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Search for long-lived charginos based on a

disappearing-track signature in pp collisions at
√

s = 13 TeV with the ATLAS detector

The ATLAS Collaboration

This paper presents a search for direct electroweak gaugino or gluino pair production with
a chargino nearly mass-degenerate with a stable neutralino. It is based on an integrated
luminosity of 36.1 fb−1 of pp collisions at

√
s = 13 TeV collected by the ATLAS experiment

at the LHC. The final state of interest is a disappearing track accompanied by at least one jet
with high transverse momentum from initial-state radiation or by four jets from the gluino
decay chain. The use of short track segments reconstructed from the innermost tracking
layers significantly improves the sensitivity to short chargino lifetimes. The results are found
to be consistent with Standard Model predictions. Exclusion limits are set at 95% confidence
level on the mass of charginos and gluinos for different chargino lifetimes. For a pure wino
with a lifetime of about 0.2 ns, chargino masses up to 460 GeV are excluded. For the strong
production channel, gluino masses up to 1.65 TeV are excluded assuming a chargino mass of
460 GeV and lifetime of 0.2 ns.

© 2018 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.
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1 Introduction

Supersymmetry (SUSY) [1–6] is a space-time symmetry that relates fermions and bosons. It predicts
new particles that differ from their Standard Model (SM) partners by a half unit of spin. If R-parity is
conserved [7], SUSY particles are produced in pairs and decay such that their final products consist only
of SM particles and the stable lightest supersymmetric particle (LSP). In many supersymmetric models,
the supersymmetric partners of the SM W boson fields, the wino fermions, are the lightest gaugino states.
In this case, the lightest of the charged mass eigenstates, a chargino, and the lightest of the neutral mass
eigenstates, a neutralino, are both almost pure wino and nearly mass-degenerate. As a result, the lightest
chargino can have a lifetime long enough that it can reach the ATLAS detector before decaying. For
example, anomaly-mediated supersymmetry breaking (AMSB) scenarios [8, 9] naturally predict a pure
wino LSP, which is a dark-matter candidate. The mass-splitting between the charged and neutral wino
(∆mχ̃1) in such models is suppressed at tree level by the approximate custodial symmetry; it has been
calculated at the two-loop level to be around 160 MeV [10], corresponding to a chargino lifetime of about
0.2 ns [11]. This prediction for the value of the lifetime is actually a general feature of models with a wino
LSP: within the generated models of the ATLAS phenomenological Minimal Supersymmetric Standard
Model (pMSSM) scan [12] that have a wino-like LSP, about 70% have a charged-wino lifetime between
0.15 ns and 0.25 ns. Most of the models in the other 30% have a larger mass-splitting (and therefore the
charged wino has a shorter lifetime) due to a non-decoupled higgsino mass. The search presented here is
sensitive to a wide range of lifetimes, from 10 ps to 10 ns, and reaches maximum sensitivity for lifetimes
around 1 ns.

The decay products of SUSY particles that are strongly mass-degenerate with the lightest neutralino leave
little visible energy in the detector. Thus, the corresponding searches represent a significant challenge for
the LHC experiments. If a charged SUSY particle produced in a high-energy collider had a relatively long
lifetime, it would leave multiple hits1 in the traversed tracking layers before decaying, and could then be
reconstructed as a track segment in the innermost part of the detector [13–15]. In the models considered
in this paper, a long-lived chargino decays into a pion and the LSP, a neutralino. The pion emitted in the
transition from the lightest chargino ( χ̃±1 ) to the lightest neutralino ( χ̃0

1 ) typically has very low momentum
and it is not reconstructed in the detector. The neutralino is assumed to pass through the detector without
interacting. A track arising from a long-lived chargino can therefore disappear, i.e., leave hits only in the
innermost layers and no hits in the portions of the detector at higher radii. Figure 1 shows an example
of a simulated signal event in which a long-lived chargino decays into a neutralino and a low-momentum
pion in the ATLAS detector. Searches for long-lived, massive, charged particles using measurements of
ionization energy loss and timing information are also sensitive to long-lived charginos [16–18], with
a lower efficiency for selecting signals with lifetimes around 0.2 ns, relative to the disappearing-track
signature. The disappearing-track signature provides the most sensitive search to date for SUSY models
with charginos with O(ns) lifetimes.

Previous searches for a disappearing-track signature were performed by the ATLAS [19] and CMS [20]
collaborations using the full dataset of the LHC pp run at a centre-of-mass energy of

√
s = 8 TeV.

These searches excluded chargino masses below 270 GeV and 260 GeV respectively, with a chargino
proper lifetime (τχ̃±

1
) of 0.2 ns. In the previous ATLAS analysis, a special tracking algorithm was used

to reconstruct short tracks, and the search was sensitive to charginos decaying at radii larger than about
30 cm. A crucial improvement in the analysis described here is the use of even shorter tracks, called

1 A hit is a space-time point which represents interactions between a particle and material in an active region of a particle
detector.
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Figure 1: Illustration of a pp → χ̃+
1
χ̃−

1 + jet event, with long-lived charginos. Particles produced in pile-up pp

interactions are not shown. The χ̃+1 decays into a low-momentum pion and a χ̃0
1 after leaving hits in the four pixel

layers (indicated by red makers).

tracklets, which allows the reconstruction of charginos decaying at radii from about 12 cm to 30 cm. The
use of these tracklets is possible thanks to the new innermost tracking layer [21, 22] installed during the
LHC long shutdown between Run 1 and Run 2. The use of shorter tracklets significantly extends the
sensitivity to smaller chargino lifetimes.

This paper is organised as follows. A brief overview of the ATLAS detector is given in section 2. In
section 3, the signal processes and backgrounds are described and an overview of the analysis method
is given. The data samples used in this analysis and the simulation model of the signal processes are
described in section 4. The reconstruction algorithms and event selection are presented in section 5. The
analysis method is discussed in section 6. The systematic uncertainties are described in section 7. The
results are presented in section 8. Section 9 is devoted to conclusions.

2 ATLAS detector

ATLAS [23] is a multipurpose detector with a forward-backward symmetric cylindrical geometry, covering
nearly the entire solid angle around an interaction point of the LHC.2 The inner tracking detector (ID)
consists of pixel and micro-strip silicon detectors covering the pseudorapidity region of |η | < 2.5,
surrounded by a transition radiation tracker (TRT), which improves the momentum measurement and
enhances electron identification capabilities. The pixel detector spans the radius range from 3 cm to
12 cm, the strip semiconductor tracker (SCT) from 30 cm to 52 cm, and the TRT from 56 cm to 108 cm.
The pixel detector has four barrel layers, and three disks in each of the forward and backward regions. The
barrel layers surround the beam pipe at radii of 33.3, 50.5, 88.5, and 122.5 mm, covering |η | < 1.9. These
layers are equipped with pixels which have a width of 50 µm in the transverse direction. The pixel sizes
in the longitudinal direction are 250 µm for the first layer and 400 µm for the other layers. The innermost

2 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the centre of the detector.
The positive x-axis is defined by the direction from the interaction point to the centre of the LHC ring, with the positive y-axis
pointing upwards, while the beam direction defines the z-axis. Cylindrical coordinates (r, φ) are used in the transverse plane, φ
being the azimuthal angle around the z-axis. The pseudorapidity η is defined in terms of the polar angle θ by η = − ln tan(θ/2)
and the rapidity is defined as y = (1/2) ln[(E + pz )/(E − pz )] where E is the energy and pz the longitudinal momentum of the
object of interest.
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layer, the insertable B-layer [21, 22], was added during the long shutdown between Run 1 and Run 2 and
improves the reconstruction of tracklets by adding an additional measurement point close to the interaction
point. The ID is surrounded by a thin superconducting solenoid providing an axial 2 T magnetic field
and by a fine-granularity lead/liquid-argon (LAr) electromagnetic calorimeter covering |η | < 3.2. The
calorimeters in the region of 3.1 < |η | < 4.9 are made of LAr active layers with either copper or tungsten
as the absorber material. A steel/scintillator-tile calorimeter provides coverage for hadronic showers in
the central pseudorapidity range of |η | < 1.7. LAr hadronic end-cap calorimeters, which use lead as
absorber, cover the forward region of 1.5 < |η | < 3.2. The muon spectrometer with an air-core toroid
magnet system surrounds the calorimeters. The ATLAS trigger system [24] consists of a hardware-based
level-1 trigger followed by a software-based high-level trigger.

3 Analysis overview

3.1 Signal processes

If the gluino mass is too large to yield a sizeable production cross-section, electroweak-gaugino direct
pair production could be the only gaugino production mode within reach at LHC energies. If the gluino
mass is relatively light, however, gluino pair production becomes the dominant process, and charginos
can be produced in cascade decays of the gluino. For large mass separations between the gluino and
the chargino, the relatively large transverse momentum (pT) transferred to the chargino typically leads to
higher kinematic selection efficiencies and larger chargino decay radii relative to charginos from gaugino
pair production. Two complementary searches are described here: one targets direct electroweak-gaugino
pair production and the other targets gluino pair production in which at least one long-lived chargino is
produced in the subsequent decay of the gluinos. In both searches, events are selected with a trigger based
on the magnitude of the missing transverse momentum in the event (Emiss

T ). A candidate event is required
to have at least one “pixel tracklet”, which is a tracklet with no associated SCT hits. Candidate pixel
tracklets are required to have pT > 5 GeV.

Electroweak production: This search targets the production processes pp → χ̃±
1
χ̃0

1 j and pp → χ̃+
1
χ̃−

1 j,
where j denotes an energetic jet from initial-state radiation (ISR). The presence of the ISR jet is required
to ensure significant Emiss

T and hence high trigger efficiency. An example diagram for the pp → χ̃±
1
χ̃0

1 j

process is presented in figure 2(a). The resulting signal topology is characterised by a high-pT jet, large
Emiss

T , and at least one high-pT pixel tracklet.

Strong production: This search targets gluino pair production with a long-lived chargino in the decay
chains pp → g̃g̃ → qqqq χ̃

±
1
χ̃0

1 and pp → g̃g̃ → qqqq χ̃
±
1
χ̃±

1 . These are typical decay modes in AMSB
models. An example diagram is shown in figure 2(b). The signal topology is characterised by four high-pT

jets, large Emiss
T , and at least one high-pT pixel tracklet.

3.2 Background sources

The main SM background processes for the two analysis channels are top-quark pair production (tt) and
W boson production associated with hadron jets (W+jets) with subsequent decay W → eν, τν. Hadrons
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Figure 2: Example diagrams of the benchmark signal processes used in this analysis. In the case of direct char-
gino/neutralino production (a), the signal signature consists of a long-lived chargino, missing transverse momentum
and initial-state radiation. In the case of the strong channel (b), each gluino decays into two quarks and a chargino
or neutralino. A long-lived chargino, missing transverse momentum and multiple quarks, which are observed as
jets, are the signatures of this signal.

or leptons in these events can be reconstructed as a pixel tracklet if they interact with the detector material
and any hits in the tracking detectors after the pixel detector are not assigned to the reconstructed tracklet.
Interactions that contribute to this background include severe multiple-scattering, hadronic interactions
or, in the case of leptons, bremsstrahlung, as shown in figure 3(a) and 3(b). The other main category of
background is from “fake” tracklets, which originate from random combinations of hits from two or more
particles, as shown in figure 3(c).

3.3 Analysis method

Candidate events are required to have large Emiss
T , at least one high-pT jet, and at least one isolated pixel

tracklet. A lepton-veto is used to suppress background events from W /Z + jets and top-pair production
processes. Kinematic requirements, optimised for each channel, are applied to enhance the signal purity
in the event samples. After selection, the search is performed by looking for an excess of candidate events
in the pT distribution of pixel tracklets. The shapes of the pT spectrum for the background from hadrons,
muons, electrons, and fake tracklets are derived from data using dedicated techniques for each background
process. A fit to the observed pT distribution to extract the normalisation of the total background component
and the signal strength is performed simultaneously in a low-Emiss

T control region, two fake-tracklet control
regions, and a high-Emiss

T signal region. The regions are defined by the requirements described in section
5 and in section 6.3. The expected signal spectrum and yield are estimated from simulation and the
measured detector performance. Further details are given in section 6.
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Figure 3: Sketch of the different background components in the search with pixel tracklets. Thin solid and dotted
red lines show trajectories of charged and neutral particles respectively. Thick blue lines show reconstructed pixel
tracklets. (a) A hadron undergoing a hard scattering can yield track segments in the pixel and SCT detector that
are not recognised as belonging to the same track, thus faking a pixel tracklet. (b) A lepton emitting hard photon
radiation could be identified as a pixel tracklet through a similar mechanism. (c) A pixel tracklet can arise from a
random combination of hits created by different particles in close proximity.

4 Data and simulated event samples

The data used in this analysis were recorded by the ATLAS detector in 2015 and 2016. The pp centre-
of-mass energy was 13 TeV and the bunch spacing was 25 ns. The mean number of pp interactions per
bunch crossing in the dataset was 14 in 2015 and 24 in 2016.

Events were selected by Emiss
T triggers [25] with trigger thresholds varying from 70 GeV to 110 GeV

depending on the data-taking period. Data samples used to estimate the background contribution and
to measure tracking performance were selected using triggers requiring at least one isolated electron
(pT > 24–26 GeV) or muon (pT > 20–26 GeV). After applying basic data-quality requirements, the data
sample corresponds to an integrated luminosity of 36.1 fb−1. The uncertainty in the combined 2015+2016
integrated luminosity is 3.2%. It is derived, following a methodology similar to that detailed in ref. [26],
from a preliminary calibration of the luminosity scale using x–y beam-separation scans performed in
August 2015 and May 2016.

The simulated signal samples were generated assuming the minimal AMSB model [8, 9] with tan β = 5,
the sign of the higgsino mass term set to be positive, and the universal scalar mass set to m0 = 5 TeV. The
proper lifetime and the mass of the chargino were scanned in the range from 10 ps to 10 ns and from 100 GeV
to 700 GeV respectively. For the strong production, samples were generated for gluino masses (mg̃) varying
from 700 GeV to 2200 GeV with LSP mass from 200 GeV to mg̃ − 100 GeV. The SUSY mass spectrum,
the branching ratios and decay widths were calculated using ISASUSY 7.80 [27]. The signal samples
were generated with up to two extra partons in the matrix element using MG5_aMC@NLO 2.3.3 [28]
at leading order (LO) interfaced to Pythia 8.212 [29] for parton showering, hadronisation and SUSY
particle decay. The NNPDF2.3LO [30] parton distribution function (PDF) set was used. Renormalisation
and factorisation scales were determined by the default dynamic scale choice of MG5_aMC@NLO. The
CKKW-L merging scheme [31] was applied to combine tree-level matrix elements containing multiple
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partons with parton showers. The scale parameter for merging was set to a quarter of the mass of the
wino for wino-pair production or a quarter of the gluino mass for the strong production channel. The
A14 [32] set of tuned parameters with simultaneously optimised multiparton interaction and parton shower
parameters was used for the underlying event together with the NNPDF2.3LO PDF set. Charginos were
assumed to be stable in the event-generation step.

The cross-sections for the electroweak production are calculated at next-to-leading order (NLO) in the
strong coupling constant using Prospino2 [33]. The cross-sections for the strong production are calculated
in the same way as in the electroweak channel, adding the resummation of soft gluon emission at next-to-
leading-logarithm accuracy (NLO+NLL) [34]. In both channels, an envelope of cross-section predictions
is defined using the 68% confidence level (CL) ranges of the CTEQ6.6 PDF set [35], including the αS

uncertainty, and MSTW2008 PDF set [36], together with variations of the factorisation and renormalisation
scales by factors of two or one half. The nominal cross-section value is taken to be the midpoint of the
envelope and the uncertainty assigned is half of the full width of the envelope, following the PDF4LHC
recommendations [37]. For the strong production mode, the branching ratio of the gluino decay is assumed
to be 1/3 for each of the following decays: g̃ → qq χ̃0, g̃ → qq χ̃− and g̃ → qq χ̃+. Only first- and second-
generation quarks (d, u, s, c) are considered. Direct electroweak-gaugino production is not considered in
the strong channel. The cross-section for the electroweak production, including at least one chargino,
varies from 47 pb to 13 fb as the wino mass increases from 100 GeV to 700 GeV with the uncertainty in
the cross-section ranging from 8.6% to 7.3%. The cross-section for gluino production varies from 3.5 pb
to 0.36 fb as the gluino mass increases from 700 GeV to 2200 GeV with the uncertainty increasing from
14% to 36%.

The response of the detector to particles was modelled with the full ATLAS detector simulation [38] based
on Geant4 [39]. Charginos were forced to decay into a pion and a neutralino in Geant4. All simulated
events were overlaid with additional pp interactions in the same and neighbouring bunch crossings (pile-
up) simulated with the soft QCD processes of Pythia 8.186 using the A2 set of tuned parameters [40]
and the MSTW2008LO PDF set. The simulated events are reconstructed in the same way as the data, and
are reweighted so that the distribution of the average number of collisions per bunch crossing matches the
one observed in the data.

The Emiss
T trigger efficiency is measured as a function of the offline Emiss

T using a data control sample
consisting of events selected by the muon triggers and an additional offline selection designed to extract
nearly pure W → µν events. For Emiss

T > 200 GeV, the trigger efficiency is almost 100%. The measured
trigger efficiency is used to directly estimate the probability for signal events to pass the trigger. The
trigger efficiency for the direct electroweak production signal is about 20%, depending on the assumed
SUSY particle masses. In the strong production search, the trigger efficiency is over 90% when the mass
difference between the gluino and the LSP is above 300 GeV, and it decreases to about 55% for a mass
difference of 100 GeV.

5 Reconstruction and event selection

5.1 Event reconstruction

Primary vertices are reconstructed from two or more tracks with pT > 400 MeV. When two or more
vertices are reconstructed, the one with the largest sum of p2

T of the associated tracks is used. Events are
required to have at least one reconstructed primary vertex.
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Jets are reconstructed from noise-suppressed energy clusters [41] of calorimeter cells using an anti-kt
algorithm [42] with a radius parameter of 0.4 as implemented in the FastJet package [43]. An area-based
correction is applied to account for energy from additional pp collisions based on an estimate of the pile-up
activity in a given event [44]. Further corrections derived from the average jet response in simulation and
data are used to calibrate the jet energies to the scale of their constituent particles [45]. Jets are required
to have pT > 20 GeV and |η | < 2.8. Additional selection criteria are applied to the tracks associated
with jets [46] with pT < 60 GeV and |η | < 2.4 to reduce the number of jets originating from pile-up
interactions.

Muon candidates are reconstructed by combining a track reconstructed by the muon spectrometer (MS
track) with one recorded by the ID. They are required to satisfy ‘Medium’ quality requirements described
in ref. [47] and to have pT > 10 GeV and |η | < 2.7.

Electron candidates are reconstructed from energy clusters in the electromagnetic calorimeter with a
matching track in the ID. They are required to satisfy the ‘Loose’ likelihood-based identification criteria
described in ref. [48]. They are further required to have transverse energy ET >10 GeV and |η | < 2.47.

After the requirements described above, ambiguities between candidate jets and leptons are resolved as
follows. First, any jet candidate which is within a distance ∆R ≡

√
(∆η)2 + (∆φ)2 = 0.2 of an electron

candidate is discarded. Second, if an electron (muon) candidate and a jet are found within 0.2 < ∆R < 0.4

(0.2 <∆R <min(0.4, 0.04 + 10 GeV/pµ
T
)), the electron (muon) candidate is discarded and the jet is retained.

Finally, if a muon and a jet are found within ∆R < 0.2, the muon is kept and the overlapping jet is ignored
if fewer than three tracks with pT > 500 MeV are associated with the jet. The muon is ignored in the
other case. In addition, ambiguities between electrons and muons are resolved to avoid double counting:
an electron is discarded if the electron candidate and a muon candidate share the same ID track.

The offline missing transverse momentum [49] is calculated from the transverse momenta of selected jets,
lepton candidates, and tracks compatible with the primary vertex but not associated with those leptons or
jets. Tracklets are not used in the Emiss

T calculation.

Track reconstruction is performed in two stages. First, standard tracks, referred to as tracks in this paper,
are reconstructed using a standard algorithm [50]. Tracks are required to have at least seven hits in the
silicon detectors [51]. A typical track for a high-pT charged particle which does not decay or scatter in
the ID has four pixel hits, eight SCT hits, and 36 TRT hits at η ≈ 0. The track reconstruction is then
rerun with looser criteria, requiring at least four pixel-detector hits. The second reconstruction uses only
pixel hits not associated with tracks as input, in order to find short tracks which are not reconstructed in
the first step. Tracks reconstructed in the second step are referred to as tracklets. The tracklets are then
extrapolated to the SCT and TRT detectors, and any compatible hits are assigned to the tracklet candidate.
Tracklets are required to have pT > 5 GeV, |η | < 2.2, and their longitudinal impact parameter3 |z0 |, must
be smaller than 10 mm. Figure 4 shows the reconstruction efficiency for simulated charginos as a function
of the chargino decay radius, where requirements described later in this section are not applied to compute
the efficiency except for the disappearance condition for pixel tracklets. By using pixel tracklets rather
than tracks, the reconstruction efficiency is improved significantly for charginos decaying at radii less than
300 mm. For charginos with a lifetime of 0.2 ns, which have a mean decay radius of 6 cm, the probability
to reconstruct a pixel tracklet is 5–10%; this tracklet reconstruction efficiency is a factor of ten greater

3 The transverse impact parameter is defined as the distance of closest approach in the transverse plane between a track and the
centre of the luminous region. A correction is applied to take into account the tilt of the luminous region with respect to the
z-axis. The longitudinal impact parameter corresponds to the z-coordinate distance between the point along the track at which
the transverse impact parameter is defined and the primary vertex.
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than the efficiency obtained using tracks. The inefficiency in reconstructing pixel tracklets for charginos
with a lifetime of 0.2 ns is largely due to charginos which decay before reaching the fourth layer of the
pixel detector.
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Figure 4: Chargino reconstruction efficiency as a function of decay radius. The reconstruction efficiency of pixel
tracklets before applying the fake-rejection criteria is shown in red, while that obtained with the standard tracking
algorithm is shown in green. The error bars show statistical uncertainties in the estimation. Also shown in blue,
on the right axis, is the distribution of the decay radius for charginos with a lifetime of 0.2 ns. The yellow shaded
regions correspond to the coverage of each detector.

To reduce contributions from tracklets from background processes, the following requirements are applied
to the tracklets:

(1) Isolation and pT requirements: The separation ∆R between the tracklet and any jet with pT >

50 GeV or any reconstructed MS track must be greater than 0.4. The candidate tracklet is required
to be isolated. A track or tracklet is defined as isolated when the sum of the transverse momenta
of all standard ID tracks with pT > 1 GeV and |z0sin(θ)| < 3.0 mm in a cone of ∆R = 0.4 around
the track or tracklet, not including the pT of the candidate track or tracklet, divided by the track or
tracklet pT, is smaller than 0.04. The candidate tracklet must have pT > 20 GeV, and the pT must
be the highest among isolated tracks and tracklets in the event.

(2) Geometrical acceptance: The tracklet must satisfy 0.1 < |η | < 1.9.

(3) Quality requirement: The tracklet is required to have hits on all four pixel layers. The number of
pixel holes, defined as missing hits in modules in which at least one is expected given the detector
geometry and conditions, must be zero. The number of low-quality hits4 associated with the tracklet

4 A hit is categorised as low quality when the single-hit position uncertainty is large, or the hit position is far from the
reconstructed tracklet.
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must be zero. Furthermore, tracklets must satisfy requirements on the significance of the transverse
impact parameter, d0 , |d0 |/σ(d0) < 2 (where σ(d0) is the uncertainty in the d0 measurement), and
|z0sin(θ)| < 0.5 mm. The χ2-probability of the fit is required to be larger than 10%.

(4) Disappearance condition: The number of SCT hits associated with the tracklet must be zero.

The isolation and quality requirements are mainly useful in rejecting fake tracklets, which have a flat
distribution in impact parameter. The requirement on η excludes tracklets with η ∼ 0, where the
muon spectrometer has low efficiency. Including tracklets in this region would increase the background
significantly, as the lepton rejection is less efficient. Tracklets with |η | > 1.9 are rejected because the
probability of a particle scattered by detector material to be reconstructed as a tracklet increases at high
|η |. The disappearance condition is used to identify tracklets which arise from particles decaying between
the pixel and the SCT detectors.

5.2 Event selection

Events are selected by applying requirements on the event kinematics. The selection requirements for the
signal regions for the two different production channels are described below.

Event preselection: Common selection criteria are applied in the two searches. At least one pixel
tracklet must satisfy all the requirements described in section 5.1. To ensure good data quality, an event
is rejected when the jet with the highest pT in the event passes the ‘BadTight’ [52] selection or at least
one jet passes the ‘BadLoose’ [52] selection, which is used to reduce jets originating from detector noise
and non-collision background. Events containing a muon, before ambiguity removal between muons and
jets, with momentum uncertainty σ(q/p)/|q/p| > 0.2 are also rejected, where q and p are the electric
charge and the magnitude of the momentum of the muon. To suppress contributions from top-quark-pair
(tt) and W/Z + jets production processes, candidate events are required to have no electron and no muon
candidates (lepton veto).

Electroweak chargino production: Events are required to have at least one jet with pT > 140 GeV and
Emiss

T > 140 GeV (90 GeV < Emiss
T < 140 GeV) in the high- (low-) Emiss

T region to discriminate the signal
from SM processes. In order to further suppress the multijet background, the difference in azimuthal
angle (∆φ) between the missing transverse momentum and each of the up to four highest-pT jets with
pT > 50 GeV is required to be larger than 1.0.

Strong production: Candidate events are required to have a jet with pT > 100 GeV, at least two
additional jets with pT > 50 GeV and Emiss

T > 150 GeV (100 GeV < Emiss
T < 150 GeV) in the high-

(low-) Emiss
T region to discriminate the signal from SM processes. In order to further suppress the multijet

background, the ∆φ between the missing transverse momentum and each of the up to four highest-pT jets
with pT > 50 GeV is required to be larger than 0.4.
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Selection requirement Electroweak channel Strong channel
Observed Expected signal Observed Expected signal

Trigger 434 559 704 1276 (0.20) 434 559 704 285 (0.98)
Jet cleaning 288 498 579 1181 (0.19) 288 498 579 282 (0.97)
Lepton veto 275 243 946 1178 (0.19) 275 243 946 278 (0.95)
Emiss

T and jet requirements 2 697 917 579.1 (0.092) 537 861 202 (0.69)
Isolation and pT requirement 464 524 104.2 (0.017) 107 381 43.6 (0.15)
Geometrical |η | acceptance 339 602 83.6 (0.013) 77 675 36.4 (0.13)
Quality requirement 6134 29.6 (0.0047) 1337 13.9 (0.048)
Disappearance condition 154 24.1 (0.0038) 35 11.0 (0.038)

Table 1: Summary of the selection criteria, and the corresponding observed number of events in data as well as
the expected number of signal events in simulation for two benchmark models: a chargino produced in direct
electroweak production with (mχ̃

±
1
, τχ̃±

1
) = (400 GeV, 0.2 ns) and a chargino produced in the strong channel with

(mg̃, mχ̃
±
1
, τχ̃±

1
) = (1600 GeV, 500 GeV, 0.2 ns) in the high-Emiss

T region. The expected number of signal events is

normalised to 36.1 fb−1. The signal selection efficiencies are also shown in parentheses. The first row shows the
number of events after the application of detector and data quality conditions. Requirements below the dashed line
are applied to tracks and tracklets.

5.3 Signal acceptance and efficiency

The number of events observed in data and the expected number of signal events for two representative
signal points are shown in table 1, for the selection described above. No generator-level requirements are
applied to signal events. Therefore, events are counted in which the chargino decays before reaching the
fourth pixel layer but an isolated track or a tracklet from an SM particle or from a random combination of
hits is reconstructed. Such events are rejected by the isolation requirement, the geometrical acceptance or
the quality selection.

To facilitate reinterpretation, the signal efficiency and generator-level acceptance are shown in table 2 for a
few signal models with the following definitions. A generator-level event kinematic volume for electroweak
production is defined as: 1) Emiss

T > 140 GeV, 2) at least one jet with pT > 140 GeV, 3) ∆φ > 1.0 between
the missing transverse momentum and each of the up to four highest-pT jets with pT > 50 GeV, and 4)
no electrons or muons. For strong production, the event requirements are: 1) Emiss

T > 150 GeV, 2) at
least one jet with pT > 100 GeV and at least two more jets with pT > 50 GeV, 3) ∆φ > 0.4 between the
missing transverse momentum and each of the up to four highest-pT jets with pT > 50 GeV, and 4) no
electrons or muons. The generator-level missing transverse momentum is defined as the vector sum of
the pT of neutrinos, neutralinos and charginos, as the pT of a tracklet is not used in the reconstruction of
missing transverse momentum. The generator-level jets are built using the anti-kt algorithm with a radius
parameter of 0.4, taking as input all particles, except for muons, neutrinos, neutralinos and charginos,
with cτ > 10 mm. The fraction of chargino events passing this generator-level kinematic selection is
shown for several signal points as “event acceptance”. The “event efficiency” is defined as the ratio of the
number of reconstructed events which pass the requirements defined in section 5.2 (including the trigger
requirement) to the number of events which fall into the generator-level acceptance volume defined above.
The event efficiency does not include any requirement on tracklets. The event efficiency can be greater
than unity because an event which is not in the generator-level kinematic volume can pass the selection
after reconstruction due to reconstruction resolutions.

11



Signal model Event Tracklet
Mass [GeV] Lifetime [ns] Acceptance Efficiency Acceptance Efficiency P

Electroweak production
mχ̃±

1
=400 0.2 0.09 1.03 0.07 0.47 0.57

mχ̃±
1
=600 0.2 0.12 1.05 0.05 0.48 0.57

mχ̃±
1
=600 1.0 0.11 1.03 0.20 0.47 0.57

Strong production
mg̃=1600, mχ̃±

1
=500 0.2 0.71 0.97 0.10 0.38 0.55

mg̃=1000, mχ̃±
1
=900 0.2 0.18 0.93 0.03 0.36 0.55

Table 2: The event and tracklet generator-level acceptance and selection efficiency for a few signal models studied in
this search. The last column shows the probability (P) for a reconstructed tracklet to have pT greater than 100 GeV.
For details, see text.

The full selection efficiency must also consider the probability of reconstructing in the event at least one
tracklet that satisfies the four tracklet selection criteria defined in section 5.1, and has a reconstructed
pT above 100 GeV. This is quantified in table 2 based on a generator-level tracklet selection. To be
accepted as a tracklet at generator level, a chargino must meet the following criteria: 1) pT > 20 GeV, 2)
0.1 < |η | < 1.9, 3) 122.5 mm < decay position < 295 mm, where the decay position is the cylindrical
radius relative to the origin, and 4) ∆R > 0.4 between the chargino and each of the up to four highest-pT

jets with pT > 50 GeV. The fraction of produced charginos which pass this generator-level selection,
in events which pass the event-level selection requirements, is shown as “tracklet acceptance.” Given
that a tracklet passes these requirements at generator level, the probability for it to pass the full pixel
tracklet selection at reconstruction level is defined as “tracklet efficiency,” and the probability for such a
reconstructed tracklet to have pT > 100 GeV is shown independently. The selection efficiency is shown per
tracklet, and therefore for events with two charginos, the full probability of selecting the event must take
into account the probability of at least one of the tracklets passing both acceptance and efficiency.5 For
models in which the signal pT spectrum differs significantly from that of the charginos considered here,
the momentum resolution of the tracklets, as shown in figure 5, must be taken into account to correctly
estimate the probability of reconstructing pT > 100 GeV (see section 6.1). The tracklet efficiency
depends on the soft jet activity around a chargino, and therefore differs between the charginos produced
via electroweak and strong production mechanisms.

6 Signal and background estimation

An unbinned likelihood fit is performed on the pT distribution of the pixel tracklets in a wide pT range,
pT > 20 GeV. Most of the signal events are expected to be in the high-Emiss

T region. The contamination
of signal in the low-Emiss

T region is at the level of 3%, and this region is used to constrain the fake-tracklet
pT spectrum.

5 If EA is the event acceptance, EE is the event efficiency, TA is the tracklet acceptance, TE is the tracklet efficiency, and Tp
is the tracklet pT efficiency, then for an event with N charginos, the probability of having at least one reconstructed, selected
tracklet with pT > 100 GeV in an event can be calculated as: EE × EA × (1 − (1 − TA × TE × TP)N ).

12



6.1 Background templates

Templates for background components are estimated from data. The pT spectra of hadrons and leptons
scattered by the ID material are estimated from the pT distribution of tracks associated with non-scattered
hadrons and leptons, selected in dedicated control samples (as detailed in section 6.1.2 and in section 6.1.3),
by smearing them to take into account the poor pT resolution of pixel tracklets. The pT spectrum shape of
the fake-tracklet component is also obtained in a dedicated control region (as detailed in section 6.1.5).

6.1.1 Smearing function

A smearing function to translate from track to tracklet momentum resolution is extracted from Z → µµ

events in data by re-fitting the muon candidate track using only the hits in the pixel detector. The Z → µµ
events are selected by single-muon triggers and by requiring two opposite-charge muons with a difference
in azimuthal angle larger than 1.5, and with an invariant mass between 81 GeV and 101 GeV. The q/pT

resolution of pixel tracklets is calculated from the distribution of the difference between the q/pT of
the pixel tracklet and the original track. This distribution is shown in figure 5(a). The q/pT difference
distribution is modelled by the following empirical formula:

f (z) =




exp(α(z + α/2)) (z < −α)
exp(−z2/2) (−α < z < α),
exp(−α(z − α/2)) (z > α)

z =

∆(q/pT) − β
σ

, (1)

where α, β and σ are parameters representing the slope of the tail part, and the mean and resolution of the
core part of the distribution respectively. The measured q/pT resolution of pixel tracklets, for pT much
larger than 10 GeV, is 13.2 TeV−1, which is ten times larger than that of tracks with more than four SCT
hits, due to the limited lever-arm of the pixel tracklet. No significant dependence of the q/pT resolution
on pT is observed. The smearing procedure is validated in Z → µµ events, as shown in figure 5(b). To
validate the procedure, the smearing function is extracted using only one muon per Z → µµ event, and
the other muon is used to make the pT spectrum from the re-fitted pixel tracklets. The pT spectrum from
the re-fitted pixel tracklets is compared to the one created by convolving the track pT spectrum with the
smearing function. The two spectra agree very well up to 12.5 TeV.

6.1.2 Hadron background

Assuming that the pT spectrum of hadrons scattered in the ID is the same as that of non-scattered hadrons,
the pT spectra of scattered hadrons can be extracted from tracks in control samples of non-scattered
hadrons. This assumption was verified with simulation. The control samples are obtained by applying the
same kinematic requirements as in the signal regions and then selecting samples of tracks which satisfy
the following requirements:

• The number of associated hits in the TRT must be larger than 15, and the number of associated hits
in the SCT must be larger than 6.
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Figure 5: (a) Distribution of the difference between q/pT of a pixel tracklet and a track in Z → µµ events in data.
The solid curve shows the smearing function (eq. (1)) used to construct the background pT template, which is
described in section 6.1. The parameter values of the curve are α =1.67, β =−1.72 TeV−1 and σ =13.2 TeV−1.
The red band indicates a 1σ variation of the systematic uncertainty (see section 7). The data are normalised to unit
area. (b) Validation of the smearing procedure in Z → µµ events in data. The green and red points show the pT

distributions of tracks and pixel tracklets respectively. The blue point shows the pT spectrum obtained by convolving
the track pT distribution with the smearing function. The lower plot shows the ratio of the smeared spectrum to the
distribution of the pixel tracklets.

• There must be associated energy deposits in the calorimeter: the transverse energy deposited in the
calorimeter in a cone of ∆R = 0.2 around the track, excluding the energy cluster associated with the
track, (Econe20

T ) must satisfy Econe20
T > 3 GeV, and the sum of cluster energies in a cone of ∆R = 0.4

around the track (
∑
∆R<0.4 Eclus

T ) divided by the pT of the track must satisfy
∑
∆R<0.4 Eclus

T /pT > 0.5.

The first requirement selects good-quality tracks which have not undergone scattering in the silicon layers.
The second requirement removes electron and muon tracks from the control region. The pT spectra of the
control samples are convolved with the smearing function to take into account the resolution of the pixel
tracklets. Separate pT spectra are prepared for the high-Emiss

T region and the low-Emiss
T region in each

channel.

6.1.3 Charged-lepton background

In order to obtain the pT spectra of background tracklets originating from leptons, events containing a
lepton without significant scattering due to hard bremsstrahlung are used. The lepton pT spectra obtained
from these events are scaled to take into account the probability of significant scattering and are smeared
to take into account the poor pT resolution of pixel tracklets. Events containing exactly one lepton which
satisfy the same kinematic requirements as for the signal regions, excluding the lepton-veto, are used. The
lepton is required to have an associated inner detector track with pT > 16 GeV which satisfies the same
quality selection as for tracklets, except for the SCT veto and the isolation from candidate electrons and
muons.
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The pT distribution of background tracklets from leptons is obtained by multiplying the pT distribution of
the lepton control sample by a transfer factor, which rescales the number of identified leptons to that of
pixel tracklets. The transfer factor is found to be pT-dependent for electrons, and η- and φ-dependent for
muons, as described below.

The transfer factor is extracted with a tag-and-probe method using Z → ℓℓ events in data which are
selected by a single-lepton trigger. Tag and probe leptons are selected by applying requirements discussed
below. The tag–probe pair is further required to have an invariant mass within 10 GeV of the Z boson
pole mass.

A tag electron is required to fully satisfy track-based isolation criteria and likelihood-based ‘Tight’ electron
identification criteria, to match the electron which triggered the event and to have pT > 30 GeV. Probe
electrons are identified as clusters of energy in the calorimeter with an associated track satisfying the
quality, isolation, high-pT and geometrical acceptance requirements defined in section 5.1 for signal
tracks and tracklets. The probe track has to satisfy either the full pixel tracklet selection, including the
disappearance condition, or the tight electron selection. The transfer factor is defined as the ratio of the
number of probe electrons which satisfy the full tracklet selection to the number of probe electrons which
satisfy the tight electron selection, as a function of electron pT. The transfer factor is O(10−2)–O(10−4),
depending on electron pT, and is below 10−5 for electrons with pT > 50 GeV.

A muon used as a tag must satisfy track-based isolation criteria and cut-based ‘Tight’ identification criteria.
The transfer factor for muons is the product of two components: the probability for a muon ID track to be
classified as disappearing and the probability for a muon ID track not to have an associated MS track. As
the pixel tracklets in the signal region are required to be isolated from MS tracks, the second component
of the transfer factor allows an estimation of the expected normalisation as well as the pT distribution of
the muon background. The first component of the muon transfer factor is estimated with a method similar
to that used for the electron transfer factor. The same selection criteria as the electron case are applied to
the tag and probe muons, replacing the electron identification criteria with those for the muon. The first
component of the muon transfer factor is found to be 4.5 × 10−4. The second component is necessary
because an MS track is used as a probe to measure the first component. The second component is evaluated
with a similar tag-and-probe method, where the probe is taken from a sample of well-measured tracks
which pass through the full ID, selected by requiring more than 15 TRT hits on the track. The probability
for an MS track to be geometrically matched to an ID track is calculated from this sample. The transfer
factor is measured as a function of η and φ to fully take into account the detector geometry. The second
component of the transfer factor for muons is found to be of the order of 10−2 to 10−1. The pT spectra of
the lepton control samples are scaled by the transfer factors, then convolved with the smearing function.
Two different pT spectra are prepared, one for the high-Emiss

T region and one for the low-Emiss
T region,

while keeping the same requirements as in the signal region. The expected numbers of muon background
events in the low-Emiss

T region and in the high-Emiss
T region are estimated by scaling the number of events

in the muon control samples by the transfer factor.

6.1.4 Templates for scattered particles

The control samples for hadron and electron components are found to have similar pT distributions, which
is due in part to the fact that the isolation requirement for tracklets to be separated from jets affects both
the electron and hadron background similarly. The two components are therefore combined in the fitting.
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Figure 6: Fit on the fake-tracklet control sample for (a) the electroweak production channel and (b) the strong
production channel. The black markers show data. The blue line and the band show the histogram made from
the fit function and its uncertainty. The bottom plot shows the ratio of the observed data to the fit histogram.
The chi-square per degrees of freedom of the fit are 5.4/14 and 8.5/19 for the electroweak and strong production
channels respectively. Red arrows in the Data/Fit ratio indicate bins where the corresponding entry falls outside the
plotted range.

The muon component is treated separately as the muon control samples are found to have a different pT

distribution.

6.1.5 Fake tracklets

Fake tracklets are formed from a random combination of hits. The d0 distribution of fake tracklets is broad,
whereas the high-pT chargino tracklets have good impact parameter resolution and therefore have values
of d0 which cluster around zero. The fake-tracklet control region is defined by requiring |d0 |/σ(d0) > 10,
and by removing the Emiss

T requirement. This region is dominated by fake tracklets. The pT spectra of
fake tracklets are modelled with the following empirical functional form:

f (pT) = exp
(
−p0 · log(pT) − p1 · (log(pT))2

)
, (2)

where p0 and p1 are fit parameters. Figure 6 shows the pT distribution of pixel tracklets in the fake-
tracklet control region along with a histogram filled from the result of the fit. The pT spectrum shape
is confirmed to be independent of Emiss

T by comparing it in three Emiss
T regions: Emiss

T < 90 GeV,
90 GeV < Emiss

T < 140 GeV and Emiss
T > 140 GeV. A small dependence of the fit parameters on

|d0 |/σ(d0) is observed by comparing the parameters obtained in three regions: 10 < |d0 |/σ(d0) < 20,
20 < |d0 |/σ(d0) < 30 and 30 < |d0 |/σ(d0) < 100. The size of the dependence on |d0 |/σ(d0) is added as
an uncertainty in the pT template shape.
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6.2 Signal templates

The signal pT spectrum is estimated by smearing the generator-level pT distribution of charginos in the
signal simulation for each signal parameter point. The smearing function parameters are determined from
muons in data, but shifted by the differences between the parameter values found for charginos and muons
in simulation due to the difference between their masses. This smearing is performed because the tracklet
pT resolution measured in reconstructed simulated samples is narrower than the resolution measured in
data.

6.3 Fit to the pT spectrum

The extended likelihood function, described in detail in appendix A, consists of signal and background
components. The background components represent tracklets from muons, fakes, and the sum of hadron
and electron contributions. The fit parameters are the signal strength, the normalisations of the sum
of the hadron and electron, muon, and fake-tracklet backgrounds, the fake-tracklet pT distribution’s fit
parameters, and nuisance parameters. The nuisance parameters are allowed to float in the fit with Gaussian
constraints to include systematic uncertainties, discussed in section 7. The number of signal events and
the sum of hadron and electron events are fit without a Gaussian-constraint term. The number of muon
events and the sum of hadron and electron events are fit with independent individual normalisation factors
in the low-Emiss

T and high-Emiss
T regions. The number of muon events is constrained by a Gaussian term

which represents the expectation described in section 6.1.3. The statistical uncertainty in the transfer
factors for muons is propagated to the final template. The fake-tracklet control region is divided into two
parts, a low-Emiss

T and a high-Emiss
T fake-tracklet control region, by applying the same Emiss

T requirement
as in the signal region. The signal regions and the two parts in the fake-tracklet control region are fit
simultaneously and the ratio of the number of fake tracklets in the high-Emiss

T signal region to that in the
low-Emiss

T region is constrained to the same value as in the fake-tracklet control region.

7 Systematic uncertainties

7.1 Background uncertainties

An uncertainty in the shape of the hadron and electron pT template was estimated as the maximum
difference between the hadron and electron individual templates and found to be negligible. As a
combined template is used for hadrons and electrons, the difference in tracklet q/pT resolutions between
hadrons and electrons in simulation is added to the systematic uncertainty in the smearing function for the
combined template. The red band in figure 5 shows the uncertainty in the smearing function.

Possible differences between the signal and the fake-tracklet control region leading to systematic uncer-
tainties in the shape of the pT spectrum of the fake-tracklet background are taken into account. The
uncertainty is estimated from the d0 significance dependence of the parameters of the fake-tracklet pT

spectrum function defined in eq. (2) for the fake-tracklet control region. A conservative uncertainty of
100% is assigned to the ratio of the number of fake tracklets in the low-Emiss

T control region to the number
in the high-Emiss

T control region.
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7.2 Signal uncertainties

A breakdown of the systematic uncertainties in the expected number of signal events passing the signal
region requirements is shown in table 3. In addition, an uncertainty in the pT spectrum shape, due the
uncertainty in the pT resolution, is taken into account.

High-pT jets originating from ISR and final state radiation (FSR) alter the signal acceptance. Uncertainties
in the modelling of ISR and FSR are estimated by varying the renormalisation, factorisation and merging
scales from 0.5 to 2 times their nominal values, and by comparing samples with one and two additional
partons in the matrix element with MG5_aMC@NLO+Pythia8. For the strong channel, the ISR/FSR
uncertainty is small when the mass difference between the gluino and chargino is large; however, the
uncertainty grows to about 10% when the mass difference is smaller than 200 GeV, as signal events start
to be rejected by the requirement on the jet pT. The uncertainties in the jet energy scale and resolution
are estimated by the techniques in refs. [53–57].

The uncertainty in the trigger efficiency is small because it is measured from data, as described in section 4.
For the signal pT resolution, a conservative uncertainty, corresponding to 100% of the effect of multiple
scattering, is added to the uncertainty in the values of parameters in the q/pT smearing function.

The pile-up modelling uncertainty is estimated by varying the number of collisions per bunch crossing in
simulation by its uncertainty of 10% of the nominal value. The signal reconstruction efficiency decreases
as the number of pile-up interactions increases because it becomes more likely for pixel-detector hits
originating from charginos to be used by tracks from other particles.

The uncertainty in the chargino reconstruction efficiency (tracklet efficiency) can be split into four com-
ponents: (1) the uncertainty in the probability for a chargino to produce a set of pixel-detector hits which
can satisfy the tracklet quality selection, (2) the uncertainty in the efficiency to reconstruct a tracklet when
a chargino leaves a set of good hits which satisfies the tracklet quality selection, (3) the uncertainty in the
track reconstruction efficiency, which depends on the number of pile-up interactions, (4) the uncertainty
in the d0 significance selection. The first two components are estimated using Z → µµ events, which
are selected with the same requirements as for the data sample used to estimate the smearing function.
The tracklet data-quality selection requirements are applied to the muon tracks in the sample. The first
component is estimated from the difference in the efficiency of these requirements between data and
simulation. The second component is estimated by re-fitting the muon tracks using only the pixel hits,
and comparing the tracklet reconstruction efficiencies in data and simulation. The third component is
included in the uncertainty in the pile-up modelling described already. The fourth component is estimated
by shifting the measured |d0 |/σ(d0) distribution by its uncertainty; the change in the |d0 |/σ(d0) selection
efficiency is added to the systematic uncertainty.

Theoretical uncertainties in the signal cross-section are estimated by computing the changes in the cross-
section when the renormalisation and factorisation scales, the choice of PDFs and the strong coupling
constant, αS, are varied. Renormalisation and factorisation scales are varied by factors of 0.5 and 2
from their nominal value. The PDF uncertainty is estimated as the maximum of the uncertainty from
the CTEQ6.6 [58] uncertainty band at 68% confidence level and the difference between CTEQ6.6 and
MSTW2008 NLO PDF sets. Each uncertainty is varied independently and their effects are added in
quadrature.
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Relative uncertainties [%] Electroweak channel Strong channel
MC statistical uncertainty 6.6 6.5
ISR/FSR 7.6 0.2
Jet energy scale and resolution 2.0 0.7
Trigger efficiency 0.2 <0.1
Pile-up modelling 11
Tracklet efficiency 6.9
Luminosity 3.2
Sub-total 17 15
Cross-section 6.4 28
Total 18 32

Table 3: Systematic uncertainties in the signal event yields at mχ̃
±
1
= 400 GeV for the electroweak channel and at

mg̃ = 1600 GeV, mχ̃
±
1
= 500 GeV for the strong channel. The lifetime of the chargino is not relevant here. The

uncertainty in the cross-section of the strong production is large due to the large effect from the PDF uncertainty.

8 Results and interpretation

The tracklet pT spectra are shown in figure 7, along with the results of the fit to the background-only
hypothesis. The observed pT distributions are well described by the background predictions in the
low-Emiss

T regions. When fitting to the background+signal hypothesis, no significant excess above the
expected SM processes is found at high tracklet pT in high-Emiss

T regions. Model-dependent upper limits
on the signal strength are computed using the profile-likelihood ratio [59] as a test statistic and using
the asymptotic formula in ref. [59], fitting the pT spectrum in the full range. The confidence levels
are computed by following the CLs prescription [60]. Upper limits on the number of signal events are
converted into limits on the visible cross-section (σ95%

vis
) of signal processes by dividing by the integrated

luminosity of the data.

Model-independent limits are calculated from the expected and observed event yields in the region where
the tracklet pT is above 100 GeV. Table 4 lists the observed event yields, expected backgrounds, expected
signal yields and model-independent upper limits on the visible signal cross-section in the high-Emiss

T
region.

Figure 8 shows the model-dependent exclusion limits in the (mχ̃
±
1
, τχ̃±

1
) plane for the electroweak channel,

where τχ̃±
1

is the lifetime of the chargino. A large region is excluded by this analysis while the 8 TeV result
[19] has higher sensitivity for long lifetimes due to the use of longer tracklets. For τχ̃±

1
∼ 0.2 ns, which

corresponds to ∆mχ̃1 ∼ 160 MeV in the pure wino LSP model, winos with a mass up to 460 GeV are
excluded at 95% CL. Figure 9 shows the model-dependent exclusion limits in the mg̃–mχ̃

±
1

plane for the
strong channel. For a chargino lifetime of 0.2 ns, gluino masses up to 1.65 TeV are excluded assuming a
chargino mass of 460 GeV, and chargino masses up to 1.05 TeV are excluded assuming very compressed
spectra with a mass difference between the gluino and the chargino of less than 200 GeV. Charginos are
assumed to decay into a pion and a neutralino in the considered models. However, the results do not
depend on this decay mode since the decay products of charginos cannot be detected due to their low
momentum.

The effects of systematic uncertainties are estimated using the exclusion significance, which is defined as
the number of standard deviations corresponding to the signal confidence CLs. Relative changes in the
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Electroweak channel Strong channel
Number of observed events with pT > 100 GeV in high-Emiss

T
regions

9 2
Number of expected events with pT > 100 GeV in high-Emiss

T
regions

Hadron+electron background 6.1 ± 0.6 1.78 ± 0.32
Muon background 0.15 ± 0.09 0.05 ± 0.08
Fake background 5.5 ± 3.3 0.1 ± 0.4
Total background 11.8 ± 3.1 1.9 ± 0.4
p0 0.50 0.47
Observed σ95%

vis
[fb] 0.22 0.12

Expected σ95%
vis

[fb] 0.28+0.11
−0.08

0.12+0.07
−0.04

Number of expected signal events with pT > 100 GeV in high-Emiss
T

regions

13.5 ± 2.1 5.6 ± 0.8

Table 4: Observed events, expected background for null signal, and expected signal yields for two benchmark models:
electroweak channel with (mχ̃

±
1
, τχ̃±

1
) = (400 GeV, 0.2 ns) and strong channel with (mg̃, mχ̃

±
1
, τχ̃±

1
) = (1600 GeV,

500 GeV, 0.2 ns) in the high-Emiss
T region. Also shown are the probability of a background-only experiment being

more signal-like than observed (p0) and the upper limit on the model-independent visible cross-section at 95%
CL. The uncertainty in the total background yield is different from the sum of uncertainties in quadrature due to
anti-correlation between different backgrounds.

Parameter Electroweak channel [%] Strong channel [%]
Expected signal events 11 13
α in signal pT resolution function 0.8 1.5
σ in signal pT resolution function 5.3 7.2
log rABCD 15 <0.1
α in background pT resolution function 5.0 1.2
σ in background pT resolution function 2.2 5.0
p0 parameter of the fake-BG pT function 2.5 <0.1
p1 parameter of the fake-BG pT function 8.5 0.1
Expected number of muon events 0.5 0.9

Table 5: Effects of systematic uncertainties on the signal exclusion significance at mχ̃
±
1
= 400 GeV for the electroweak

channel and at mg̃ = 1600 GeV, mχ̃
±
1
= 500 GeV for the strong channel. The lifetime of the chargino is not relevant

here. Effects of uncertainties on the fake-tracklet background is smaller in the strong channel analysis because the
estimated number of the fake-tracklet background events is small.

exclusion significance, when nuisance parameters are shifted by one standard deviation from their nominal
values, are summarised in table 5. When shifting a parameter, the other nuisance parameters are fixed at
their nominal values.
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Figure 7: Pixel-tracklet pT spectrum in various regions: (a) electroweak channel in the low-Emiss
T region, (b) strong

channel in the low-Emiss
T region, (c) electroweak channel in the high-Emiss

T region, and (d) strong channel in the
high-Emiss

T region. Observed data are shown with markers and the background components for the background-only
fit are shown with lines. In the strong channel, total background lines overlap hadron and electron background lines.
An example of the expected signal spectrum at τχ̃±

1
= 0.2 ns and mχ̃

±
1
= 400 GeV for the electroweak channel and

mg̃ = 1600 GeV, mχ̃
±
1
= 500 GeV for the strong channel is overlaid for comparison. The bottom panels show the

ratio of the data to the background predictions. The error band shows the uncertainty in the background prediction
including both the statistical and systematic uncertainties. Red arrows in the Data/BG ratio indicate bins where the
corresponding entry falls outside the plotted range.
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Figure 8: Exclusion limit at 95% CL obtained in the electroweak production channel in terms of the chargino lifetime
(τχ̃±

1
) and mass (mχ̃

±
1
). The yellow band shows the 1σ region of the distribution of the expected limits. The median

of the expected limits is shown by a dashed line. The red line shows the observed limit and the orange dotted
lines around it show the impact on the observed limit of the variation of the nominal signal cross-section by ±1σ

of its theoretical uncertainties. Results are compared with the observed limits obtained by the previous ATLAS
search with disappearing tracks and tracklets [19] and an example of the limit obtained at LEP2 by the ALEPH
experiment [61]. The chargino lifetime as a function of the chargino mass is shown in the almost pure wino LSP
scenario at the two-loop level [62].
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Figure 9: Exclusion limit at 95% CL obtained in the strong production channel in terms of the gluino and chargino
masses. The limit is shown assuming a chargino lifetime of (a) 0.2 ns and (b) 1.0 ns. The yellow band shows the
1σ region of the distribution of the expected limits. The median of the expected limits is shown by a dashed line.
The red line shows the observed limit and the orange dotted lines around it show the impact on the observed limit
of the variation of the nominal signal cross-section by ±1σ of its theoretical uncertainties. Observed limits in the
electroweak production search are shown as a green shaded region.
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9 Conclusions

A new search for long-lived charginos yielding a pixel-tracklet signature was performed based on pp

collision data collected by the ATLAS experiment at the LHC in 2015 and 2016 at
√

s = 13 TeV,
corresponding to an integrated luminosity of 36.1 fb−1. Tracklets with hits only in the pixel detector are
used to improve the sensitivity for short chargino lifetimes. The pT distribution of the observed pixel
tracklets is found to be consistent with the background prediction. A lower limit on mχ̃

±
1

for electroweak
production of long-lived charginos with a proper lifetime of 0.2 ns, corresponding to a mass-splitting
between the charged and neutral wino of 160 MeV, in the pure wino LSP model is set at 460 GeV at
95% CL. If charginos with a proper lifetime of 0.2 ns are produced in the decay cascade of pair-produced
gluinos, gluino masses below 1.65 TeV are excluded for a chargino mass of 460 GeV, and chargino masses
below 1.05 TeV are excluded in the case of compressed spectra with a mass difference of 200 GeV between
the gluino and the chargino.
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Appendix

A Likelihood function

The likelihood function is:

LTotal = Lshape × Lsyst × Lsyst,fake; (3)

Lshape =
e−(nH

s +n
H

h+e
+nH

µ
+nH

f )
nH

obs
!

× e−(nL
s +n

L

h+e
+nL

µ
+nL

f )
nL

obs
!

× e−n
H

FakeCR

nH
FakeCR,obs

!
×
(
nH

FakeCR

)nH

FakeCR,obs × e−n
L

FakeCR

nL
FakeCR,obs

!
×
(
nL

FakeCR

)nL

FakeCR,obs

×
nH

obs∏(
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s F H
s

(
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s
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H
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h+e
, α
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µ F H

µ (pT) + nH
f Ff (pT; p0, p1)
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×
nL

obs∏(
nL

s F L
s
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pT;σ

smearing
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smearing
s

)
+ nL

h+eF
L

h+e

(
pT;σ

smearing

h+e
, α

smearing

h+e

)

+nL
µF L

µ (pT) + nL
f Ff (pT; p0, p1)

)
, (4)

Lsyst = N
(
αHs ;αHs ,∆α

H
s

)
× N

(
nH
µ ; nH

µ ,∆nH
µ

)
× N

(
αLs ;αLs ,∆α

L
s

)
× N

(
nL
µ ; nL

µ ,∆nL
µ
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×N
(
σ

smearing

h+e
;σ

smearing

h+e
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h+e
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h+e
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×N
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σ

smearing
s ;σ

smearing
s ,∆σ

smearing
s
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× N

(
α

smearing
s ;α

smearing
s ,∆α

smearing
s

)
, (5)

Lsyst,fake = N (rABCD; 1,∆rABCD) × N (p0; p0,∆p0) × N (p1; p1,∆p1) , (6)

nH
s = µs × αHs , (7)

nL
s = µs × αLs , (8)

rABCD = log
nH

f
/nH

FakeCR

nL
f
/nL

FakeCR

. (9)

The total likelihood LTotal consists of three terms: a term for the spectrum shape, Lshape, a term to
include systematic uncertainties except for those related to fake-tracket background, Lsyst, and a term for
the fake-tracklet background uncertainties, Lsyst,fake. The numbers of observed events are represented by
nR

obs
and nR

FakeCR,obs
in the signal region and in the fake control region respectively, where R is H or L,

representing the high-Emiss
T or the low-Emiss

T region. The expected numbers of events for each component
(signal, the sum of hadron and electron, muon and fake-tracklet background) are represented by nR

s , nR
h+e

,
nR
µ and nR

f
respectively. The normalisation parameter for the signal component is represented by αRs . The

expected number of signal events is scaled from αRs using the relative signal strength µs. The probability
density functions of those components are represented by F R

s , F R
h+e

, F R
µ and Ff . The resolution and slope

parameters for the smearing functions are σsmearing
s and αsmearing

s (σsmearing

h+e
and αsmearing

h+e
) for signal (sum

of hadron and electron). For the fake-tracklet component, the probability density function is common to
the low-Emiss

T and high-Emiss
T regions. The parameters of the fake-tracklet pT spectrum’s shape function
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are represented by p0 and p1. The fake-tracklet ratio factor between the low-Emiss
T and high-Emiss

T regions,
rABCD, is derived from nH

f
, nL

f
and the expected numbers of events in the fake-tracklet control regions,

nH
FakeCR

and nL
FakeCR

. The parameters constrained by the fit are: µs, nH
h+e

, nH
µ , nH

f
, nH

FakeCR
, nL

h+e
, nL

µ , nL
f

,

nL
FakeCR

, σsmearing
s , αsmearing

s , σsmearing

h+e
, αsmearing

h+e
, p0 and p1. Other parameters are fixed in the fit. The

expected value and the uncertainty of a variable x is represented by x and ∆x respectively. The value of a
unit Gaussian-function at a with mean b and standard deviation c is represented by N (a; b, c).
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