.005}^{+0.002} \pm 0.000$
	$\|p / q\|=2.2_{-1.0}^{+1.9} \pm 0.1$

FIG. 3. Contours of constant $\Delta \ln \mathcal{L}=1.15,3$, defining 68.3% and 95.0% confidence levels, respectively. The contours on the left are in terms of the integrated mixing rate, R_{M}, and doubly Cabibbo-suppressed rate, \tilde{R}_{D}, assuming $C P$ invariance. The contours on the right are in terms of R_{M} and the normalized interference $I=\left(\alpha \tilde{y}^{\prime} \cos \tilde{\phi} \pm \beta \tilde{x}^{\prime} \sin \tilde{\phi}\right) / \sqrt{x^{2}+y^{2}}$, for the D^{0} and \bar{D}^{0} samples separately. On the left, the upward slope of the contour indicates negative interference; on the right, the hatched regions are physically forbidden.
factors of $2-4$. The quantity $\beta \tilde{x}^{\prime} \sin \tilde{\phi}$, which quantifies a difference between the D^{0} and \bar{D}^{0} samples, has a negligible systematic uncertainty because positively correlated effects in the two samples cancel.

As a consistency check, we perform the decay-time fit to the entire phase-space region populated by the decays $D^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$. The results are consistent with Table II, with sensitivity to R_{M} preserved. However, the interference term obtained is different. Figure 3 indicates that both D^{0} and \bar{D}^{0} samples prefer a large negative interference term when the phase space is restricted to suppress DCS contributions. By contrast, when the interference term is integrated over the entire Dalitz plot, it is found to be consistent with zero, with uncertainties comparable to those in this analysis. The variation of the interference effect in different phase-space regions motivates a detailed phase-space analysis of this mode in the future.

In summary, we find that the data are consistent with the no-mixing hypothesis at the 4.5% confidence level, and we set an upper limit $R_{M}<0.054 \%$ at the 95% confidence level. We measure the branching ratio for $D^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$ relative to $D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}$ to be (0.214 ± 0.008 (stat.) \pm 0.008(syst.))\%.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions
wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), MEC (Spain), and PPARC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A.P. Sloan Foundation.
*Also at Laboratoire de Physique Corpusculaire, ClermontFerrand, France.
${ }^{\dagger}$ Also with Dipartimento di Fisica, Università di Perugia, Perugia, Italy.
${ }^{\ddagger}$ Also with Università della Basilicata, Potenza, Italy.
[1] L. Wolfenstein, Phys. Lett. 164B, 170 (1985); J.F. Donoghue, E. Golowich, B.R. Holstein, and J. Trampetic, Phys. Rev. D 33, 179 (1986); A. F. Falk, Y. Grossman, Z. Ligeti, and A. A. Petrov, Phys. Rev. D 65, 054034 (2002); G. Burdman and I. Shipsey, Annu. Rev. Nucl. Part. Sci. 53, 431 (2003); A. F. Falk, Y. Grossman, Z. Ligeti, Y. Nir, and A. A. Petrov, Phys. Rev. D 69, 114021 (2004).
[2] L. M. Zhang et al. (Belle Collaboration), Phys. Rev. Lett. 96, 151801 (2006).
[3] Unless otherwise stated, particle types and decay processes imply also their charge conjugates.
[4] S. Kopp et al. (CLEO Collaboration), Phys. Rev. D 63, 092001 (2001).
[5] G. Blaylock, A. Seiden, and Y. Nir, Phys. Lett. B 355, 555 (1995).
[6] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
[7] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 91, 121801 (2003); B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 91, 171801 (2003).
[8] W.D. Hulsbergen, Nucl. Instrum. Methods Phys. Res., Sect. A 552, 566 (2005).
[9] W.-M. Yao et al. (Particle Data Group), J. Phys. G 33, 1 (2006).
[10] G. Brandenburg et al. (CLEO Collaboration), Phys. Rev. Lett. 87, 071802 (2001); X. C. Tian et al. (Belle Collaboration), Phys. Rev. Lett. 95, 231801 (2005).
[11] M. Pivk and F. R. Le Diberder, Nucl. Instrum. Methods Phys. Res., Sect. A 555, 356 (2005).
[12] P.E. Condon and P.L. Cowell, Phys. Rev. D 9, 2558 (1974).

