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We present a search for the lepton flavor violating decays Bþ → Kþτ�l∓, with l ¼ ðe; μÞ, using the full
data sample of 772 × 106 BB̄ pairs recorded by the Belle detector at the KEKB asymmetric-energy eþe−

collider. We use events in which one B meson is fully reconstructed in a hadronic decay mode. We find no
evidence for B� → K�τl decays and set upper limits on their branching fractions at the 90% confidence
level in the ð1 − 3Þ × 10−5 range. The obtained limits are the world’s best results.
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Recently, there has been a resurgence of interest in the
study of leptoquark fields in light of discrepancies in
semileptonic B decays [1], collectively known as B-physics
anomalies, which challenge the assumed lepton flavor
universality of fundamental interactions. These measure-
ments have been obtained studying two different quark
transitions: b → cτν [2] and b → sll, where l ¼ ðe; μÞ. If
confirmed by further measurements, this would be clear
evidence of new physics (NP) in which new heavy particles

couple preferentially to second and third generation lep-
tons. Many extensions of the standard model that include
violation of lepton flavor universality predict lepton flavor
violating processes in hadron decays with charged leptons
in the final state [3]. In particular, the vector leptoquark U1

has been identified as the only single-mediator solution
[4,5]. In the minimal scenario, U1 provides an interesting
prediction, i.e., lower bounds on the lepton flavor violating
b → sτ∓μ� decay modes, for example BðB → KτμÞ >
0.7 × 10−7 [6]. The branching fractions for the two lτ
charge combinations are not in general the same, as they
depend on the details of the physics mechanism producing
the decay.
Upper limits on the branching fractions for Bþ →

Kþτ�l∓ decays have been previously set at the 90%
confidence level (C.L.) using hadronic B tagging by the
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BABAR Collaboration between 1.5 × 10−5 and 4.5 × 10−5

[8]; the LHCb Collaboration has studied a single mode,
using Bþ mesons from B�0

s2 → BþK− decays, setting a limit
BðBþ → Kþτþμ−Þ < 3.9 × 10−5 at the 90% C.L. [9].
In this Letter, we report a search for Bþ → Kþτ∓l�

decays using the full Belle data sample recorded at the
ϒð4SÞ resonance. The inclusion of the charge-conjugate
decay mode is implied. This is the first such search
from Belle.
The analysis is based on the full data sample of 772 ×

106 BB̄ pairs collected with the Belle detector [10] at the
KEKB asymmetric-energy eþe− collider [11]. The Belle
detector is a large-solid-angle spectrometer, which includes
a silicon vertex detector, a 50-layer central drift chamber
(CDC), an array of aerogel threshold Cherenkov counters
(ACC), time-of-flight scintillation counters, and an electro-
magnetic calorimeter (ECL) composed of CsI(Tl) crystals
located inside a superconducting solenoid coil that provides
a 1.5 T magnetic field. An iron flux return located outside
the coil is instrumented to detect K0

L mesons and iden-
tify muons.
The analysis procedure is developed using Monte Carlo

(MC) simulation based on events generated with EvtGen

[12], which includes final-state radiation effects simulated
by PHOTOS [13], and the detector response is simulated by
GEANT3 [14]. The Bþ → Kþτ�l∓ decays are generated
using a uniform three-body phase space model (PHSP); we
also consider variations in the linear combinations of the
relevant operators for the b → sτl transitions Oi and the
relative Wilson coefficients Cτl

i , where i ¼ 9; 10; S; P [15].
In each event, we require a fully reconstructed hadronic

B� decay, which we refer to as the tagged B-meson
candidate or Btag. This is done using the full event
interpretation (FEI) algorithm [16], a machine-learning
algorithm developed for B-tagged analyses at Belle and
Belle II. It supports both hadronic and semileptonic
tagging, reconstructing B mesons across more than 4000
individual decay chains. The training is performed in a
hierarchical manner: final-state particles are first recon-
structed from detector information, then unstable particles
(e.g., D, D�) are built up from these particles, and then
reconstruction of B mesons is performed last. For each Btag

candidate reconstructed by the FEI, a value of the final
multivariate classifier output, ΣFEI, is assigned. ΣFEI is
distributed between zero and one, representing candi-
dates identified as being backgroundlike and signallike,
respectively.
For the hadronic FEI, the minimal number of tracks per

event satisfying certain quality criteria is set to three,
as the vast majority of B-meson chains include at least
three charged particles, and such a criterion is use-
ful for suppressing background from non-BB̄ events.
Requirements are placed on the impact parameters to
ensure close proximity to the interaction point (IP), less
than 0.5 cm in the transverse plane and less than 2.0 cm

along the z axis (parallel to the eþ beam). ECL clusters that
are used for γ reconstruction are required to satisfy a
region-dependent energy threshold criterion. All the inter-
mediate states (π0, J=ψ , K0

S, and Dð�Þ mesons) must pass
loose cuts on the reconstructed invariant mass and only the
best candidates in terms of ΣFEI are kept. The FEI results in
many Btag candidates per event. The number of these
candidates is reduced with selections on the beam-energy-

constrained mass Mbc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE�

beam=c
2Þ2 − ðp�

Btag
=cÞ2

q
, and

the energy difference ΔE ¼ E�
Btag

− E�
beam, where E�

beam is
the beam energy, and E�

Btag
and p�

Btag
are the energy and

momentum of the Btag candidate in the c.m. rest frame,
respectively. The criteria applied are Mbc > 5.27 GeV=c2

and jΔEj < 0.1 GeV. Finally, the candidate with the high-
est Btag classifier output, ΣFEI, is selected and a loose
requirement ΣFEI > 0.001, provides further background
rejection with little signal loss.
We then search for the signal B → Kτl decay in the rest

of the event, which we refer to as the signal B-meson
candidate or Bsig. The notation B → Kτl refers to one of
the following four final states that we consider, where in
addition to the kaon of opposite charge to Btag we associate
the primary lepton, μ or e: Bþ → Kþτþμ− and Bþ →
Kþτþe− defined as OSμ;e modes because the kaon and the
primary lepton have opposite charge, and Bþ → Kþτ−μþ
and Bþ → Kþτ−eþ, defined as SSμ;e modes. In all cases,
we require that the τ decays to τ → eνν̄, τ → μνν̄, or
τ → πν. The combined branching fraction for these decays
is 46% [17]. The τ → ρν mode, despite not being explicitly
reconstructed, significantly contributes to the τ → πν can-
didates—by roughly one half—because of its large branch-
ing fraction (∼25%).
We reconstruct Bþ → Kτ�l∓ decays by selecting three

charged particles that originate from the vicinity of the IP
and are not associated with the Btag. We require impact
parameters less than 1.0 cm in the transverse plane and less
than 4.0 cm along the z axis. To reduce backgrounds from
low-momentum particles, we require that tracks have a
minimum transverse momentum of 100 MeV=c. From the
list of selected tracks, we identify Kþ candidates using a
likelihood ratioRK=π ¼ LK=ðLK þ LπÞ, where LK and Lπ

are the likelihoods for charged kaons and pions, respec-
tively, calculated based on the number of photoelectrons in
the ACC, the specific ionization in the CDC, and the time
of flight as determined from the time-of-flight scintillation
counters. We select kaons by requiring RK=π > 0.6, which
has a kaon identification efficiency of 83% and a pion
misidentification rate of 5%. Similarly, we select pions by
requiring Rπ=K > 0.6, which has a pion identification
efficiency of 84% and a kaon misidentification rate of 6%.
Muon candidates are identified based on information

from the K0
L and muon subdetector (KLM). We require that

candidates have a momentum greater than 0.8 GeV=c

PHYSICAL REVIEW LETTERS 130, 261802 (2023)

261802-2



(enabling them to sufficiently penetrate the KLM), and a
penetration depth and degree of transverse scattering
consistent with those of a muon [18]. The latter information
is used to calculate a normalized muon likelihood ratio
Rμ ¼ Lμ=ðLμ þ LK þ LπÞ, where Lμ is the likelihood for
muons, for which we require Rμ > 0.9. For this require-
ment, the average muon detection efficiency is 89%, with a
pion misidentification rate of 1.5% [19].
Electron candidates are required to have a momentum

greater than 0.5 GeV=c and are identified using the ratio of
ECL cluster energy to the CDC track momentum, the
shower shape in the ECL, the matching of the track with the
ECL cluster, the specific ionization in the CDC, and the
number of photoelectrons in the ACC. This information is
used to calculate a normalized electron likelihood ratio
Re ¼ Le=ðLe þ LhadronsÞ, where Lhadrons is a product of
hadron likelihoods, for which we require Re > 0.9. This
requirement has an efficiency of 92% and a pion mis-
identification rate below 1% [20].
After selecting one charged kaon, one prompt lepton

(electron or muon), and the τ daughter (electron, muon, or
pion) with the appropriate charge combination, we require
that there are no other tracks than the ones associated to Btag

or Bsig. The charged kaon and the prompt lepton are
uniquely determined to minimize χ2 of the Bsig vertex fit
for the prompt tracks. In case there are two possibilities in τ
daughter particle identification, τ leptonic decay has prior-
ity. Unlike other B decays involving τs (e.g., B → τν,
B → D�τν), the B → Kτl channel has the unique property

of having the one or two neutrinos coming from the τ itself,
allowing the signal yield to be extracted using the recoil
mass,Mrecoil, which should peak at the mass of the τ lepton.
This variable is easily obtained at B factories, because of

the known initial kinematics and the full reconstruction of
the other B in the event. In fact, if we consider the Bsig, the
4-momentum of the τ can be written as

pτ ¼ pBsig
− pK − pl; ð1Þ

where pBsig
is not known a priori. In the frame where the

ϒð4SÞ resonance is at rest, the two B mesons are back to
back, hence

p�Btag
¼ −p�Bsig

: ð2Þ

Furthermore, the two Bs have the same energy, which is
half the energy

ffiffiffi
s

p
of the ϒð4SÞ:

E�
Btag

¼ E�
Bsig

¼
ffiffiffi
s

p
2

: ð3Þ

In order to obtain the best resolution on the B variables, we
replace E�

Btag
with E�

beam, but use the reconstructed p�
Btag

rather than the average value p�
beam ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�2
beam=c

2 −m2
Bc

2
p

.
Using the Eq. (2) condition and the substitution of
E�
B ¼ E�

beam in Eq. (1), we obtain

� p�τ ¼ −p�Btag
− p�K − p�l

Eτ ¼ E�
beam − E�

K − E�
l

⇒ M2
recoil ¼ m2

τ ¼ m2
B þm2

Kl − 2ðE�
beamE

�
Kl=c

4 þ p�
Btag

p�
Kl cos θ=c

2Þ; ð4Þ

where θ is the angle between p�Btag
and p�Kl (¼ p�K þ p�l).

The main source of background consists of Cabibbo-
favored transitions from BþB− events. For the OS con-
figurations, where the primary lepton charge is opposite to
the Bsig charge, the dominant background comes from
semileptonic D decays: Bþ → D̄0ð→ Kþl−ν̄lÞXþ. On the
other hand, for the SS configurations the primary lepton
and the Bsig have the same charge and the semileptonic Bþ

decays like Bþ → D̄0ð→ KþX−ÞXlþνl provide the three
charged particles for the Bsig candidates. Events compatible
with a Bþ

sig → D̄0ð→ Kþπ−ÞXþ decay are rejected
by vetoing candidates in the range 1.81 GeV=c2 <
mKþt− < 1.91 GeV=c2, where mKþt− is the invariant mass
of the kaon Kþ and the oppositely charged particle t−, that
can be the prompt lepton or the τ daughter depending on the
charge configuration. In the first case, only the Kτμ modes
show such a D0 component because of the larger proba-
bility to identify a pion as a muon rather than an electron. In
the SS case, the D0 peak is much more prominent and

relates to the τ → π mode and is independent of the flavor
of the primary lepton.
We further improve the signal selection using a boosted

decision tree (BDT) classification. Two classifiers are
trained for the background suppression. The first one is
optimized to reduce the BB̄ events and uses as inputs some
kinematic information as well as the topology of the Bsig

and information on the set of ECL clusters that are not used
for the Bsig and Btag reconstruction. In particular we use the
following: the invariant mass mKþt− , which helps in
suppressing the combinatorial background from charm
decays; the number of ECL clusters that are not associated
with the reconstructed event and the sum of their energies;
the extended Fox-Wolfram moments [21]; the distance
from the IP of the signal vertex; and the distance of closest
approach between the primary kaon and each of the other
two signal tracks. For each mode only the ten most
important variables are kept for the final training, the
metrics being the information gain provided by each feature
in all the decision trees used for the classifier. The threshold
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t on the BDT response is optimized using a figure of merit
[22], defined as

F ðtÞ ¼ ϵðtÞ
3
2
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NbkgðtÞ
p ; ð5Þ

where ϵðtÞ is the efficiency for the cut t, Nbkg represents the
number of background events surviving the cut t in the
signal region defined as 1.68 GeV=c2 < Mrecoil <
1.87 GeV=c2, which contains ∼80% of the signal events.
The MC sample used to estimate the background corre-
sponds to a luminosity of twice that of data. After the cut on
the first BDT output, a large fraction of the surviving
background is coming from qq̄ (q ¼ u, d, s, c) events; for
this reason a second BDT classifier is trained on these
events. The input variables to suppress the continuum
background are as follows: event-shape variables such as
R2 (ratio of the 2nd and the 0th Fox-Wolfram moments
[23]) and the CLEO cones [24] and the angle θT between
the thrust axes calculated from final-state particles for the
Btag and for the rest of the event in the c.m. frame.
We use control samples in order to evaluate systematic

uncertainties related to data and MC discrepancies and to
calibrate the signal shape probability density function
(PDF) as it is fixed from MC simulation. The first control
sample consists of Bþ → D−πþπþ events, generated in MC
as the result of two-body Bþ → D̄��0ð→ D−πþÞπþ decays,
where D̄��0 is either D̄�0

0 or D̄�0
2 , with rates following

Refs. [25,26]. This channel has similar topology to our
signal as the D can be treated as the τ, allowing for a
comparison of the performance of the first BDT classifier
between data and MC [Fig. 1 (top) for Bþ → Kþτþμ−]. For
the calibration of the efficiency of qq̄ suppression a second
control sample B → J=ψK is used because of the similar
final state while no usage of the Bsig topology is required
[Fig. 1 (bottom) for Bþ → Kþτþμ−].
The signal yields for B → Kτl decays are obtained by

performing unbinned extended maximum-likelihood fits to
the Mrecoil distributions. The PDF used to model recon-
structed signal decays consists of the sum of a reversed
crystal ball function to model the main peak and the high-
side power-law tail, and a broad Gaussian, with the same
mean parameter, to describe the candidates with worse
resolution due to imperfect Btag reconstruction. The back-
ground events have a smooth shape in the Mrecoil signal
region, and are described by a 2nd-order Chebyshev
polynomial. The yields are floated, as well as the back-
ground shape parameters while the parameters describing
the signal PDF are fixed from the MC simulation. We apply
corrections to these parameters to account for small
differences between MC simulation and data. These cor-
rection factors are obtained from the Bþ → D̄ð�Þ0πþ control
samples where Mrecoil is calculated from the pion from the
Bþ decay and the Btag. We validate our fitting procedure
and check for fit bias using MC simulation. We generate

large ensembles of simulated experiments in which the
Mrecoil distributions are generated from the PDFs used for
fitting.
The Mrecoil distributions for lepton flavor violating

B → Kτl decays along with projections of the fit result
are shown in Fig. 2. The fitted signal yields listed in Table I
are consistent with zero for all four modes.
We calculate the upper limit (UL) for these modes at the

90% C.L. using a frequentist method. In this method, for
different numbers of signal events NsigðgenÞ, we generate
10 000 pseudo experiments with signal and background
PDFs as obtained in the nominal data fit, with each set of
events being statistically equivalent to our data sample of
772 × 106 BB̄ pairs. We fit all these simulated datasets,
and, for each value of NsigðgenÞ, we calculate the fraction
of MC experiments that have Nsig ≤ NsigðdataÞ. The 90%
C.L. upper limit is taken to be the value of NsigðgenÞ (called
here NUL

sig ) for which 10% of the experiments have
Nsig ≤ NsigðdataÞ. The upper limit on the branching frac-
tion is then derived using the formula

BUL ¼ NUL
sig

NBB̄ × 2 × fþ− × ε
;

where NBB̄ is the number of BB̄ pairs = ð772� 11Þ × 106,
fþ− is the branching fraction Bðϒð4SÞ → BþB−Þ for

FIG. 1. The BDT response of the BB̄ suppression for the Bþ →
D−πþπþ mode (top), and the qq̄ suppression for the Bþ →
J=ψKþ mode (bottom) for the Bþ → Kþτþμ− case.
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charged B decays (using 0.514� 0.006 [17]), and ε is the
signal reconstruction efficiency. By default ε is obtained
with signal PHSPMC samples [5], while we also consider a
NP model with a combination of the effective operators
OS;P by reweighting the q2 ¼ m2

τl distribution which gives
the smallest efficiency. The systematic uncertainty in BUL is
included by smearing the Nsig distribution obtained from
the MC fits with the fractional systematic uncertainty. The
results are listed in Table I.
The systematic uncertainties in our measurements are

listed in Table II, where additive uncertainties arise from the
signal yield, while multiplicative uncertainties are from the
efficiency. Uncertainties in the shape of the PDFs used for
the signal are evaluated by varying all fixed parameters by
�1σ, including the correction factors to the shapes obtained
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FIG. 2. Observed Mrecoil distributions for the four B → Kτl modes, along with projections of the fit result. The black dots show the
data, the dashed blue curve shows the background component, and the solid red curve shows the overall fit result. The dash-dotted green
curve shows the signal PDF, with a normalization corresponding to the 90% C.L. upper limit.

TABLE I. Efficiencies, fit yields, and branching fraction ex-
pected or observed upper limits at the 90% C.L. for PHSP case. In
parentheses the observed limits for the NP case.

Mode εð%Þ εNPð%Þ Nsig BULð10−5Þ
Bþ → Kþτþμ− 0.064 0.058 −2.1� 2.9 1.18=0.59 (0.65)
Bþ → Kþτþe− 0.084 0.074 1.5� 5.5 1.34=1.51 (1.71)
Bþ → Kþτ−μþ 0.046 0.038 2.3� 4.1 1.81=2.45 (2.97)
Bþ → Kþτ−eþ 0.079 0.058 −1.1� 7.4 2.29=1.53 (2.08)

TABLE II. Contributions to the systematic uncertainties of the
measured signal yields and branching fractions.

Source Kþτþμ− Kþτþe− Kþτ−μþ Kþτ−eþ

Additive (events)
PDF shape (mean) 0.09 0.01 0.08 0.08
PDF shape (width) 0.02 0.08 0.04 0.07
PDF shape (fsig) 0.28 0.16 0.11 0.16
Linearity 0.03 0.04 0.02 0.04

Total 0.30 0.18 0.14 0.20

Multiplicative (%)

Btag calibration 5.9 5.9 5.9 5.9
Track reconstruction 1.1 1.1 1.1 1.1
Kaon identification 1.3 1.4 1.3 1.3
Lepton identification 0.3 0.4 0.3 0.4
τ daughter identification 0.7 0.7 0.6 0.6
MC statistics 1.0 1.5 1.2 1.0
Number of BB̄ pairs 1.4 1.4 1.4 1.4
BDT BB̄ selection 10.6 10.0 12.7 12.6
BDT qq̄ selection 8.8 8.6 9.2 6.6
fþ− 1.2 1.2 1.2 1.2

Total 15.3 14.8 17.0 15.7
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from the Bþ → D̄ð�Þ0πþ control samples, and varying the
fraction of the Gaussian (fsig) by 10%. The resulting
change in the signal yield is taken as the systematic
uncertainty. The uncertainty related to the choice of the
background PDF is evaluated and found to be negligible.
Although no significant difference is observed between
simulated and measured Nsig values, the uncertainties on
the parameters of the linear regressions are used to eva-
luate the corresponding systematic uncertainties. The
reconstruction efficiency for Btag evaluated via MC simu-
lation is corrected to account for differences between MC
and data in the branching fractions and models used for
hadronic B decays. This correction is evaluated by compar-
ing the number of events containing both a Btag and a
semileptonic B → Dlν [27]. The resulting correction
factor is 85� 5% and the uncertainty in this value is taken
as a systematic uncertainty.
The systematic uncertainty due to the charged track

reconstruction is evaluated using D�þ → D0πþ with
D0 → K0

Sπ
þπ−, resulting in an uncertainty of 0.35% per

track. Uncertainties due to Kþ and πþ (for τ → πν mode)
identification is 1.3%, as measured with a D�þ →
D0ðK−πþÞπþ sample. The uncertainty due to lepton
identification is evaluated using J=ψ → lþl− events,
resulting in an uncertainty of 0.3% for muons and 0.4%
for electrons. The systematic uncertainty arising from the
number of BB̄ pairs is 1.4%. We compare the efficiency of
the BDT selection between data and MC samples with the
control channel Bþ → D−πþπþ for BB̄ suppression and
Bþ → J=ψKþ for continuum suppression, the differences
between data and MC simulation are assigned as a
systematic uncertainty. We use a systematic uncertainty
of 1.2% in the fraction fþ− [17].
We have searched for the lepton flavor violating decays

Bþ → Kþτ�l∓ using the full Belle dataset. We find no
evidence for these decays and set the following upper limits
on the branching fractions at the 90% C.L.:

BðBþ → Kþτþμ−Þ < 0.59 × 10−5

BðBþ → Kþτþe−Þ < 1.51 × 10−5

BðBþ → Kþτ−μþÞ < 2.45 × 10−5

BðBþ → Kþτ−eþÞ < 1.53 × 10−5: ð6Þ

Our results are the most stringent limits to date.
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