March 2008

Search for Flavor-Changing-Neutral-Current D Meson Decays

V. M. Abazov
Joint Institute for Nuclear Research, Dubna, Russia
Gregory R. Snow
University of Nebraska-Lincoln, gsnow1@unl.edu
Kenneth A. Bloom
University of Nebraska-Lincoln, kbloom2@unl.edu
D0 Collaboration

Follow this and additional works at: https://digitalcommons.unl.edu/physicsbloom
Part of the Physics Commons

Abazov, V. M.; Snow, Gregory R.; Bloom, Kenneth A.; and Collaboration, D0, "Search for Flavor-Changing-Neutral-Current D Meson Decays" (2008). Kenneth Bloom Publications. 233.
https://digitalcommons.unl.edu/physicsbloom/233

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Kenneth Bloom Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Search for Flavor-Changing-Neutral-Current D Meson Decays

V. M. Abazov, ${ }^{35}$ B. Abbott, ${ }^{75}$ M. Abolins, ${ }^{65}$ B. S. Acharya, ${ }^{28}$ M. Adams, ${ }^{51}$ T. Adams, ${ }^{49}$ E. Aguilo, ${ }^{5}$ S. H. Ahn, ${ }^{30}$ M. Ahsan, ${ }^{59}$ G. D. Alexeev, ${ }^{35}$ G. Alkhazov, ${ }^{39}$ A. Alton, ${ }^{64, *}$ G. Alverson, ${ }^{63}$ G. A. Alves, ${ }^{2}$ M. Anastasoaie, ${ }^{34}$ L. S. Ancu, ${ }^{34}$ T. Andeen,,53 S. Anderson, ${ }^{45}$ B. Andrieu, ${ }^{16}$ M. S. Anzelc, ${ }^{53}$ Y. Arnoud, ${ }^{13}$ M. Arov, ${ }^{60}$ M. Arthaud, ${ }^{17}$ A. Askew, ${ }^{49}$ B. Åsman, ${ }^{40}$ A. C. S. Assis Jesus, ${ }^{3}$ O. Atramentov, ${ }^{49}$ C. Autermann,,${ }^{20}$ C. Avila, ${ }^{7}$ C. Ay, ${ }^{23}$ F. Badaud, ${ }^{12}$ A. Baden,,61 L. Bagby, ${ }^{52}$ B. Baldin, ${ }^{50}$ D. V. Bandurin, ${ }^{59}$ S. Banerjee, ${ }^{28}$ P. Banerjee, ${ }^{28}$ E. Barberis, ${ }^{63}$ A.-F. Barfuss, ${ }^{14}$ P. Bargassa, ${ }^{80}$ P. Baringer, ${ }^{58}$ J. Barreto, ${ }^{2}$ J. F. Bartlett, ${ }^{50}$ U. Bassler, ${ }^{16}$ D. Bauer, ${ }^{43}$ S. Beale, ${ }^{5}$ A. Bean, ${ }^{58}$ M. Begalli, ${ }^{3}$ M. Begel, ${ }^{71}$ C. Belanger-Champagne, ${ }^{40}$ L. Bellantoni, ${ }^{50}$ A. Bellavance, ${ }^{50}$ J. A. Benitez, ${ }^{65}$ S. B. Beri, ${ }^{26}$ G. Bernardi, ${ }^{16}$ R. Bernhard, ${ }^{22}$ L. Berntzon, ${ }^{14}$ I. Bertram, ${ }^{42}$ M. Besançon, ${ }^{17}$ R. Beuselinck, ${ }^{43}$ V. A. Bezzubov, ${ }^{38}$ P. C. Bhat, ${ }^{50}$ V. Bhatnagar, ${ }^{26}$ C. Biscarat, ${ }^{19}$
G. Blazey, ${ }^{52}$ F. Blekman, ${ }^{43}$ S. Blessing, ${ }^{49}$ D. Bloch, ${ }^{18}$ K. Bloom, ${ }^{67}$ A. Boehnlein, ${ }^{50}$ D. Boline, ${ }^{62}$ T. A. Bolton, ${ }^{59}$ G. Borissov, ${ }^{42}$ K. Bos, ${ }^{33}$ T. Bose, ${ }^{77}$ A. Brandt, ${ }^{78}$ R. Brock, ${ }^{65}$ G. Brooijmans, ${ }^{70}$ A. Bross, ${ }^{50}$ D. Brown, ${ }^{78}$ N. J. Buchanan, ${ }^{49}$ D. Buchholz, ${ }^{53}$ M. Buehler, ${ }^{81}$ V. Buescher, ${ }^{21}$ S. Burdin, ${ }^{42, \dagger}$ S. Burke, ${ }^{45}$ T. H. Burnett, ${ }^{82}$ C. P. Buszello, ${ }^{43}$ J. M. Butler, ${ }^{62}$ P. Calfayan, ${ }^{24}$ S. Calvet, ${ }^{14}$ J. Cammin, ${ }^{71}$ S. Caron, ${ }^{33}$ W. Carvalho, ${ }^{3}$ B. C. K. Casey, ${ }^{77}$ N. M. Cason, ${ }^{55}$ H. Castilla-Valdez, ${ }^{32}$ S. Chakrabarti, ${ }^{17}$ D. Chakraborty, ${ }^{52}$ K. M. Chan, ${ }^{55}$ K. Chan, ${ }^{5}$ A. Chandra, ${ }^{48}$ F. Charles, ${ }^{18,{ }^{4}}$ E. Cheu, ${ }^{45}$ F. Chevallier, ${ }^{13}$ D. K. Cho, ${ }^{62}$ S. Choi, ${ }^{31}$ B. Choudhary, ${ }^{27}$ L. Christofek, ${ }^{77}$ T. Christoudias, ${ }^{43}$ S. Cihangir, ${ }^{50}$ D. Claes, ${ }^{67}$ B. Clément, ${ }^{18}$ Y. Coadou, ${ }^{5}$ M. Cooke, ${ }^{80}$ W. E. Cooper, ${ }^{50}$ M. Corcoran, ${ }^{80}$ F. Couderc, ${ }^{17}$ M.-C. Cousinou, ${ }^{14}$ S. Crépé-Renaudin, ${ }^{13}$ D. Cutts, ${ }^{77}$ M. Ćwiok, ${ }^{29}$ H. da Motta, ${ }^{2}$ A. Das, ${ }^{62}$ G. Davies, ${ }^{43}$ K. De, ${ }^{78}$ S. J. de Jong,,${ }^{34}$ P. de Jong, ${ }^{33}$ E. De La Cruz-Burelo, ${ }^{64}$ C. De Oliveira Martins, ${ }^{3}$ J. D. Degenhardt, ${ }^{64}$ F. Déliot, ${ }^{17}$ M. Demarteau, ${ }^{50}$ R. Demina, ${ }^{71}$ D. Denisov, ${ }^{50}$ S. P. Denisov, ${ }^{38}$ S. Desai, ${ }^{50}$ H. T. Diehl, ${ }^{50}$ M. Diesburg, ${ }^{50}$ A. Dominguez, ${ }^{67}$ H. Dong, ${ }^{72}$ L. V. Dudko, ${ }^{37}$ L. Duflot, ${ }^{15}$ S. R. Dugad, ${ }^{28}$ D. Duggan, ${ }^{49}$ A. Duperrin, ${ }^{14}$ J. Dyer, ${ }^{65}$ A. Dyshkant, ${ }^{52}$ M. Eads, ${ }^{67}$ D. Edmunds, ${ }^{65}$ J. Ellison,,${ }^{48}$ V. D. Elvira, ${ }^{50}$ Y. Enari, ${ }^{77}$ S. Eno, ${ }^{61}$ P. Ermolov, ${ }^{37}$ H. Evans, ${ }^{54}$ A. Evdokimov, ${ }^{73}$ V. N. Evdokimov, ${ }^{38}$ A. V. Ferapontov, ${ }^{59}$ T. Ferbel, ${ }^{71}$ F. Fiedler, ${ }^{24}$ F. Filthaut, ${ }^{34}$ W. Fisher, ${ }^{50}$ H. E. Fisk, ${ }^{50}$ M. Ford, ${ }^{44}$ M. Fortner, ${ }^{52}$ H. Fox, ${ }^{22}$ S. Fu, ${ }^{50}$ S. Fuess, ${ }^{50}$ T. Gadfort, ${ }^{82}$ C. F. Galea, ${ }^{34}$ E. Gallas, ${ }^{50}$ E. Galyaev, ${ }^{55}$ C. Garcia, ${ }^{71}$ A. Garcia-Bellido, ${ }^{82}$ V. Gavrilov, ${ }^{36}$ P. Gay, ${ }^{12}$ W. Geist, ${ }^{18}$ D. Gelé, ${ }^{18}$ C. E. Gerber, ${ }^{51}$ Y. Gershtein, ${ }^{49}$ D. Gillberg, ${ }^{5}$ G. Ginther, ${ }^{71}$ N. Gollub, ${ }^{40}$ B. Gómez, ${ }^{7}$ A. Goussiou, ${ }^{55}$ P. D. Grannis, ${ }^{72}$ H. Greenlee, ${ }^{50}$ Z. D. Greenwood, ${ }^{60}$ E. M. Gregores, ${ }^{4}$ G. Grenier, ${ }^{19}$ Ph. Gris, ${ }^{12}$ J.-F. Grivaz, ${ }^{15}$ A. Grohsjean, ${ }^{24}$ S. Grünendahl, ${ }^{50}$ M. W. Grünewald, ${ }^{29}$ J. Guo, ${ }^{72}$ F. Guo, ${ }^{72}$ P. Gutierrez, ${ }^{75}$ G. Gutierrez, ${ }^{50}$ A. Haas, ${ }^{70}$ N. J. Hadley, ${ }^{61}$ P. Haefner, ${ }^{24}$ S. Hagopian, ${ }^{49}$ J. Haley, ${ }^{68}$ I. Hall, ${ }^{65}$ R. E. Hall, ${ }^{47}$ L. Han, ${ }^{6}$ K. Hanagaki, ${ }^{50}$ P. Hansson, ${ }^{40}$ K. Harder, ${ }^{44}$ A. Harel, ${ }^{71}$ R. Harrington, ${ }^{63}$ J. M. Hauptman, ${ }^{57}$ R. Hauser, ${ }^{65}$ J. Hays, ${ }^{43}$ T. Hebbeker, ${ }^{20}$ D. Hedin, ${ }^{52}$ J. G. Hegeman, ${ }^{33}$ J. M. Heinmiller, ${ }^{51}$ A. P. Heinson, ${ }^{48}$ U. Heintz, ${ }^{62}$ C. Hensel, ${ }^{58}$ K. Herner, ${ }^{72}$ G. Hesketh, ${ }^{63}$ M. D. Hildreth, ${ }^{55}$ R. Hirosky, ${ }^{81}$ J. D. Hobbs, ${ }^{72}$ B. Hoeneisen, ${ }^{11}$ H. Hoeth, ${ }^{25}$ M. Hohlfeld,,${ }^{21}$ S. J. Hong,,${ }^{30}$ R. Hooper, ${ }^{77}$ S. Hossain, ${ }^{75}$ P. Houben, ${ }^{33}$ Y. Hu, ${ }^{72}$ Z. Hubacek, ${ }^{9}$ V. Hynek, ${ }^{8}$ I. Iashvili, ${ }^{69}$ R. Illingworth, ${ }^{50}$ A. S. Ito, ${ }^{50}$ S. Jabeen, ${ }^{62}$ M. Jaffré, ${ }^{15}$ S. Jain, ${ }^{75}$ K. Jakobs, ${ }^{22}$ C. Jarvis, ${ }^{61}$ R. Jesik, ${ }^{43}$ K. Johns, ${ }^{45}$ C. Johnson, ${ }^{70}$ M. Johnson, ${ }^{50}$ A. Jonckheere, ${ }^{50}$ P. Jonsson, ${ }^{43}$ A. Juste, ${ }^{50}$ D. Käfer, ${ }^{20}$ S. Kahn, ${ }^{73}$ E. Kajfasz, ${ }^{14}$ A. M. Kalinin, ${ }^{35}$ J. R. Kalk, ${ }^{65}$ J. M. Kalk, ${ }^{60}$ S. Kappler, ${ }^{20}$ D. Karmanov, ${ }^{37}$ J. Kasper, ${ }^{62}$ P. Kasper, ${ }^{50}$ I. Katsanos, ${ }^{70}$ D. Kau, ${ }^{49}$ R. Kaur, ${ }^{26}$ V. Kaushik, ${ }^{78}$ R. Kehoe, ${ }^{79}$ S. Kermiche, ${ }^{14}$ N. Khalatyan, ${ }^{38}$ A. Khanov, ${ }^{76}$ A. Kharchilava,,69 Y. M. Kharzheev, ${ }^{35}$ D. Khatidze, ${ }^{70}$ H. Kim, ${ }^{31}$ T. J. Kim, ${ }^{30}$ M. H. Kirby, ${ }^{34}$ M. Kirsch, ${ }^{20}$ B. Klima, ${ }^{50}$ J. M. Kohli, ${ }^{26}$ J.-P. Konrath, ${ }^{22}$ M. Kopal, ${ }^{75}$ V. M. Korablev, ${ }^{38}$ A. V. Kozelov, ${ }^{38}$ D. Krop, ${ }^{54}$ A. Kryemadhi, ${ }^{81}$ T. Kuhl, ${ }^{23}$ A. Kumar, ${ }^{69}$ S. Kunori, ${ }^{61}$ A. Kupco, ${ }^{10}$ T. Kurča, ${ }^{19}$ J. Kvita, ${ }^{8}$ F. Lacroix, ${ }^{12}$ D. Lam, ${ }^{55}$ S. Lammers, ${ }^{70}$ G. Landsberg, ${ }^{77}$ J. Lazoflores, ${ }^{49}$ P. Lebrun, ${ }^{19}$ W. M. Lee, ${ }^{50}$ A. Leflat, ${ }^{37}$ F. Lehner, ${ }^{41}$ J. Lellouch, ${ }^{16}$ J. Leveque, ${ }^{45}$ P. Lewis, ${ }^{43}$ J. Li, ${ }^{78}$ Q. Z. Li, ${ }^{50}$ L. Li, ${ }^{48}$ S. M. Lietti, ${ }^{4}$ J. G. R. Lima, ${ }^{52}$ D. Lincoln, ${ }^{50}$ J. Linnemann, ${ }^{65}$ V. V. Lipaev, ${ }^{38}$ R. Lipton, ${ }^{50}$ Y. Liu, ${ }^{6}$ Z. Liu, ${ }^{5}$ L. Lobo, ${ }^{43}$ A. Lobodenko, ${ }^{39}$ M. Lokajicek, ${ }^{10}$ A. Lounis, ${ }^{18}$ P. Love, ${ }^{42}$ H. J. Lubatti, ${ }^{82}$ A. L. Lyon, ${ }^{50}$ A. K. A. Maciel, ${ }^{2}$ D. Mackin, ${ }^{80}$ R. J. Madaras, ${ }^{46}$ P. Mättig, ${ }^{25}$ C. Magass, ${ }^{20}$ A. Magerkurth, ${ }^{64}$ N. Makovec, ${ }^{15}$ P. K. Mal, ${ }^{55}$ H. B. Malbouisson, ${ }^{3}$ S. Malik, ${ }^{67}$ V. L. Malyshev, ${ }^{35}$ H. S. Mao, ${ }^{50}$ Y. Maravin, ${ }^{59}$ B. Martin, ${ }^{13}$ R. McCarthy, ${ }^{72}$ A. Melnitchouk, ${ }^{66}$ A. Mendes, ${ }^{14}$ L. Mendoza, ${ }^{7}$ P. G. Mercadante, ${ }^{4}$ M. Merkin, ${ }^{37}$ K. W. Merritt, ${ }^{50}$ J. Meyer, ${ }^{21}$ A. Meyer, ${ }^{20}$ M. Michaut, ${ }^{17}$ T. Millet, ${ }^{19}$ J. Mitrevski, ${ }^{70}$ J. Molina, ${ }^{3}$ R. K. Mommsen, ${ }^{44}$ N. K. Mondal, ${ }^{28}$ R. W. Moore, ${ }^{5}$ T. Moulik, ${ }^{58}$ G. S. Muanza, ${ }^{19}$ M. Mulders, ${ }^{50}$ M. Mulhearn, ${ }^{70}$ O. Mundal, ${ }^{21}$ L. Mundim, ${ }^{3}$ E. Nagy, ${ }^{14}$ M. Naimuddin,,${ }^{50}$ M. Narain, ${ }^{77}$ N. A. Naumann, ${ }^{34}$ H. A. Neal, ${ }^{64}$ J. P. Negret, ${ }^{7}$ P. Neustroev, ${ }^{39}$ H. Nilsen, ${ }^{22}$ A. Nomerotski, ${ }^{50}$ S. F. Novaes, ${ }^{4}$ T. Nunnemann, ${ }^{24}$ V. O'Dell, ${ }^{50}$ D. C. O'Neil, ${ }^{5}$ G. Obrant, ${ }^{39}$ C. Ochando, ${ }^{15}$ D. Onoprienko, ${ }^{59}$ N. Oshima, ${ }^{50}$ J. Osta, ${ }^{55}$ R. Otec, ${ }^{9}$ G. J. Otero y Garzón, ${ }^{51}$ M. Owen, ${ }^{44}$ P. Padley, ${ }^{80}$ M. Pangilinan, ${ }^{77}$ N. Parashar, ${ }^{56}$ S.-J. Park, ${ }^{71}$ S. K. Park, ${ }^{30}$ J. Parsons, ${ }^{70}$ R. Partridge, ${ }^{77}$ N. Parua, ${ }^{54}$ A. Patwa, ${ }^{73}$ G. Pawloski, ${ }^{80}$ B. Penning, ${ }^{22}$ K. Peters, ${ }^{44}$ Y. Peters, ${ }^{25}$ P. Pétroff, ${ }^{15}$ M. Petteni, ${ }^{43}$ R. Piegaia, ${ }^{1}$ J. Piper, ${ }^{65}$ M.-A. Pleier, ${ }^{21}$
P.L. M. Podesta-Lerma, ${ }^{32, \#}$ V. M. Podstavkov, ${ }^{50}$ Y. Pogorelov, ${ }^{55}$ M.-E. Pol, ${ }^{2}$ P. Polozov, ${ }^{36}$ A. Pompoš, ${ }^{75}$ B. G. Pope, ${ }^{65}$ A. V. Popov, ${ }^{38}$ C. Potter, ${ }^{5}$ W. L. Prado da Silva, ${ }^{3}$ H. B. Prosper, ${ }^{49}$ S. Protopopescu, ${ }^{73}$ J. Qian, ${ }^{64}$ A. Quadt,,${ }^{21,8}$ B. Quinn, ${ }^{66}$ A. Rakitine, ${ }^{42}$ M. S. Rangel, ${ }^{2}$ K. Ranjan, ${ }^{27}$ P. N. Ratoff, ${ }^{42}$ P. Renkel,,${ }^{79}$ S. Reucroft, ${ }^{63}$ P. Rich, ${ }^{44}$ M. Rijssenbeek, ${ }^{72}$ I. Ripp-Baudot, ${ }^{18}$ F. Rizatdinova, ${ }^{76}$ S. Robinson, ${ }^{43}$ R. F. Rodrigues, ${ }^{3}$ C. Royon, ${ }^{17}$ P. Rubinov,,${ }^{50}$ R. Ruchti, ${ }^{55}$ G. Safronov, ${ }^{36}$ G. Sajot, ${ }^{13}$ A. Sánchez-Hernández, ${ }^{32}$ M. P. Sanders, ${ }^{16}$ A. Santoro, ${ }^{3}$ G. Savage, ${ }^{50}$ L. Sawyer, ${ }^{60}$ T. Scanlon, ${ }^{43}$ D. Schaile, ${ }^{24}$
R.D. Schamberger, ${ }^{72}$ Y. Scheglov, ${ }^{39}$ H. Schellman, ${ }^{53}$ P. Schieferdecker, ${ }^{24}$ T. Schliephake, ${ }^{25}$ C. Schwanenberger, ${ }^{44}$ A. Schwartzman, ${ }^{68}$ R. Schwienhorst, ${ }^{65}$ J. Sekaric, ${ }^{49}$ S. Sengupta, ${ }^{49}$ H. Severini, ${ }^{75}$ E. Shabalina,,${ }^{51}$ M. Shamim, ${ }^{59}$ V. Shary, ${ }^{17}$ A. A. Shchukin,,38 R. K. Shivpuri, ${ }^{27}$ D. Shpakov, ${ }^{50}$ V. Siccardi, ${ }^{18}$ V. Simak, ${ }^{9}$ V. Sirotenko, ${ }^{50}$ P. Skubic, ${ }^{75}$ P. Slattery, ${ }^{71}$ D. Smirnov, ${ }^{55}$ J. Snow, ${ }^{74}$ G. R. Snow, ${ }^{67}$ S. Snyder, ${ }^{73}$ S. Söldner-Rembold, ${ }^{44}$ L. Sonnenschein, ${ }^{16}$ A. Sopczak, ${ }^{42}$ M. Sosebee, ${ }^{78}$ K. Soustruznik, ${ }^{8}$ M. Souza, ${ }^{2}$ B. Spurlock, ${ }^{78}$ J. Stark, ${ }^{13}$ J. Steele, ${ }^{60}$ V. Stolin, ${ }^{36}$ A. Stone, ${ }^{51}$ D. A. Stoyanova, ${ }^{38}$ J. Strandberg, ${ }^{64}$ S. Strandberg, ${ }^{40}$ M. A. Strang, ${ }^{69}$ M. Strauss, ${ }^{75}$ E. Strauss, ${ }^{72}$ R. Ströhmer, ${ }^{24}$ D. Strom, ${ }^{53}$ L. Stutte, ${ }^{50}$ S. Sumowidagdo, ${ }^{49}$ P. Svoisky, ${ }^{55}$ A. Sznajder, ${ }^{3}$ M. Talby, ${ }^{14}$ P. Tamburello, ${ }^{45}$ A. Tanasijczuk, ${ }^{1}$ W. Taylor, ${ }^{5}$ P. Telford, ${ }^{44}$ J. Temple, ${ }^{45}$ B. Tiller,,${ }^{24}$ F. Tissandier, ${ }^{12}$ M. Titov, ${ }^{17}$ V. V. Tokmenin, ${ }^{35}$ T. Toole, ${ }^{61}$ I. Torchiani, ${ }^{22}$ T. Trefzger, ${ }^{23}$ D. Tsybychev, ${ }^{72}$ B. Tuchming, ${ }^{17}$ C. Tully, ${ }^{68}$ P. M. Tuts, ${ }^{70}$ R. Unalan, ${ }^{65}$ S. Uvarov, ${ }^{39}$ L. Uvarov, ${ }^{39}$ S. Uzunyan, ${ }^{52}$ B. Vachon, ${ }^{5}$ P. J. van den Berg, ${ }^{33}$ B. van Eijk, ${ }^{33}$ R. Van Kooten, ${ }^{54}$ W. M. van Leeuwen, ${ }^{33}$ N. Varelas, ${ }^{51}$ E. W. Varnes, ${ }^{45}$ I. A. Vasilyev, ${ }^{38}$
M. Vaupel, ${ }^{25}$ P. Verdier, ${ }^{19}$ L. S. Vertogradov, ${ }^{35}$ M. Verzocchi, ${ }^{50}$ F. Villeneuve-Seguier, ${ }^{43}$ P. Vint, ${ }^{43}$ P. Vokac, ${ }^{9}$
E. Von Toerne, ${ }^{59}$ M. Voutilainen, ${ }^{67, \| l}$ M. Vreeswijk, ${ }^{33}$ R. Wagner, ${ }^{68}$ H.D. Wahl, ${ }^{49}$ L. Wang, ${ }^{61}$ M. H.L. S Wang, ${ }^{50}$ J. Warchol, ${ }^{55}$ G. Watts, ${ }^{82}$ M. Wayne, ${ }^{55}$ M. Weber, ${ }^{50}$ G. Weber, ${ }^{23}$ A. Wenger,,${ }^{41}$ N. Wermes, ${ }^{21}$ M. Wetstein, ${ }^{61}$ A. White, ${ }^{78}$ D. Wicke, ${ }^{25}$ G. W. Wilson, ${ }^{58}$ S. J. Wimpenny, ${ }^{48}$ M. Wobisch, ${ }^{60}$ D. R. Wood, ${ }^{63}$ T. R. Wyatt, ${ }^{44}$ Y. Xie, ${ }^{77}$ S. Yacoob, ${ }^{53}$ R. Yamada, ${ }^{50}$ M. Yan, ${ }^{61}$ T. Yasuda, ${ }^{50}$ Y. A. Yatsunenko, ${ }^{35}$ K. Yip, ${ }^{73}$ H. D. Yoo, ${ }^{77}$ S. W. Youn,,${ }^{53}$ J. Yu, ${ }^{78}$ A. Zatserklyaniy, ${ }^{52}$ C. Zeitnitz, ${ }^{25}$ D. Zhang, ${ }^{50}$ T. Zhao, ${ }^{82}$ B. Zhou, ${ }^{64}$ J. Zhu, ${ }^{72}$ M. Zielinski, ${ }^{71}$ D. Zieminska, ${ }^{54}$ A. Zieminski, ${ }^{54}$ L. Zivkovic, ${ }^{70}$ V. Zutshi, ${ }^{52}$ and E. G. Zverev ${ }^{37}$
(D0 Collaboration)

${ }^{1}$ Universidad de Buenos Aires, Buenos Aires, Argentina
${ }^{2}$ LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
${ }^{3}$ Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
${ }^{4}$ Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil
${ }^{5}$ University of Alberta, Edmonton, Alberta, Canada,
Simon Fraser University, Burnaby, British Columbia, Canada, York University, Toronto, Ontario, Canada,
and McGill University, Montreal, Quebec, Canada
${ }^{6}$ University of Science and Technology of China, Hefei, People's Republic of China
${ }^{7}$ Universidad de los Andes, Bogotá, Colombia
${ }^{8}$ Center for Particle Physics, Charles University, Prague, Czech Republic
${ }^{9}$ Czech Technical University, Prague, Czech Republic
${ }^{10}$ Center for Particle Physics, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
${ }^{11}$ Universidad San Francisco de Quito, Quito, Ecuador
${ }^{12}$ Laboratoire de Physique Corpusculaire, IN2P3-CNRS, Université Blaise Pascal, Clermont-Ferrand, France
${ }^{13}$ Laboratoire de Physique Subatomique et de Cosmologie, IN2P3-CNRS, Universite de Grenoble 1, Grenoble, France
${ }^{14}$ CPPM, IN2P3-CNRS, Université de la Méditerranée, Marseille, France
${ }^{15}$ Laboratoire de l'Accélérateur Linéaire, IN2P3-CNRS et Université Paris-Sud, Orsay, France
${ }^{16}$ LPNHE, IN2P3-CNRS, Universités Paris VI and VII, Paris, France
${ }^{17}$ DAPNIA/Service de Physique des Particules, CEA, Saclay, France
${ }^{18}$ IPHC, Université Louis Pasteur et Université de Haute Alsace, CNRS, IN2P3, Strasbourg, France
${ }^{19}$ IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France
${ }^{20}$ III. Physikalisches Institut A, RWTH Aachen, Aachen, Germany
${ }^{21}$ Physikalisches Institut, Universität Bonn, Bonn, Germany
${ }^{22}$ Physikalisches Institut, Universität Freiburg, Freiburg, Germany
${ }^{23}$ Institut für Physik, Universität Mainz, Mainz, Germany
${ }^{24}$ Ludwig-Maximilians-Universität München, München, Germany
${ }^{25}$ Fachbereich Physik, University of Wuppertal, Wuppertal, Germany
${ }^{26}$ Panjab University, Chandigarh, India
${ }^{27}$ Delhi University, Delhi, India
${ }^{28}$ Tata Institute of Fundamental Research, Mumbai, India

${ }^{29}$ University College Dublin, Dublin, Ireland
${ }^{30}$ Korea Detector Laboratory, Korea University, Seoul, Korea
${ }^{31}$ SungKyunKwan University, Suwon, Korea ${ }^{32}$ CINVESTAV, Mexico City, Mexico
${ }^{33}$ FOM-Institute NIKHEF and University of Amsterdam/NIKHEF, Amsterdam, The Netherlands
${ }^{34}$ Radboud University Nijmegen/NIKHEF, Nijmegen, The Netherlands
${ }^{35}$ Joint Institute for Nuclear Research, Dubna, Russia
${ }^{36}$ Institute for Theoretical and Experimental Physics, Moscow, Russia
${ }^{37}$ Moscow State University, Moscow, Russia
${ }^{38}$ Institute for High Energy Physics, Protvino, Russia
${ }^{39}$ Petersburg Nuclear Physics Institute, St. Petersburg, Russia
${ }^{40}$ Lund University, Lund, Sweden, Royal Institute of Technology and Stockholm University, Stockholm, Sweden, and Uppsala University, Uppsala, Sweden
${ }^{41}$ Physik Institut der Universität Zürich, Zürich, Switzerland
${ }^{42}$ Lancaster University, Lancaster, United Kingdom
${ }^{43}$ Imperial College, London, United Kingdom
${ }^{44}$ University of Manchester, Manchester, United Kingdom
${ }^{45}$ University of Arizona, Tucson, Arizona 85721, USA
${ }^{46}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
${ }^{47}$ California State University, Fresno, California 93740, USA
${ }^{48}$ University of California, Riverside, California 92521, USA
${ }^{49}$ Florida State University, Tallahassee, Florida 32306, USA
${ }^{50}$ Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
${ }^{51}$ University of Illinois at Chicago, Chicago, Illinois 60607, USA
${ }^{52}$ Northern Illinois University, DeKalb, Illinois 60115, USA
${ }^{53}$ Northwestern University, Evanston, Illinois 60208, USA
${ }^{54}$ Indiana University, Bloomington, Indiana 47405, USA
${ }^{55}$ University of Notre Dame, Notre Dame, Indiana 46556, USA
${ }^{56}$ Purdue University Calumet, Hammond, Indiana 46323, USA
${ }^{57}$ Iowa State University, Ames, Iowa 50011, USA
${ }^{58}$ University of Kansas, Lawrence, Kansas 66045, USA
${ }^{59}$ Kansas State University, Manhattan, Kansas 66506, USA
${ }^{60}$ Louisiana Tech University, Ruston, Louisiana 71272, USA
${ }^{61}$ University of Maryland, College Park, Maryland 20742, USA
${ }^{62}$ Boston University, Boston, Massachusetts 02215, USA
${ }^{63}$ Northeastern University, Boston, Massachusetts 02115, USA
${ }^{64}$ University of Michigan, Ann Arbor, Michigan 48109, USA
${ }^{65}$ Michigan State University, East Lansing, Michigan 48824, USA
${ }^{66}$ University of Mississippi, University, Mississippi 38677, USA
${ }^{67}$ University of Nebraska, Lincoln, Nebraska 68588, USA
${ }^{68}$ Princeton University, Princeton, New Jersey 08544, USA
${ }^{69}$ State University of New York, Buffalo, New York 14260, USA
${ }^{70}$ Columbia University, New York, New York 10027, USA
${ }^{71}$ University of Rochester, Rochester, New York 14627, USA
${ }^{72}$ State University of New York, Stony Brook, New York 11794, USA
${ }^{73}$ Brookhaven National Laboratory, Upton, New York 11973, USA
${ }^{74}$ Langston University, Langston, Oklahoma 73050, USA
${ }^{75}$ University of Oklahoma, Norman, Oklahoma 73019, USA
${ }^{76}$ Oklahoma State University, Stillwater, Oklahoma 74078, USA
${ }^{77}$ Brown University, Providence, Rhode Island 02912, USA
${ }^{78}$ University of Texas, Arlington, Texas 76019, USA
${ }^{79}$ Southern Methodist University, Dallas, Texas 75275, USA
${ }^{80}$ Rice University, Houston, Texas 77005, USA
${ }^{81}$ University of Virginia, Charlottesville, Virginia 22901, USA
${ }^{82}$ University of Washington, Seattle, Washington 98195, USA

(Received 16 August 2007; published 14 March 2008)
We study the flavor-changing-neutral-current process $c \rightarrow u \mu^{+} \mu^{-}$using $1.3 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$ recorded by the D0 detector operating at the Fermilab Tevatron Collider. We see clear indications of the charged-current mediated D_{s}^{+}and $D^{+} \rightarrow \phi \pi^{+} \rightarrow \mu^{+} \mu^{-} \pi^{+}$final states with significance greater than 4 standard deviations above background for the D^{+}state. We search for the continuum
neutral-current decay of $D^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$in the dimuon invariant mass spectrum away from the ϕ resonance. We see no evidence of signal above background and set a limit of $\mathcal{B}\left(D^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}\right)<$ 3.9×10^{-6} at the 90% C.L. This limit places the most stringent constraint on new phenomena in the $c \rightarrow u \mu^{+} \mu^{-}$transition.

DOI: 10.1103/PhysRevLett.100.101801
Many extensions of the standard model (SM) provide a mechanism for flavor-changing-neutral-current (FCNC) decays of beauty, charmed, and strange hadrons that could significantly alter the decay rate with respect to SM expectations. Since FCNC processes are forbidden at tree-level in the SM, new physics effects could become visible in FCNC processes if the new amplitudes are larger than the higher-order penguin and box diagrams that mediate FCNC decays in the SM. In B meson decays, the experimental sensitivity has reached the SM expected rates for many FCNC processes. In contrast, Glashow-IliopoulosMaiani mechanism suppression [1] in D meson decays is significantly stronger and the SM branching fractions are expected to be as low as 10^{-9} [2,3]. This leaves a large window of opportunity still available to search for new physics in charm decays. There are several models of new phenomena such as SUSY R-parity violation in a single coupling scheme [2] that lead to a tree-level interaction mediated by new particles, or little Higgs models with a new uplike vector quark [4] that lead to direct $Z \rightarrow c u$ couplings. In both scenarios deviations from the SM might only be seen in the up-type quark sector, motivating the extension of experimental studies of FCNC processes to the charm sector.

In this Letter we report on a study of FCNC charm decays including the first observation of the chargedcurrent decay $D_{s}^{+} \rightarrow \phi \pi^{+} \rightarrow \mu^{+} \mu^{-} \pi^{+}$and the first evidence for the charged-current decay $D^{+} \rightarrow \phi \pi^{+} \rightarrow$ $\mu^{+} \mu^{-} \pi^{+}$by requiring a dimuon mass window around the nominal ϕ mass. The inclusion of charge conjugate modes is implied throughout the text. At the reported level of statistics, we expect no contributions from two body $D_{(s)}^{+}$ decays due to the smaller $D_{(s)}^{+} \rightarrow \eta, \rho$, and ω branching fractions and the smaller η, ρ, and $\omega \rightarrow \mu^{+} \mu^{-}$branching fractions [5]. The search for the neutral-current $c \rightarrow$ $u \mu^{+} \mu^{-}$transition in the decay $D^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$is performed in the continuum region of the dimuon invariant mass spectrum below and above the ϕ resonance. We focus on the D^{+}continuum decay as opposed to similar D_{s}^{+}or Λ_{c} decays due to the longer lifetime and higher production fraction of the D^{+}meson. The study uses a data sample of $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$ corresponding to an integrated luminosity of approximately $1.3 \mathrm{fb}^{-1}$ recorded by the D0 detector operating at the Fermilab Tevatron Collider. All analyzed events are collected using a suite of dimuon triggers. Similar studies have recently been published by the FOCUS [6] and CLEO-c [7] collaborations, and preliminary results have been presented by the $B A B A R[8]$ collaboration.

PACS numbers: $13.20 . \mathrm{Fc}, 11.30 . \mathrm{Fs}, 11.30 . \mathrm{Hv}, 12.15 . \mathrm{Mm}$

D0 is a general purpose detector described in detail in Ref. [9]. Charged particles are reconstructed using a silicon vertex tracker and a scintillating fiber tracker located inside a superconducting solenoidal coil that provides a magnetic field of approximately 2 T . The tracking volume is surrounded by a LAr-U calorimeter. Muons are reconstructed using a spectrometer consisting of magnetized iron toroids and three superlayers of proportional tubes and plastic trigger scintillators located outside the calorimeter.

The selection requirements are determined using PYTHIA [10] Monte Carlo (MC) events to model both $c \bar{c}$ and $b \bar{b}$ production and fragmentation. The EvTGEN [11] MC program is used to decay prompt D mesons and secondary D mesons from B meson decay into the $\phi \pi^{+}$and $\mu^{+} \mu^{-} \pi^{+}$ intermediate and final states. The detector response is modeled using a GEANT [12] based MC program. The dimuon trigger is modeled using a detailed simulation program incorporating all aspects of the trigger logic. Backgrounds are modeled using data in the mass sideband regions around the D meson mass of $1.4<$ $m\left(\pi^{+} \mu^{+} \mu^{-}\right)<1.6 \mathrm{GeV} / c^{2}$ and $2.2<m\left(\pi^{+} \mu^{+} \mu^{-}\right)<$ $2.4 \mathrm{GeV} / c^{2}$.

Muon candidates are required to have segments reconstructed in at least two out of the three muon system superlayers and to be associated with a track reconstructed with hits in both the silicon and fiber trackers. We require that the muon transverse momentum p_{T} is greater than $2 \mathrm{GeV} / c$ and the total momentum p is greater than $3 \mathrm{GeV} / c$. The dimuon system is formed by combining two oppositely charged muon candidates that are associated with the same track jet [13], form a well-reconstructed vertex, and have an invariant mass $m\left(\mu^{+} \mu^{-}\right)$below $2 \mathrm{GeV} / c^{2}$. The dimuon mass distribution in the region of the light quark-antiquark resonances is shown in Fig. 1. Maxima corresponding to the production of ω and ϕ mesons are seen. The ρ is observed as a broad structure beneath the ω peak, and there is some indication of η production as well. For the initial search for resonance dimuon production we require the $\mu^{+} \mu^{-}$mass be within $\pm 0.04 \mathrm{GeV} / c^{2}$ of the nominal ϕ mass and redetermine the muon momenta with a ϕ mass constraint imposed [5] which improves the $\mu^{+} \mu^{-} \pi^{+}$invariant mass resolution by 33%.

Candidate $D_{(s)}^{+}$mesons are formed by combining the dimuon system with a track that is associated with the same track jet as the dimuon system, has hits in both the silicon and fiber trackers, and has $p_{T}>0.18 \mathrm{GeV} / c$. The pion impact parameter significance \mathcal{S}_{π}, defined as the point of closest approach of the track helix to the interaction

FIG. 1 (color online). The inclusive $m\left(\mu^{+} \mu^{-}\right)$invariant mass spectrum. The fitting function includes components from the η, ρ, ω, and ϕ resonances.
point in the transverse plane relative to its error, is required to be greater than 0.5 . The invariant mass of the three body system must be in the range $1.4 \mathrm{GeV} / c^{2}<$ $m\left(\pi^{+} \mu^{+} \mu^{-}\right)<2.4 \mathrm{GeV} / c^{2}$. The three particles must form a well-reconstructed D meson candidate vertex displaced from the primary vertex. The transverse flight length significance \mathcal{S}_{D}, defined as the transverse distance of the reconstructed D vertex from the primary vertex normalized to the error in the reconstructed flight length, is required to be greater than 5 . The collinearity angle Θ_{D}, defined as the angle between the D momentum vector and the position vector pointing from the primary to the secondary vertex, is required to be less than 500 mrad . In events with multiple $p \bar{p}$ collisions, the longitudinal track impact parameters are used to reject muons and tracks produced in the secondary $p \bar{p}$ interactions. In events with multiple D candidates, the best candidate is chosen based on the χ_{vtx}^{2} of the three track vertex and the angular separation between the pion and the dimuon system in $\eta-\phi$ space, $\left(\Delta R_{\pi}\right)^{2}=(\Delta \eta)^{2}+(\Delta \phi)^{2}$, which is typically small for true candidates.

The resulting $\pi^{+} \mu^{+} \mu^{-}$invariant mass distribution is shown in Fig. 2. The $D_{(s)}^{+} \rightarrow \phi \pi^{+} \rightarrow \mu^{+} \mu^{-} \pi^{+}$signal is extracted from a binned likelihood fit to the data assuming possible contributions from D^{+}and D_{s}^{+}initial states as signal and from combinatoric background. The D_{s}^{+}component is modeled by a Gaussian function with the mean and standard deviation as free parameters. The D^{+}component is modeled as a Gaussian function. The difference in means between the D^{+}and D_{s}^{+}Gaussian functions is constrained by the known mass difference and the ratio of the standard deviations is constrained to the ratio of masses [5]. The background is modeled as an exponential function

FIG. 2 (color online). The $m\left(\pi^{+} \mu^{+} \mu^{-}\right)$mass spectrum in the $0.98<m\left(\mu^{+} \mu^{-}\right)<1.06 \mathrm{GeV} / c^{2} \phi$ mass window. The result of a binned likelihood fit to the distribution including contributions for D^{+}, D_{s}^{+}, and combinatoric background is overlaid on the histogram.
with floating parameters. The normalization of all functions are free parameters. The fit yields $254 \pm 36 D_{s}^{+}$ candidates and $115 \pm 31 D^{+}$candidates. The statistical significance of the combined D_{s}^{+}and D^{+}signal is 8 standard deviations above background. The significance of the D^{+}yield, treating both the combinatorial and D_{s}^{+} candidates as background, is 4.1 standard deviations.

The relative efficiency of the D^{+}and D_{s}^{+}channels is determined separately for prompt D mesons produced in direct $p \bar{p} \rightarrow c \bar{c}+X$ processes and D mesons from B meson decay and combined using the measured prompt fractions [14] $\epsilon^{+}=f_{p}^{+} \epsilon_{\text {prompt }}^{+}+\left(1-f_{p}^{+}\right) \epsilon_{B \rightarrow D}^{+}$, where $\epsilon_{\text {prompt }}^{+}$is the efficiency for prompt D^{+}mesons, $\epsilon_{B \rightarrow D}^{+}$is the efficiency for D^{+}mesons from B meson decay, and f_{p}^{+} is the fraction of prompt D^{+}mesons; we use equivalent expressions for D_{s}^{+}mesons. The yield ratio is related to the ratio of branching fractions by
$\frac{n\left(D^{+}\right)}{n\left(D_{s}^{+}\right)}=\frac{f_{c \rightarrow D}^{+}}{f_{c \rightarrow D}^{s}} \frac{f_{p}^{s}}{f_{p}^{+}} \frac{\epsilon^{+}}{\epsilon^{s}} \frac{\mathcal{B}\left(D^{+} \rightarrow \phi \pi^{+} \rightarrow \mu^{+} \mu^{-} \pi^{+}\right)}{\mathcal{B}\left(D_{s}^{+} \rightarrow \phi \pi^{+}\right) \mathcal{B}\left(\phi \rightarrow \mu^{+} \mu^{-}\right)}$,
where $f_{c \rightarrow D}^{+}$is the fraction of D^{+}mesons produced in c quark fragmentation, and $f_{c \rightarrow D}^{s}$ is the equivalent fraction for D_{s}^{+}mesons [15]. We use $f_{p}^{+}=0.891 \pm 0.004$ [14], $f_{p}^{s}=0.773 \pm 0.038$ [14], and $f_{c \rightarrow D}^{s} / f_{c \rightarrow D}^{+}=0.40 \pm 0.09$ [15]. The efficiency ratio is determined from MC calculations to be $\epsilon^{s} / \epsilon^{+}=0.70 \pm 0.06$ (stat + syst). The difference from unity is caused by the lifetime difference between $D_{s}^{+} \quad(c \tau=147.0 \mu \mathrm{~m})$ and $D^{+}(c \tau=311.8 \mu \mathrm{~m})$ mesons, and the systematic uncertainty is dominated by uncertainties in the resolution modeling of \mathcal{S}_{D} and \mathcal{S}_{π}.

Using the efficiency ratio, production fractions, and the $D_{s}^{+} \rightarrow \phi \pi^{+}$and $\phi \rightarrow \mu^{+} \mu^{-}$branching fractions gives $\mathcal{B}\left(D^{+} \rightarrow \phi \pi^{+} \rightarrow \mu^{+} \mu^{-} \pi^{+}\right)=(1.8 \pm 0.5($ stat $) \pm$ $0.6($ syst $)) \times 10^{-6}$, which is consistent with the expected value of $(1.86 \pm 0.26) \times 10^{-6}$ given by the product of the $D^{+} \rightarrow \phi \pi^{+}$and $\phi \rightarrow \mu^{+} \mu^{-}$branching fractions and other recent measurements $[7,8]$. The systematic uncertainty is overwhelmingly dominated by the uncertainty in the $D_{s}^{+} \rightarrow \phi \pi^{+}$branching fraction that enters both the normalization and $f_{c \rightarrow D}^{s}$.

We now turn to the search for the continuum decay of $D^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$mediated by FCNC interactions. We study the dimuon invariant mass region below $1.8 \mathrm{GeV} / c^{2}$, excluding $\quad 0.96<m\left(\mu^{+} \mu^{-}\right)<1.08 \mathrm{GeV} / c^{2}$. Backgrounds are further reduced by requiring $\mathcal{S}_{D}>9.4, \mathcal{S}_{\pi}>$ $1.8, \Theta_{D}<7 \mathrm{mrad}, \chi_{\mathrm{vtx}}^{2}<2.6$ (for 3 DOF), and $\Delta R_{\pi}<$ 2.6. We also require the pion transverse momentum $p_{T}(\pi)$ be greater than $0.4 \mathrm{GeV} / c$ and the isolation, defined as $I_{D}=p(D) / \sum p_{\text {cone }}$, where the sum is over tracks in a cone centered on the D meson of radius $\Delta R=1$ be greater than 0.7. The final requirements are chosen using a random grid search [16] optimized using the Punzi [17] criteria to give the optimal 90% C.L. upper limit.

The final $\pi^{+} \mu^{+} \mu^{-}$invariant mass distribution in data is shown in Fig. 3. The D^{+}signal region contains 19 events. The combinatorial background in the signal region is estimated by performing sideband extrapolations to be $25.8 \pm$ 4.6 events. The uncertainty reflects the range in the background estimation from variation in the background shape across the $\pi^{+} \mu^{+} \mu^{-}$mass spectrum. The probability of the background fluctuating to fewer events than observed,

FIG. 3 (color online). Final $\pi^{+} \mu^{+} \mu^{-}$invariant mass spectrum. The $\pm 2 \sigma D^{+}$signal region, within the dashed lines, contains 19 events. The background level determined from the sidebands is 25.8 ± 4.6 events.
including the systematic uncertainty on the background prediction, is 14%.

We normalize the results to the $D^{+} \rightarrow \phi \pi^{+} \rightarrow$ $\mu^{+} \mu^{-} \pi^{+}$signal instead of the larger D_{s}^{+}signal to avoid the uncertainties associated with the D^{+}and D_{s}^{+}production fractions. We use the product of the known $D^{+} \rightarrow$ $\phi \pi^{+}$and $\phi \rightarrow \mu^{+} \mu^{-}$branching fractions [5]. The signal efficiency ratio between the $D^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$channel in the final sample and the $D^{+} \rightarrow \phi \pi^{+} \rightarrow \mu^{+} \mu^{-} \pi^{+}$channel in the preselection samples is determined from MC calculations to be $(5.4 \pm 0.8) \%$. The inputs to the limit calculation are summarized in Table I. The systematic uncertainty is dominated by the modeling of the vertex resolution particularly in the χ_{vtx}^{2} requirement. The systematic uncertainty from the vertex resolution is determined by varying the resolution in MC calculations by $\pm 20 \%$ and recomputing the efficiency ratio. The range is taken from studies of the resolution in several b hadron lifetime and mixing parameter measurements [18]. Using this, we find

$$
\frac{\mathcal{B}\left(D^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}\right)}{\mathcal{B}\left(D^{+} \rightarrow \phi \pi^{+}\right) \times \mathcal{B}\left(\phi \rightarrow \mu^{+} \mu^{-}\right)}<2.09,90 \% \text { C.L. }
$$

The limit is determined using a Bayesian technique [19]. Using the central value of $D^{+} \rightarrow \phi \pi^{+}$and $\phi \rightarrow \mu^{+} \mu^{-}$ branching fractions gives

$$
\mathcal{B}\left(D^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}\right)<3.9 \times 10^{-6}, \quad 90 \% \text { C.L. }
$$

This is approximately 30% below the limit one would expect to set given an expected background of 25.8 ± 4.6 events. The single event sensitivity, given by the branching fraction one would derive based on one observed signal candidate, is 3.0×10^{-7}.

In conclusion, we have performed a detailed study of D^{+} and D_{s}^{+}decays to the $\pi^{+} \mu^{+} \mu^{-}$final state. We clearly observe the $D_{s}^{+} \rightarrow \phi \pi^{+}$intermediate state and see evidence for the $D^{+} \rightarrow \phi \pi^{+}$intermediate state. The branching fraction for the $D^{+} \rightarrow \phi \pi^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$final state is consistent with the product of $D^{+} \rightarrow \phi \pi^{+}$and $\phi \rightarrow$ $\mu^{+} \mu^{-}$branching fractions. We have performed a search for the continuum decay of $D^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$by excluding the region of the dimuon invariant mass spectrum around the ϕ. We see no evidence of signal above background and set a limit of $\mathcal{B}\left(D^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}\right)<3.9 \times 10^{-6}$ at the 90% C.L. This is the most stringent limit to date in a decay

TABLE I. Inputs to the $\mathcal{B}\left(D^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}\right)$upper limit calculation and resulting upper limit at the 90% and 95% C.L.

$D^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$yield	19 events
Background expectation	25.8 ± 4.6 events
$D^{+} \rightarrow \phi \pi^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$Yield	115 ± 31 events
Relative efficiency	0.054 ± 0.008
$\mathcal{B}\left(D^{+} \rightarrow \phi \pi^{+} \rightarrow \mu^{+} \mu^{-} \pi^{+}\right)$	1.86×10^{-5}
$\mathcal{B}\left(D^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}\right) 90 \%(95 \%)$ C.L.	$<3.9(6.1) \times 10^{-6}$

mediated by a $c \rightarrow u \mu^{+} \mu^{-}$transition. Although this is approximately 500 times above the SM expected rate, it already reduces the allowed parameter space of the product of SUSY R-parity violating couplings $\lambda_{22 k}^{\prime} \times \lambda_{21 k}^{\prime}$ [2]. However, it is still an order of magnitude above the expected level from little Higgs models [4].

We thank the staffs at Fermilab and collaborating institutions. We also thank Sandip Pakvasa for several useful discussions. We acknowledge support from the DOE and NSF (USA); CEA and No. CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CAPES, CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); Science and Technology Facilities Council (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); Alexander von Humboldt Foundation; and the Marie Curie Program.
*Visitor from Augustana College, Sioux Falls, SD, USA.
${ }^{\dagger}$ Visitor from The University of Liverpool, Liverpool, United Kingdom.
${ }^{*}$ Visitor from ICN-UNAM, Mexico City, Mexico.
${ }^{\S}$ Visitor from II. Physikalisches Institut, Georg-AugustUniversity Göttingen, Germany.
${ }^{\|}$Visitor from Helsinki Institute of Physics, Helsinki, Finland.
${ }^{\text {II }}$ Deceased.
[1] S. L. Glashow, J. Iliopoulos, and L. Maiani, Phys. Rev. D 2, 1285 (1970).
[2] G. Burdman, E. Golowich, J. A. Hewett, and S. Pakvasa, Phys. Rev. D 66, 014009 (2002).
[3] S. Fajfer, S. Prelovsek, and P. Singer, Phys. Rev. D 64, 114009 (2001).
[4] S. Fajfer and S. Prelovsek, Phys. Rev. D 73, 054026 (2006).
[5] W.-M. Yao et al. (Particle Data Group), J. Phys. G 33, 1 (2006).
[6] J. M. Link et al. (FOCUS Collaboration), Phys. Lett. B 572, 21 (2003).
[7] Q. He et al. (CLEO Collaboration), Phys. Rev. Lett. 95, 221802 (2005).
[8] B. Aubert et al. (BABAR Collaboration), hep-ex/0607051, submitted to the Proceedings of ICHEP2006.
[9] V.M. Abazov et al. (D0 Collaboration), Nucl. Instrum. Methods A 565, 463 (2006).
[10] T. Sjostrand et al., Comput. Phys. Commun. 135, 238 (2001).
[11] D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).
[12] R. Brun, F. Bruyant, M. Maire, A. C. McPherson, and P. Zanarini, CERN Report No. CERN DD/EE/84-1, 1987.
[13] All charged particles in the event are clustered into jets using the DURHAM clustering algorithm with the p_{T} cutoff parameter of $15 \mathrm{GeV} / c$. S. Catani et al., Phys. Lett. B 269, 432 (1991).
[14] D. Acosta et al. (CDF Collaboration), Phys. Rev. Lett. 91, 241804 (2003).
[15] S. Chekanov et al. (ZEUS Collaboration), Eur. Phys. J. C 44, 351 (2005). We rescale the values to be consistent with the $D^{+} \rightarrow K^{+} \pi^{+} \pi^{-}$and $D_{s}^{+} \rightarrow \phi \pi^{+}$branching fractions in Ref. [5].
[16] N. Amos et al., in Proceedings of Computing in High Energy Physics (CHEP'95), edited by R. Shellard and T. Nguyen (World Scientific, River Edge, NJ, 1996), p. 215.
[17] G. Punzi, in Proceedings of the Conference on Statistical Problems in Particle Physics, Astrophysics and Cosmology (Phystat 2003), edited by L. Lyons et al. (SLAC, Menlo Park, CA, 2003), p. 79.
[18] V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 97, 021802 (2006); V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 98, 121801 (2007).
[19] I. Bertram et al., FERMILAB Report No. FERMILAB-TM-2104, 2000.

