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Self-annihilating or decaying dark matter in the Galactic halo might produce high energy neutrinos
detectable with neutrino telescopes. We have conducted a search for such a signal using 276 days of
data from the IceCube 22-string configuration detector acquired during 2007 and 2008. The effect of
halo model choice in the extracted limit is reduced by performing a search that considers the outer
halo region and not the Galactic Center. We constrain any large scale neutrino anisotropy and are
able to set a limit on the dark matter self-annihilation cross section of 〈σAv〉 ≃ 10−22cm3s−1 for
WIMP masses above 1 TeV, assuming a monochromatic neutrino line spectrum.

PACS numbers: 95.35.+d,98.35.Gi,95.85.Ry

I. INTRODUCTION

There is compelling observational evidence for the ex-
istence of dark matter. Although knowledge of its under-
lying nature remains elusive, a variety of theories provide
candidate particles [1]. Among those are Supersymme-
try [2] and Universal Extra Dimensions [3], both of which
predict new physics at the electro-weak scale and, in most
scenarios, introduce a light, and stable (or long lived)
particle that exhibits the properties of a Weakly Inter-
acting Massive Particle (WIMP) [4]. WIMPs are an ideal
dark matter candidate, predicted to have masses ranging
from a few tens of GeV to several TeV. High energy neu-
trinos are expected to be produced as a result of the self-
annihilation or decay of WIMPs. These neutrinos are de-

∗ also Università di Bari and Sezione INFN, Dipartimento di

Fisica, I-70126, Bari, Italy
† Corresponding author: carott@mps.ohio-state.edu
‡ NASAGoddard Space Flight Center, Greenbelt, MD 20771, USA

tectable by high energy neutrino telescopes, making them
powerful tools in the search for WIMPs and the investi-
gation of their properties. In particular, they can be used
to probe the self-annihilation cross section of dark mat-
ter candidates by looking for anomalous neutrino signals
from the Galactic halo. Additionally, WIMPs could also
be gravitationally captured by massive bodies like the
Sun. If the annihilation rate of these captured WIMPs is
regulated by the capture rate, then neutrino telescopes
can be used to probe the WIMP-nucleon scattering cross
section [5].

Recent observations of a GeV positron excess by
PAMELA [6], an anomalous electron peak by ATIC [7],
and electron spectra from H.E.S.S. [8] and Fermi [9],
demonstrate the importance of a multi-messenger ap-
proach to astrophysics and validate the interest in a neu-
trino channel. The observed lepton signals are inconsis-
tent with each other or standard electron–positron pro-
duction models [10] and although they could potentially
originate from nearby astrophysical sources (e.g. pul-
sars [11]), they could also be an indication of dark mat-
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ter. If interpreted as the latter, it would suggest the
existence of a leptophilic dark matter particle in the TeV
mass range [12, 13]. Such a model would also result in
significant high energy neutrino fluxes, through the de-
cay of muons and τ -leptons. A significant fraction of
neutrinos could also be produced directly as part of the
annihilation [14], producing a line feature in the resulting
neutrino spectrum. Such a mono-energetic neutrino flux
is of specific interest since it can be used to set a model in-
dependent limit on the total dark matter self-annihilation
cross section [15] for the region of parameter space where
gamma-ray signals would dominate.
In this paper we discuss a search for neutrino sig-

nals produced by annihilating or decaying dark matter
in the Galactic halo. The search is used to test the self-
annihilation cross section by constraining the product of
cross section and velocity averaged over the dark matter
velocity distribution, 〈σAv〉, and to probe the lifetime, τ .
The search focuses on the outer Milky Way halo, where

the dark matter density distributions are relatively well
modelled. We do not include the Galactic Center region
and thus remove any strong dependence on the choice
of the halo profile. We quantify the residual weak de-
pendence and present constraints on the dark matter
self-annihilation cross section and lifetime in a model-
independent way for a set of selected benchmark annihi-
lation and decay channels, respectively.
The paper is organized as follows: in the next section

we describe the detector used for the data taken during
2007–2008 which is the base for our analysis. Section
III discusses how we obtain an expected neutrino flux
at Earth using different dark matter distributions and
annihilation channels. In section IV we describe our data
selection criteria and analysis strategy, which is followed
by a discussion of the associated systematic uncertainties
in section V. Section VI presents the result of the search,
and section VII puts it in context with other experiments.
Section VIII concludes by summarizing the results and
giving an outlook for related searches.

II. THE ICECUBE NEUTRINO OBSERVATORY

AND EVENT SELECTION

The IceCube Neutrino Observatory, located at the geo-
graphic South Pole, consists of the IceCube neutrino tele-
scope and the IceTop air shower array [16]. IceTop covers
a surface area of one square-kilometer above the IceCube
“in-ice” detector, and is designed to measure cosmic ray
air showers with energies between approximately 300 TeV
to 1 EeV. The in-ice detector instruments a volume of one
cubic kilometer of Antarctic ice [17] with 5160 digital op-
tical modules (DOMs) [18] deployed at depths between
1450 m and 2450 m (see Fig. 1). The DOMS are dis-
tributed over 86 electrical cable bundles (strings) that
handle power transmission and communication with elec-
tronics located on the surface. Each DOM consists of a
25 cm Hamamatsu R7081-02 photomultiplier tube [19]

connected to a waveform recording data acquisition cir-
cuit. It is capable of resolving pulses with nanosecond
precision and has an effective dynamic range of 200 pho-
toelectrons per 15 ns.

Overhead View

IceCube Strings
DeepCore Strings

DeepCore

IceCube 22-strings

S
id

e 
V

ie
w

DeepCore strings have
10 DOMs with a
DOM-to-DOM spacing
of 10 meters

50 HQE DOMs with an
DOM-to-DOM spacing
of 7 meters

21 Normal DOMs with a
DOM-to-DOM spacing
of 17 meters

FIG. 1. (Color online) Schematic view of the IceCube Neu-
trino Observatory including the low energy extension Deep-
Core. Shown in red is the partially instrumented detector,
active in the 2007–2008 season, which was the only portion
used for this analysis.

IceCube detects all flavors of active neutrinos through
Cherenkov light emission from secondary particles cre-
ated when a neutrino interacts in the ice. Muon neutrinos
are of particular interest since their extended track-like
topology makes them relatively simple to identify. Fur-
thermore, the elongated tracks of the muons permit a
relatively accurate reconstruction of the neutrino direc-
tion with approximately a few degrees precision at the
detection threshold of 100 GeV. Neutrinos with energies
down to about 10 GeV can be identified in a densely in-
strumented sub-detector, DeepCore [20], which has been
operating since early 2010 (see Fig. 1). In this analy-
sis, we use data taken with an intermediate construction
stage of the in-ice detector, comprising 22 strings.
The primary background in the search for neutrinos

originates from cosmic ray air showers. When high en-
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ergy cosmic rays enter the Earth’s upper atmosphere they
produce extended air showers, a part of which includes
high energy pions and kaons. The decay of these mesons
results in a continuous stream of neutrinos and muons.
These are known as atmospheric muons and neutrinos,
and their flux is regulated by the path length and time
the parent particles had in the atmosphere to lose energy
or decay. The resulting neutrino spectrum obeys a power
law with a spectral index of γ ≈ 3.7 [21, 22]. High energy
muons are capable of travelling long distances through
matter before they eventually decay, resulting in a down-
going muon flux at the IceCube detector. In contrast,
neutrinos below 100 TeV can traverse the Earth without
significant absorption losses. To distinguish between a
muon produced from a charged current interaction of a
muon neutrino from those produced in the atmosphere,
we select only tracks that enter the detector from below
the horizon. Given the 22-string detector configuration
(see Fig. 1) for the analysis presented here, the total trig-
ger rate was approximately 550 Hz, dominated by down-
going atmospheric muons. A pre-selection at the South
Pole for up-going reconstructed tracks reduces the data
rate to 20 Hz, which is sent by satellite to be processed
offline.

III. HALO PROFILES AND SIGNAL

EXPECTATIONS

Recent advances in N-body simulations [23] and grav-
itational lensing observations [24] have provided reliable
predictions of the dark matter density distribution in the
Milky Way (MW). While the outer regions of the dark
matter halo of the Milky Way (several kpc away from the
Galactic Center (GC)) are relatively well modelled, the
structure of its central region is still a matter of debate
since it can neither be resolved in simulations, nor di-
rectly measured. Not surprisingly, halo models generally
show very similar behavior at large distances from the
Galactic Center, but differ significantly in their predic-
tions near it. This effect is shown in Fig. 2, where the
dark matter density, ρ(r), predictions from several spher-
ically symmetric halo profiles obtained from N-body sim-
ulations are compared. We show four different distribu-
tion functions which are used in our analysis. Since we
only use neutrinos from the northern sky, the effective
dark matter densities which dominate the analysis are
those between a distance from roughly 4 kpc to 20 kpc
from the Galactic Center. In this range the various halo
profiles are relatively consistent in their description of
the dark matter density. This agreement allows us to
constrain the dark matter self-annihilation cross section
with minimal halo profile dependence.
We use the Einasto [25, 26] and Navarro-Frenk-White

(NFW) [27] profiles as benchmark models, while the
Moore [28], and Kravtsov [29] profiles are applied as ex-
treme cases to estimate the impact of halo model choice
on the result. The Einasto profile is given by:

TABLE I. Summary of the parameters of Eq. 2 used in this
analysis.

Halo Model α β γ rs/kpc ρ(Rsc)/
GeV

cm3

NFW 1 3 1 20 0.3

Moore 1.5 3 1.5 28 0.27

Kravtsov 2 3 0.4 10 0.37

ρ(r) = ρ−2 × e
(− 2

α
)
[(

r
r
−2

)α

−1
]

(1)

with α = 0.16 [30], r−2 = 20 kpc, and ρ−2 normalized to
a dark matter density 0.3GeV

cm3 at the solar system’s orbit
in the Galaxy (Rsc = 8.5 kpc). The remaining three
profiles can be described by the following function:

ρ(r) =
ρ0

( rrs )
γ
[

1 + ( rrs )
α
](β−γ)/α

, (2)

where the variables (α, β, γ, rs) [31] take different numer-
ical values (listed in Table I) for the three models. The
normalizations are chosen such that the mass contained
within the orbit of the Solar System in the Galaxy pro-
vides the appropriate dark matter contribution to the
local rotational curves, and yields a local dark matter
density ρsc = ρNFW(Rsc) = 0.3GeV

cm3 for the NFW profile.

10−3

10−2

10−1

100

101

102

103

10−1 100 101 102

ρ 
[G

e
V

 c
m

−
3
]

r [kpc]

Moore
Einasto

NFW
Kravtsov

FIG. 2. Comparison of the dark matter density distribution,
ρ(r), as a function of distance from the Galactic Center as
described by the Einasto, NFW, Kravtsov, and Moore halo
profiles. The shaded area indicates the region where the pre-
sented analysis is sensitive.

The expected neutrino flux, φν , from dark matter self-
annihilations is proportional to the square of the dark
matter density integrated along the line of sight J(ψ):
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FIG. 3. Differential muon neutrino energy spectrum per an-
nihilation, taking neutrino oscillations into account. In this
example we assume a WIMP mass of 300 GeV and 100%
branching fraction into the corresponding annihilation chan-
nel.

J(ψ) =

∫ lmax

0

ρ2(
√

R2
sc − 2lRsc cosψ + l2)

Rscρ2sc
dl, (3)

where ψ is the angular distance from the Galactic Center
and lmax is the upper limit of the integral, defined as

lmax =
√

(R2
MW − sin2 ψR2

sc) +Rsc cosψ. (4)

We adopt a halo size of RMW = 40 kpc. Contributions
to the expected neutrino flux from beyond this range are
small, and are discussed as part of our systematic studies
on the result in section VI.
The annihilation products are highly model dependent

and we thus study extremes of the possible annihilation
channels assuming a branching ratio of 100% for each of
them in turn. We consider soft neutrino spectra produced
from the annihilation into quarks (bb̄), and hard spectra
as produced by annihilation into W+W− and µ+µ−. In
addition, we consider a neutrino line spectrum (χχ →
νν).
Neutrinos will have undergone extensive mixing

through vacuum oscillations over the distances travelled
across the Galaxy. We determine neutrino flavor oscil-
lations in the long baseline limit [32, 33], adopting val-
ues of sin2 2Θ12 = 0.86, Θ23 maximal (Θ23 ≃ π/4), and
Θ13 ≃ 0. The neutrino fluxes at Earth are then given by:

φνe ≃ φ0νe −
1

4
s2 (5)

and

φντ ≃ φνµ ≃ 1

2
(φ0νµ + φ0ντ ) +

1

8
s2, (6)

where φ0νi is the flux at injection and s2 is defined as

sin2 2Θ12(2φ
0
νe −φ0νµ −φ0ντ ). Note that the expected flux

for muon and tau neutrinos is equal.
The neutrino energy spectra were produced using

DarkSUSY [34], an advanced numerical software pack-
age for supersymmetric dark matter calculations, and are
shown in Fig. 3.
The differential neutrino flux from the annihilations

of neutralinos of mass mχ in the Galactic halo is given
by [31]:

dφν
dE

=
〈σAv〉

2
J(ψ)

Rscρ
2
sc

4πm2
χ

dNν
dE

, (7)

where dNν

dE is the differential neutrino multiplicity per
annihilation. Similar to the annihilation cross section,
one can search for signals from decaying dark matter [35]
and constrain the lifetime, τ . For decaying dark matter,
the expected neutrino flux is proportional to the dark
matter density along the line of sight, given by:

Jd(ψ) =

∫ lmax

0

ρ(
√

R2
sc − 2lRsc cosψ + l2)

Rscρsc
dl. (8)

The expected neutrino flux from the dark matter decay
is then:

dφν
dE

=
1

τ
Jd(ψ)

Rscρsc
4πmχ

dNν
dE

. (9)

We use identical halo model parameters in both the
dark matter annihilation and decay analyses. We assume
a smooth halo profile and discuss the effect of substruc-
ture separately.

IV. DATA SELECTION

The search for a clustering of neutrinos to indicate
an astrophysical neutrino source is one of the bench-
mark analyses performed by the IceCube collaboration.
Such a “point source” search relies on muon neutrinos
since the elongated tracks of the muons permit an accu-
rate reconstruction of the neutrino direction. The 22-
string detector configuration has produced a well un-
derstood neutrino candidate sample [36], extracted us-
ing likelihood-based track reconstructions and selecting
tracks from −5◦ to 85◦ in declination. The shape of the
likelihood function around the best-fit value is used to
estimate the angular uncertainty of the reconstructed
track [37], while the number of optical modules in the
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event which record minimally scattered Cherenkov pho-
tons gives an additional handle on the quality of the re-
construction. Such “direct” photons are isolated via a
time difference selection window between the expected
arrival time of an unscattered photon, given the recon-
structed track, and the registered DOM hit time. Near
the horizon, the background from poorly reconstructed
atmospheric muons is further reduced by an additional
cut on the likelihood ratio of the best-fit track to the
best-fit track constrained to be down-going. These ap-
plied selection criteria remove the largest fraction of mis-
reconstructed down-going events, maintaining a neutrino
candidate sample with about 90% purity [36]. The final
northern sky dataset consists of 5114 neutrino candidate
events acquired in 275.7 days of livetime.
Figure 4 shows the neutrino energy distribution of the

final selection based on simulations of atmospheric neu-
trinos.

/GeV)
µν

Neutrino Energy log(E
1 1.5 2 2.5 3 3.5 4 4.5 5

P
ro

ba
bi

lit
y

-310

-210

-110

FIG. 4. Muon neutrino energy distribution from atmospheric
neutrino simulations at final selection level.

Assuming a given annihilation channel and dark mat-
ter halo profile, one can determine the expected neutrino
flux (proportional to the dark matter annihilation cross
section) for any given location on the sky. The flux is
peaked in the direction of the Galactic Center, which is
a prominent target for searches. However, the Galactic
Center is located in the southern hemisphere at 266◦ right
ascension (RA) and −29◦ declination (DEC), and there-
fore outside the field of view in the used dataset.
In the northern hemisphere, regardless of the choice

of halo model, dark matter annihilations would produce
a large–scale neutrino anisotropy. The search for such
an anisotropy affords distinct advantages for discovery.
An observation of a flux from the Galactic Center would

FIG. 5. The relative expected neutrino flux from dark mat-
ter self-annihilation in the northern celestial hemisphere of
the Milky Way Galaxy halo is shown. The largest flux is
expected at a right ascension (RA) closest to the Galactic
Center (∆RA = 0). Dashed lines indicate circles around the
Galactic Center with a half-opening angle, ψ, that increases
in 10◦ steps. The solid lines show the definition of on– and
off–source regions in the northern hemisphere. The on–source
region is centered around ∆RA = 0, while the off–source re-
gion is shifted by 180◦ in RA.

be more difficult to distinguish from other astrophysi-
cal sources or cosmic ray interaction with the interstellar
medium. However, the Galactic Center is an excellent
target to constrain the dark matter self-annihilation cross
section for a given halo model and is the subject of a sep-
arate analysis.
To test for an excess flux of neutrinos, we define two

regions on the northern sky. The first region will serve
as our signal region (on–source) and is defined by a
half-opening angle, rψ, around the Galactic Center. An
equally sized region, offset by 180◦ in RA, serves an off–
source region (see Fig. 5). This choice is motivated by
the robustness and simplicity of the ensuing analysis and
minimizes systematic uncertainties due to azimuth angle
dependent reconstruction efficiencies. For spherical halo
profiles, the expected flux is a function of the angular
distance from the Galactic Center, ψ, and we count the
total number of neutrino candidate events in each region.
This makes the analysis maximally independent of halo
profiles and provides sensitivity to both hard and soft
neutrino spectra.
The difference in the expected number of neutrino

events between the on–source and off–source region is
given by:

∆N =
(

Nbkg
on +N sig

on

)

−
(

Nbkg
off +N sig

off

)

, (10)

where bkg/sig stand for background and signal, respec-
tively. Background events are expected to be equally dis-
tributed in the on– and off–source regions, simplifying the
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prediction to ∆N sig = N sig
on −N sig

off . The signal expecta-
tion in both regions, and hence ∆N sig, is directly propor-
tional to the dark matter self-annihilation cross-section
〈σAv〉. To optimize the size of the on– and off–source
region, we chose an example cross section 〈σAv〉0 and
predict the expected number of signal events S = ∆N sig

from simulations for different choices of rψ [38]. For

rψ = 80◦, the ratio of S/
√
B, where B is the expected

number of background events, is close to maximal for
all considered halo profiles, while the on– and off–source
regions remain well separated and do not overlap.

V. SYSTEMATIC UNCERTAINTIES

We first discuss the systematic uncertainty associated
with the background estimation. By design, the back-
ground can be determined from the data by compar-
ing events in the on– and off–source regions, eliminat-
ing most detector related effects. Thus, only pre-existing
anisotropy in the data must be considered. The two dom-
inant effects giving rise to this are: (1) An anisotropy in
the cosmic ray flux producing the atmospheric muon neu-
trino flux; (2) Variations in exposure for different RA.
A large–scale anisotropy in the cosmic ray flux has

been observed both on the northern hemisphere by the
TIBET air shower array [39], and the southern hemi-
sphere by an IceCube measurement of the down-going
muon flux [40]. The northern hemisphere anisotropy
for cosmic ray energies around 50 TeV is relevant to
this analysis. This energy range of cosmic ray showers
contributes most in creating this analysis’ background
up-going atmospheric muon neutrino flux. The overall
scale of the measured cosmic ray anisotropy is about
0.2%, with peak values at RA ≈60◦ and a minimum at
RA ≈180◦. This is not aligned with an expected signal
anisotropy from the Milky Way dark matter halo. To
provide a conservative systematic uncertainty estimate,
we assume the worst case of an aligned anisotropy, which
peaks in one region and is minimal in the other. In such
a scenario a difference of three events between on– and
off–source regions would be observed, corresponding to
a 0.2% systematic uncertainty on the number of back-
ground events.
The muon track reconstruction efficiency varies as

function of the zenith angle and azimuth angle [36, 41].
Although the azimuth dependence is relatively uniform
for the axially symmetric full IceCube detector, it is par-
ticularly pronounced in the partially instrumented 22-
string detector configuration used for this analysis. As
the Earth rotates, each detector alignment in RA gets
equal exposure within one sidereal day. A small frac-
tion of detector operations is dedicated towards sched-
uled detector maintenance, which is performed at times
when communication with the South Pole can be estab-
lished. The use of geosynchronous satellites introduces
a bias in sidereal time, which means that fewer physics
data runs are available for particular alignments of the
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FIG. 6. The relative exposure variation as function of RA
and rotated by 180◦ is shown. The absolute variation defines
the signal acceptance uncertainty due to exposure, while the
difference between the normal and rotated exposure defines
the corresponding systematic uncertainty on the background
estimate.

TABLE II. Summary of systematic uncertainties on the back-
ground estimate.

Effect Sys. Uncertainty

Cosmic ray anisotropy 0.2%

Exposure 0.1%

Total Background 0.3%

detector in RA. Selecting symmetric on– and off–source
regions shifted by 180◦ in RA reduces this effect signif-
icantly, such that the track reconstruction efficiency is
almost identical to the case where the detector is rotated
by 180◦. The total expected variation in the number
of events due to this effect is approximately 0.1% (see
Fig. 6).
It is possible, in principle, to correct for both the cos-

mic ray anisotropy and detector uptime effects. Because
of their negligibly small impact compared to the back-
ground statistical uncertainty, such a correction has not
been applied. The contribution from the cosmic ray
anisotropy (0.2%) and the uneven exposure (0.1%) are
uncorrelated. We use 0.3% as a conservative estimate on
the total systematic uncertainty on the number of back-
ground events in the on–source region (see Table II).
The signal acceptance uncertainty is dominated by un-

certainties in the ice properties and limitations in the de-
tector simulation, which is uncorrelated with a number
of theoretical uncertainties such as muon propagation,
neutrino cross section, and bedrock uncertainty, each of
which have been studied in previous analyses [36]. In ad-
dition, we consider the uncertainty due to Monte Carlo
simulation statistics and detector exposure. The individ-
ual track pointing uncertainty (point spread function),
on the order of one degree, is negligible in this analysis,
which targets a large–scale anisotropy.
Our dominant systematic uncertainty, the limited



8

knowledge of ice properties as a function of depth and
limitations in the detector simulation, is expected to pro-
duce an observed discrepancy between data and simula-
tion for events near the horizon [36]. For nearly horizon-
tal tracks the disagreement is maximal, with 30% more
events observed in data compared to simulation predic-
tions. Since we use the data itself to predict the number
of background events in the on–source region, this dis-
crepancy does not affect the background estimate. How-
ever, the signal acceptance can only be obtained from
simulations. Hence, we must take this discrepancy into
consideration for the signal acceptance uncertainty. The
higher than expected observed data rate, when compared
to simulation expectations, may indicate a contribution
from mis-reconstructed down-going events, or a higher
signal acceptance than expected. Both would cause the
constraints presented later to be more conservative. The
estimate for this systematic uncertainty in signal accep-
tance is 25-30%.
The track reconstruction efficiency coupled with detec-

tor uptime (see Fig. 6) results in a systematic uncertainty
on the signal acceptance of 1%. This uncertainty, com-
bined with the theoretical uncertainties, results in a neg-
ligible contribution compared to the uncertainties in the
optical properties of the ice. We therefore assume a 30%
systematic signal acceptance uncertainty, primarily asso-
ciated with that from the ice properties and limitations
in the detector simulation.
An additional systematic uncertainty to consider in

signal acceptance is related to the photon detection effi-
ciency of the DOMs, measured to be 8% in the labora-
tory [19]. The effect of this uncertainty on the passing
rate of reconstructed tracks is found to range from about
1% for energetic events (≥ 1 TeV), increasing to as much
as 20% for lower energy events (≤ 200 GeV), as expected
from annihilations assuming WIMP’s of mass 200 GeV.
We calculate this uncertainty for each of the considered
WIMP masses and annihilation channels, then we add it
in quadrature to the ice properties uncertainty discussed
above.
To derive the total uncertainty on the signal accep-

tance, we have added the systematic signal acceptance
uncertainty in quadrature to the statistical uncertainty
(Monte Carlo statistics). The Monte Carlo statistics un-
certainty ranges from 3-6% (hard channels) and 4-16%
(soft channels) in the TeV mass range dark matter, and
increases to 50% (hard channels) and 90% (soft channel)
at mχ = 200 GeV.

VI. RESULTS

Except for examination of the data for quality assur-
ance, the optimization of the size of the on–source re-
gion was performed entirely with simulated events, en-
suring a blind analysis. In the final dataset we observed
1389 events in the off–source region and 1367 events in
the on–source region, consistent with the null hypoth-
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FIG. 7. The location of the neutrino candidate events in DEC
versus RA for the on– (right) and off–source (left) region.

esis. Figure 7 shows the distribution of these neutrino
candidate events in declination and right ascension. To
study the possibility of an anisotropy in an adjacent bin,
we shift the on– and off–source regions in 60◦ steps. For
each of the step bins, the ratio of Non/Noff is consistent
with one (see Fig. 8).
We compute constraints on the neutrino flux from dark

matter annihilation from the Galactic halo. Given a spe-
cific 〈σAv〉0 in signal simulations, the number of expected
events for an arbitrary cross section 〈σAv〉 is

∆N sig(〈σAv〉) =
〈σAv〉
〈σAv〉0

(∆N sig(〈σAv〉0)). (11)

The cross section limit at 90% C.L. is

〈σAv〉90 = ∆N90 ×
〈σAv〉0

∆Nsig(〈σAv〉0)
, (12)

where ∆N90 is the limit at 90% C.L. for the number of
signal events.
To determine ∆N90, we construct a Neyman confi-

dence belt. The one-sided 90% C.L. acceptance inter-
vals are determined by a simple Monte Carlo, in which
the numbers of events in the on– and off–source re-
gions are assumed to be Poisson distributed over re-
peated measurements, with an average contribution of
Nbkg = Noff = 1389±4(sys)37(stat). The 90% C.L. event
upper limit ∆N90 is calculated for various WIMP masses
and annihilation channels using the appropriate signal
expectation. Statistical and systematic uncertainties in
the signal expectations are represented by log-normal dis-
tributions. For a 30% signal acceptance uncertainty, for
example, the upper limit was found to be ∆N90 = 49
for ∆N = −22 events. For small signal acceptance un-
certainties, where the log-normal distribution can be ap-
proximated by a Gaussian, results are consistent with
the confidence interval constructed using the method by
Lundberg et al. [42, 43]. Our limit calculation of the on–
source region also resembles a commonly used procedure
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FIG. 8. Relative difference in number of events in the on/off–
source region as a function of offset from the nominal posi-
tion. The regions are shifted by 60◦ steps to be centered at
∆RA+ δ. Error bars represent the statistical uncertainty in
the bin. Adjacent bins are correlated, as regions partially
overlap. Note the first bin corresponds to the result obtained
by this analysis. Bins 4-6 are closely related to bins 1-3, as
Non and Noff are swapped in them.

by Li and Ma to compute the significance of an on–source
observation [44]. The significance ξ is defined as

ξ =
Non − ηNoff

η
√
Non +Noff

≈ ∆N√
2×Noff

. (13)

Here η is the ratio in exposure, or ratio of the size of the
two regions. For our case of an equally sized on– and
off–source region, η = 1.
Figure 9 shows the obtained exclusion limit compared

to the “natural scale”, for which dark matter candidates
are consistent with being a thermal relic [45, 46]. Larger
cross sections are possible if, for example, dark matter is
produced non-thermally or acquires mass only in the late
universe [47].
Applying the same procedure as that above for the

annihilation cross section, we compute a 90% C.L. lower
limit on the WIMP lifetime, τ , as function of the WIMP
mass, as shown in Fig. 10. We assume a line spectrum,
χ → νν and apply Eq. 9 for the expected neutrino flux.
If dark matter is a thermal relic and unstable, the only
requirement in order for it to be present today is that it
has a lifetime much longer than the age of the Universe
TU ≃ 4× 1017 s.
Our limit calculation assumes smooth, spherically sym-

metric halo models. However, N-body simulations in-
dicate that dark matter in the halo should have some
substructure [50, 51]. While this will have negligible ef-
fects on the expected neutrino flux from dark matter de-
cay, the presence of substructure will enhance the self-
annihilation rate since it is proportional to the square
of the dark matter density. To quantify the average ex-
pected enhancement in the annihilation rate compared
to a smooth dark matter distribution, one can define a
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boost factor as a function of the distance from the Galac-
tic Center [52, 53]:

B(r) =

∫

ρ2dV
∫

(ρ̄)2dV
, (14)

where we defined ρ̄ as the mean density of the smooth
halo component. To determine the impact of a boosted
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neutrino flux on the expected neutrino signal in the on–
and off–source regions we use the signal enhancement re-
sulting from substructure in the halo following the sim-
plest model of reference [53], as shown in Fig. 11.
We investigate the scaling of the limit due to a boost

factor and adopted size of the Galactic dark matter halo,
RMW, which sets the upper integration limit in the dark
matter density line of sight integral given by Eq. 3. The
ratio between the limit for the default value (smooth halo,
and RMW = 40 kpc) and the modified halo model is
shown in Fig. 12. An increase in the halo size RMW from
40 kpc to 100 kpc has no impact. Boosting the flux due
to substructure results in a better limit and therefore
assuming no substructure, yields a more conservative re-
sult.
Another possible contribution to the neutrino flux

from dark matter self-annihilations originates outside our
Galaxy. This extra-galactic flux [15] is expected to be

isotropic and, hence, contributes equally to the on– and
off–source regions. That is, any such additional flux
would equally contribute to the number of events ob-
served in the on– and off–source regions and hence make
a flux limit based on the difference more conservative.
Note also that the contribution from the extragalactic
component is much smaller than the flux from within
our Galaxy [31].

VII. COMPARISON TO

PHENOMENOLOGICAL MODELS

Lepton signals, such as those observed in the ATIC
peak [7], the PAMELA GeV positron excess [6], and elec-
tron spectra from H.E.S.S. [8], and Fermi [9] deviate from
predictions for the primary electron and cosmic ray sec-
ondary positron spectrum [10]. Such an excess, if inter-
preted as originating from dark matter self-annihilations,
would be indicative of leptophilic dark matter candi-
dates [12, 13]. Alternatively, such an excess could also
be explained through nearby astrophysical sources such
as pulsars [11].
Since electrons lose significant energy during propaga-

tion, signals must originate within a distance of about
one kpc from the Sun. While electron signals could only
probe the local dark matter density, the presented large–
scale anisotropy search probes a wider range of the Milky
Way halo. Figure 13 compares the IceCube exclusion
limit with phenomenological interpretations of anoma-
lous electron measurements for two example annihilation
channels (µµ,ττ) and our chosen benchmark profile of
Einasto. Even the small dataset used here allows this
analysis to constrain models motivated by the anoma-
lous lepton signals.

VIII. SUMMARY AND OUTLOOK

The IceCube candidate neutrino sample, collected dur-
ing 2007–2008 in the 22-string configuration, has been
used to search for a neutrino anisotropy as expected from
dark matter self annihilation in the Milky Way halo.
Such an anisotropy was not observed and we have deter-
mined limits on the dark matter self-annihilation cross
section 〈σAv〉 at 90% C.L. for WIMPs in the mass range
from 200 GeV to 10 TeV. The IceCube detector sensi-
tivity can be significantly improved by investigating the
Galactic Center as a potential source. Such a search
could be performed with the IceCube detector at a later
construction stage and rely on selecting neutrinos inter-
acting inside the detector volume. It would be able to
significantly improve the constraints on the dark matter
self-annihilation cross section given a particular choice
of halo model in the case of a non observation. A large–
scale anisotropy study as performed here, however, might
provide a more distinct discovery signal. In the case of
the Galactic Center, a dark matter signal would be more
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FIG. 13. (Color online) 90% C.L. upper limit on the dark matter self annihilation cross section assuming the Einasto profile
and annihilation into µµ (left panel) and ττ (right panel). Limits are compared to a preferred phenomenological model to
explain the PAMELA excess (green) together with Fermi electrons (brown). The natural scale (red dotted line), for which the
WIMP is a thermal relic, and unitarity bound [48, 49] (blue line) are shown.

difficult to distinguish from other astrophysical neutrino
sources, such as point sources (source contamination) or
cosmic ray interaction with the interstellar medium.
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