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Abstract With the observation of high-energy astrophysi-

cal neutrinos by the IceCube Neutrino Observatory, interest

has risen in models of PeV-mass decaying dark matter parti-

a e-mail: analysis@icecube.wisc.edu

URL: https://icecube.wisc.edu/
b Earthquake Research Institute, University of Tokyo, Bunkyo, Tokyo

113-0032, Japan

cles to explain the observed flux. We present two dedicated

experimental analyses to test this hypothesis. One analysis

uses 6 years of IceCube data focusing on muon neutrino

‘track’ events from the Northern Hemisphere, while the sec-

ond analysis uses 2 years of ‘cascade’ events from the full

sky. Known background components and the hypothetical

flux from unstable dark matter are fitted to the experimental

data. Since no significant excess is observed in either analy-
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sis, lower limits on the lifetime of dark matter particles are

derived: we obtain the strongest constraint to date, exclud-

ing lifetimes shorter than 1028 s at 90% CL for dark matter

masses above 10 TeV.

1 High-energy neutrinos and dark matter decay

To this day, the origin of the flux of high-energy neutrinos dis-

covered by IceCube [1,2] remains unidentified [3]. Likewise,

the nature and properties of dark matter (DM) are among the

most important open questions in physics. If the hypotheti-

cal dark matter particles are unstable on time-scales longer

than the age of the universe, then the two questions may be

linked [4,5], i.e. neutrinos produced in dark matter decays

could contribute to the observed astrophysical flux. Follow-

ing the IceCube discovery of cosmic neutrinos up to Pev

energies, there has been renewed interest in this possibil-

ity [6–20]. In particular, the connection between neutrinos

and gamma-rays from DM decay has been discussed in fur-

ther detail [21–32].

We present two dedicated analyses to test whether the

description of the observed neutrino flux can be improved

by an additional component from heavy (mDM > 10 TeV)

dark matter decays as an alternative to bottom-up scenar-

ios of astrophysical acceleration [33]. Such heavy particles

are receiving increased attention because the classic WIMP

paradigm of weak-scale mass dark matter is disfavoured

by the negative results in searches for new physics at the

LHC [34], in direct DM detection experiments [35–39], and

in searches for DM annihilation into neutrinos [40,41] or

gamma-rays [42–46].

Our results significantly improve upon the best previous

experimental bounds on decaying dark matter obtained with

gamma rays [44–47], neutrinos [48], and those derived from

high-energy cosmic rays and the cosmic microwave back-

ground radiation [4,5].

2 IceCube detector and event selections

IceCube is a cubic-kilometer ice Cherenkov detector located

at the South Pole, situated between 1450 and 2450 m below

the surface [49]. Charged particles produced in neutrino

interactions with the Antarctic ice or the bedrock below

are detected by the Cherenkov light they emit, allowing

the reconstruction of the originating neutrino’s direction and

energy [50].

The presented analyses use two different event samples.

The first analysis is based on 6 years of νµ charged-current

data collected between 2009 and 2015, i.e., track-like events

from the Northern Hemisphere. More details can be found in

Ref. [2]. The second analysis uses 2 years of data collected

Table 1 Summary of the two event samples. Detailed sample descrip-

tions can be found in Refs. [2,51]

Tracks Cascades

Number of events 352,294 278

Livetime 2060 days 641 days

Sky coverage North (zenith > 85◦) Full Sky

Atm. muon background 0.3% 10%

Median reconstr. error < 0.5◦(Eν > 100 TeV) ∼ 10◦

Energy uncertainty ∼ 100% ∼ 10%

between 2010 and 2012. The event selection is based on a

previous study [51], modified to select only cascade events

from the full sky which are produced in NC interactions or CC

interactions of νe or ντ . Note that in the following no distinc-

tion is made between particles and anti-particles; the labels

neutrino and lepton include the respective anti-particles and

the used cross-sections incorporate both particles and anti-

particles.

The two analysis samples are statistically independent,

and while the track sample contains a much larger number

of events, the full-sky coverage and better energy resolution

of the cascade sample (see Table 1) lead to comparable sen-

sitivities.

3 Analysis

To test whether the observed flux of high-energy neutrinos

(partly) arises from heavy decaying dark matter, a forward-

folding likelihood fit of the distribution of reconstructed

energy and direction is performed on both datasets, simi-

lar to Refs. [2,51]. The total observed flux is modelled as

a sum of background and signal flux components. Each of

these components is described by a parametrized flux tem-

plate that depends on the fitted model parameters.

3.1 Flux components

Cosmic-ray air showers produce secondary mesons which

decay into charged leptons and neutrinos. These atmospheric

neutrinos are the main source of background in both data

samples. They can be further divided into conventional atmo-

spheric neutrinos produced by the decay of pions and kaons

and prompt neutrinos produced by the decay of charmed

mesons. This latter flux is sub-dominant at high energies and

has not been separately identified yet [2]. Atmospheric neu-

trino flux predictions are taken from Refs. [52,53] for the con-

ventional (modified to account for the cosmic-ray knee [2])

and prompt component, respectively. From the Southern

Hemisphere, cosmic-ray induced atmospheric muons can

also penetrate the ice, reach the detector and mimic a neutrino
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Fig. 1 Neutrino yield per decay as a function of neutrino energy

(flavour-averaged): all considered decay channels (BR = 100%) are

presented for an assumed dark matter mass of 2 PeV

signal. After application of appropriate event selections, the

atmospheric muon contamination is negligible in the track-

like sample and below 10% in the cascade sample.

Astrophysical neutrinos from cosmic rays interacting in

or near their production sites constitute a second background

flux to the targeted signal of neutrinos from decaying dark

matter. Since the origin of cosmic rays is unknown, an

exact modelling of this astrophysical flux is not possible. A

generic parametrization of these astrophysical neutrinos as

an isotropic flux with a power–law energy spectrum agrees

well with present measurements [1,2] and is therefore used

in the fitting. The spectral index γ and the flux normalization

Φastro are taken as free parameters in the fit.

When heavy dark matter decays into standard model parti-

cles, neutrinos are necessarily expected in the final state [54].

Observing these neutrinos would thus constitute an indirect

probe of the scenario of decaying dark matter. The energy

spectrum, d Nν/d Eν , of the expected neutrinos depends on

the exact decay mechanism and is model dependent. In this

analysis, several “hard” (e.g., dark matter decaying directly

into neutrinos [8,55,56]) and “soft” (e.g., neutrinos produced

in the subsequent hadronic decay-chain of standard model

particles [6]) decays are used as benchmark channels. Their

spectra were simulated with PYTHIA 8.1 [57] and are shown

in Fig. 1.

At Earth, the neutrino flux from dark matter decays has to

be subdivided into a galactic and an extragalactic component.

The expected energy distribution of the galactic component

ΦHalo follows the initial decay spectrum. Its angular distribu-

tion incorporates the (uncertain) distribution of dark matter

in the Milky Way halo via the line-of-sight integral [58]. The

Burkert halo profile [59,60] with best-fit parameters from

Ref. [61] is used as a benchmark and other halo profiles

are considered as systematic uncertainties. The extragalac-

tic neutrino flux from dark matter ΦCosm. is expected to be

isotropic and to have a red-shifted decay spectrum in energy.

This flux is calculated adopting the ΛCDM cosmological

model with parameters from Ref. [62]. The total signal flux
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Fig. 2 Neutrino yield per decay as a function of neutrino energy assum-

ing the hard decay channel DM → Z + ντ : the effects of neutrino

mixing and red-shift are illustrated

is computed as the sum of both fluxes assuming that a single

dark matter particle constitutes the observed dark matter in

the universe. Additionally, neutrino mixing is applied with

parameters from Ref. [63], the effects are shown in Fig. 2.

The total flux depends on two fit parameters: the mass mDM,

which determines the energy cut-off, and the lifetime τDM of

the dark matter particle, which determines the normalization.

Explicitly, it is given by

dΦ

d Eν

=
1

4πmDMτDM

(

dΦHalo

d Eν

+
dΦCos.

d Eν

)

,

dΦHalo

d Eν

=
d Nν

d Eν

∞
∫

0

ρDM(r(s)) ds,

dΦCos.

d Eν

=
ΩDMρc

H0

∞
∫

0

d Nν

d(Eν(1 + z))

dz
√

ΩΛ + Ωm(1 + z)3
.

(1)

3.2 Likelihood analysis

In order to find the combination of the flux components that

describe the data best, a forward-folding likelihood fit is per-

formed. Flux templates, as a function of the fit parameters,

are generated from a dedicated simulation of the detector

response (see Refs. [2,51] for more details) and then com-

pared to the observed event distributions in reconstructed

energy E , right-ascension α, and zenith angle θ . Given a set

of observed events, N , and the predicted number of events,

µi (ξ), the Poisson likelihood is calculated and the fit param-

eters ξ are optimized, namely,

L(N ; ξ) =

bins
∏

i=1

PPoisson(ni ;µi (E j , α j , θ j ; ξ)). (2)

While a binned likelihood method is used in the analysis of

the track-like events, an unbinned approach is used in the
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analysis of the cascade sample, which corresponds to the

limit of infinitesimal bin size.

To quantify the statistical significance of the best fit result,

a test statistic is defined as the ratio of the maximum likeli-

hood values for the background-only case (atmospheric and

astrophysical fluxes) and for the background-plus-signal case

(i.e., including the additional flux from dark matter decay),

namely:

TS := 2 × log

(

L(φ̂atm., φ̂astro, γ̂ , ˆmDM, ˆτDM)

L(
ˆ̂
φatm.,

ˆ̂
φastro, ˆ̂γ , τDM = ∞)

)

≥ 0. (3)

Since the signal-plus-background case has additional degrees

of freedom (four vs. two physical fit parameters), the TS

value will always be positive. The observed TS value of the

best-fit result is then compared to pseudo-experiments of the

background and different signal hypotheses to construct con-

fidence intervals.

3.3 Systematics

The systematic uncertainties of the two analyses arise from

the modelling of the dark matter halo, the detector and the

background fluxes. The dominant systematic uncertainty is

the poorly understood dark matter distribution in our galac-

tic halo. To investigate the resulting effect, the Burkert

halo parameters are varied within intervals of one standard

deviation while keeping their correlation fixed, by select-

ing β2 = −0.5 (see discussion in Ref. [61]). In addition,

the impact of a different halo profile, namely the Navarro–

Frenk–White [64,65] profile, with best-fit parameters from

Ref. [61], on the fit results is studied. The total effect of these

halo model variations on the derived lifetime limit is ± 10%.

This value is consistent across all the masses and decay chan-

nels and between the two analyses. The uncertainty on the

extragalactic flux component, which arises from the average

extragalactic dark matter density, is on the order of a few

percent [62] and is thus not considered here.

Detector simulation and background flux uncertainties are

treated differently between the two analyses. In the analysis

of track-like events, several nuisance parameters are fitted

simultaneously in order to absorb deviations from the base-

line expectation (see Ref. [2] for more details). They include

the normalization of the prompt atmospheric flux, cosmic-

ray flux model uncertainties, relative contribution from pion

and kaon decays to the atmospheric fluxes, optical properties

of the glacial ice, and the optical efficiency of the detector.

In the analysis of the cascade-like events, prompt atmo-

spheric flux uncertainties [51], errors in the event reconstruc-

tion due to ice model uncertainties [66], a 10% uncertainty on

the optical efficiency of the detector, and the impact of the

finite simulation statistics are taken into account. The data

Table 2 Best-fit results assuming the decay channels DM → H + ν

(cascades) and DM → Z + ν (tracks). Background p-values are stated

in brackets

Tracks Cascades

Bg. Signal+Bg. Bg. Signal+Bg.

mDM / PeV – 1.3 – 0.1

τDM / 1027s – 22 – 8.3

Astroph. norm.a 0.97 0.16 2.15 1.62

Spectr. index 2.16 1.99 2.75 2.81

TS = 2 × ∆LLH 6.7 (p = 0.035) 3.4 (p = 0.55)

aNormalization in units of 10−18 GeV−1 cm−2 sr−1 s−1

are reanalyzed under different assumptions within the sys-

tematic uncertainties and the spread of the resulting limits is

taken as the overall systematic uncertainty.

4 Results

4.1 Fit results

To address the question of whether the observed flux of cos-

mic neutrinos can be described significantly better by includ-

ing a component from decaying dark matter, the hard decay

channels DM → H + ν (cascades) and DM → Z + ν

(tracks) are fitted to the respective data. A dark matter sig-

nal would be expected to show up in both analyses. Also

note, that the observable energy distributions are smeared

out due to the limited detector resolution and the cosmologi-

cal red-shift. It is therefore sufficient to fit these single decay

channels in order to test whether a contribution from dark

matter is present and multiple tests are not necessary. The

obtained best-fit results and the corresponding p-values with

respect to the background only hypothesis are listed in Table

2. The fits of the background-only hypothesis agree well with

the results in Refs. [2,51]. Small differences arise due to a

different choice of bins (tracks) and the altered selection (cas-

cades).

The corresponding best-fit distributions in reconstructed

energy are shown in Figs. 3 and 4 together with the exper-

imental data. Note that different energy estimators are used

in the sub-samples (data-taking seasons) of the track analy-

sis [67]. It is therefore not possible to show the experimental

data in one histogram.

4.2 Interpretation of the fit results

Although the best-fit result in both analyses includes a non-

zero dark matter component, the results are not significant

(as both p-values are above 1%). More degrees of freedom in

the modelling of the astrophysical flux, e.g. adding a second
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Fig. 3 Cascade analysis: best-fit energy distribution for the signal

hypothesis (components stacked to illustrate the dark matter compo-

nent), with the best fit parameters listed in Table 2. The fit is performed

on un-binned data, but for visualization purposes a binning is applied

in the figure
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Fig. 4 Track analysis: best-fit energy distribution. While the low-

energy events are well described by the conventional atmospheric com-

ponent, the high-energy events are modelled by a combination of a weak

diffuse astrophysical flux and a component from decaying dark matter

(best-fit parameters in Table 2). The figure shows data recorded between

2012 and 2014 as they are based on the same energy estimator (see [67]

for more details). The remaining years are fitted simultaneously but are

not shown here

component, would further reduce the significance. Thus, the

result is not interpreted as a signal of dark matter decay.

Furthermore, a dark matter signal should be constant in time

but the fit of the track-like events shows fluctuations; see

Fig. 5: while those bins contributing most strongly in the fit

to the data from the first 3 years (e.g., 2010) coincide with

the approximate direction of the dark matter halo, such a

correlation is disfavoured by the data from 2012 to 2014.

Another interesting observation is the interplay of the dif-

fuse astrophysical flux and the dark matter component in

the fit of track-like events: Fig. 6 shows the profile likeli-

hood of the respective normalizations together with the fit

result of other selected parameters. The best-fit astrophysi-
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the direction where most of the dark matter signal is expected (line-of-

sight integral at half of the central value)
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Fig. 6 Track analysis: profile likelihood scans of the inverse dark mat-

ter lifetime (proportional to the signal strength) and the diffuse astro-

physical flux normalization in units of 10−18 GeV−1 cm−2 sr−1 s−1

cal normalization is significantly reduced compared to pre-

vious results [2]. A dark matter only scenario, where the

normalization of the astrophysical flux is zero, is however

disfavoured by 2∆L L H ≃ 1 compared to the best-fit point.

As expected, the best-fit dark matter mass that induces a

cut-off in the energy spectrum is found to be independent of

the diffuse astrophysical normalization while the dark matter

normalization is anti-correlated.
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For the Z + ν/H + ν channel, the limit was combined (solid grey line)

as described in the text. Between mDM ∼ 105 GeV and mDM = 1.5 ×

107 GeV the limit is obtained from the more sensitive track analysis.

The limit from the cascade analysis is shown as a dashed line and turns

out to be stronger above mDM ∼ 5 × 107 GeV

4.3 Lifetime limits

Since no significant dark matter signal is observed, lower lim-

its on the lifetime of the dark matter particle (corresponding

to upper limits on its signal strength) are derived. In order

to combine the two analyses, the lower limit on the life-

time is extracted from the respective analysis with the better

sensitivity (median limit obtained from background pseudo-

experiments) at each dark matter mass. The hard decay chan-

nels Z + ν (track analysis) and H + ν (cascade analysis) are

treated as the same channel because the resulting neutrino

spectra are indistinguishable within energy resolutions. Fur-

ther, limits for the decay channels νν̄, τ+τ−, µ+µ−, W +W −

and bb̄ are calculated only in the cascade analysis because

the energy resolution of the track analysis is not sufficient to

differentiate those channels from each other. The resulting

lower limits on the dark matter lifetime are shown in Fig. 7.

Note that for the bb̄ decay channel, the lower limit on the

lifetime increases steeply with the dark matter mass because

QCD fragmentation generates a soft tail of low-energy neu-

trinos (see Fig. 1) which become increasingly relevant for

large dark matter mass. Furthermore, no limit on the life-

time is calculated in this channel for mDM below 105 GeV

because the resulting decay spectrum becomes similar to the

atmospheric background fluxes and the respective uncertain-

ties would have a major effect on the obtained limit. The

enhanced limits at mDM ∼ 107 GeV, correspond to the non-

observation of electron neutrino events from the expected

Glashow resonance [68]. For the track-like sample, all nui-

sance parameters are fitted to their expectation values within

one standard deviation, and the effect on the signal hypothe-
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Fig. 8 Comparison of the lower lifetime limits with results obtained

from gamma-ray telescopes: HAWC (Dwarf Spheroidal Galaxies) [44],

HAWC (Galactic Halo/Center) [45] and Fermi/LAT [47]

sis is found to be negligible. For the cascade-like sample, the

overall impact of the systematics is roughly 10–15% for dark

matter masses below 5 PeV and 1% for those above it. The

limits shown here include a degradation due to 1σ systematic

variation.

5 Conclusions

Two analyses on statistically independent datasets searching

for a contribution from decaying dark matter to the astro-

physical neutrino flux have been presented. It has been shown

that the observed high-energy neutrino flux can be described

equally well by a combination of a dark matter component

and a diffuse astrophysical flux with a power–law energy

spectrum. However, neither analysis identified a significant

dark matter excess in the data, and models in which the cos-

mic neutrinos flux arises entirely from dark matter decay are

disfavoured.

From the non-observation of a dark matter signal, lower

limits are set on the lifetime of dark matter particles with

mass above 104 GeV. For such heavy particles these limits

are presently the strongest on the dark matter lifetime (see

Fig. 8).
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