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We search for single-photon events in 53 fb−1 of eþe− collision data collected with the BABAR detector
at the PEP-II B-Factory. We look for events with a single high-energy photon and a large missing
momentum and energy, consistent with production of a spin-1 particle A0 through the process eþe− → γA0;
A0 → invisible. Such particles, referred to as “dark photons,” are motivated by theories applying a Uð1Þ
gauge symmetry to dark matter. We find no evidence for such processes and set 90% confidence level upper
limits on the coupling strength of A0 to eþe− in the mass range mA0 ≤ 8 GeV. In particular, our limits
exclude the values of the A0 coupling suggested by the dark-photon interpretation of the muon ðg − 2Þμ
anomaly, as well as a broad range of parameters for the dark-sector models.

DOI: 10.1103/PhysRevLett.119.131804

The nature of dark matter is one of the greatest
mysteries of modern physics. It is transparent to electro-
magnetic radiation and we have only been able to infer
its existence through gravitational effects. Since terres-
trial searches for dark-matter interactions have so far
yielded null results, it is postulated to interact very
weakly with ordinary matter. Recently, models attempt-
ing to explain certain astrophysical observations [1–4] as
well as the muon ðg − 2Þμ anomaly [5] have introduced
an appealing idea of a low-mass spin-1 particle, referred
to as A0 or U, that would possess a gauge coupling of
electroweak strength to dark matter, but with a much
smaller coupling to the standard model (SM) hyper-
charge [6,7]. Such a boson may be associated with a
Uð1Þ gauge symmetry in the dark sector and kinetically
mix with the SM photon with a mixing strength ε ≪ 1,
hence the name “dark photon.” Values as high as
ε ∼ 10−3 and masses in a GeV range have been predicted
in the literature [6,7].
The decay modes of the dark photon depend on its mass

and couplings, as well as on the particle spectrum of the
dark sector. If the lowest-mass dark matter state χ is
sufficiently light, mχ < mA0=2, then the dominant decay
mode of the A0 is invisible, A0 → χχ̄. The cleanest collider
signature of such particles is the production of monochro-
matic single photons in eþe− → γA0, accompanied by
significant missing energy and momentum. The photon
energy E�

γ in the eþe− center-of-mass (c.m.) is related to the
missing massMX throughM2

X ¼ s − 2E�
γ

ffiffiffi
s

p
, where s is the

square of the c.m. energy, and the asterisk hereafter denotes
a c.m. quantity. We seek a signal of the dark photon A0 as a
narrow peak in the distribution of M2

X in events with a
single high-energy photon. As expected for the dark matter
coupling αD < 1 [7], we assume that the decay width of the
A0 is negligible compared to the experimental resolution,
and that the A0 decays predominantly to dark matter (i.e.,
the invisible branching fraction is ≈100%). Furthermore,
we assume that a single A0 state exists in the range

0 < mA0 ≤ 8 GeV, or if two or more states are present,
they do not interfere.
The current best limits on the mixing strength ε of the

dark photon are from searches for narrow peaks in the eþe−

or μþμ− invariant mass spectra [8–14] and from beam-
dump and neutrino experiments [15,16]. These limits
assume that the dominant decays of the A0 are to the
visible SM particles, but are not valid if there are low-mass
invisible degrees of freedom. There are constraints on
invisible decays of the A0 from kaon decays [17–19]
and from the recent search for missing energy events in
electron-nucleus scattering [20].
We search for the process eþe− → γA0, followed by

invisible decays of the A0 in a 53 fb−1 data set [21] collected
with the BABAR detector at the PEP-II asymmetric-energy
eþe− collider at the SLAC National Accelerator
Laboratory. The data were collected in 2007–2008 with
c.m. energies near the ϒð2SÞ, ϒð3SÞ, and ϒð4SÞ reso-
nances with a special “single-photon” trigger described
below. The eþe− c.m. frame was boosted relative to the
detector approximately along the detector’s magnetic field
axis by βz ≈ 0.5. Since the production of the A0 is not
expected to be enhanced by the presence of the ϒ
resonances, we combine the data sets collected in the
vicinity of each ϒ resonance. In order to properly account
for acceptance effects and changes in the cross section
as a function of

ffiffiffi
s

p
, we measure the signal event yields

separately for the ϒð2SÞ, ϒð3SÞ, and ϒð4SÞ data sets.
Since the BABAR detector is described in detail elsewhere

[22], only the components of the detector crucial to this
analysis are summarized below. Charged particle tracking is
provided by a five-layer double-sided silicon vertex tracker
and a 40-layer drift chamber (DCH). Photons and neutral
pions are identified and measured using the electromagnetic
calorimeter (EMC), which comprises 6580 thallium-doped
CsI crystals. These systems are mounted inside a 1.5-T
solenoidal superconducting magnet. The Instrumented
Flux Return (IFR) forms the return yoke of the
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superconducting coil, instrumented in the central barrel
region with limited streamer tubes for the identification of
muons and the detection of clusters produced by neutral
hadrons. We use the GEANT4 [23] software to simulate
interactions of particles traversing theBABARdetector, taking
into account the varying detector conditions and beam
backgrounds.
Detection of low-multiplicity single-photon events

requires dedicated trigger lines. Event processing and
selection proceeds in three steps. First, the hardware-based
level-1 (L1) trigger accepts single-photon events if they
contain at least one EMC cluster with energy above
800 MeV (in the laboratory frame). Second, L1-accepted
events are forwarded to a software-based level-3 (L3)
trigger, which forms DCH tracks and EMC clusters and
makes decisions for a variety of physics signatures. Two
single-photon L3 trigger lines were active during the data-
taking period. The high-energy photon line (low MX,
hereafter “LowM”) requires an isolated EMC cluster
with energy E�

γ > 2 GeV, and no tracks originating from
the eþe− interaction region (IR). The LowM data set
amounts to 5.9 fb−1 collected at the ϒð4SÞ resonance
(

ffiffiffi
s

p ¼ 10.58 GeV), 28.5 fb−1 collected at the ϒð3SÞ res-
onance (

ffiffiffi
s

p ¼ 10.36 GeV), 2.7 fb−1 collected 30 MeV
below the ϒð3SÞ resonance, 14.4 fb−1 collected at the
ϒð2SÞ resonance (

ffiffiffi
s

p ¼ 10.02 GeV), and 1.5 fb−1 col-
lected 30 MeV below the ϒð2SÞ resonance. The total data
sample collected with the LowM triggers is 53 fb−1.
A low-energy (high MX, “HighM”) L3 single-photon

trigger, which requires an EMC cluster with energy E�
γ >

1 GeV and no tracks originating from the eþe− interaction
region, was active for a subset of the data: 20 fb−1 collected
at the ϒð3SÞ resonance as well as all of the data collected
below the ϒð3SÞ and at the ϒð2SÞ resonances. The total
data sample collected with the HighM triggers is 35.9 fb−1.
Additional off-line software filters are applied to the

stored data. We accept single-photon events if they satisfy
one of the two following criteria. The LowM selection
requires one EMC cluster in the event with E�

γ > 3 GeV
and no DCH tracks with momentum p� > 1 GeV. The
HighM selection requires one EMC cluster with the trans-
verse profile consistent with an electromagnetic shower
and E�

γ > 1.5 GeV, and no DCH tracks with momentum
p� > 0.1 GeV. The two selection criteria are not mutually
exclusive.
The trigger and reconstruction selections naturally split

the data set into two broad MX ranges. The LowM
selections are used for the low-MX region −4 < M2

X <
36 GeV2. The backgrounds in this region are dominated by
the QED process eþe− → γγ, especially near MX ≈ 0

(E�
γ ≈

ffiffiffi
s

p
=2). Because of the orientation of the EMC

crystals, which point towards the IR, one of the photons
may escape detection even if it is within the nominal EMC
acceptance. The event selection is optimized to reduce this
peaking background as much as possible. The HighM

trigger selection defines the high-MX range 24 < M2
X <

69ð63.5Þ GeV2 for the ϒð3SÞ [ϒð2SÞ] data set. This
region is dominated by the low-angle radiative Bhabha
events eþe− → eþe−γ, in which both the electron and the
positron escape the detector.
We suppress the SM backgrounds, which involve one or

more particles that escape detection, by requiring that a
candidate event be consistent with a single isolated photon
shower in the EMC. We accept photons in the polar angle
range j cos θ�γ j < 0.6, rejecting radiative Bhabha events that
strongly peak in the forward and backward directions, and
we require that the event contain no charged particle tracks.
The signal events are further selected by a multivariate

boosted decision tree (BDT) discriminant [24], based on
the following 12 discriminating variables. First, after a
relatively coarse selection, we include the EMC variables
that describe the shape of the electromagnetic shower: the
difference between the number of crystals in the EMC
cluster and the expectation for a single photon of given
energy, and two transverse shower moments [25]. Second,
we include both the total excess EMC energy in the
laboratory frame not associated with the highest-energy
photon, and the c.m. energy and polar angle of the second-
most-energetic EMC cluster. We also compute the azimu-
thal angle difference Δϕ12 between the highest- and
second-highest-energy EMC clusters; the eþe− → γγ
events with partial energy deposit in the EMC tend to
peak at Δϕ12 ∼ π. Third, a number of variables improve
containment of the background events. We extrapolate the
missing momentum vector to the EMC face, and compute
the distance [in ðθ;ϕÞ polar lab-frame coordinates] to the
nearest crystal edge. This allows us to suppress eþe− → γγ
events where one of the photons penetrates the EMC
between crystals leaving little detectable energy.
Furthermore, we look for energy deposited in the IFR,
and compute the correlation angle ΔϕNH between the
primary photon and the IFR cluster closest to the missing
momentum direction; eþe− → γγ events produce a peak at
cosΔϕNH ∼ −1. We also apply a fiducial selection to the
azimuthal angle ϕmiss of the missing momentum by includ-
ing cosð6ϕmissÞ into the BDT. This accounts for uninstru-
mented regions between six IFR sectors [22]. Finally, cos θ�γ
is included in the BDT to take advantage of the different
angular distributions for signal and background events.
The BDT discriminants are trained separately in LowM

and HighM regions. Each BDT is trained using 2.5 × 104

simulated signal events with uniformly distributed A0

masses, and 2.5 × 104 background events from the
ϒð3SÞ on-peak sample that corresponds to approximately
3 fb−1. We test the BDT, define the final selection, and
measure the signal efficiency using sets of 2.5 × 104 signal
and background events statistically independent from the
BDT training samples. The BDT score is designed so that
the signal peaks near 1 while the background events are
generally distributed between −1 < BDT < 0.
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The event selection is optimized to minimize the
expected upper limit on the eþe− → γA0 cross section
σA0 . Since the number of peaking eþe− → γγ events cannot
be reliably estimated and has to be determined from the fit
to the data, this background limits the sensitivity to eþe− →
γA0 at the low A0 masses where the photon energies for the
two types of events are indistinguishable. In this regime, we
define a “tight” selection region RT which maximizes the
ratio εS=NB for large NB, and εS=2.3 in the limit NB → 0,
where εS is the selection efficiency for the signal and NB
is the number of background events expected in the full
data sample. We also require −0.4 < cos θ�γ < 0.6 in order
to suppress eþe− → γγ events in which one of the photons
would have missed the central region of the EMC.
A “loose” selection regionRL maximizes εS=

ffiffiffiffiffiffiffi
NB

p
. This

selection is appropriate at higherMX where the background
is well described by a featureless continuum distribution,
and maximal εS=

ffiffiffiffiffiffiffi
NB

p
corresponds to the lowest upper

limit on the eþe− → γA0 cross section.
Finally, a background region RB is defined by −0.5 <

BDT < 0 and is used to determine the M2
X distribution of

the background events. The selection criteria used in this
analysis and the numbers of events selected in different
datasets are summarized in Table I.
We measure the cross section σA0 as a function of the

assumed mass mA0 by performing a series of unbinned
extended maximum likelihood fits to the distribution of
M2

X. For each value of mA0 , varied from 0 to 8.0 GeV in
166 steps roughly equal to half of the mass resolution, we
perform a set of simultaneous fits to ϒð2SÞ, ϒð3SÞ, and for
the low-MX region,ϒð4SÞ data sets. Moreover, we subdivide
the data into broad event selection bins:RB, used to define the
background probability density functions (PDFs), and signal
regions RL (used for 5.5 < mA0 ≤ 8.0 GeV), RT , and R0

L
(used for mA0 ≤ 5.5 GeV). The region R0

L is defined to be
the part of RL not overlapping with RT . Thus, the simulta-
neous fits are performed to nine independent samples for
mA0 ≤ 5.5 GeV, and four independent samples for 5.5 <
mA0 ≤ 8.0 GeV (missing mass spectra for all data sets are
shown in [26]).
For the fits to theRB regions, we fix the number of signal

events to zero, and determine the parameters of the

background PDFs. In the fits to the RT and R0
L regions,

we fix the background PDF shape, and vary the number of
background events NB, the number of peaking background
events eþe− → γγ (for mA0 ≤ 5.5 GeV), and the A0 mixing
strength ε2. The numbers of signal and background events
are constrained: ε2 ≥ 0 and NB > 0.
The signal PDF is described by a Crystal Ball [27]

function centered around the expected value of M2
X ¼ m2

A0 .
We determine the PDF as a function of mA0 using high-
statistics simulated samples of signal events, and we correct
it for the difference between the photon energy resolution
function in data and simulation using a high-statistics
eþe− → γγ sample in which one of the photons converts
to an eþe− pair in the detector material [28]. The resolution
for signal events decreases monotonically from σðM2

XÞ ¼
1.5 GeV2 for mA0 ≈ 0 to σðM2

XÞ ¼ 0.7 GeV2 for
mA0 ¼ 8 GeV. The background PDF has two components,
a peaking background from eþe− → γγ events, described
by a Crystal Ball function, and a smooth function of M2

X
dominated by the radiative Bhabha process eþe− → γeþe−
(second-order polynomial for mA0 ≤ 5.5 and a sum of
exponentiated polynomials for 5.5 < mA0 ≤ 8.0 GeV).
The signal selection efficiency varies slowly as a

function of mA0 between 2.4%–3.1% (RT selection for
mA0 ≤ 5.5 GeV), 3.4%–3.8% (R0

L formA0 ≤ 5.5 GeV), and
2.0%–0.2% (RL selection for 5.5 < mA0 ≤ 8.0 GeV).
The largest systematic uncertainties in the signal yield

are from the shape of the signal and background PDFs,
and the uncertainties in the efficiency of signal and trigger
selections. We determine the uncertainty in the signal
PDF by comparing the data and simulated distributions
of eþe− → γγ events. We correct for the small observed
differences, and use half of the correction as an estimate of
the systematic uncertainty. We measure the trigger selection
efficiency using single-photon eþe− → γγ and eþe− →
eþe−γ events that are selected from a sample of unbiased
randomly accepted triggers. We find good agreement with

TABLE I. Data sets and event selections used in this Letter. The
characteristic energies of each data set are listed in rows; the event
selections described in the text in columns. The table entries list
the integrated luminosity and the numbers of events selected by
each data set.

Data set LowM HighM

Data set L Selection L Selection
RB R0

L RT RB RL

ϒð2SÞ 15.9 fb−1 22,590 42 6 15.9 fb−1 405,441 324
ϒð3SÞ 31.2 fb−1 68,476 129 26 22.3 fb−1 719,623 696
ϒð4SÞ 5.9 fb−1 7,893 16 9
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FIG. 1. Measured maximum-likelihood values of the A0 mixing
strength squared ε2 as a function of the mass mA0 .
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the simulation estimates of the trigger efficiency, within the
systematic uncertainty of 0.4%.We compare the input BDT
observables in simulation and in a sample of the single-
photon data events, counting the difference as a systematic
uncertainty of the signal selection efficiency. The total
multiplicative error on the signal cross section is 5%, and is
small compared to the statistical uncertainty.
Figure 1 shows the maximum-likelihood estimators

of the A0 mixing strength ε2 for the 166 mA0 hypotheses.
The values of “local” significance of observation S≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnðLmax=L0Þ

p
, where Lmax is the maximum value of

the likelihood, and L0 is the value of the likelihood with the
signal yield fixed to zero, are shown in Fig. 2. The most
significant deviation of ϵ2 from zero occurs at mA0 ¼
6.21 GeV and corresponds to S ¼ 3.1. Parametrized sim-
ulations determine that the probability to find such a

deviation in any of the 166 mA0 points in the absence of
any signal is ≈1%, corresponding to a “global” significance
of 2.6σ. A representative fit for mA0 ¼ 6.21 GeV is shown
in Fig. 3.
The 90% confidence level (C.L.) upper limits on ε2 as a

function of mA0 are shown in Fig. 4. We compute both the
Bayesian limits with a uniform prior for ε2 > 0 and the
frequentist profile-likelihood limits [29]. Figure 5 com-
pares our results to other limits on ε in channels where A0
is allowed to decay invisibly, as well as to the region of
parameter space consistent with the ðg − 2Þμ anomaly [5].
At each value of mA0 we compute a limit on ε as a square
root of the Bayesian limit on ε2 from Fig. 4. Our data rule
out the dark-photon coupling as the explanation for the
ðg − 2Þμ anomaly. Our limits place stringent constraints on
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FIG. 3. Bottom: Signal fit for mA0 ¼ 6.21 GeV to a combina-
tion of ϒð2SÞ and ϒð3SÞ data sets, shown for illustration
purposes. The signal peak (red) corresponds to the local signifi-
cance S ¼ 3.1 (global significance of 2.6σ). Blue solid line
shows the full PDF, while the magenta dashed line corresponds to
the background contribution. Top: Distribution of the normalized
fit residuals (pulls).
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dark-sector models over a broad range of parameter space,
and represent a significant improvement over previously
available results.
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