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We present a search for electroweak production of single top quarks in the electron1jets and muon1jets
decay channels. The measurements use'90 pb21 of data from Run 1 of the Fermilab Tevatron collider,
collected at 1.8 TeV with the DO” detector between 1992 and 1995. We use events that include a tagging muon,
implying the presence of ab jet, to set an upper limit at the 95% confidence level on the cross section for the

s-channel processpp̄→tb1X of 39 pb. The upper limit for thet-channel processpp̄→tqb1X is 58 pb.
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The top quark is the charge12/3 weak-isospin partner of
the bottom quark in the third generation of fermions of the
standard model~SM!. It is extremely massive at 174.365.1
GeV @1#, and, with an expected width of 1.5 GeV@2#, it
decays before hadronization almost exclusively into aW bo-

son and ab quark. At the Fermilab Tevatronpp̄ collider,
most top quarks are pair-produced via the strong interaction
through an intermediate gluon. This was the mode used in its
observation@3# and subsequent studies of its properties, in-

cluding measurements of thet t̄ production cross section of
5.961.7 pb by the DO” Collaboration@4#, and 6.521.4

11.7 pb by
the Collider Detector at Fermilab~CDF! Collaboration@5#. A
second production mode is predicted to exist, where top
quarks are created singly through an electroweakWtb vertex
@6#. Many processes beyond the SM can boost the single top
quark cross section@7#. In the absence of a cross section
excess, measurement of the electroweak production of single
top quarks could provide the magnitude of the Cabibbo-
Kobayashi-Maskawa~CKM! matrix elementVtb @8# since
the cross section is proportional touVtbu2. In this Rapid Com-
munication, we describe a search for single top quarks at the
Tevatron using data collected from 1992–1995 at app̄
center-of-mass energy of 1.8 TeV.

The standard model predicts three modes for the produc-
tion of single top quarks at a hadron collider. The first is the
s-channel processq8q̄→tb, illustrated in Fig. 1~a!. For a top
quark massmt of 175 GeV, this has a cross section calcu-
lated at next-to-leading-order~NLO! of 0.7360.10 pb @9#.
Following the decay of the top quark, these events contain a
W boson and twob quarks that hadronize into two central
jets with high transverse momentum (pT). The second pro-
duction mode, shown in Fig. 1~b! and sometimes referred to
as W-gluon fusion, is at-channel process,q8g→tqb. The
NLO cross section is 1.7060.24 pb@10#. This process pro-
duces aW boson, a forward light-quark jet, and two centralb
jets, one with highpT and the other with lowpT . We have
searched for both production modes, with decay of theW
boson intoen or mn, and identification of ab jet via a
tagging muon. A third mode occurs via both thes-channel
and t-channel,bg→tW, with a final state containing twoW
bosons and a singleb jet. The leading-order cross section for
this process is only 0.15 pb@11#, and, with '90 pb21 of
available data, there is no possibility of separating it from the
background. Throughout this paper, we use ‘‘tb’’ to refer to
both tb̄ and the charge-conjugate processt̄ b, and ‘‘tqb’’ to
both tqb̄ and t̄ q̄b.

The DO” detector@12# has three major components: a cen-
tral tracking system including a transition radiation detector
~TRD!, a uranium/liquid-argon calorimeter, and a muon
spectrometer. For the measurement in the electron channel,
we use 91.964.1 pb21 of data collected with a trigger that
required an electromagnetic~EM! energy cluster in the calo-
rimeter, a jet, and missing transverse momentum (E” T). For
events passing the final selection, the efficiency of the trigger
is 90293 %, depending on the location of the EM cluster in
the calorimeter. In the muon channel, we use 88.0
63.9 pb21 of data acquired with several triggers, which re-

quiredE” T or a muon with a jet. The combined efficiency of
these triggers is 96299 %. A third data sample, obtained
with a trigger requiring just three jets, is used for measuring
one of the backgrounds. Since the multijet cross section is
very large, this trigger was prescaled, and we have 0.8 pb21

of such data. Each of the three samples contains approxi-
mately one million events.

To determine whether an EM energy cluster was gener-
ated by an electron, we require it to be isolated from other
activity in the calorimeter and use a five-variable likelihood
function to discriminate electrons from the background. This
likelihood includes the fraction of cluster energy contained
in the EM region of the calorimeter (.90% for electrons!,
the cluster shape~it must resemble an electron and not a
pion!, the presence of a well-matched track between the clus-
ter and a primarypp̄ interaction vertex~to discriminate
against photons!, the dE/dx energy loss along the track
~consistent with a single particle and not from a photon con-
version into a pair of charged particles!, and the TRD re-
sponse~matching that of an electron and not a pion!. An
electron is then required to have transverse energyET.20
GeV, and to be within the optimal region of the calorimeters
with detector pseudorapidityuhdetu,1.1 or 1.5,uhdetu,2.5
@13#. When an electron is isolated, it is more likely to have
originated from the decay of aW boson than from ab had-
ron. The efficiency of the combined electron identification
requirements is'60%.

Jets, reconstructed with a cone algorithm of radiusR
50.5 @14#, must fail the electron requirements. The jet with
the highest transverse energy is required to haveET.15
GeV and uhdetu,3.0. The second jet has to haveET.10
GeV anduhdetu,4.0. Other jets in the event are counted if
they haveET.5 GeV anduhdetu,4.0. We set theET thresh-
olds low and theuhdetu region wide to maximize acceptance
for signal; however, the efficiency to reconstruct jets close to
the 5 GeV threshold is low.

We identify a muon by the pattern of hits in the spectrom-
eter drift tubes, and require an impact parameter,20 cm
between the spectrometer track and the primary vertex, a
matching track in the calorimeter consistent with a
minimum-ionizing particle, a matching central track, a signal
in the scintillators surrounding the spectrometer within612
ns of the beam-crossing time, and penetration through one of
the spectrometer toroids for momentum analysis. Most of
these requirements are designed to reject cosmic rays and
particles backscattered from the beamline magnets. Muons
must be within the central region of the spectrometer, with
uhdetu,1.7. A muon is called ‘‘isolated’’ ifDR(m, jet)>0.5
@15# for all jets with ET.5 GeV. An isolated muon must

FIG. 1. Leading order Feynman diagrams for single top quark
production at the Tevatron, where~a! shows thes-channel mode,
and ~b! the t-channel mode.
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have pT.20 GeV and is attributed to the decay of aW
boson. A ‘‘tagging’’ muon hasDR,0.5 andpT.4 GeV. It
is attributed to the semileptonic decay of ab hadron in a jet,
and thus identifies ab jet. The efficiency of the combined
muon identification requirements is'44% for isolated
muons.

Because a leptonically-decayingW boson is supposed to
be present in each signal event, we requireE” T.15 GeV as
evidence of a neutrino.

We use the NLO single top quark production cross sec-
tions to estimate that about 66s-channel and 153t-channel
events were produced at DO” during Run 1. Of these, we
expect that about 15s-channel and 35t-channel events
passed the trigger requirements and were recorded for analy-
sis.

Our analysis starts with a simple baseline selection of
events that pass the triggers and have at least one recon-
structed electron or isolated muon, and at least two jets with
ET.5 GeV anduhdetu,4.0. For the results presented in this
Rapid Communication, we also demand at least one tagging
muon ~‘‘/ m ’’ ! to indicate the possible presence of ab jet.
These minimal requirements reduce the'1 million events in
each channel to 116e1 jets/m events and 110m1 jets/m
events. The acceptance for single top quark events for these
selections is 0.220.3 % per channel, which should yield'1
tagged event (tb andtqb, with electron and muonW decays
combined!. The expected number of events is small because
the probability to identify at least one tagging muon in a
single top quark event is only 6211 %. After these selec-
tions, 90% of the background in the electron channel is from
QCD multijet production with a jet misidentified as an elec-
tron, 5% fromt t̄ events, and 5% fromW1 jets ~including
WW andWZ diboson events!, where about two thirds of the
W1 jets events have a light quark or gluon jet with a false
tagging muon, and a quarter of the tagging muons are fromc
quark decays. In the muon channel, the background is 8%
from W1 jets events, 6% from QCDbb̄ events where a
muon from ab decay mimics an isolated muon, and 4%
from t t̄ events. The remaining 82% of the background is
from QCD multijet events with a coincident cosmic ray or
beam-halo particle misidentified as an isolated muon.

Next, we apply a set of loose criteria to remove mismea-
sured events and to reject backgrounds that do not have the
same final-state characteristics as our signal. We reject
events with more than one isolated lepton and any isolated
photons. We remove events withE” T close to 15 GeV and
aligned with or opposite to a jet, or opposite an electron or
isolated muon. We also reject events that have muons with
clearly mismeasuredpT . We require two, three, or four jets.
To remove the remaining contamination from cosmic rays in
the isolated muon channel, we reject events where the iso-
lated muon and tagging muon are back-to-back; in particular,
we requireDf(isolm,tagm),2.4 rad. These criteria, to-
gether with the jetET and uhdetu requirements and theE” T
threshold, reject 86% of the baseline multijet ‘‘electron’’
events, 95% of the cosmic ray and misreconstructed isolated
‘‘muon’’ events, 90% of thebb̄ ‘‘isolated’’ muon events,

27% of theW1 jets events in the electron channel, 81% in

the muon channel, and 55273 % of thet t̄ background. The
signal acceptances are reduced by 14251 %. There remain
21 e1 jets/m and 8m1 jets/m candidates in the data.

Based on independent studies~see below!, we apply the
following requirements to obtain the best significance of sig-
nal over square-root of background in each channel:

Electron Channel
ET(jet1)1ET(jet2)1ET(e)1E” T.125 GeV
ET(jet3)153ET(jet4),47 GeV
ET(jet1)143E” T.155 GeV

Muon Channel
ET(jet1)1ET(jet2)1ET(jet3)1ET(jet4).70 GeV
ET(jet3)153ET(jet4),47 GeV

The first criterion in each set was chosen by studying
reconstructedCompHEP @16# Monte Carlo ~MC! W1 jets
events, the second by examiningHERWIG @17# t t̄ MC events,
and the third variable in the electron channel was determined
from studies of QCD multijet data. The distributions were
compared with signal MC events fromCompHEP. The cutoffs
were optimized on combined samples of untagged and
tagged events. Figure 2 shows the distribution of the second
variable, designed to minimize thet t̄ background, for elec-
tron and muon events combined after all other selections
have been applied.

After final selections, there is no evidence of an excess of
signal over background, and we therefore use the results to
set limits on thes-channel andt-channel single top quark
cross sections. To do this, we must first determine the signal
acceptance and the background in each channel.

We obtain the signal acceptances using MC samples of
s-channel andt-channel single top quark events from the
CompHEP event generator, with thePYTHIA package@18#
used to simulate fragmentation, initial-state and final-state
radiation, the underlying event, and leptonic decays of theW
boson. The MC events are processed through a detector
simulation program based on theGEANT @19# package and a
trigger simulation, and are then reconstructed. We apply all
selections directly to the reconstructed MC events, except for
several particle identification criteria, which we correct using
factors measured in other DO” data. Table I shows the accep-
tance for single top quark events after all selection require-
ments and corrections.

FIG. 2. Variable used to reject thet t̄ background.
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The acceptance fort t̄ pairs is calculated in a manner simi-
lar to that for signal and then converted to a number of
events using the integrated luminosity for each channel and
DO” ’s value of thet t̄ cross section@4#.

The QCD multijet background with a jet misidentified as
an electron is measured using multijet data. The events are
weighted by the probability that a jet mimics an electron for
each jet that passes the electronET and uhdetu requirements.
These probabilities are determined from the same multijet
sample, but forE” T,15 GeV, and are found to be (0.0160
60.0016)% for uhdetu,1.1, and (0.062260.0048)% for
uhdetu.1.5. We normalize the integrated luminosity of the
multijet sample so as to match the data sample used in the
search for the signal, and correct for a small difference in
trigger efficiency between the two samples.

The QCDbb̄ background arises when bothb quarks de-
cay semileptonically to a muon, and one muon is misidenti-
fied as isolated. There are two ways for such events to mimic
the signal. First, one of theb jets may not be reconstructed,
and its muon can therefore appear to be isolated. Second, a
muon can be emitted wide of its jet and be reconstructed as
an isolated muon. The background from each source is mea-
sured using data collected with the same triggers as used for
the muon signal. The events are required to pass all selec-
tions, except that the muon, which otherwise passes the iso-
lated muon requirements, is within a jet. Events with truly
isolated muons are excluded. Each event is then weighted by
the probability that a nonisolated muon is reconstructed as an
isolated one. This probability is measured using the same
data sample, except forE” T,15 GeV, and is found to be
(2.9460.53)% for the case of a ‘‘lost jet,’’ and (1.38
60.25)% for a ‘‘wide m,’’ for muons with pT,32 GeV.
The probabilities are parametrized as a function of the muon
pT . We calculate a weighted average of the two results to
obtain the number of expected background events.

The background fromW1 jets is estimated by applying a
set of tag-rate functions to untagged signal candidates that

pass all final event selections. These tag-rate functions are
measured using multijet data and correspond to the relative
probability that a jet of givenET and hdet has a tagging
muon, for two run periods when the muon chambers had
different operating efficiencies. We then correct the samples
for a small difference in trigger efficiency between untagged
and tagged events. We also correct the muon channel by a
factor of 0.68860.034 to account for the effect of theDf
cutoff used to minimize cosmic ray backgrounds, a selection
that cannot be applied directly. Finally, to avoid double
counting, we subtract the fraction of events expected fromt t̄
and QCD backgrounds and single top quark signals. The
remaining fraction ofW1 jets in the untagged signal candi-
dates is 66– 92 %, depending on the location of the electron
or isolated muon.

The numbers of events expected for the two signals and
three backgrounds are shown in Table I, together with the
final numbers of events in the candidate data samples for the
electron and muon channels.

To calculate limits on the cross sections for single top
quark production in thes-channel andt-channel modes, we
use the numbers of observed events, the signal acceptances
and backgrounds, and the integrated luminosities. Covari-
ance matrices are used to describe the correlated uncertain-
ties on these quantities. We use a Bayesian approach, with a
flat prior for the single top quark cross section and a multi-
variate Gaussian prior for the other quantities. We calculate
the likelihood functions in each decay channel and combine
them to obtain the following 95% confidence level upper
limits:

s(pp̄→tb1X),39 pb
s(pp̄→tqb1X),58 pb

To conclude, we have searched for electroweak produc-
tion of single top quarks and find no evidence for such pro-
duction. We set upper limits on the cross sections for
s-channel production oftb and t-channel production oftqb.
The limits are consistent with expectations from the standard
model.
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TABLE I. Signal acceptances~as percentages of the total cross
sections! and numbers of events expected to remain after applica-
tion of all selection criteria.

Electron Channel Muon Channel

Acceptances
tb (0.25560.022)% (0.11260.011)%
tqb (0.16860.015)% (0.08360.008)%

Numbers of Events
tb 0.1860.03 0.0860.01
tqb 0.2860.05 0.1360.03
W1 jets 5.5960.64 1.1260.17
QCD 5.9260.58 0.4060.09

t t̄ 1.1460.35 0.4560.14

Total Bkgd 12.6560.93 1.9760.24
Data 12 5
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