

for questions/comments: <u>davide.zuliani@cern.ch</u>

Search for massive long-lived particles decaying semileptonically at $\sqrt{s} = 13$ TeV

> **Davide Zuliani*** **University and INFN of Padova On behalf of the LHCb Collaboration**

- LHCb experiment \bullet
- Conclusions

Davide Zuliani

Search for massive long-lived particles decaying semileptonically at $\sqrt{s} = 13$ TeV

• Search for massive long-lived particles decaying semileptonically at $\sqrt{s} = 13$ TeV

LHCb experiment A General Purpose Forward Detector

- LHCb, originally designed for b- and c-hadron physics, is now considered a general purpose forward detector
- Unique phase space region ($2 < \eta < 5$) complementary to General Purpose Detectors (ATLAS & CMS)

- Muon ID efficiency: 97% with 1-3% $\mu \rightarrow \pi$ misidentification
- Electron ID efficiency: 90% with 5% $h \rightarrow e$ misidentification \bullet

Davide Zuliani

JINST 3 (2008) S08005 Int. J. Mod: Phys. A 30, 1530022 (2015) CERN-LPCC-2018-04

LHCb experiment VELO material map

- Material map of VErtex LOcator (VELO) is fundamental for LLP searches:
 - Displacement up to 20 cm
 - Thin VELO envelope (RF foil) background dominated by
 - heavy flavour decays at < 5 mm \bullet
 - material interactions at > 5 mm \bullet

- So far only performed analyses on Run 1 and Run 2 data with LLPs decaying within the VELO
- Searches could be extended to LLPs decaying downstream of the VELO (displacement up to 200 cm) \bullet \rightarrow much worse momentum resolution

Davide Zuliani

JINST 13 (2018) 06, P06008

LLPs searches at LHCb so far...

- Displaced leptons:
 - Dark photon \bullet
 - Low-mass di-muon resonances
 - Majorana neutrino
 - LLPs decaying to $e^{\pm}\mu^{\mp}\nu$ ullet
 - Light boson from $b \rightarrow s$ decays \bullet
- Displaced jets:

Davide Zuliani

• HNL in $W^{\pm} \rightarrow \mu^{+} \mu^{\pm}$ jet

• LLP
$$\rightarrow$$
 jet jet

• LLP
$$\rightarrow \mu$$
 + jets

Search for massive long-lived particles decaying semileptonically at $\sqrt{s} = 13$ TeV

Searching for long-lived particles at the LHC and beyond

PRL 124(2020) 041801

LHCb-PAPER-2020-013

PRL 112 (2014) 131082

EPJC 81 (2021) 261

PRD 95 (2017) 071101

EPJC 81 (2021) 248

EPJC 77 (2017) 812

LHCb-PAPER-2021-028

Search for massive long-lived particles decaying semileptonically at $\sqrt{s} = 13$ TeV

- Supersymmetry (SUSY) is one of the most popular extension of Standard Model (SM)
 - Solves the hierarchy problem \bullet
 - Unifies gauge couplings at Planck scale
 - Dark Matter candidates
- Subset of models for Minimal Supersymmetric Standard Model (MSSM) addresses long-lived particles \bullet
 - Main signature: measurable flight distance and displaced vertices
- If considering R-parity violation (RPV) processes a MSSM long-lived particle can decay into SM particles
- In this analysis the minimal SUper GRAvity (mSUGRA) theoretical model has been considered, with RPV
 - A "neutralino" $\tilde{\chi}_1^0$ can decay into a muon and two quarks: $\tilde{\chi}_1^0 \to \mu^+ q_i q_i (\mu^- \bar{q}_i \bar{q}_i)$

Davide Zuliani

Searching for long-lived particles at the LHC and beyond

Theory context

Search for massive long-lived particles decaying semileptonically at $\sqrt{s} = 13$ TeV

In this analysis two productions mode have been considered:

Higgs-like boson decay

- The Higgs-like decay analysis covers h^0 masses from 30 to 200 GeV/c²
- LLPs masses are in the range [10, $\sim m(h^0)/2$] GeV/c² and lifetimes in the range [5,200] ps
- The direct production mode address LLPs masses in the range [10, 90] GeV/c² and lifetimes in the range [5,200] ps
- Lifetime range well above b-hadron lifetime and vertices still within LHCb VELO
- Mass range to avoid SM b-quark states and to consider LHCb forward acceptance
- Relevant backgrounds: bb and $c\bar{c}$ direct production and Z, W, Higgs and top decays

Davide Zuliani

production mode

Direct production

Search for massive long-lived particles decaying semileptonically at $\sqrt{s} = 13$ TeV

Search for massive long-lived particles decaying semileptonically at $\sqrt{s} = 13$ TeV

- The LLP signature is a displaced vertex (charged particles tracks) + isolated muon with high p_T
- Muons are expected to be more isolated than muons in hadron decays (high LLP masses)
- PV selection:
 - Small radial distance from beam axis, $R_{xy} < 0.3$ mm
- Muon selection:
 - Online trigger selects muon with $p_T > 10$ GeV/c
 - Offline selection: impact parameter IP^{μ} > 0.25 mm and p_T > 12 GeV/c
 - Isolation: sum of energy tracks around muon (with muon) in a cone of radius $R_{\eta\phi} = 0.3$
- LLP selection:
 - Once PVs are found, geometric veto on displaced vertices (remember VELO material map)
 - A LLP candidate is formed by 3 or more tracks + muon, and $m_{inv}(LLP) > 4.5 \text{ GeV/c}^2$

Davide Zuliani

Searching for long-lived particles at the LHC and beyond

Signal Selection

Search for massive long-lived particles decaying semileptonically at $\sqrt{s} = 13$ TeV

- Distribution for simulated $b\bar{b}$ background samples and
- Shapes are consistent with *bb* composition of background
- Background estimation used as cross-checks (see later)

Davide Zuliani

Signal Selection

Search for massive long-lived particles decaying semileptonically at $\sqrt{s} = 13$ TeV

Search for massive long-lived particles decaying semileptonically at $\sqrt{s} = 13$ TeV

- A multivariate analysis (MVA) based on Boosted Decision Trees is used to further purify the data sample
- Ten MVA input variables are selected to perform signal-background separation
 - p_T and IP of the muon \bullet
 - Ratio of energies released in ECAL and HCAL normalized to muon energy
 - p_T and η of the LLP candidate
 - Number of tracks forming the LLP candidate
 - Vertex distance $R_{_{XV}}$
 - Uncertainties of the vertex: σ_R , σ_7
- Muon-isolation variable and reconstructed LLP mass are used to get the LLPs yield
- Signal MVA training samples are obtained from simulation
- Background training sample is obtained from data
 - No bias on MVA performance

Davide Zuliani

Searching for long-lived particles at the LHC and beyond

analysis

Search for massive long-lived particles decaying semileptonically at $\sqrt{s} = 13$ TeV

- After MVA application no background events survive
- Background is obtained with a data-driven method
- Muon isolation is used to find a signal and a background region:
 - Signal region = muon-isolation variable < 1.2
 - Background region = muon-isolation variable > 1.2
- 80% of signal events are included in the signal region
- Fit to reconstructed LLP mass from background region
 - Constraints on fit on signal region

Signal Extraction

Search for massive long-lived particles decaying semileptonically at $\sqrt{s} = 13$ TeV

Search for massive long-lived particles decaying semileptonically at $\sqrt{s} = 13$ TeV

- Detector efficiency is estimated from simulations
- Several factor to be taken into account:
 - Efficiency increases with LLP mass (more particles are produced)
 - Loss of particles outside the detector when LLPs come from heavier states
 - Lower boost of heavier LLPs results in shorter flight distance (cut on radial distance R_{xy})
 - With increasing LLPs lifetime \rightarrow material region VETO
 - Loss in efficiency due to MVA selection
- Systematic uncertainties take into account several aspects
 - Muon reconstruction
 - Vertex reconstruction
 - **MVA** discrimination
 - . . .

Davide Zuliani

Search for massive long-lived particles decaying semileptonically at $\sqrt{s} = 13$ TeV

Efficiencies and systematics

Direct production mode									
$m_{ ilde{\chi}_1^0}$	$ au_{ ilde{\chi}_1^0}$	ε_{presel}	ε	$N_{ m b}$			$N_{ m s}$		χ^2/ndf
10	10	0.61	0.13	2767.9	±	88.2	-141.8	± 69.7	1.69
20	10	0.66	0.23	43.9	\pm	40.1	-4.2	\pm 5.0	0.67
30	10	2.29	0.47	15.7	±	5.8	3.3	\pm 5.2	0.90
40	10	2.49	0.52	1.1	\pm	1.4	5.9	\pm 2.8	0.96
60	10	3.81	1.97	45.1	±	5.6	-8.0	\pm 4.3	0.80
90	10	2.52	1.68	30.8	\pm	2.2	-9.8	\pm 5.0	1.04
30	5	1.44	0.21	11.0	±	2.5	-1.0	\pm 2.7	0.67
30	20	2.64	0.66	13.8	\pm	4.4	3.2	\pm 4.2	0.65
30	30	2.52	0.74	5.6	±	2.2	2.4	\pm 2.1	0.41
30	50	2.25	0.81	16.5	\pm	16.1	-1.8	\pm 3.2	0.69
30	100	1.68	0.61	9.9	±	7.4	-1.7	\pm 3.1	1.10
30	200	1.06	0.29	38.0	\pm	6.3	0.0	\pm 2.3	0.79

Source	Contribution [%]		
Integrated luminosity	2.0		
Parton luminosity gluons fusion (quarks)	6.0(3.0)		
Simulation statistics	2.0 - 4.0		
Muon reconstruction	2.0 - 3.7		
p_{T}^{μ}	1.0		
IP^{μ}	1.0		
Vertex reconstruction	2.0		
Beam line uncertainty (R_{xy})	0.9		
Muon isolation	1.7		
MVA	1.7 - 16		
Mass calibration	1.4		
Total	7.3 - 18.9		

Search for massive long-lived particles decaying semileptonically at $\sqrt{s} = 13$ TeV

No excess is found

Davide Zuliani

- 95% CL upper limits are computed on $\sigma(LLPs) \times \mathscr{B}(LLPs \rightarrow q\bar{q}\mu)$ for both production modes
- Statistical and systematic uncertainties are included as nuisance parameters

95% CL upper limits

Search for massive long-lived particles decaying semileptonically at $\sqrt{s} = 13$ TeV

Search for massive long-lived particles decaying semileptonically at $\sqrt{s} = 13$ TeV

- No excess is found
- 95% CL upper limits are computed on $\sigma(LLPs) \times \mathscr{B}(LLPs \rightarrow q\bar{q}\mu)$ for both production modes
- Statistical and systematic uncertainties are included as nuisance parameters

Davide Zuliani

95% CL upper limits

Search for massive long-lived particles decaying semileptonically at $\sqrt{s} = 13$ TeV

Search for massive long-lived particles decaying semileptonically at $\sqrt{s} = 13$ TeV

- No excess is found
- 95% CL upper limits are computed on $\sigma(LLPs) \times \mathscr{B}(LLPs \rightarrow q\bar{q}\mu)$ for both production modes
- Statistical and systematic uncertainties are included as nuisance parameters

Search for massive long-lived particles decaying semileptonically at $\sqrt{s} = 13$ TeV

Davide Zuliani

95% CL upper limits

Conclusions Wrap up

- LHCb is by all means a **general purpose forward detector**
- LHCb is a unique place to study LLPs:
 - Detection of low-mass particles and soft signatures \bullet
 - Studies on b- and c-decays
 - Phase space region complementary to ATLAS and CMS
- Here we studied massive LLPs decaying semileptonically into a muon and two quarks
 - Two production modes (direct production and Higgs like boson decay)
 - Different mass and lifetime ranges lacksquare
 - Upper limits on $\sigma(LLPs) \times \mathscr{B}(LLPs \rightarrow q\bar{q}\mu)$ with sensitivity of the order O(1 pb) \bullet
- If you're interested in LLPs searches at LHCb go check <u>yesterday's presentation</u>

Davide Zuliani

Search for massive long-lived particles decaying semileptonically at $\sqrt{s} = 13$ TeV

Thank you for your attention!