Search for Neutral, Long-Lived Particles Decaying into Two Muons in $p \bar{\rho}$ Collisions at $\sqrt{ } \mathrm{s}=1: 96 \mathrm{TeV}$

V. M. Abazov

Joint Institute for Nuclear Research, Dubna, Russia
Kenneth A. Bloom
University of Nebraska-Lincoln, kenbloom@unl.edu
Gregory R. Snow
University of Nebraska-Lincoln, gsnow1@unl.edu
D0 Collaboration

Follow this and additional works at: https://digitalcommons.unl.edu/physicsbloom
Part of the Physics Commons

Abazov, V. M.; Bloom, Kenneth A.; Snow, Gregory R.; and Collaboration, D0, "Search for Neutral, Long-Lived Particles Decaying into Two Muons in $p \bar{p}$ Collisions at $\sqrt{ } \mathrm{s}=1: 96 \mathrm{TeV}$ " (2006). Kenneth Bloom Publications. 202.
https://digitalcommons.unl.edu/physicsbloom/202

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Kenneth Bloom Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Search for Neutral, Long-Lived Particles Decaying into Two Muons in $p \bar{p}$ Collisions at $\sqrt{s}=1.96$ TeV

V. M. Abazov, ${ }^{36}$ B. Abbott, ${ }^{76}$ M. Abolins, ${ }^{66}$ B. S. Acharya, ${ }^{29}$ M. Adams, ${ }^{52}$ T. Adams, ${ }^{50}$ M. Agelou, ${ }^{18}$ S. H. Ahn, ${ }^{31}$ M. Ahsan, ${ }^{60}$ G. D. Alexeev, ${ }^{36}$ G. Alkhazov, ${ }^{40}$ A. Alton, ${ }^{65}$ G. Alverson, ${ }^{64}$ G. A. Alves, ${ }^{2}$ M. Anastasoaie, ${ }^{35}$ T. Andeen, ${ }^{54}$ S. Anderson, ${ }^{46}$ B. Andrieu, ${ }^{17}$ M. S. Anzelc, ${ }^{54}$ Y. Arnoud, ${ }^{14}$ M. Arov, ${ }^{53}$ A. Askew, ${ }^{50}$ B. Åsman, ${ }^{41}$ A. C. S. Assis Jesus, ${ }^{3}$ O. Atramentov, ${ }^{58}$ C. Autermann, ${ }^{21}$ C. Avila, ${ }^{8}$ C. Ay, ${ }^{24}$ F. Badaud, ${ }^{13}$ A. Baden, ${ }^{62}$ L. Bagby, ${ }^{53}$ B. Baldin,,${ }^{51}$ D. V. Bandurin, ${ }^{60}$
P. Banerjee, ${ }^{29}$ S. Banerjee, ${ }^{29}$ E. Barberis, ${ }^{64}$ P. Bargassa, ${ }^{81}$ P. Baringer, ${ }^{59}$ C. Barnes, ${ }^{44}$ J. Barreto, ${ }^{2}$ J. F. Bartlett, ${ }^{51}$ U. Bassler, ${ }^{17}$ D. Bauer, ${ }^{44}$ A. Bean, ${ }^{59}$ M. Begalli, ${ }^{3}$ M. Begel, ${ }^{72}$ C. Belanger-Champagne, ${ }^{5}$ L. Bellantoni, ${ }^{51}$ A. Bellavance, ${ }^{68}$ J. A. Benitez, ${ }^{66}$ S. B. Beri, ${ }^{27}$ G. Bernardi, ${ }^{17}$ R. Bernhard, ${ }^{42}$ L. Berntzon, ${ }^{15}$ I. Bertram, ${ }^{43}$ M. Besançon, ${ }^{18}$ R. Beuselinck, ${ }^{44}$ V. A. Bezzubov, ${ }^{39}$ P. C. Bhat, ${ }^{51}$ V. Bhatnagar, ${ }^{27}$ M. Binder, ${ }^{25}$ C. Biscarat, ${ }^{43}$ K. M. Black, ${ }^{63}$ I. Blackler, ${ }^{44}$ G. Blazey, ${ }^{53}$ F. Blekman, ${ }^{44}$ S. Blessing, ${ }^{50}$ D. Bloch, ${ }^{19}$ K. Bloom, ${ }^{68}$ U. Blumenschein, ${ }^{23}$ A. Boehnlein, ${ }^{51}$ O. Boeriu, ${ }^{56}$ T. A. Bolton, ${ }^{60}$ G. Borissov, ${ }^{43}$ K. Bos, ${ }^{34}$ T. Bose, ${ }^{78}$ A. Brandt, ${ }^{79}$ R. Brock, ${ }^{66}$ G. Brooijmans, ${ }^{71}$ A. Bross, ${ }^{51}$ D. Brown, ${ }^{79}$ N. J. Buchanan, ${ }^{50}$ D. Buchholz, ${ }^{54}$ M. Buehler, ${ }^{82}$ V. Buescher, ${ }^{23}$ S. Burdin, ${ }^{51}$ S. Burke, ${ }^{46}$ T. H. Burnett, ${ }^{83}$ E. Busato, ${ }^{17}$ C. P. Buszello, ${ }^{44}$ J. M. Butler, ${ }^{63}$ P. Calfayan, ${ }^{25}$ S. Calvet, ${ }^{15}$ J. Cammin, ${ }^{72}$ S. Caron, ${ }^{34}$ W. Carvalho, ${ }^{3}$ B. C. K. Casey, ${ }^{78}$ N. M. Cason, ${ }^{56}$ H. Castilla-Valdez, ${ }^{33}$ D. Chakraborty, ${ }^{53}$ K. M. Chan, ${ }^{72}$ A. Chandra, ${ }^{49}$ F. Charles, ${ }^{19}$ E. Cheu, ${ }^{46}$ F. Chevallier, ${ }^{14}$ D. K. Cho, ${ }^{63}$ S. Choi,,32 B. Choudhary, ${ }^{28}$ L. Christofek, ${ }^{59}$ D. Claes, ${ }^{68}$ B. Clément, ${ }^{19}$ C. Clément, ${ }^{41}$ Y. Coadou, ${ }^{5}$ M. Cooke, ${ }^{81}$ W. E. Cooper, ${ }^{51}$ D. Coppage, ${ }^{59}$ M. Corcoran, ${ }^{81}$ M.-C. Cousinou, ${ }^{15}$ B. Cox, ${ }^{45}$ S. Crépé-Renaudin, ${ }^{14}$ D. Cutts, ${ }^{78}$ M. Ćwiok, ${ }^{30}$ H. da Motta, ${ }^{2}$ A. Das, ${ }^{63}$ M. Das, ${ }^{61}$ B. Davies, ${ }^{43}$ G. Davies, ${ }^{44}$ G. A. Davis, ${ }^{54}$ K. De, ${ }^{79}$ P. de Jong, ${ }^{34}$ S. J. de Jong, ${ }^{35}$ E. De La Cruz-Burelo, ${ }^{65}$ C. De Oliveira Martins, ${ }^{3}$ J. D. Degenhardt, ${ }^{65}$ F. Déliot, ${ }^{18}$ M. Demarteau, ${ }^{51}$ R. Demina, ${ }^{72}$ P. Demine, ${ }^{18}$ D. Denisov, ${ }^{51}$ S. P. Denisov, ${ }^{39}$ S. Desai, ${ }^{73}$ H. T. Diehl, ${ }^{51}$ M. Diesburg, ${ }^{51}$ M. Doidge, ${ }^{43}$ A. Dominguez, ${ }^{68}$ H. Dong, ${ }^{73}$ L. V. Dudko, ${ }^{38}$ L. Duflot, ${ }^{16}$ S. R. Dugad, ${ }^{29}$ D. Duggan, ${ }^{50}$ A. Duperrin, ${ }^{15}$ J. Dyer, ${ }^{66}$ A. Dyshkant, ${ }^{53}$ M. Eads, ${ }^{68}$ D. Edmunds, ${ }^{66}$ T. Edwards, ${ }^{45}$ J. Ellison, ${ }^{49}$ J. Elmsheuser, ${ }^{25}$ V. D. Elvira, ${ }^{51}$ S. Eno, ${ }^{62}$ P. Ermolov, ${ }^{38}$ H. Evans, ${ }^{55}$
A. Evdokimov, ${ }^{37}$ V. N. Evdokimov, ${ }^{39}$ S. N. Fatakia, ${ }^{63}$ L. Feligioni, ${ }^{63}$ A. V. Ferapontov, ${ }^{60}$ T. Ferbel, ${ }^{72}$ F. Fiedler, ${ }^{25}$ F. Filthaut, ${ }^{35}$ W. Fisher, ${ }^{51}$ H. E. Fisk, ${ }^{51}$ I. Fleck, ${ }^{23}$ M. Ford, ${ }^{45}$ M. Fortner, ${ }^{53}$ H. Fox, ${ }^{23}$ S. Fu, ${ }^{51}$ S. Fuess, ${ }^{51}$ T. Gadfort, ${ }^{83}$ C. F. Galea, ${ }^{35}$ E. Gallas, ${ }^{51}$ E. Galyaev, ${ }^{56}$ C. Garcia, ${ }^{72}$ A. Garcia-Bellido, ${ }^{83}$ J. Gardner, ${ }^{59}$ V. Gavrilov, ${ }^{37}$ A. Gay, ${ }^{19}$ P. Gay, ${ }^{13}$ D. Gelé, ${ }^{19}$ R. Gelhaus, ${ }^{49}$ C. E. Gerber, ${ }^{52}$ Y. Gershtein, ${ }^{50}$ D. Gillberg, ${ }^{5}$ G. Ginther, ${ }^{72}$ N. Gollub, ${ }^{41}$ B. Gómez, ${ }^{8}$
A. Goussiou, ${ }^{56}$ P. D. Grannis, ${ }^{73}$ H. Greenlee, ${ }^{51}$ Z. D. Greenwood, ${ }^{61}$ E. M. Gregores, ${ }^{4}$ G. Grenier, ${ }^{20}$ Ph. Gris, ${ }^{13}$ J.-F. Grivaz, ${ }^{16}$ S. Grünendahl, ${ }^{51}$ M. W. Grünewald, ${ }^{30}$ F. Guo, ${ }^{73}$ J. Guo, ${ }^{73}$ G. Gutierrez, ${ }^{51}$ P. Gutierrez, ${ }^{76}$ A. Haas, ${ }^{71}$ N. J. Hadley, ${ }^{62}$ P. Haefner, ${ }^{25}$ S. Hagopian, ${ }^{50}$ J. Haley, ${ }^{69}$ I. Hall, ${ }^{76}$ R. E. Hall, ${ }^{48}$ L. Han, ${ }^{7}$ K. Hanagaki, ${ }^{51}$ K. Harder, ${ }^{60}$ A. Harel, ${ }^{72}$ R. Harrington, ${ }^{64}$ J. M. Hauptman, ${ }^{58}$ R. Hauser, ${ }^{66}$ J. Hays, ${ }^{54}$ T. Hebbeker, ${ }^{21}$ D. Hedin, ${ }^{53}$ J. G. Hegeman, ${ }^{34}$ J. M. Heinmiller, ${ }^{52}$ A. P. Heinson, ${ }^{49}$ U. Heintz, ${ }^{63}$ C. Hensel, ${ }^{59}$ K. Herner, ${ }^{73}$ G. Hesketh, ${ }^{64}$ M. D. Hildreth, ${ }^{56}$ R. Hirosky, ${ }^{82}$ J. D. Hobbs, ${ }^{73}$ B. Hoeneisen, ${ }^{12}$ H. Hoeth, ${ }^{26}$ M. Hohlfeld, ${ }^{16}$ S. J. Hong, ${ }^{31}$ R. Hooper, ${ }^{78}$ P. Houben, ${ }^{34}$ Y. Hu, ${ }^{73}$ Z. Hubacek, ${ }^{10}$
V. Hynek, ${ }^{9}$ I. Iashvili, ${ }^{70}$ R. Illingworth,,51 A. S. Ito, ${ }^{51}$ S. Jabeen, ${ }^{63}$ M. Jaffré, ${ }^{16}$ S. Jain, ${ }^{76}$ K. Jakobs, ${ }^{23}$ C. Jarvis, ${ }^{62}$ A. Jenkins, ${ }^{44}$ R. Jesik, ${ }^{44}$ K. Johns, ${ }^{46}$ C. Johnson, ${ }^{71}$ M. Johnson, ${ }^{51}$ A. Jonckheere, ${ }^{51}$ P. Jonsson, ${ }^{44}$ A. Juste, ${ }^{51}$ D. Käfer, ${ }^{21}$ S. Kahn, ${ }^{74}$ E. Kajfasz, ${ }^{15}$ A. M. Kalinin, ${ }^{36}$ J. M. Kalk, ${ }^{61}$ J. R. Kalk, ${ }^{66}$ S. Kappler, ${ }^{21}{ }^{15}$ D. Karmanov, ${ }^{38}$ J. Kasper, ${ }^{63}$ P. Kasper, ${ }^{51}$ I. Katsanos, ${ }^{71}$ D. Kau, ${ }^{50}$ R. Kaur, ${ }^{27}$ R. Kehoe, ${ }^{80}$ S. Kermiche, ${ }^{15}$ N. Khalatyan, ${ }^{63}$ A. Khanov, ${ }^{77}$ A. Kharchilava, ${ }^{70}$ Y. M. Kharzheev, ${ }^{36}$ D. Khatidze, ${ }^{71}$ H. Kim, ${ }^{79}$ T. J. Kim, ${ }^{31}$ M. H. Kirby, ${ }^{35}$ B. Klima, ${ }^{51}$ J. M. Kohli, ${ }^{27}$ J.-P. Konrath, ${ }^{23}$ M. Kopal, ${ }^{76}$ V. M. Korablev, ${ }^{39}$ J. Kotcher, ${ }^{74}$ B. Kothari, ${ }^{71}$ A. Koubarovsky, ${ }^{38}$ A. V. Kozelov, ${ }^{39}$ J. Kozminski, ${ }^{66, \#}$ D. Krop, ${ }^{55}$ A. Kryemadhi, ${ }^{82}$ T. Kuhl, ${ }^{24}$ A. Kumar, ${ }^{70}$ S. Kunori, ${ }^{62}$ A. Kupco, ${ }^{11}$ T. Kurča, ${ }^{20, *}$ J. Kvita, ${ }^{9}$ S. Lammers, ${ }^{71}$ G. Landsberg, ${ }^{78}$ J. Lazoflores, ${ }^{50}$ A.-C. Le Bihan, ${ }^{19}$ P. Lebrun, ${ }^{20}$ W. M. Lee, ${ }^{53}$ A. Leflat, ${ }^{38}$ F. Lehner, ${ }^{42}$ V. Lesne, ${ }^{13}$ J. Leveque, ${ }^{46}$ P. Lewis, ${ }^{44}$ J. Li, ${ }^{79}$ Q. Z. Li, ${ }^{51}$ J. G. R. Lima, ${ }^{53}$ D. Lincoln, ${ }^{51}$ J. Linnemann, ${ }^{66}$ V. V. Lipaev, ${ }^{39}$ R. Lipton, ${ }^{51}$ Z. Liu, ${ }^{5}$ L. Lobo, ${ }^{44}$ A. Lobodenko, ${ }^{40}$ M. Lokajicek, ${ }^{11}$ A. Lounis, ${ }^{19}$ P. Love, ${ }^{43}$ H. J. Lubatti, ${ }^{83}$ M. Lynker, ${ }^{56}$ A. L. Lyon, ${ }^{51}$ A. K. A. Maciel, ${ }^{2}$ R. J. Madaras, ${ }^{47}$ P. Mättig,,${ }^{26}$ C. Magass, ${ }^{21}$ A. Magerkurth, ${ }^{65}$ A.-M. Magnan, ${ }^{14}$ N. Makovec, ${ }^{16}$ P. K. Mal, ${ }^{56}$ H. B. Malbouisson, ${ }^{3}$ S. Malik, ${ }^{68}$ V. L. Malyshev, ${ }^{36}$ H. S. Mao, ${ }^{6}$ Y. Maravin, ${ }^{60}$ M. Martens, ${ }^{51}$ R. McCarthy, ${ }^{73}$ D. Meder, ${ }^{24}$ A. Melnitchouk, ${ }^{67}$ A. Mendes, ${ }^{15}$ L. Mendoza, ${ }^{8}$ M. Merkin, ${ }^{38}$ K. W. Merritt, ${ }^{51}$ A. Meyer, ${ }^{21}$ J. Meyer, ${ }^{22}$ M. Michaut, ${ }^{18}$ H. Miettinen, ${ }^{81}$ T. Millet, ${ }^{20}$ J. Mitrevski, ${ }^{71}$ J. Molina, ${ }^{3}$ N. K. Mondal, ${ }^{29}$ J. Monk, ${ }^{45}$ R. W. Moore, ${ }^{5}$ T. Moulik, ${ }^{59}$ G. S. Muanza, ${ }^{16}$ M. Mulders, ${ }^{51}$ M. Mulhearn, ${ }^{71}$ L. Mundim,,${ }^{3}$ Y. D. Mutaf, ${ }^{73}$ E. Nagy, ${ }^{15}$ M. Naimuddin,,${ }^{28}$ M. Narain, ${ }^{63}$ N. A. Naumann, ${ }^{35}$ H. A. Neal, ${ }^{65}$ J. P. Negret, ${ }^{8}$ P. Neustroev, ${ }^{40}$ C. Noeding, ${ }^{23}$ A. Nomerotski, ${ }^{51}$ S. F. Novaes, ${ }^{4}$ T. Nunnemann, ${ }^{25}$ V. O'Dell, ${ }^{51}$ D. C. O'Neil, ${ }^{5}$ G. Obrant, ${ }^{40}$ V. Oguri, ${ }^{3}$ N. Oliveira, ${ }^{3}$ N. Oshima, ${ }^{51}$ R. Otec, ${ }^{10}$
G. J. Otero y Garzón, ${ }^{52}$ M. Owen, ${ }^{45}$ P. Padley, ${ }^{81}$ N. Parashar, ${ }^{57}$ S.-J. Park, ${ }^{72}$ S. K. Park, ${ }^{31}$ J. Parsons, ${ }^{71}$ R. Partridge, ${ }^{78}$ N. Parua, ${ }^{73}$ A. Patwa, ${ }^{74}$ G. Pawloski, ${ }^{81}$ P. M. Perea, ${ }^{49}$ E. Perez, ${ }^{18}$ K. Peters,,${ }^{45}$ P. Pétroff, ${ }^{16}$ M. Petteni, ${ }^{44}$ R. Piegaia, ${ }^{1}$ J. Piper, ${ }^{66}$ M.-A. Pleier, ${ }^{22}$ P. L. M. Podesta-Lerma, ${ }^{33}$ V. M. Podstavkov, ${ }^{51}$ Y. Pogorelov, ${ }^{56}$ M.-E. Pol, ${ }^{2}$ A. Pompoš, ${ }^{76}$ B. G. Pope, ${ }^{66}$ A. V. Popov, ${ }^{39}$ C. Potter, ${ }^{5}$ W. L. Prado da Silva, ${ }^{3}$ H. B. Prosper, ${ }^{50}$ S. Protopopescu, ${ }^{74}$ J. Qian, ${ }^{65}$ A. Quadt, ${ }^{22}$ B. Quinn,,${ }^{67}$ M. S. Rangel, ${ }^{2}$ K. J. Rani, ${ }^{29}$ K. Ranjan, ${ }^{28}$ P. N. Ratoff, ${ }^{43}$ P. Renkel, ${ }^{80}$ S. Reucroft, ${ }^{64}$ M. Rijssenbeek, ${ }^{73}$ I. Ripp-Baudot, ${ }^{19}$ F. Rizatdinova, ${ }^{77}$ S. Robinson, ${ }^{44}$ R.F. Rodrigues, ${ }^{3}$ C. Royon, ${ }^{18}$ P. Rubinov, ${ }^{51}$ R. Ruchti, ${ }^{56}$ V. I. Rud, ${ }^{38}$ G. Sajot, ${ }^{14}$ A. Sánchez-Hernández, ${ }^{33}$ M. P. Sanders, ${ }^{62}$ A. Santoro, ${ }^{3}$ G. Savage, ${ }^{51}$ L. Sawyer, ${ }^{61}$ T. Scanlon, ${ }^{44}$ D. Schaile, ${ }^{25}$ R. D. Schamberger, ${ }^{73}$ Y. Scheglov, ${ }^{40}$ H. Schellman, ${ }^{54}$ P. Schieferdecker, ${ }^{25}$ C. Schmitt, ${ }^{26}$ C. Schwanenberger, ${ }^{45}$ A. Schwartzman, ${ }^{69}$ R. Schwienhorst, ${ }^{66}$ J. Sekaric, ${ }^{50}$ S. Sengupta, ${ }^{50}$ H. Severini, ${ }^{76}$ E. Shabalina, ${ }^{52}$ M. Shamim, ${ }^{60}$ V. Shary, ${ }^{18}$ A. A. Shchukin, ${ }^{39}$ W. D. Shephard, ${ }^{56}$ R. K. Shivpuri, ${ }^{28}$ D. Shpakov, ${ }^{51}$ V. Siccardi, ${ }^{19}$ R. A. Sidwell, ${ }^{60}$ V. Simak, ${ }^{10}$ V. Sirotenko, ${ }^{51}$ P. Skubic, ${ }^{76}$ P. Slattery, ${ }^{72}$ R. P. Smith, ${ }^{51}$ G. R. Snow, ${ }^{68}$ J. Snow, ${ }^{75}$ S. Snyder, ${ }^{74}$ S. Söldner-Rembold, ${ }^{45}$ X. Song, ${ }^{53}$ L. Sonnenschein, ${ }^{17}$ A. Sopczak, ${ }^{43}$ M. Sosebee, ${ }^{79}$ K. Soustruznik, ${ }^{9}$ M. Souza, ${ }^{2}$ B. Spurlock, ${ }^{79}$ J. Stark, ${ }^{14}$ J. Steele, ${ }^{61}$ V. Stolin, ${ }^{37}$ A. Stone, ${ }^{52}$ D. A. Stoyanova, ${ }^{39}$ J. Strandberg, ${ }^{41}$ S. Strandberg, ${ }^{41}$ M. A. Strang, ${ }^{70}$ M. Strauss, ${ }^{76}$ R. Ströhmer, ${ }^{25}$ D. Strom, ${ }^{54}$ M. Strovink, ${ }^{47}$ L. Stutte, ${ }^{51}$ S. Sumowidagdo, ${ }^{50}$ A. Sznajder, ${ }^{3}$ M. Talby, ${ }^{15}$ P. Tamburello, ${ }^{46}$ W. Taylor, ${ }^{5}$ P. Telford, ${ }^{45}$ J. Temple, ${ }^{46}$ B. Tiller, ${ }^{25}$ M. Titov, ${ }^{23}$ V. V. Tokmenin, ${ }^{36}$ M. Tomoto, ${ }^{51}$ T. Toole, ${ }^{62}$ I. Torchiani, ${ }^{23}$ S. Towers, ${ }^{43}$ T. Trefzger, ${ }^{24}$ S. Trincaz-Duvoid, ${ }^{17}$ D. Tsybychev, ${ }^{73}$ B. Tuchming, ${ }^{18}$ C. Tully, ${ }^{69}$ A.S. Turcot, ${ }^{45}$ P. M. Tuts, ${ }^{71}$ R. Unalan, ${ }^{66}$ L. Uvarov, ${ }^{40}$ S. Uvarov, ${ }^{40}$ S. Uzunyan, ${ }^{53}$ B. Vachon, ${ }^{5}$ P. J. van den Berg, ${ }^{34}$ R. Van Kooten, ${ }^{55}$ W. M. van Leeuwen, ${ }^{34}$ N. Varelas, ${ }^{52}$ E. W. Varnes, ${ }^{46}$ A. Vartapetian, ${ }^{79}$ I. A. Vasilyev, ${ }^{39}$ M. Vaupel, ${ }^{26}$ P. Verdier, ${ }^{20}$ L. S. Vertogradov, ${ }^{36}$ M. Verzocchi, ${ }^{51}$ F. Villeneuve-Seguier, ${ }^{44}$ P. Vint, ${ }^{44}$ J.-R. Vlimant, ${ }^{17}$ E. Von Toerne, ${ }^{60}$ M. Voutilainen, ${ }^{68, \dagger}$ M. Vreeswijk, ${ }^{34}$ H. D. Wahl, ${ }^{50}$ L. Wang, ${ }^{62}$ M. H. L. S Wang, ${ }^{51}$ J. Warchol, ${ }^{56}$ G. Watts, ${ }^{83}$ M. Wayne, ${ }^{56}$ M. Weber, ${ }^{51}$ H. Weerts, ${ }^{66}$ N. Wermes, ${ }^{22}$ M. Wetstein, ${ }^{62}$ A. White, ${ }^{79}$ D. Wicke, ${ }^{26}$ G. W. Wilson, ${ }^{59}$ S. J. Wimpenny, ${ }^{49}$ M. Wobisch, ${ }^{51}$ J. Womersley, ${ }^{51}$ D. R. Wood, ${ }^{64}$ T. R. Wyatt, ${ }^{45}$ Y. Xie, ${ }^{78}$ N. Xuan, ${ }^{56}$ S. Yacoob, ${ }^{54}$ R. Yamada, ${ }^{51}$ M. Yan, ${ }^{62}$ T. Yasuda, ${ }^{51}$ Y. A. Yatsunenko, ${ }^{36}$ K. Yip, ${ }^{74}$ H. D. Yoo, ${ }^{78}$ S. W. Youn, ${ }^{54} \mathrm{C}$. Yu, ${ }^{14}$ J. Yu, ${ }^{79}$ A. Yurkewicz, ${ }^{73}$ A. Zatserklyaniy, ${ }^{53}$ C. Zeitnitz, ${ }^{26}$ D. Zhang, ${ }^{51}$ T. Zhao, ${ }^{83}$ B. Zhou, ${ }^{65}$ J. Zhu, ${ }^{73}$ M. Zielinski, ${ }^{72}$ D. Zieminska, ${ }^{55}$ A. Zieminski, ${ }^{55}$ V. Zutshi, ${ }^{53}$ and E. G. Zverev ${ }^{38}$
(D0 Collaboration)

${ }^{1}$ Universidad de Buenos Aires, Buenos Aires, Argentina
${ }^{2}$ LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
${ }^{3}$ Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
${ }^{4}$ Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil
${ }^{5}$ University of Alberta, Edmonton, Alberta, Canada, Simon Fraser University, Burnaby, British Columbia, Canada, York University, Toronto, Ontario, Canada, and McGill University, Montreal, Quebec, Canada
${ }^{6}$ Institute of High Energy Physics, Beijing, People's Republic of China
${ }^{7}$ University of Science and Technology of China, Hefei, People's Republic of China
${ }^{8}$ Universidad de los Andes, Bogotá, Colombia
${ }^{9}$ Center for Particle Physics, Charles University, Prague, Czech Republic
${ }^{10}$ Czech Technical University, Prague, Czech Republic
${ }^{11}$ Center for Particle Physics, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
${ }^{12}$ Universidad San Francisco de Quito, Quito, Ecuador
${ }^{13}$ Laboratoire de Physique Corpusculaire, IN2P3-CNRS, Université Blaise Pascal, Clermont-Ferrand, France
${ }^{14}$ Laboratoire de Physique Subatomique et de Cosmologie, IN2P3-CNRS, Universite de Grenoble 1, Grenoble, France
${ }^{15}$ CPPM, IN2P3-CNRS, Université de la Méditerranée, Marseille, France
${ }^{16}$ IN2P3-CNRS, Laboratoire de l'Accélérateur Linéaire, Orsay, France
${ }^{17}$ LPNHE, IN2P3-CNRS, Universités Paris VI and VII, Paris, France
${ }^{18}$ DAPNIA/Service de Physique des Particules, CEA, Saclay, France
${ }^{19}$ IPHC, IN2P3-CNRS, Université Louis Pasteur, Strasbourg, France,
and Université de Haute Alsace, Mulhouse, France
${ }^{20}$ Institut de Physique Nucléaire de Lyon, IN2P3-CNRS, Université Claude Bernard, Villeurbanne, France
${ }^{21}$ III. Physikalisches Institut A, RWTH Aachen, Aachen, Germany
${ }^{22}$ Physikalisches Institut, Universität Bonn, Bonn, Germany
${ }^{23}$ Physikalisches Institut, Universität Freiburg, Freiburg, Germany

[^0](Received 17 July 2006; published 20 October 2006)

Abstract

We present a search for a neutral particle, pair produced in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$, which decays into two muons and lives long enough to travel at least 5 cm before decaying. The analysis uses $\approx 380 \mathrm{pb}^{-1}$ of data recorded with the D0 detector. The background is estimated to be about one event. No candidates are observed, and limits are set on the pair-production cross section times branching fraction into dimuons $+X$ for such particles. For a mass of 10 GeV and lifetime of $4 \times 10^{-11} \mathrm{~s}$, we exclude values greater than 0.14 pb (95% C.L.). These results are used to limit the interpretation of NuTeV's excess of dimuon events.

DOI: 10.1103/PhysRevLett.97.161802
PACS numbers: 14.80.Ly, 12.60.Jv, 13.85.Rm

Several models including supersymmetry with R-parity violation [1,2] and hidden valley theories [3] predict the existence of neutral, long-lived particles that give rise to a distinctive signature of two leptons arising from a highly displaced vertex. The Fermilab neutrino experiment NuTeV observed an excess of dimuon events that could be interpreted as such a signal [4-6]. Experiments at the CERN $e^{+} e^{-}$collider (LEP) have looked for short-lived neutralino and chargino decays [7] and longer-lived charged particles [8], but did not search for this signature.

In this Letter we present a search for a light, neutral, long-lived particle (N_{LL}^{0}) pair produced in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$ and recorded with the D0 detector, using $380 \mathrm{pb}^{-1}$ of data from Run II of the Fermilab Tevatron Collider. The final state under study is the decay of an N_{LL}^{0} into two muons and possibly a neutrino after the N_{LL}^{0} has traveled at least 5 cm . The particle is assumed to have a mass as low as several GeV . The analysis reported here explores a region of phase space previously unexplored by collider experiments.

We use R-parity violating (RPV) decays of neutralinos $\left(\chi_{1}^{0}\right)$ to $\mu^{+} \mu^{-} \nu$ (Fig. 1) as a benchmark model to determine signal efficiency and event kinematics. Here the RPV couplings are expected to be small and lead to long lifetimes [9]. Our results are applicable to any pair produced neutral particle with similar kinematics.

The D0 detector consists of a central-tracking system, a liquid-argon and uranium calorimeter, and an outer muon system [10]. Each of these is used in this analysis, with an emphasis on the muon system for particle identification and on the tracking system for momentum measurement and vertexing.

The central tracker consists of a silicon microstrip tracker (SMT) and a central fiber tracker (CFT), both located within a 2 T superconducting solenoidal magnet. It is optimized for tracking and vertexing at pseudorapidities $|\eta|<3$ and $|\eta|<2.5$, respectively, where $\eta=$ $-\ln [\tan (\theta / 2)]$ and θ is the polar angle with respect to the proton beam direction. The CFT has 8 axial and 8 stereo layers with an innermost (outermost) radius of $20(52) \mathrm{cm}$. The calorimeter consists of a central section (CC) covering $|\eta| \leq 1.1$, and two end calorimeters (EC) that extend coverage to $|\eta| \approx 4.2$, with all three housed in separate cryostats [11]. The outer muon system, at $|\eta|<2$, consists
of a layer of tracking detectors and scintillation trigger counters in front of 1.8 T iron toroids, followed by two similar layers after the toroids [12].

We use the volume inside the CFT inner radius as a decay region. This allows the full CFT and muon systems to be used for detection of decay products, ensuring robust track reconstruction and muon identification. Events are required to pass a dimuon trigger.

The strategy is to identify events with at least two opposite-sign, isolated muons, defined as hits in the muon system matched to a track in the CFT. Each pair is fit to a vertex. The signal sample uses events with muon vertices that are displaced more than 5 cm (in the plane transverse to the beam line) from the primary vertex. To characterize the displacement, we define the vertex radius

$$
\begin{equation*}
r=\sqrt{\left(X-X_{\mathrm{PV}}\right)^{2}+\left(Y-Y_{\mathrm{PV}}\right)^{2}} \tag{1}
\end{equation*}
$$

where X, Y are the x, y positions of the fit dimuon vertex and $X_{\mathrm{PV}}, Y_{\mathrm{PV}}$ are the x, y positions of the primary vertex (PV). D0 uses a right-handed coordinate system with the positive z axis defined by the proton direction and positive y axis pointed upward.

Studies of K_{S} mesons are performed to test the reconstruction efficiency for highly displaced vertices. We search for K_{S} mesons in data and Monte Carlo (MC) simulations by fitting track pairs to a common vertex and selecting those with an invariant mass around the K_{S} peak. We are able to observe decay lengths greater than 20 cm and demonstrate that the data and MC calculations follow the same radial dependence. The efficiency varies by 30% in the range $r=5-20 \mathrm{~cm}$.

FIG. 1. Feynman diagrams for pair production (left) and decay (right) of a neutral particle; in this case neutralinos with R-parity violation.

Selection criteria are chosen to minimize background while maintaining signal efficiency. All possible primary and secondary vertices are determined for each event using tracks, except those associated with muons. The hard scatter vertex is determined by clustering tracks into seed vertices by a Kalman filter algorithm [13]. A probability function based on the p_{T} of tracks attached to each vertex is used to rank the likelihood that it comes from a minimum bias interaction. The primary vertex is the one with the lowest probability. The PV is required to be less than 0.3 cm in x and y and less than 60 cm in z from the detector center.

We require two muons which have hits in each of the three layers of the muon system, are matched to a track in the central tracker, have a good track fit, at least 14 CFT hits associated with the track, transverse momentum $>10 \mathrm{GeV}$, and are isolated. Two methods are used to define isolation. First, the direction of the muon is projected to the calorimeter and the transverse energy in all cells within an annular cone $0.1<R<0.4$ is summed (calorimeter isolation), where $R=\sqrt{(\Delta \phi)^{2}+(\Delta \eta)^{2}}$. The transverse energy is defined as $E \sin \theta$ where E is the energy measured in the calorimeter. Second, the transverse momentum of all tracks within a cone of $R<0.5$ (except for the muon tracks) is summed (track isolation). Both the calorimeter and track isolations are required to be less than 2.5 GeV . Cosmic ray muons are rejected by requiring the time measured by the muon scintillator counters to be that expected for a particle produced at the nominal beam crossing time. To enhance the signal, both muons must have a distance of closest approach (DCA) of greater than 0.01 cm in the $x-y$ plane and more than 0.1 cm along the z axis from any vertices. The two muons must have an opening angle less than 0.5 radians and have opposite charge.

All pairs of muons passing the above quality cuts are fit to a common vertex requiring a $\chi^{2} / N_{\text {dof }}<4$. The radial distance between the dimuon vertex and the primary vertex must be 6 times the resolution of the dimuon vertex measurement and be between 5 and 20 cm . This defines our signal region.

We use data to estimate the background for this search. By allowing events to pass or fail two different selection criteria (the DCA and vertex radius cuts) we define four regions. For the DCA cut, we require either: (1) one track to pass the DCA cut and one to fail it, or (2) both tracks to pass the DCA cut. For the vertex radius we define two regions: (A) $0.3<r<5 \mathrm{~cm}$, or (B) $5<r<20 \mathrm{~cm}$. This defines Samples 1A, 2A, 1B, and 2B.

We observe four events in Sample 1A, one event in Sample 1B, and three events in Sample 2A. In a background-dominated data set and in the absence of a correlation between the two selection criteria, the ratio of the number of events in region 2 B to the number in 1 B should equal the ratio of the number of events in region 2 A
to the number in 1A. This can be reexpressed to give an estimate of the background in the signal sample (Sample 2B):

$$
\begin{equation*}
N_{\mathrm{bkgd}}=\frac{\text { Sample 2A }}{\text { Sample } 1 \mathrm{~A}} \times \text { Sample } 1 \mathrm{~B}=0.75 \pm 1.1 \text { events. } \tag{2}
\end{equation*}
$$

We expect a bias from correlation between the vertex radius and DCA criteria, which we assess by comparing the background estimate to the observed number of events in Sample 2B using several additional, backgrounddominated samples. The spread in the results is used to assign a systematic uncertainty (± 1.1 events) to account for the correlation between the vertex radius and DCA cut. Thus, we estimate the background in the signal region to be $0.75 \pm 1.1(\mathrm{stat}) \pm 1.1$ (syst) events.

Figure 2 shows the vertex radius distribution for events where one or both muons pass the DCA criteria. Examination of the signal region yields 0 events passing all criteria. Observing no signal, we set a limit on the cross section as a function of lifetime. The lifetime dependence is calculated based on the fraction of events, f, which decay within our signal region.

Signal MC events are generated using SUSYGEN [14] and an unconstrained minimal supersymmetric model with R-parity violation [1,2,5] using CTEQ5L parton distribution functions (PDFs) [15]. The following parameters are used: $\tan \beta=10, \mu=-5000, \quad M_{2}=$ $200 \mathrm{GeV}, M_{3}=400 \mathrm{GeV}, M_{\text {squark }}=300 \mathrm{GeV}, M_{\text {slepton }}=$ $M_{\text {snu }}=M_{\text {sbottom }}=M_{\text {stop }}=1500 \mathrm{GeV}$. The χ_{1}^{0} mass is about equal to the M_{1} parameter. Similar sets are generated with $M_{1}=3,5,8,10,15,20,30$, and 40 GeV yielding pair-production cross sections in the range $0.025-0.013 \mathrm{pb}$.

FIG. 2. Distribution of the vertex radius for events where one muon passes the DCA criteria and the second fails it (top), and where both muons pass the DCA criteria (bottom).

TABLE I. Acceptance, error, and limits for the MC signal points. The luminosity \times acceptance includes the MC signal acceptance, the trigger efficiency, the data/MC correction factors, and the luminosity. The lifetime acceptance is the factor by which the limit is adjusted due to the fraction of events which decay within the $5-20 \mathrm{~cm}$ region and is given for a lifetime of $4 \times 10^{-11} \mathrm{~s}$. The limits are given for the same lifetime.

$M\left(\chi_{1}^{0}\right)(\mathrm{GeV})$	Monte Carlo acceptance	Luminosity \times acceptance $\left(\mathrm{pb}^{-1}\right)$	Lifetime acceptance	95% C.L. (pb)
3	0.095 ± 0.005	23.9 ± 4.8	0.51	0.28
5	0.114 ± 0.005	28.7 ± 5.8	0.61	0.19
8	0.141 ± 0.006	35.5 ± 7.1	0.67	0.14
10	0.136 ± 0.006	34.3 ± 6.8	0.68	0.14
15	0.139 ± 0.006	35.1 ± 7.0	0.65	0.15
20	0.130 ± 0.005	32.8 ± 6.5	0.62	0.17
30	0.099 ± 0.003	24.8 ± 4.9	0.55	0.25
40	0.079 ± 0.004	20.0 ± 4.1	0.48	0.35

While the parameters are different than those used in other neutralino searches [7], they are chosen to give a model that provides a final state similar to what was observed at NuTeV and that does not violate limits from LEP searches (including the measurement of the Z boson invisible width). The lifetime is determined primarily by the slepton mass and the λ_{122} parameter, where λ_{122} is one of the R-parity, lepton-number violating couplings of the supersymmetric potential [2]. However, in the detector simulation we choose to ignore the lifetime and force exactly one of the two χ_{1}^{0} s to decay within a cylinder of radius 25 cm . The vertex is selected along the χ_{1}^{0} trajectory such that the radius distribution is flat over the range $0-25 \mathrm{~cm}$. The other χ_{1}^{0} is required to escape the detector. The dependence of the acceptance on the lifetime is accounted for in the interpretation of the final result including the possibility of both particles decaying within the search region. The average χ_{1}^{0} transverse momentum $\left(p_{T}\right)$ is $\approx 85 \mathrm{GeV}$.

FIG. 3. Limit on cross section \times branching fraction for the pair production of neutral, long-lived particles as a function of lifetime. The dark gray area and above represents the D0 99\% C.L. for the 5 GeV mass point. The solid line shows the D0 95\% C.L. The light gray region represents the $\mathrm{NuTeV} 99 \%$ C.L. exclusion [4] converted to a $p \bar{p}$ cross section at $\sqrt{s}=1960 \mathrm{GeV}$. The white region represents a 99% C.L. preferred region given the three events from NuTeV.

Our uncertainty estimate on the luminosity times signal acceptance is summarized in Table I. The MC acceptance uncertainty is statistical. Tracking, isolation, and muon reconstruction data/MC corrections are estimated using the Z boson mass peak, yielding 0.72 ± 0.07. The vertex reconstruction data/MC correction is found using K_{S} events (0.92 ± 0.14). A PDF uncertainty on the signal efficiency of $\pm 4 \%$ is assigned using the CTEQ6.1M PDF set [16].

These event numbers, efficiencies, acceptances, and uncertainties are combined to set a $95 \%(99 \%)$ confidence level limit on the cross section $\sigma\left(p \bar{p} \rightarrow N_{\mathrm{LL}}^{0} N_{\mathrm{LL}}^{0} X\right)$ times branching fraction $\mathrm{BF}\left(N_{\mathrm{LL}}^{0} \rightarrow \mu^{+} \mu^{-}+X\right)$ as a function of the lifetime (Fig. 3), using a Bayesian technique [17] and assuming zero background. The limit for a 10 GeV N_{LL}^{0} with a lifetime of $4 \times 10^{-11} \mathrm{~s}$ is 0.14 pb (95% C.L.). Figure 4 shows how the D0 limit varies with mass at a lifetime of $4 \times 10^{-11} \mathrm{~s}$.

In order to compare with D 0 , we convert the NuTeV result from $p p$ production at $\sqrt{s}=38 \mathrm{GeV}$ to $p \bar{p}$ production at $\sqrt{s}=1960 \mathrm{GeV}$, using the ratio of cross sections for SUSY neutralino pair production calculated with the parameters from our 5 GeV signal simulation. The NuTeV lifetime is converted from kilometers to seconds assuming an average momentum (along the neutrino beam direction)

FIG. 4. Limits on N_{LL}^{0} pair production as a function of its mass. The limit is for a lifetime of $4 \times 10^{-11} \mathrm{~s}$.
of 121 GeV . Given that NuTeV observed three events [4], a preferred region is found using the ratio of the 99% C.L. lower and upper limits on three events determined using a Feldman-Cousins approach [18]. We improve on the NuTeV limit by several orders of magnitude at long lifetimes and add coverage at lower lifetimes. Our limit excludes the interpretation of the NuTeV excess as arising from any model with similar $N_{\text {LL }}^{0}$ production cross sections and kinematics. Within the context of pair production in R-parity violating supersymmetry, this result is in agreement with the conclusions of Ref. [6].

To summarize, we have presented an analysis sensitive to neutral, long-lived particles decaying to $\mu \mu+X$ using a technique new to the CDF and D0 analyses, which expands the capabilities of these experiments. The background is estimated to be 0.75 ± 1.1 (stat) ± 1.1 (syst) events. The signal region contains 0 events and a limit is set. The 95% C.L. for a mass of 10 GeV and lifetime of $4 \times$ $10^{-11} \mathrm{~s}$ is 0.14 pb . This result excludes an interpretation of the NuTeV excess of dimuon events in a large class of models.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CAPES, CNPq, FAPERJ, FAPESP, and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); PPARC (United Kingdom); MSMT (Czech Republic); CRC Program, CFI, NSERC, and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); Research Corporation; Alexander von Humboldt Foundation; and the Marie Curie Program.
*On leave from IEP SAS Kosice, Slovakia.
${ }^{\dagger}$ Visiting scientist from Helsinki Institute of Physics, Helsinki, Finland.
${ }^{*}$ Visiting scientist from Lewis University, Romeoville, IL, USA.
[1] S. P. Martin, hep-ph/9709356.
[2] R. Barbier et al., Phys. Rep. 420, 1 (2005).
[3] M. J. Strassler and K. M. Zurek, hep-ph/0604261; M. J. Strassler and K. M. Zurek, hep-ph/0605193.
[4] T. Adams et al. (NuTeV Collaboration), Phys. Rev. Lett. 87, 041801 (2001).
[5] L. Borissov, J. M. Conrad, and M. Shaevitz, hep-ph/ 0007195.
[6] A. Dedes, H. K. Dreiner, and P. Richardson, Phys. Rev. D 65, 015001 (2001).
[7] J. Abdallah et al. (DELPHI Collaboration), Eur. Phys. J. C 36, 1 (2004); Eur. Phys. J. C 37, 129(E) (2004); G. Abblendi et al. (OPAL Collaboration), Eur. Phys. J. C 33, 149 (2004); A. Heister et al. (ALEPH Collaboration), Eur. Phys. J. C 31, 1 (2003); P. Achard et al. (L3 Collaboration), Phys. Lett. B 524, 65 (2002).
[8] G. Abbiendi et al. (OPAL Collaboration), Phys. Lett. B 572, 8 (2003); J. Abdallah et al. (DELPHI Collaboration), Eur. Phys. J. C 27, 153 (2003); A. Heister et al. (ALEPH Collaboration), Eur. Phys. J. C 25, 339 (2002); P. Achard et al. (L3 Collaboration), Phys. Lett. B 517, 75 (2001).
[9] R. Barbier et al., hep-ph/9810232.
[10] V. Abazov et al. (D0 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 565, 463 (2006).
[11] S. Abachi et al. (D0 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 338, 185 (1994).
[12] V. Abazov et al., Nucl. Instrum. Methods Phys. Res., Sect. A 552, 372 (2005).
[13] R.E. Kalman, J. Basic Eng. 82, 35 (1960).
[14] N. Ghodbane, S. Katsanevas, P. Morawitz, and E. Perez, hep-ph/9909499.
[15] H.L. Lai et al., Eur. Phys. J. C 12, 375 (2000).
[16] J. Pumplin et al., J. High Energy Phys. 07 (2002) 012.
[17] I. Bertram et al., Fermilab Report No. FERMILAB-TM2104, 2000.
[18] G. Feldman and R. Cousins, Phys. Rev. D 57, 3873 (1998).

[^0]: ${ }^{24}$ Institut für Physik, Universität Mainz, Mainz, Germany
 ${ }^{25}$ Ludwig-Maximilians-Universität München, München, Germany
 ${ }^{26}$ Fachbereich Physik, University of Wuppertal, Wuppertal, Germany
 ${ }^{27}$ Panjab University, Chandigarh, India
 ${ }^{28}$ Delhi University, Delhi, India
 ${ }^{29}$ Tata Institute of Fundamental Research, Mumbai, India
 ${ }^{30}$ University College Dublin, Dublin, Ireland
 ${ }^{31}$ Korea Detector Laboratory, Korea University, Seoul, Korea
 ${ }^{32}$ SungKyunKwan University, Suwon, Korea
 ${ }^{33}$ CINVESTAV, Mexico City, Mexico
 ${ }^{34}$ FOM-Institute NIKHEF and University of Amsterdam/NIKHEF, Amsterdam, The Netherlands
 ${ }^{35}$ Radboud University Nijmegen/NIKHEF, Nijmegen, The Netherlands
 ${ }^{36}$ Joint Institute for Nuclear Research, Dubna, Russia
 ${ }^{37}$ Institute for Theoretical and Experimental Physics, Moscow, Russia
 ${ }^{38}$ Moscow State University, Moscow, Russia
 ${ }^{39}$ Institute for High Energy Physics, Protvino, Russia
 ${ }^{40}$ Petersburg Nuclear Physics Institute, St. Petersburg, Russia
 ${ }^{41}$ Lund University, Lund, Sweden, Royal Institute of Technology and Stockholm University, Stockholm, Sweden, and Uppsala University, Uppsala, Sweden
 ${ }^{42}$ Physik Institut der Universität Zürich, Zürich, Switzerland
 ${ }^{43}$ Lancaster University, Lancaster, United Kingdom
 ${ }^{44}$ Imperial College, London, United Kingdom
 ${ }^{45}$ University of Manchester, Manchester, United Kingdom
 ${ }^{46}$ University of Arizona, Tucson, Arizona 85721, USA
 ${ }^{47}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
 ${ }^{48}$ California State University, Fresno, California 93740, USA
 ${ }^{49}$ University of California, Riverside, California 92521, USA
 ${ }^{50}$ Florida State University, Tallahassee, Florida 32306, USA
 ${ }^{51}$ Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
 ${ }^{52}$ University of Illinois at Chicago, Chicago, Illinois 60607, USA
 ${ }^{53}$ Northern Illinois University, DeKalb, Illinois 60115, USA
 ${ }^{54}$ Northwestern University, Evanston, Illinois 60208, USA
 ${ }^{55}$ Indiana University, Bloomington, Indiana 47405, USA
 ${ }^{56}$ University of Notre Dame, Notre Dame, Indiana 46556, USA
 ${ }^{57}$ Purdue University Calumet, Hammond, Indiana 46323, USA
 ${ }^{58}$ Iowa State University, Ames, Iowa 50011, USA
 ${ }^{59}$ University of Kansas, Lawrence, Kansas 66045, USA
 ${ }^{60}$ Kansas State University, Manhattan, Kansas 66506, USA
 ${ }^{61}$ Louisiana Tech University, Ruston, Louisiana 71272, USA
 ${ }^{62}$ University of Maryland, College Park, Maryland 20742, USA
 ${ }^{63}$ Boston University, Boston, Massachusetts 02215, USA
 ${ }^{64}$ Northeastern University, Boston, Massachusetts 02115, USA
 ${ }^{65}$ University of Michigan, Ann Arbor, Michigan 48109, USA
 ${ }^{66}$ Michigan State University, East Lansing, Michigan 48824, USA
 ${ }^{67}$ University of Mississippi, University, Mississippi 38677, USA
 ${ }^{68}$ University of Nebraska, Lincoln, Nebraska 68588, USA
 ${ }^{69}$ Princeton University, Princeton, New Jersey 08544, USA
 ${ }^{70}$ State University of New York, Buffalo, New York 14260, USA
 ${ }^{71}$ Columbia University, New York, New York 10027, USA
 ${ }^{72}$ University of Rochester, Rochester, New York 14627, USA
 ${ }^{73}$ State University of New York, Stony Brook, New York 11794, USA
 ${ }^{74}$ Brookhaven National Laboratory, Upton, New York 11973, USA
 ${ }^{75}$ Langston University, Langston, Oklahoma 73050, USA
 ${ }^{76}$ University of Oklahoma, Norman, Oklahoma 73019, USA
 ${ }^{77}$ Oklahoma State University, Stillwater, Oklahoma 74078, USA
 ${ }^{78}$ Brown University, Providence, Rhode Island 02912, USA
 ${ }^{79}$ University of Texas, Arlington, Texas 76019, USA
 ${ }^{80}$ Southern Methodist University, Dallas, Texas 75275, USA
 ${ }^{81}$ Rice University, Houston, Texas 77005, USA
 ${ }^{82}$ University of Virginia, Charlottesville, Virginia 22901, USA
 ${ }^{83}$ University of Washington, Seattle, Washington 98195, USA

