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We investigate the anomalous interactions of heavy up-type quark �� in a �� collision at the LHC.We have obtained 95% con�dence
level (CL) limit of ���� (� = �, �) anomalous coupling by taking into account three forward detector acceptances: 0.0015 < � < 0.15,0.0015 < � < 0.5, and 0.1 < � < 0.5.

1. Introduction

�e StandardModel (SM) ensures a conspicuously successful
description of high energy physics at an energy scale of up to a
fewhundredGeV.However, the number of fermion families is
arbitrary in the StandardModel (SM).�e only limitation on
number of fermion families comes from asymptotic freedom� ≤ 8. We should use at least three fermion families to
obtain CP violation [1] in the SM. CP violation could explain
the matter-antimatter asymmetry in the universe. �e SM
with three families is not enough to show the reel magnitude
for matter-antimatter asymmetry of universe. However, this
problem can be solved when the number of family reaches
four [2]. Also, the existence of three or four families is equally
consistent with the updated electroweak precision data [3, 4].
�e possible discovery of the fourth SM family may help to
respond to some unanswered questions about electroweak
symmetry breaking [5–7], fermion’s mass andmixing pattern
[8–10], and �avor structure of the SM [11–14].

Higgs boson is a theoretical particle that is suggested by
the SM. Many experiments were conducted so far to detect
Higgs boson. A boson consistent with this boson was a
detected in 2012, but it may take quite time to demonstrate
certainly whether this particle is indeed a Higgs boson. If
the lately surveyed 125GeV boson is Higgs boson of the
SM [15, 16], the presence of the fourth family would be
disfavoured [17–19]. Besides, a theory with extended Higgs
sector beyond the SM [20] can still include a fourth fermion

family even though the 125GeV boson is one of the forecasted
extended Higgs bosons. Moreover, the other models estimate
the presence of a heavy quark as a partner to the top quark
[21, 22].

Current bounds on the masses of the fourth SM fermion
families are given as follows: 
�� > 670GeV [23], 
�� >611GeV [24], 
�� > 100.8GeV, 


]
� > 90.3(80.5)GeV

for Dirac (Majorana) neutrinos [25]. When we analyze our
results we have taken into account LHC limits in√� = 7TeV.
For this purpose, we have assumed �� mass to be greater than
its current experimental limits. �e fourth SM quarks would
be produced abundantly in pairs at the LHC via the strong
interaction for masses below O(1 TeV) [26–29], with fairly
large cross sections. �e exact designation of their properties
can ensure important advantage in the determination of
new physics which is established upon high energy scales.
Moreover, we can expect a crucial addition from anomalous
interactions for production of fourth family quarks. �ese
interactions have been investigated at lepton colliders [30, 31],�
 colliders [32], 
� colliders [10, 33–35], and hadron colliders
[8, 28, 36–45].

�e LHC has high energetic proton-proton collisions
with high luminosity. It provides high statistics data. We
expect that this collider will answer many open questions in
particle physics. Research of exclusive production of proton-
proton interactions opens a new �eld of surveying high
energy photon-induced reactions such as photon-photon and
photon-proton interactions. ATLAS andCMSCollaborations
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established a program of forward physics with new detectors
located in a region almost 100m–400m from the central
detectors. �ese detectors are called very forward detectors.
�ey can detect intact protons which are scattered a�er the
collisions. Very forward detectors can label intact protons
with some momentum fraction loss given the formula � =(|�⃗| − |�⃗�|)/|�⃗|. Here, �⃗� is the momentum of intact scattered
proton a�er the collision and �⃗ is the momentum of incom-
ing proton. ATLAS Forward Physics Collaboration (AFP)
proposed an acceptance of 0.0015 < � < 0.15 for the
forward detectors [46]. Two types of measurements will be
planned to examine with high precision using the AFP [47–
49]: �rst, exploratory physics (anomalous couplings between� and� or� bosons, exclusive production, etc.) and second,
standard QCD physics (double Pomeron exchange, exclusive
production in the jet channel, single di�raction, �� physics,
etc.). �ese studies will develop the HERA and Tevatron
measurements to the LHC kinematical region. Also, CMS-
TOTEM forward detector scenario has acceptance regions0.1 < � < 0.5 and 0.0015 < � < 0.5 [50, 51]. �e TOTEM
experiment at the LHC is concentrated on the studies of the
total proton-proton cross-section, the elastic �� scattering,
and all classes of di�ractive phenomena. Detectors housed in
RomanPots which can bemoved close to the outgoing proton
beams allow to trigger on elastic and di�ractive protons
and to determine their parameters like the momentum loss
and the transverse momentum transfer. Moreover, charged
particle detectors in the forward domains can detect nearly all
inelastic events. Together with the CMS detector, a large solid
angle is covered enabling precise studies [52–54].�e forward
detectors of ATLAS and CMS were not built in the �rst
phase of the LHC. However, the CMS forward detectors were
commissioned in 2009.�e �rst measurement of the forward
energy �ow has been carried out and forward jets at |�| > 3
have been analyzed for the �rst time at Hadron Colliders
[55]. Also, two photon reactions �� → ���� → ��−�+�,�� → ���� → �
−
+� were examined with the help of
forward detectors by the CMS Collaboration in 2012 [56, 57].
On the other hand, AFP Collaboration has not yet installed
the forward detectors. �e forward detectors are planned
to be built 210m away from the central detectors in 2013.
Additionally, 420m additional detectors will be installed if
physics motivates it later [58]. Forward detectors allow to
determine high energy photon-photon process. �is process
occurred by two almost real photons with low virtuality
emitted from protons. �e proton structure does not spoil
in this process due to low virtuality of photons. �erefore,
intact scattered protons a�er the collision can be detected by
the aid of the forward detectors. Searching new physics via
photon-induced reactions have been studied in earlier works
[59–69].

Photon-photon interaction can be explained by equiva-
lent photon approximation [70, 71]. Emitted quasireal pho-
tons by protons with low virtuality produce an � object via�� → ���� → ��� process. �e cross section of this
process can be found by

�� = ∫ ������ ��̂��→� (�) ��, (1)

where � is the invariant mass of the two-photon system,�̂��→� is the cross section for subprocess �� → �,

and ����/�� is the luminosity spectrum of photon-photon
collisions. ����/�� can be given as follows [63]:

������ = ∫	2max

	21,min

��21 ∫	2max

	22,min

��22

× ∫
max


min

���2��1 (�24� , �21)�2 (�, �22)
(2)

with

�min = MAX( �2(4�max#, �min#)) , �max = �max#,
�2

max
= 2GeV2,

(3)

where �1 and �2 are functions of equivalent photon energy
spectrum.�ephoton spectrumwith energy#� and virtuality�2 is given by the following [70]:

� = ���#���2 = %& 1#��2 [(1 − #�# )(1 − �2
min�2 )-�

+ #2�2#2-�] ,
(4)

where

�2
min

= 
2
#2�# (# − #�) , -� = 4
2
?2� + �2?2�4
2
 + �2 ,

?2� = ?2��2
 = (1 + �2�20)
−4, -� = ?2�,

�20 = 0.71GeV2.

(5)

�e terms in the previous equations are the following: # is
the energy of the proton beam which is related to the photon
energy by #� = �#, 

 is the proton mass, -� is function of
the magnetic form factor, and -� is function of the electric

form factor and �2
 = 7.78 is the proton magnetic moment.

In this study, we have examined the anomalous interac-
tion of up-type �� quark via the �� → ���� → ����
(� = �, �) process by considering three forward detector
acceptances; 0.0015 < � < 0.15, 0.0015 < � < 0.5, and0.1 < � < 0.5.
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2. Anomalous Interaction of �� Quark

�e fourth family �� quark can interact with the ordinary

quarks �� via SM gauge bosons (�, @,�0,�±).�e lagrangian
of this interaction is expressed by

� = −@����������A� − @���B�����?��
− @�2 ���� (@� − @��5) ���0�
− @�2√2 sin C�D��	����� (1 − �5) ���±� + ℎ.�.,

(6)

where @� is the electromagnetic coupling constant, @� is the
strong coupling constant, @� is the weak neutral current
coupling constant, @� and @� are the vector and axial-vector
type couplings of the neutral weak current with �� quark, B�
are the Gell-Mannmatrices, and��� is the electric charge of ��
quark.�evector �eldsA�,?�,�0�, and�±� represent photon,
gluon, �0-boson, and �±-boson, respectively. Finally, theD��	�(�� = �, F, �, F�) are the elements of the extended
CKM mixing matrix. In [19] they found that the maximum
value of the fourth generation quark mass is ∼300GeV
for a Higgs boson mass of ∼125GeV, which is already in
con�ict with bounds from direct searches. �erefore, we
have considered that �� is a heavy quark instead of fourth
generation quark. �e �� quark is heavier than the top quark.
It is accepted as the heaviest particle, and it is couple the �avor
changing neutral currents, leading to an enhancement in the
resonance processes at the LHC. �e interaction Lagrangian
for the anomalous interactions between the �� quark, ordinary
quarks �, �, �, and the gauge bosons �, @,� is given as follows:

� = ∑
��=�,�,�

I���Λ ���@�����]��-�] + ∑
��=�,�,�

I���Λ @�2 ����]����]

+ ∑
��=�,�,�

I���Λ @�����]B���?�]� + ℎ.�.,
(7)

where I�, I�, and I� are the anomalous couplings with
photon, � boson, and gluon, respectively. Λ is new physics
scale and ��] = K[��, �]]/2. -�], ��], and ?�]� are the �eld
stress tensor of the photon,� boson, and gluons, respectively.
Jets that originate from light quarks (�, �, and �) di�er
from heavy quarks (� and F) in the �nal state at the LHC.
�erefore, anomalous I�� coupling can be distinguished fromI�� coupling via the process �� → ��, if anomalous
couplings I�� are not equal to I��. It can be understood that
the bound on product I��×I�� through the process �� → ��
can be also examined. However, we consider that I�� is equal
to I�� in our paper. For the fourth family leptons L�L� coupling
was calculated in the literature for the photon-photon fusion
at the LHC [72]. Also, F��� coupling can be examined through
the process �� → ��(� = �, �). But study of the F��� andF��� couplings is di�cult for this process since � and � quarks
cannot be distinguished from each other.

Using interaction Lagrangian in (7) anomalous decay
widths of �� quarks can be obtained as follows:

Γ (�� N→ ��) = 2I2�Λ %��2��
3�� , (8)

where
�� is themass of the �� quark and %� is the electromag-
netic coupling constant.

�e subprocess �� → �� consists of � and � channel
tree-level SM diagrams. Additionally, there are two Feynman
diagrams containing �� quark propagators in � and � channels.
�e whole polarization summed amplitude square of this
process has been calculated as follows:

|O|2 = 8@4��4�� ( �� + �� ) − 64@4��4��(I�Λ )2

× ( �2� − 
2�� +
�2� − 
2�� ) + 128@4��4��(I�Λ )4

× [[
2���
2��(� − 
2��) (� − 
2��) + (�� + 
2���)

×( �2
(� − 
2��)2 +

�2
(� − 
2��)2)

]] ,

(9)

where �, �, and � are the Mandelstam variables and we omit
the mass of ordinary quark (�� = �, �). We have supposed√� = 14TeV to be center ofmass energy of the proton-proton
system during calculations.

�e leading order background process comes fromQCD-
induced reactions (pomeron exchange). Pomerons emitted
from incoming protons can interact with each other, and
they can occur at the same �nal state. However, survival
probability for a pomeron exchange is quite smaller than
survival probability of induced photons. �erefore, pomeron
background is expected to have minor e�ect on sensitivity
bounds [73, 74].

In Figure 1, we have plotted the SM and total cross
sections of �� → ���� (� = �, �) process as a function��,min(�� cut) transverse momentum of �nal state quarks for
three forward detector acceptances: 0.0015 < � < 0.15,0.0015 < � < 0.5, and 0.1 < � < 0.5. Here, 
�� and I�/Λ
are taken to be 700GeV, 1 TeV −1, respectively. From these
�gures, we see that the SM and total cross sections can be
distinguished from each other at large values of the �� cut.
�en, it can be understood that imposing higher values of�� cut can reduce the SM background. �ese cuts allow to
obtaining better sensitivity bounds.

In this motivation, we show the SM event numbers of�� → ���� for di�erent values of �� cut and luminosities
in Tables 1, 2, and 3 for acceptance regions 0.0015 < � < 0.15,0.0015 < � < 0.5, and 0.1 < � < 0.5, respectively. During
statistical analysis we use two di�erent techniques. In the �rst
approach we apply cuts on the �� of the �nal state quarks
to suppress the SM cross section. We make the number of
SM event smaller than 0.5. �en it is very appropriate to set
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Figure 1: �e SM and total cross sections of �� → ���� (� = �, �) process as a function transverse momentum cut (��,min
) on the �nal state

quarks for three forward detector acceptances: 0.0015 < � < 0.15, 0.0015 < � < 0.5, and 0.1 < � < 0.5. 
�� and I�/Λ is taken to be 700GeV,
1 TeV−1, respectively.
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(b) 0.0015 < � < 0.5
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Figure 2: �e parameter plane of
�� and I�/Λ at 95% CL using Poisson analysis for three di�erent luminosities: 30, 50, and 100 fb−1. In (a)
and (b), we use the di�erent �� values for every acceptance region to obtain less than 0.5 event number of SM: (a) �� = 380GeV for acceptance
region 0.0015 < � < 0.15; (b) �� = 452GeV for acceptance region 0.0015 < � < 0.5. In (c), we applied a �� cut of �� = 50GeV for acceptance
region 0.1 < � < 0.5.
bounds on the couplings using a Poisson distribution since
the number of SM events with these cuts is small enough.
From our calculations, �� cuts are obtained as 380GeV and
452GeV for two acceptance regions 0.0015 < � < 0.15 and0.0015 < � < 0.5 in order to be less than 0.5 the number of SM
event, respectively. Since the invariant mass of the �nal state
quarks for 0.1 < � < 0.5 is greater than 1400GeV, the SMcross
section is very small. Hence, it does not need a high �� cut
for 0.1 < � < 0.5 acceptance region. Moreover, ATLAS and

CMS have central detectors with a pseudorapidity |�| < 2.5
for the tracking system at the LHC. �erefore, for all of the
calculations in this paper, we also apply |�| < 2.5 cut. �e
parameter plane
��−I�/Λ is plotted at 95%CLusing Poisson

analysis for the three di�erent acceptances 0.0015 < � <0.15, 0.0015 < � < 0.5, and 0.1 < � < 0.5 in Figure 2. In
Figures 2(a) and 2(b), we use the di�erent �� values for every
acceptance region to obtain less than 0.5 event number of SM:
(a) �� = 380GeV for 0.0015 < � < 0.15; (b) �� = 452GeV
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Figure 3:�e parameter plane of
�� and I�/Λ for the two di�erent acceptances: 0.0015 < � < 0.15 and 0.0015 < � < 0.5 at 95%CL using X2
analysis. Here, ��,min

transverse momentum cuts (��,min
) are taken to be 50, 100, and 150GeV, respectively.

Table 1:�e SM event numbers of�� → ���� process for di�erent
values of �� transverse momentum cuts (��,min

) and luminosities.
Here, acceptance region is taken to be 0.0015 < � < 0.15.
��,min

(GeV) 30 fb−1 50 fb−1 100 fb−150 124.05 206.75 413.5100 14.68 24.46 48.94150 3.58 5.97 11.95200 1.21 2.02 4.05300 0.23 0.37 0.75400 0.06 0.1 0.19

Table 2:�e SMevent numbers of�� → ���� process for di�erent
values of �� transverse momentum cuts (��,min

) and luminosities.
Here, acceptance region is taken to be 0.0015 < � < 0.5.
��,min

(GeV) 30 fb−1 50 fb−1 100 fb−150 134.9 224.8 449.6100 17.5 29.2 58.4150 4.69 7.8 15.6200 1.73 2.9 5.8300 0.39 0.65 1.3400 0.12 0.21 0.42500 0.05 0.08 0.16

for 0.0015 < � < 0.5 as mentioned above. In Figure 2(c), we
applied a �� cut of �� = 50GeV for 0.1 < � < 0.5 for detection
of the �nal state quarks in central detectors.

Table 3:�e SMevent numbers of�� → ���� process for di�erent
values of �� transverse momentum cuts (��,min

) and luminosities.
Here, acceptance region is taken to be 0.1 < � < 0.5.
��,min

(GeV) 30 fb−1 50 fb−1 100 fb−150 0.037 0.06 0.12100 0.036 0.057 0.115150 0.034 0.05 0.1

Second analyze technique, we have used to one-

parameter X2 analyze when the SM event number larger than10. �e X2 function is given as follows:

X2 = (�SM − �NP�SMY )2, (10)

where �SM is the cross section of SM, �NP is the cross section
containing new physics e�ects, and Y = 1/√�SM is the
statistical error. In Figure 3, the parameter plane 
�� − I�/Λ
is plotted at 95% CL using X2 analysis for the two di�erent
acceptances 0.0015 < � < 0.15 and 0.0015 < � < 0.5. For the0.1 < � < 0.5 acceptance region we cannot use X2 analysis
due to SM event number being smaller than 10 as seen from
Table 3. We have found from Figure 3 that 0.0015 < � <0.5 acceptance region provides more restrictive limit than0.0015 < � < 0.15 acceptance region because new physics
e�ect comes from high energy region.



6 Advances in High Energy Physics

3. Conclusions

Forward detector equipments at the LHC can discern intact
scattered protons a�er the collision. Hence, we can distin-
guish exclusive photon-photon processeswith respect to deep
inelastic scatteringwhich damages the proton structure. Since
photon-photon interaction has very clean environment, it
is important to examine new physics for a given detector
acceptance region through photon-induced reactions. More-
over, this interaction can isolate to I� coupling from the
other gauge boson couplings. In these motivations, we have
researched the anomalous interaction of �� quark via �� →���� → ���� process at the LHC to investigate anomalous���� coupling. Our results show that the sensitivity of the

anomalous I�/Λ = 0.85TeV −1 coupling can be reached at√� = 14TeV and � int = 100�−1 for the 
�� = 650GeV,0.0015 < � < 0.5. As a result, the exclusive �� → ���� →���� reaction at the LHC o�ers us an important opportunity
to probe anomalous couplings of �� quark.
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[37] O. Çakır, İ. T. Çakır, H. Duran Yıldız, and R. Mehdiyev,
“Prospects for the discovery of 4th family quarks with the
ATLAS detector,” European Physical Journal C, vol. 56, pp. 537–
543, 2008.
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[42] M. Şahin, S. Sultansoy, and S. Turkoz, “Search for the fourth
standardmodel family,” Physical Review D, vol. 83, no. 5, Article
ID 054022, 2011.

[43] B. Holdom andQ-S. Yan, “Searches for the �� of a fourth family,”
Physical ReviewD, vol. 83, no. 11, Article ID 114031, 5 pages, 2011.

[44] B. Holdom, “�� at the LHC: the physics of discovery,” Journal of
High Energy Physics, vol. 2007, article 063, 0703, 2007.

[45] M. Geller, S. Bar-Shalom, and G. Eilam, “�e need for new
search strategies for fourth generation quarks at the LHC,”
Physics Letters B, vol. 715, no. 1–3, pp. 121–128, 2013.

[46] M. G. Albrow, R. B. Appleby, M. Arneodo et al., “�e FP420
R&D project: higgs and new physics with forward protons at
the LHC,” http://arxiv.org/abs/0806.0302.

[47] ATLAS Collaboration, “Letter of Intent for the phase-i upgrade
of the ATLAS experiment,” Tech. Rep. CERN-LHCC-2011-
012. LHCC-I-020, �e European Organization for Nuclear
Research, Geneva, Switzerland, 2011.

[48] L. Adamczyk, R. B. Appleby, P. Bank et al., “AFP: a proposal to
install proton detectors at 220m aroundATLAS to complement
the ATLAS high luminosity physics program,” Tech. Rep. ATL-
COM-LUM-2011-006, CERN, 2011.

[49] O. Kepka, C. Royon, L. Schoe�el, R. Staszewski, M. Trzebinski,
and R. Zlebcik, “Physics cases within the AFP project,” Tech.
Rep. ATL-COM-PHYS-2012-775, CERN, 2012.

[50] O.Kepka andC. Royon, “AnomalousWW� coupling in photon-
induced processes using forward detectors at the CERN LHC,”
Physical Review D, vol. 78, no. 7, Article ID 073005, 2008.

[51] V.Avati andK.Osterberg, “Acceptance calculationsmethods for
low-beta∗optics,” Tech. Rep. CERN-TOTEM-NOTE-2005-002,
2006.

[52] �e TOTEM Collaboration, “First measurement of the total
proton-proton cross-section at the LHC energy of √� = 7TeV,”
Europhysics Letters, vol. 96, no. 2, article 21002, CERN-PH-EP-
2011-158, 2011.

[53] �e TOTEM Collaboration, “Measurement of the forward
charged-particle pseudorapidity density in�� collisions at√� =7TeV with the TOTEM experiment,” Europhysics Letters, vol.
98, no. 2, article 31002, CERN-PH-EP-2012-106, 2012.

[54] �e TOTEM Collaboration, “Measurement of proton-proton
elastic scattering and total cross-section at√� = 7TeV,” CERN-
PH-EP-2012-239, 2012.

[55] D. Volyanskyy, “Forward physics with the CMS experiment at
the large hadron collider,” http://arxiv.org/abs/1011.5575.

[56] CMS Collaboration, “Exclusive �� → � + �− production in
proton-proton collisions at √� = 7TeV,” Journal of High Energy
Physics, vol. 2012, article 052, 1201, 2012.

[57] CMS Collaboration, “Search for exclusive or semi-exclusive ��
production and observation of exclusive and semi-exclusive
e+e− production in pp collisions at√� = 7TeV,” Journal of High
Energy Physics, vol. 2012, article 080, 2012.

[58] C. Royon, “�e ATLAS forward physics project,” http://arxiv
.org/abs/1302.0623.

[59] V. A. Khoze, A. D. Martin, and M. G. Ryskin, “Prospects for
new physics observations in di�ractive processes at the LHC
and Tevatron,” European Physical Journal C, vol. 23, no. 2, pp.
311–327, 2002.

[60] N. Schul and K. Piotrzkowski, “Detection of two-photon exclu-
sive production of supersymmetric pairs at the LHC,” Nuclear
Physics B—Proceedings Supplements, vol. 179–180, no. 2, pp.
289–297, 2008.

[61] S. M. Lietti, A. A. Natale, C. G. Roldao, and R. Rosenfeld,
“Searching for anomalous higgs couplings in peripheral heavy
ion collisions at the LHC,” Physics Letters B, vol. 497, no. 3–4,
pp. 243–248, 2001.

[62] E. Chapon, C. Royon, and O. Kepka, “Anomalous quartic����, ����, and trilinear ��� couplings in two-photon
processes at high luminosity at the LHC,” Physical Review D,
vol. 81, no. 7, Article ID 074003, 2010.
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[64] İ. Şahin and S. C. İnan, “Probe of unparticles at the LHC in
exclusive two lepton and two photon production via photon-
photon fusion,” Journal of High Energy Physics, vol. 2009, article
069, no. 9, 2009.
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[68] İ. Şahin and M. Köksal, “Search for electromagnetic properties
of the neutrinos at the LHC,” Journal of High Energy Physics, vol.
2011, article 100, 2011.



8 Advances in High Energy Physics
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