# Search for Heavy Particles Decaying into Electron-Positron Pairs in $p \bar{p}$ Collisions 

V. M. Abazov<br>Joint Institute for Nuclear Research, Dubna, Russia<br>Gregory R. Snow<br>University of Nebraska-Lincoln, gsnow1@unl.edu<br>DO Collaboration

Follow this and additional works at: https://digitalcommons.unl.edu/physicssnow
Part of the Physics Commons

[^0]This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Gregory Snow Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

## Search for Heavy Particles Decaying into Electron-Positron Pairs in $\boldsymbol{p} \overline{\boldsymbol{p}}$ Collisions

V.M. Abazov, ${ }^{23}$ B. Abbott, ${ }^{58}$ A. Abdesselam,,${ }^{11}$ M. Abolins, ${ }^{51}$ V. Abramov, ${ }^{26}$ B. S. Acharya, ${ }^{17}$ D. L. Adams, ${ }^{60}$ M. Adams, ${ }^{38}$ S. N. Ahmed, ${ }^{21}$ G. D. Alexeev, ${ }^{23}$ G. A. Alves, ${ }^{2}$ N. Amos, ${ }^{50}$ E. W. Anderson, ${ }^{43}$ M. M. Baarmand, ${ }^{55}$ V. V. Babintsev, ${ }^{26}$ L. Babukhadia, ${ }^{55}$ T. C. Bacon, ${ }^{28}$ A. Baden, ${ }^{47}$ B. Baldin,,${ }^{37}$ P. W. Balm, ${ }^{20}$ S. Banerjee, ${ }^{17}$ E. Barberis, ${ }^{30}$ P. Baringer, ${ }^{44}$ J. Barreto, ${ }^{2}$ J. F. Bartlett, ${ }^{37}$ U. Bassler, ${ }^{12}$ D. Bauer, ${ }^{28}$ A. Bean, ${ }^{44}$ M. Begel, ${ }^{54}$ A. Belyaev,,${ }^{25}$ S. B. Beri, ${ }^{15}$ G. Bernardi, ${ }^{12}$ I. Bertram, ${ }^{27}$ A. Besson, ${ }^{9}$ R. Beuselinck, ${ }^{28}$ V. A. Bezzubov, ${ }^{26}$ P.C. Bhat, ${ }^{37}$ V. Bhatnagar, ${ }^{11}$ M. Bhattacharjee, ${ }^{55}$ G. Blazey, ${ }^{39}$ S. Blessing, ${ }^{35}$ A. Boehnlein, ${ }^{37}$ N. I. Bojko, ${ }^{26}$ F. Borcherding, ${ }^{37}$ K. Bos, ${ }^{20}$ A. Brandt, ${ }^{60}$ R. Breedon, ${ }^{31}$ G. Briskin, ${ }^{59}$ R. Brock,,${ }^{51}$ G. Brooijmans,,${ }^{37}$ A. Bross, ${ }^{37}$ D. Buchholz, ${ }^{40}$ M. Buehler, ${ }^{38}$ V. Buescher, ${ }^{14}$ V.S. Burtovoi, ${ }^{26}$ J. M. Butler, ${ }^{48}$ F. Canelli, ${ }^{54}$ W. Carvalho, ${ }^{3}$ D. Casey, ${ }^{51}$ Z. Casilum, ${ }^{55}$ H. Castilla-Valdez, ${ }^{19}$ D. Chakraborty, ${ }^{55}$ K. M. Chan, ${ }^{54}$ S. V. Chekulaev, ${ }^{26}$ D. K. Cho, ${ }^{54}$ S. Choi, ${ }^{34}$ S. Chopra, ${ }^{56}$ J. H. Christenson, ${ }^{37}$ M. Chung, ${ }^{38}$ D. Claes, ${ }^{52}$ A. R. Clark, ${ }^{30}$ J. Cochran, ${ }^{34}$ L. Coney, ${ }^{42}$ B. Connolly, ${ }^{35}$ W. E. Cooper, ${ }^{37}$ D. Coppage, ${ }^{44}$ M. A.C. Cummings, ${ }^{39}$ D. Cutts, ${ }^{59}$ G. A. Davis, ${ }^{54}$ K. Davis, ${ }^{29}$ K. De, ${ }^{60}$ S. J. de Jong, ${ }^{21}$ K. Del Signore,,${ }^{50}$ M. Demarteau, ${ }^{37}$ R. Demina, ${ }^{45}$ P. Demine, ${ }^{9}$ D. Denisov, ${ }^{37}$ S.P. Denisov,,${ }^{26}$ S. Desai, ${ }^{55}$ H. T. Diehl, ${ }^{37}$ M. Diesburg, ${ }^{37}$ G. Di Loreto, ${ }^{51}$ S. Doulas, ${ }^{49}$ P. Draper, ${ }^{60}$ Y. Ducros, ${ }^{13}$ L. V. Dudko, ${ }^{25}$ S. Duensing, ${ }^{21}$ L. Duflot, ${ }^{11}$ S. R. Dugad, ${ }^{17}$ A. Dyshkant, ${ }^{26}$ D. Edmunds, ${ }^{51}$ J. Ellison,,${ }^{34}$ V. D. Elvira, ${ }^{37}$ R. Engelmann, ${ }^{55}$ S. Eno, ${ }^{47}$ G. Eppley, ${ }^{62}$ P. Ermolov, ${ }^{25}$ O. V. Eroshin, ${ }^{26}$ J. Estrada, ${ }^{54}$ H. Evans, ${ }^{53}$ V. N. Evdokimov, ${ }^{26}$ T. Fahland, ${ }^{33}$ S. Feher, ${ }^{37}$ D. Fein, ${ }^{29}$ T. Ferbel, ${ }^{54}$ F. Filthaut, ${ }^{21}$ H.E. Fisk, ${ }^{37}$ Y. Fisyak, ${ }^{56}$ E. Flattum, ${ }^{37}$ F. Fleuret,,${ }^{30}$ M. Fortner, ${ }^{39}$ K. C. Frame, ${ }^{51}$ S. Fuess, ${ }^{37}$ E. Gallas, ${ }^{37}$ A. N. Galyaev, ${ }^{26}$ M. Gao, ${ }^{53}$ V. Gavrilov, ${ }^{24}$ R. J. Genik II, ${ }^{27}$ K. Genser, ${ }^{37}$ C. E. Gerber, ${ }^{38}$ Y. Gershtein, ${ }^{59}$ R. Gilmartin,,${ }^{35}$
G. Ginther, ${ }^{54}$ B. Gómez, ${ }^{5}$ G. Gómez, ${ }^{47}$ P. I. Goncharov, ${ }^{26}$ J.L González Solís, ${ }^{19}$ H. Gordon, ${ }^{56}$ L. T. Goss, ${ }^{61}$ K. Gounder, ${ }^{37}$ A. Goussiou, ${ }^{55}$ N. Graf, ${ }^{56}$ G. Graham, ${ }^{47}$ P.D. Grannis, ${ }^{55}$ J. A. Green, ${ }^{43}$ H. Greenlee, ${ }^{37}$ S. Grinstein, ${ }^{1}$ L. Groer, ${ }^{53}$ S. Grünendahl, ${ }^{37}$ A. Gupta, ${ }^{17}$ S. N. Gurzhiev, ${ }^{26}$ G. Gutierrez, ${ }^{37}$ P. Gutierrez, ${ }^{58}$ N. J. Hadley, ${ }^{47}$ H. Haggerty, ${ }^{37}$ S. Hagopian, ${ }^{35}$ V. Hagopian, ${ }^{35}$ R. E. Hall, ${ }^{32}$ P. Hanlet, ${ }^{49}$ S. Hansen, ${ }^{37}$ J. M. Hauptman, ${ }^{43}$ C. Hays, ${ }^{53}$ C. Hebert, ${ }^{44}$ D. Hedin, ${ }^{39}$ A. P. Heinson, ${ }^{34}$ U. Heintz, ${ }^{48}$ T. Heuring, ${ }^{35}$ M. D. Hildreth, ${ }^{42}$ R. Hirosky, ${ }^{63}$ J.D. Hobbs, ${ }^{55}$ B. Hoeneisen, ${ }^{8}$ Y. Huang, ${ }^{50}$ R. Illingworth, ${ }^{28}$ A. S. Ito, ${ }^{37}$ M. Jaffré, ${ }^{11}$ S. Jain, ${ }^{17}$ R. Jesik, ${ }^{41}$ K. Johns, ${ }^{29}$ M. Johnson, ${ }^{37}$ A. Jonckheere, ${ }^{37}$ M. Jones, ${ }^{36}$ H. Jöstlein, ${ }^{37}$ A. Juste,,${ }^{37}$ S. Kahn, ${ }^{56}$ E. Kajfasz, ${ }^{10}$ A. M. Kalinin, ${ }^{23}$ D. Karmanov, ${ }^{25}$ D. Karmgard, ${ }^{42}$ R. Kehoe, ${ }^{51}$ A. Kharchilava, ${ }^{42}$ S. K. Kim, ${ }^{18}$ B. Klima, ${ }^{37}$ B. Knuteson, ${ }^{30}$ W. Ko, ${ }^{31}$ J. M. Kohli, ${ }^{15}$ A. V. Kostritskiy, ${ }^{26}$ J. Kotcher, ${ }^{56}$ A. V. Kotwal, ${ }^{53}$ A. V. Kozelov, ${ }^{26}$ E. A. Kozlovsky, ${ }^{26}$ J. Krane, ${ }^{43}$ M. R. Krishnaswamy, ${ }^{17}$ P. Krivkova, ${ }^{6}$ S. Krzywdzinski, ${ }^{37}$ M. Kubantsev, ${ }^{45}$ S. Kuleshov, ${ }^{24}$ Y. Kulik, ${ }^{55}$ S. Kunori, ${ }^{47}$ A. Kupco, ${ }^{7}$ V. E. Kuznetsov,,${ }^{34}$ G. Landsberg, ${ }^{59}$ A. Leflat,${ }^{25}$ C. Leggett, ${ }^{30}$ F. Lehner, ${ }^{37}$ J. Li, ${ }^{60}$ Q. Z. Li, ${ }^{37}$ J. G.R. Lima, ${ }^{3}$ D. Lincoln, ${ }^{37}$ S. L. Linn, ${ }^{35}$ J. Linnemann, ${ }^{51}$ R. Lipton, ${ }^{37}$ A. Lucotte, ${ }^{9}$ L. Lueking, ${ }^{37}$ C. Lundstedt, ${ }^{52}{ }^{5}$ C. Luo, ${ }^{41}$ A. K. A. Maciel, ${ }^{39}$ R. J. Madaras, ${ }^{30}$ V.L. Malyshev, ${ }^{23}$ V. Manankov, ${ }^{25}$ H. S. Mao, ${ }^{4}$ T. Marshall, ${ }^{41}$ M.I. Martin, ${ }^{37}$ R.D. Martin, ${ }^{38}$ K. M. Mauritz, ${ }^{43}$ B. May, ${ }^{40}$ A. A. Mayorov, ${ }^{41}$ R. McCarthy, ${ }^{55}$ J. McDonald, ${ }^{35}$ T. McMahon, ${ }^{57}$ H. L. Melanson,,${ }^{37}$ M. Merkin, ${ }^{25}$ K. W. Merritt, ${ }^{37}$ C. Miao, ${ }^{59}$ H. Miettinen, ${ }^{62}$ D. Mihalcea,,${ }^{58}$ C. S. Mishra, ${ }^{37}$ N. Mokhov, ${ }^{37}$ N. K. Mondal, ${ }^{17}$ H. E. Montgomery, ${ }^{37}$
R. W. Moore, ${ }^{51}$ M. Mostafa, ${ }^{1}$ H. da Motta, ${ }^{2}$ E. Nagy, ${ }^{10}$ F. Nang,,${ }^{29}$ M. Narain, ${ }^{48}$ V. S. Narasimham,,${ }^{17}$ H. A. Neal, ${ }^{50}$ J. P. Negret, ${ }^{5}$ S. Negroni, ${ }^{10}$ T. Nunnemann, ${ }^{37}$ D. O'Neil, ${ }^{51}$ V. Oguri, ${ }^{3}$ B. Olivier, ${ }^{12}$ N. Oshima, ${ }^{37}$ P. Padley, ${ }^{62}$ L. J. Pan, ${ }^{40}$ K. Papageorgiou, ${ }^{28}$ A. Para, ${ }^{37}$ N. Parashar, ${ }^{49}$ R. Partridge, ${ }^{59}$ N. Parua, ${ }^{55}$ M. Paterno, ${ }^{54}$ A. Patwa, ${ }^{55}$ B. Pawlik, ${ }^{22}$ J. Perkins, ${ }^{60}$ M. Peters, ${ }^{36}$ O. Peters,,${ }^{20}$ P. Pétroff, ${ }^{11}$ R. Piegaia, ${ }^{1}$ H. Piekarz,,${ }^{35}$ B. G. Pope, ${ }^{51}$ E. Popkov, ${ }^{48}$ H. B. Prosper, ${ }^{35}$ S. Protopopescu, ${ }^{56}$ J. Qian, ${ }^{50}$ R. Raja, ${ }^{37}$ S. Rajagopalan, ${ }^{56}$ E. Ramberg, ${ }^{37}$ P. A. Rapidis, ${ }^{37}$ N. W. Reay, ${ }^{45}$ S. Reucroft,,${ }^{49}$ J. Rha, ${ }^{34}$ M. Ridel, ${ }^{11}$ M. Rijssenbeek, ${ }^{55}$ T. Rockwell, ${ }^{51}$ M. Roco, ${ }^{37}$ P. Rubinov, ${ }^{37}$ R. Ruchti, ${ }^{42}$ J. Rutherfoord, ${ }^{29}$ B. M. Sabirov, ${ }^{23}$ A. Santoro, ${ }^{2}$ L. Sawyer, ${ }^{46}$ R. D. Schamberger, ${ }^{55}$ H. Schellman, ${ }^{40}$ A. Schwartzman, ${ }^{1}$ N. Sen, ${ }^{62}$ E. Shabalina, ${ }^{25}$ R. K. Shivpuri, ${ }^{16}$ D. Shpakov, ${ }^{49}$ M. Shupe, ${ }^{29}$ R. A. Sidwell, ${ }^{45}$ V. Simak, ${ }^{7}$ H. Singh, ${ }^{34}$ J. B. Singh, ${ }^{15}$ V. Sirotenko,,${ }^{37}$ P. Slattery, ${ }^{54}$ E. Smith ${ }^{58}$ R.P. Smith, ${ }^{37}$ R. Snihur,,${ }^{40}$ G. R. Snow, ${ }^{52}$ J. Snow, ${ }^{57}$ S. Snyder, ${ }^{56}$ J. Solomon, ${ }^{38}$ V. Sorín, ${ }^{1}$ M. Sosebee, ${ }^{60}$ N. Sotnikova, ${ }^{25}$ K. Soustruznik, ${ }^{6}$ M. Souza, ${ }^{2}$ N. R. Stanton, ${ }^{45}$ G. Steinbrück, ${ }^{53}$ R. W. Stephens, ${ }^{60}$ F. Stichelbaut, ${ }^{56}$ D. Stoker, ${ }^{33}$ V. Stolin, ${ }^{24}$ D. A. Stoyanova, ${ }^{26}$ M. Strauss, ${ }^{58}$ M. Strovink, ${ }^{30}$ L. Stutte, ${ }^{37}$ A. Sznajder, ${ }^{3}$ W. Taylor ${ }^{55}$ S. Tentindo-Repond, ${ }^{35}$ S. M. Tripathi, ${ }^{31}$ T. G. Trippe, ${ }^{30}$ A. S. Turcot, ${ }^{56}$ P. M. Tuts, ${ }^{53}$ P. van Gemmeren, ${ }^{37}$ V. Vaniev, ${ }^{26}$ R. Van Kooten,,${ }^{41}$ N. Varelas,,${ }^{38}$ L. S. Vertogradov, ${ }^{23}$ A. A. Volkov, ${ }^{26}$ A. P. Vorobiev, ${ }^{26}$ H. D. Wahl, ${ }^{35}$ H. Wang, ${ }^{40}$ Z.-M. Wang, ${ }^{55}$ J. Warchol, ${ }^{42}$ G. Watts, ${ }^{64}$ M. Wayne, ${ }^{42}$ H. Weerts, ${ }^{51}$ A. White, ${ }^{60}$ J. T. White, ${ }^{61}$ D. Whiteson,,${ }^{30}$ J. A. Wightman, ${ }^{43}$ D. A. Wijngaarden, ${ }^{21}$ S. Willis, ${ }^{39}$ S. J. Wimpenny, ${ }^{34}$ J. Womersley, ${ }^{37}$ D. R. Wood, ${ }^{49}$ R. Yamada, ${ }^{37}$ P. Yamin, ${ }^{56}$ T. Yasuda, ${ }^{37}$ Y. A. Yatsunenko, ${ }^{23}$ K. Yip, ${ }^{56}$ S. Youssef, ${ }^{35}$ J. Yu ${ }^{37}$ Z. Yu, ${ }^{40}$ M. Zanabria, ${ }^{5}$ H. Zheng, ${ }^{42}$ Z. Zhou, ${ }^{43}$ M. Zielinski, ${ }^{54}$ D. Zieminska, ${ }^{41}$ A. Zieminski, ${ }^{41}$ V. Zutshi, ${ }^{54}$ E. G. Zverev, ${ }^{25}$ and A. Zylberstejn ${ }^{13}$
(D0 Collaboration)
${ }^{1}$ Universidad de Buenos Aires, Buenos Aires, Argentina
${ }^{2}$ LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
${ }^{3}$ Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
${ }^{4}$ Institute of High Energy Physics, Beijing, People's Republic of China
${ }^{5}$ Universidad de los Andes, Bogotá, Colombia
${ }^{6}$ Center for Particle Physics, Charles University, Prague, Czech Republic
${ }^{7}$ Institute of Physics, Academy of Sciences, Center for Particle Physics, Prague, Czech Republic
${ }^{8}$ Universidad San Francisco de Quito, Quito, Ecuador
${ }^{9}$ Institut des Sciences Nucléaires, IN2P3-CNRS, Universite de Grenoble 1, Grenoble, France
${ }^{10}$ CPPM, IN2P3-CNRS, Université de la Méditerranée, Marseille, France
${ }^{11}$ Laboratoire de l'Accélérateur Linéaire, IN2P3-CNRS, Orsay, France
${ }^{12}$ LPNHE, Universités Paris VI and VII, IN2P3-CNRS, Paris, France
${ }^{13}$ DAPNIA/Service de Physique des Particules, CEA, Saclay, France
${ }^{14}$ Institut für Physik, Universität Mainz, Mainz, Germany
${ }^{15}$ Panjab University, Chandigarh, India
${ }^{16}$ Delhi University, Delhi, India
${ }^{17}$ Tata Institute of Fundamental Research, Mumbai, India
${ }^{18}$ Seoul National University, Seoul, Korea
${ }^{19}$ CINVESTAV, Mexico City, Mexico
${ }^{20}$ FOM-Institute NIKHEF and University of Amsterdam/NIKHEF, Amsterdam, The Netherlands
${ }^{21}$ University of Nijmegen/NIKHEF, Nijmegen, The Netherlands
${ }^{22}$ Institute of Nuclear Physics, Kraków, Poland
${ }^{23}$ Joint Institute for Nuclear Research, Dubna, Russia
${ }^{24}$ Institute for Theoretical and Experimental Physics, Moscow, Russia
${ }^{25}$ Moscow State University, Moscow, Russia
${ }^{26}$ Institute for High Energy Physics, Protvino, Russia
${ }^{27}$ Lancaster University, Lancaster, United Kingdom
${ }^{28}$ Imperial College, London, United Kingdom
${ }^{29}$ University of Arizona, Tucson, Arizona 85721
${ }^{30}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720
${ }^{31}$ University of California, Davis, California 95616
${ }^{32}$ California State University, Fresno, California 93740
${ }^{33}$ University of California, Irvine, California 92697
${ }^{34}$ University of California, Riverside, California 92521
${ }^{35}$ Florida State University, Tallahassee, Florida 32306
${ }^{36}$ University of Hawaii, Honolulu, Hawaii 96822
${ }^{37}$ Fermi National Accelerator Laboratory, Batavia, Illinois 60510
${ }^{38}$ University of Illinois at Chicago, Chicago, Illinois 60607
${ }^{39}$ Northern Illinois University, DeKalb, Illinois 60115
${ }^{40}$ Northwestern University, Evanston, Illinois 60208
${ }^{41}$ Indiana University, Bloomington, Indiana 47405
${ }^{42}$ University of Notre Dame, Notre Dame, Indiana 46556
${ }^{43}$ Iowa State University, Ames, Iowa 50011
${ }^{44}$ University of Kansas, Lawrence, Kansas 66045
${ }^{45}$ Kansas State University, Manhattan, Kansas 66506
${ }^{46}$ Louisiana Tech University, Ruston, Louisiana 71272
${ }^{47}$ University of Maryland, College Park, Maryland 20742
${ }^{48}$ Boston University, Boston, Massachusetts 02215
${ }^{49}$ Northeastern University, Boston, Massachusetts 02115
${ }^{50}$ University of Michigan, Ann Arbor, Michigan 48109
${ }^{51}$ Michigan State University, East Lansing, Michigan 48824
${ }^{52}$ University of Nebraska, Lincoln, Nebraska 68588
${ }^{53}$ Columbia University, New York, New York 10027
${ }^{54}$ University of Rochester, Rochester, New York 14627
${ }^{55}$ State University of New York, Stony Brook, New York 11794
${ }^{56}$ Brookhaven National Laboratory, Upton, New York 11973
${ }^{57}$ Langston University, Langston, Oklahoma 73050
${ }^{58}$ University of Oklahoma, Norman, Oklahoma 73019
${ }^{59}$ Brown University, Providence, Rhode Island 02912 ${ }^{60}$ University of Texas, Arlington, Texas 76019
${ }^{61}$ Texas A\&M University, College Station, Texas 77843

${ }^{62}$ Rice University, Houston, Texas 77005<br>${ }^{63}$ University of Virginia, Charlottesville, Virginia 22901<br>${ }^{64}$ University of Washington, Seattle, Washington 98195<br>(Received 24 February 2001; published 23 July 2001)


#### Abstract

We present results of searches for technirho ( $\rho_{T}$ ), techniomega ( $\omega_{T}$ ), and $Z^{\prime}$ particles, using the decay channels $\rho_{T}, \omega_{T}, Z^{\prime} \rightarrow e^{+} e^{-}$. The search is based on $124.8 \mathrm{pb}^{-1}$ of data collected by the D 0 detector at the Fermilab Tevatron during 1992-1996. In the absence of a signal, we set $95 \%$ C.L. upper limits on the cross sections for the processes $p \bar{p} \rightarrow \rho_{T}, \omega_{T}, Z^{\prime} \rightarrow e^{+} e^{-}$as a function of the mass of the decaying particle. For certain model parameters, we exclude the existence of degenerate $\rho_{T}$ and $\omega_{T}$ states with masses below about 200 GeV . We exclude a $Z^{\prime}$ with mass below 670 GeV , assuming that it has the same couplings to fermions as the $Z$ boson.


DOI: 10.1103/PhysRevLett.87.061802
PACS numbers: $12.60 . \mathrm{Cn}, 12.60 . \mathrm{Nz}, 13.85 . \mathrm{Rm}$

Historically, studies of lepton-antilepton pair produc-tion-in particular, $e^{+} e^{-}$and $\mu^{+} \mu^{-}$-have been important discovery channels for new particles. The $J / \psi, \Upsilon$, and $Z$ resonances were all found in this way. Many extensions of the standard model predict the existence of particles that decay to lepton-antilepton pairs. Examples are heavy gauge bosons ( $Z^{\prime}$ ) and technihadrons $\left(\rho_{T}, \omega_{T}\right)$. The lepton-antilepton signature is a preferred channel for particle searches in strong interactions because of the relatively low backgrounds compared to hadronic decay channels. Electrons and muons permit a relatively straightforward trigger and their momenta can be measured precisely. Thus particles that decay to $e^{+} e^{-}$or $\mu^{+} \mu^{-}$can be identified as resonances in the dilepton mass spectrum.

In this Letter, we describe a search for resonances in the dielectron mass spectrum in data collected by D0 during 1992-1996 at the Fermilab Tevatron. We first describe the data sample, background sources, acceptance, and efficiency. We then set limits on the product of the cross section and branching fraction for the production of such resonances and their subsequent decay to $e^{+} e^{-}$as a function of the resonance mass. Finally, we compare this limit to predictions for hypothesized particles.

The D0 detector [1] is a multipurpose particle detector. It tracks charged particles in tracking detectors located around the interaction region. The energy of particles is measured in uranium/liquid-argon calorimeters that surround the tracking detectors. The calorimeters are housed in three cryostats. In the central calorimeter (CC) we accept electrons with pseudorapidity $|\eta|<1.1$ and in the end calorimeters (EC) with $1.5<|\eta|<2.5$. Pseudorapidity is defined in terms of the polar angle $\theta$ relative to the proton beam direction as $\eta=-\ln \tan \frac{\theta}{2}$. Electrons are identified as narrow showers in the electromagnetic section of the calorimeters, with a matching track in the drift chambers. The electron energy $E$ is measured with a resolution $\sigma_{E}$, given by $\left(\sigma_{E} / E\right)^{2}=(15 \% / \sqrt{E / \mathrm{GeV}})^{2}+(1 \%)^{2}$. No distinction can be made between electrons and positrons, because the tracking detectors are not in a magnetic field.

The data sample, background predictions, event selection, and electron identification criteria used for this analysis are identical to those described in Ref. [2]. We require at least two electrons [3] with $E \sin \theta>25 \mathrm{GeV}$. To maxi-
mize the signal efficiency, one electron in the CC fiducial region is not required to have a matching track.

The dielectron invariant mass spectra for events with both electrons in the central region ( $\mathrm{CC} / \mathrm{CC}$ ) and with one electron in the central region and the other in the forward region (CC/EC) are shown in Figs. 1 and 2. The data correspond to an integrated luminosity of $124.8 \pm 5.1 \mathrm{pb}^{-1}$, taken at $\sqrt{s}=1.8 \mathrm{TeV}$. The superimposed histograms represent the estimated spectrum from standard model processes and instrumental effects. This is dominated by two sources: (i) Drell-Yan process (via intermediate $\gamma^{*}$ and $Z^{*}$ ) and (ii) jets misidentified as electrons. This includes contributions from dijet events in which both jets are misidentified as electrons, $W(\rightarrow e \nu)+$ jets events in which one of the jets is misidentified as an electron, and $\gamma+$ jets events in which a jet and the photon are misidentified as electrons. Other processes ( $W \gamma, Z \gamma, t \bar{t}, W W$, and $\gamma^{*} / Z \rightarrow \tau \tau$ ), which can in principle also contribute to dielectron final states, have not been included in this analysis because these are at least an order of magnitude smaller than the two main backgrounds, as shown in Ref. [2].


FIG. 1. Dielectron invariant mass spectrum for CC/CC events.


FIG. 2 Dielectron invariant mass spectrum for CC/EC events.
The Drell-Yan spectrum is estimated using the PYTHIA Monte Carlo generator [4]. A $K$ factor is applied, as a function of dielectron mass, in order to normalize the cross sections from PYTHIA to next-to-leading-order calculations [5], as described in Ref. [2]. The uncertainty in the $K$ factor is $5 \%$.

The efficiencies for identification of electron-positron pairs are [2]

$$
\begin{array}{ll}
\epsilon=0.814 \pm 0.014 & \text { for CC/CC events } \\
\epsilon=0.479 \pm 0.010 & \text { for CC/EC events } \tag{1}
\end{array}
$$

The acceptance for an $e^{+} e^{-}$-resonance signal is about $50 \%$, roughly independent of dielectron mass. The larger the dielectron mass, the larger is the fraction of CC/CC events, and thus the larger the total overall efficiency. This efficiency varies between $30 \%$ (at a mass of 140 GeV ) and $40 \%$ (at a mass of 450 GeV ). The apparent width of the

$$
\begin{equation*}
P(\sigma)=\iint G_{\mathcal{L}} G_{\epsilon} \prod_{i=1}^{n} \iint G_{b_{i}^{1}} G_{b_{i}^{2}} p_{i}\left(n_{i} \mid \mu_{i}\right) d b_{i}^{2} d b_{i}^{1} d \epsilon d \mathcal{L} \tag{3}
\end{equation*}
$$

The priors $G$ are Gaussians with means equal to the most probable parameter values and variances given by the square of the uncertainties. We calculate this probability for the CC/CC data sample $\left[P_{\mathrm{CC}}(\sigma)\right]$ and for the CC/EC data sample $\left[P_{\mathrm{EC}}(\sigma)\right]$ separately. We determine a Bayesian 95\% confidence level upper limit on the product of the signal cross section and branching fraction ( $\sigma_{95}$ ) from the definition

$$
\begin{equation*}
\frac{\int_{0}^{\sigma_{95}} P_{\mathrm{CC}}(\sigma) * P_{\mathrm{EC}}(\sigma) d \sigma}{\int_{0}^{\infty} P_{\mathrm{CC}}(\sigma) * P_{\mathrm{EC}}(\sigma) d \sigma}=0.95 \tag{4}
\end{equation*}
$$

This definition does not account for correlations in the uncertainties between the CC/CC and CC/EC samples because their effect on the limit is negligible. The resulting

TABLE I. Comparison of observed and expected number of events, for combined CC/CC and CC/EC samples.

| Mass region | Expected | Observed |
| :--- | ---: | ---: |
| $>100 \mathrm{GeV}$ | $609 \pm 73$ | 571 |
| $>200 \mathrm{GeV}$ | $26 \pm 3.4$ | 32 |
| $>300 \mathrm{GeV}$ | $4.7 \pm 0.6$ | 6 |
| $>400 \mathrm{GeV}$ | $1.1 \pm 0.1$ | 0 |

resonance (dominated by the detector resolution) increases with the mass of the particle.

In Table I, we compare the observed number of events with standard model expectations. There is no significant excess in cross section nor do we see any significant accumulation of events at one mass value, as expected for the decay of a narrow resonance. In the absence of a signal, we set an upper limit on the product of the cross section and branching fraction as a function of dielectron invariant mass.

We calculate the limit using a Bayesian technique. We bin the spectra shown in Figs. 1 and 2 in 4 GeV wide bins. In bin $i$, we expect to see $\mu_{i}$ events, where

$$
\begin{equation*}
\mu_{i}=f_{i} \times \sigma \times \epsilon \times \mathcal{L}+b_{i}^{1}+b_{i}^{2} \times \mathcal{L} \tag{2}
\end{equation*}
$$

Here $f_{i}$ is the signal acceptance for bin $i, \sigma$ is the signal cross section multiplied by the branching fraction into $e^{+} e^{-}, \boldsymbol{\epsilon}$ is the signal efficiency, $\mathcal{L}$ is the integrated luminosity, $b_{i}^{1}$ is the expected number of events with misidentified jets in bin $i$, and $b_{i}^{2}$ is the Drell-Yan cross section, corrected for acceptance and efficiency, integrated over bin $i$. The acceptance $f_{i}$ depends somewhat on the process under consideration (but not the detailed model parameters) and has been evaluated using Monte Carlo simulations for the specific final states considered below. The only unknown of these parameters is $\sigma$. We use Poisson statistics to calculate the probability $p_{i}\left(n_{i} \mid \mu_{i}\right)$ to see the $n_{i}$ events observed in the data given the expected value $\mu_{i}$. To account for the uncertainties in the values of the parameters that determine $\mu_{i}$, we average this probability over prior distributions for the parameters. The joint probability for all bins, as a function of $\sigma$, is then
limits are represented by the data points in Figs. 3 and 4 for $\rho_{T}$ and $\omega_{T}$ and in Fig. 5 for $Z^{\prime}$.

Topcolor-assisted technicolor models with walking gauge coupling [8] predict the existence of many technihadron states. The lightest of these technihadrons are the scalar mesons, technipions ( $\pi_{T}^{ \pm}$and $\pi_{T}^{0}$ ), and the vector mesons $\left(\rho_{T}\right.$ and $\left.\omega_{T}\right)$. These are bound states of the members of the lightest technifermion doublet, $U$ and $D$. They are expected to be produced with substantial rates at the Fermilab Tevatron [9]. The vector mesons decay to $\gamma \pi_{T}, W \pi_{T}$, or fermion-antifermion pairs. No large isospin-violating technicolor interactions are needed to explain the mass difference between the top and bottom


FIG. 3. Experimental upper limits at $95 \%$ confidence level for $\rho_{T}, \omega_{T} \rightarrow e^{+} e^{-}$production compared with predictions from Refs. [6,7]. $M_{\rho, \omega}$ and $M_{\pi}$ denote technihadron masses.
quarks. Therefore, the $\rho_{T}$ and $\omega_{T}$ states can be (and are assumed to be) degenerate in mass. As shown in Ref. [6], most of the rate to dilepton final states originates from $\omega_{T}$ decays, so that our conclusions for the mass of the $\omega_{T}$ do not depend strongly on this assumption.
The predicted products of cross sections and branching fractions for the processes $p \bar{p} \rightarrow \rho_{T}, \omega_{T}$, followed by $\rho_{T}, \omega_{T} \rightarrow \ell^{+} \ell^{-}$depend on the masses of $\rho_{T}\left(M_{\rho}\right)$


FIG. 4. Experimental upper limits at $95 \%$ confidence level for $\rho_{T}, \omega_{T} \rightarrow e^{+} e^{-}$production compared with predictions from Refs. [6,7]. $M_{\rho, \omega}$ and $M_{\pi}$ denote technihadron masses.


FIG. 5. Experimental upper limit at $95 \%$ confidence level for $Z^{\prime} \rightarrow e^{+} e^{-}$production compared with predictions.
and $\omega_{T}\left(M_{\omega}\right)$ and the mass difference between the vector mesons ( $\rho_{T}, \omega_{T}$ ) and the technipions. The latter determines the spectrum of accessible decay channels. In addition, the $\omega_{T}$ production cross section is sensitive to the charges of the technifermions (taken to be $Q_{U}=Q_{D}-$ $1=4 / 3$ ), as well as to a mass parameter $M_{T}$ that controls the rate for $\omega_{T} \rightarrow \gamma+\pi_{T}^{0}$ [10]. The value of this mass parameter is unknown. Scaling from the quantum chromodynamics decay $\omega \rightarrow \gamma+\pi^{0}$, Ref. [6] suggests a value of several hundred GeV . For all other parameters, we use the default values quoted in Table II of Ref. [7].
We use recently updated calculations from Refs. [6,7] for the processes $p \bar{p} \rightarrow \rho_{T} \rightarrow \ell^{+} \ell^{-}$and $p \bar{p} \rightarrow \omega_{T} \rightarrow$ $\ell^{+} \ell^{-}$and include a $K$ factor of 1.3. Previously published searches for technicolor particles [11] use an older calculation that predicted larger branching fractions for the dilepton decay modes. When comparing limits, this must be taken into account. Two predictions [6,7] for the product of cross section and branching fraction for the process $p \bar{p} \rightarrow\left(\rho_{T}\right.$ or $\left.\omega_{T}\right) \rightarrow e^{+} e^{-}$are plotted in Fig. 3. The two predictions shown differ in the assumed mass difference between the vector and scalar mesons. For a mass difference smaller than the mass of the $W$ boson (e.g., 60 GeV ), the decay $\rho_{T} \rightarrow W+\pi_{T}$ is forbidden and the branching ratio to dielectrons is enhanced compared to the case of a mass difference of 100 GeV , for which the $W \pi_{T}$ mode is allowed. We rule out $\rho_{T}$ and $\omega_{T}$ with masses below 207 GeV , if the mass difference between $\rho_{T}$ and $\pi_{T}^{ \pm}$is smaller than the $W$-boson mass.
The limit depends on the choice of the parameter $M_{T}$, as illustrated in Fig. 4. In this figure, the experimental limit is compared to predictions in which the parameter $M_{T}$, which controls the $\omega_{T}$ decay rate, is varied. For
sufficiently large values of $M_{T}\left(M_{T}>200 \mathrm{GeV}\right)$ we can rule out the existence of $\rho_{T}$ and $\omega_{T}$ with masses below 203 GeV , even when the competing $W \pi_{T}$ decay mode of the technirho is open.
There is no unique prediction for the couplings of a heavy neutral gauge boson $\left(Z^{\prime}\right)$ to fermions. We assume as a benchmark that the $Z^{\prime}$ has the same couplings to fermions as the $Z$ boson of the standard model. Thus, the width of the $Z^{\prime}$ scales proportional to $M_{Z^{\prime}}$. We determine the product of the cross section and branching ratio using PYTHIA and adjust for the $K$ factor [5].
We set an upper limit on the product of the cross section and branching fraction using the same algorithm as for the technicolor particles. Figure 5 shows the experimental limit together with the theoretical cross section. For the assumed couplings, we exclude the existence of a $Z^{\prime}$ boson below a mass of 670 GeV at the $95 \%$ confidence level. The previous search by D0 [12], using a smaller data sample, set a lower limit at 490 GeV . A search by CDF in both the dielectron and dimuon channels [13] set a lower limit at 690 GeV .
To summarize, based on $124.8 \mathrm{pb}^{-1}$ of data collected by the D0 detector at the Fermilab Tevatron during 1992-1996, we set new limits on the production of technirho ( $\rho_{T}$ ), techniomega ( $\omega_{T}$ ), and $Z^{\prime}$ particles in $p \bar{p}$ collisions using their decays to $e^{+} e^{-}$. The $95 \%$ C.L. lower limits on the particle masses are 207 GeV for $\rho_{T}$ and $\omega_{T}$ states, assuming that they have equal mass and that the decay $\rho_{T} \rightarrow \pi_{T}+W$ is kinematically forbidden, and 670 GeV for $Z^{\prime}$ bosons with standard model couplings to fermions.
We thank K. Lane for helpful discussions and S. Mrenna for adding the technicolor model to pythia. We also acknowledge the hospitality of the Aspen Center for Physics, where this analysis was initiated. We thank the staffs at Fermilab and collaborating institutions and acknowledge support from the Department of Energy and National Science Foundation (U.S.A.), Commissariat à L'Energie

Atomique and CNRS/Institut National de Physique Nucléaire et de Physique des Particules (France), Ministry for Science and Technology and Ministry for Atomic Energy (Russia), CAPES and CNPq (Brazil), Departments of Atomic Energy and Science and Education (India), Colciencias (Colombia), CONACyT (Mexico), Ministry of Education and KOSEF (Korea), CONICET and UBACyT (Argentina), The Foundation for Fundamental Research on Matter (The Netherlands), PPARC (United Kingdom), Ministry of Education (Czech Republic), and the A.P. Sloan Foundation.
[1] D0 Collaboration, S. Abachi et al., Nucl. Instrum. Methods Phys. Res., Sect. A 338, 185 (1994).
[2] D0 Collaboration, B. Abbott et al., Phys. Rev. Lett. 82, 4769 (1999).
[3] The D0 detector does not determine the sign of the electric charge of electrons and positrons. We therefore use the generic term "electron" to refer to both $e^{-}$and $e^{+}$.
[4] T. Sjöstrand, Comput. Phys. Commun. 82, 74 (1994).
[5] R. Hamberg, W. L. van Neerven, and T. Matsuura, Nucl. Phys. B359, 343 (1991).
[6] K. Lane, Phys. Rev. D 60, 075007 (1999).
[7] K. Lane, hep-ph/9903372.
[8] C. Hill, Phys. Lett. B 345, 483 (1995); K. Lane, Phys. Rev. D 54, 2204 (1996), and references therein.
[9] E. Eichten, K. Lane, and J. Womersley, Phys. Lett. B 405, 305 (1997).
[10] In Ref. [6], two parameters, $M_{A}$ for axial-vector and $M_{V}$ for vector couplings, appear. Their values are expected to be comparable. We set $M_{A}=M_{V}=M_{T}$.
[11] CDF Collaboration, T. Affolder et al., Phys. Rev. Lett. 84, 1110 (2000).
[12] D0 Collaboration, S. Abachi et al., Phys. Lett. B 385, 471 (1996).
[13] CDF Collaboration, F. Abe et al., Phys. Rev. Lett. 79, 2192 (1997).


[^0]:    Abazov, V. M.; Snow, Gregory R.; and Collaboration, DO, "Search for Heavy Particles Decaying into ElectronPositron Pairs in $p \bar{p}$ Collisions" (2001). Gregory Snow Publications. 56.
    https://digitalcommons.unl.edu/physicssnow/56

