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We report results from the first search for the rare penguin-dominated decay mode B0 → K0
SK

0
Sγ, which

can result from the production of tensor mesons fð1270Þ and f0ð1525Þ in association with a photon. The
search uses the full data sample of 772 × 106 BB̄ pairs collected with the Belle detector at the KEKB
asymmetric-energy eþe− collider. No statistically significant signals are observed in the K0

SK
0
S invariant

mass range 1 GeV=c2 < MK0
SK

0
S
< 3 GeV=c2, and the following upper limits at the 90% confidence level

are obtained: BðB0 → K0
SK

0
SγÞ < 5.8 × 10−7, BðB0 → f2γÞ × Bðf2ð1270Þ → K0

SK
0
SÞ < 3.1 × 10−7, and

BðB0 → f02γÞ × Bðf02ð1525Þ → K0
SK

0
SÞ < 2.1 × 10−7. In addition, 90% confidence-level upper limits in

the range of ½0.7–2.9� × 10−7 are also obtained on the B0 → K0
SK

0
Sγ branching fraction in bins of MK0

SK
0
S
.

DOI: 10.1103/PhysRevD.106.012006

Radiative b → sγ and b → dγ quark transitions are
flavor-changing-neutral-current processes and are not
allowed at tree level in the Standard Model (SM). Such
decays proceed predominantly through radiative loop
diagrams, referred to as radiative penguin diagrams [1],
and are potentially sensitive to contributions from non-SM
particles that can appear in the loop. For example, the two
Higgs doublet model (2HDM) introduces an additional
doublet of Higgs fields, and the associated charged Higgs
boson can appear in the loop instead of the W. Wilson
coefficients in the operator product expansion [2] are
modified to include the effect of the 2HDM [3] and this
new term depends on the mass of the charged Higgs [4].

Thus, assuming that effects from strong interaction cor-
rections can be controlled, a disparity in the measured
branching fraction with respect to SM expectations can be
interpreted as arising from a new physics contribution.
In the SM, the b → dγ process is suppressed relative

to b → sγ by the squared ratio of Cabibbo-Kobayashi-
Maskawa matrix elements jVtd=Vtsj2 [5]. The predicted
branching fractions [6] and experimental world averages [7]
for b → sγ and b → dγ are in agreement at the 1σ and∼2.5σ
level, respectively. Branching fractions of several exclusive
b → sγ modes have been measured: B → K�γ [8]; B →
K1ð1270Þγ [9]; B → ϕKγ [10]; B → Kη0γ [11]; B → Kηγ
[12]. On the other hand, B → ργ and B → ωγ are the only
observed exclusive b → dγ modes [13] and measurements
of additional exclusive Xd final states are needed.
The B0 → K0

SK
0
Sγ decay, shown in Fig. 1, arises from a

b → dγ transition and can proceed via a number of different
intermediate states. Because the K0

SK
0
S system consists of

two identical spinless particles, Bose-Einstein statistics
requires that the angular momentum quantum number of
this system, in its rest frame, must be even. If the system
is produced in the decay of an intermediate-state parent
meson, this meson must therefore have even spin. In
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addition, the photon, as a massless J ¼ 1 particle, can only
have helicities λ ¼ �1 along the B-meson decay axis. The
sum of the spin projections of the particles along this axis
must be zero, since JðBÞ ¼ 0 and there cannot be any
projection of the orbital angular momentum along this axis.
As a consequence, the K0

SK
0
S system cannot be a spin-0

system, and its lowest allowed value is J ¼ 2. This
constraint motivates the search for the J ¼ 2 mesons
f2ð1270Þ and f02ð1525Þ, which can decay into the K0

SK
0
S

final state. This paper presents results from a search for the
B0 → K0

SK
0
Sγ decay, where the K

0
SK

0
S system is also studied

for evidence of an intermediate-state tensor meson.
Theϒð4SÞmeson is produced at the KEKB asymmetric-

energy eþe− collider [14] with electrons and positrons
having energies of 8 GeV and 3.5 GeV, respectively, and
subsequently decays to BB̄ pairs which are nearly at rest in
the center-of-mass system (CMS). The z axis is defined as
opposite to the eþ beam direction. We search for the decay
B0 → K0

SK
0
Sγ using the full data sample of ð772� 11Þ ×

106BB̄ pairs collected at the ϒð4SÞ resonance with the
Belle detector at the KEKB asymmetric-energy eþe−
collider. This is the first search for a B0 decay to two
pseudoscalars K0

S with a prompt photon in the final state.
The Belle detector, a hermetic magnetic spectrometer

designed to detect the decay products of Bmesons, consists
of a silicon vertex detector, a 50-layer central drift chamber
(CDC), an array of aerogel threshold Cherenkov counters, a
barrellike arrangement of time-of-flight scintillation coun-
ters, and an electromagnetic calorimeter comprised of
CsI(Tl) scintillation crystals (ECL). These detector com-
ponents, providing high vertex resolution, good tracking,
sophisticated particle identification capability, and excel-
lent calorimetry, are located inside a superconducting
solenoid coil providing a 1.5 T magnetic field. An iron
flux-return is located outside of the magnetic coil which is
instrumented to detect K0

L mesons and identify muons. The
detector is described in detail elsewhere [15].
The event selections are optimized using simulated

Monte Carlo (MC) samples. The MC samples for the
signal and background processes are generated with E VTG
EN [16] and the detector response is then simulated using G
EANT3 [17]. Any environmental changes in the Belle
detector and KEKB accelerator machine during the oper-
ations are reflected in the detector simulation. To generate

the signal MC sample of B0 decaying to a tensor meson (as
an intermediate state) and a prompt photon, a two-body
decay model is used with equal helicity amplitudes for the
allowed tensor-meson helicities of �1. The decay of the
intermediate state system to K0

SK
0
S is then simulated. To

allow for study of the K0
SK

0
Sγ system across the full

kinematically accessible range in mðK0
SK

0
SÞ, simulated

signal events are distributed uniformly in the range
1 GeV=c2 < mðK0

SK
0
SÞ < 3 GeV=c2.

Photons must have no associated tracks in the CDC, be
in the ECL barrel region (33° < θγ < 128°), and have a
95% or higher fraction of energy deposition in the central
3 × 3 of 5 × 5 ECL crystals centered on the highest
energy deposit crystal. The center-of-mass energy of the
prompt photon candidate, Eγ, must satisfy the requirement
1.6 GeV < Eγ < 2.8 GeV. Most background photons
originate from π0 → γγ and η → γγ decays. We combine
the photon candidate with all other photons with momenta
larger than 50 MeV=c in the event and calculate the
probabilities of the reconstructed photon candidate to be
π0-like or η-like [18]. Backgrounds are suppressed by re-
moving π0-like and η-like candidates using a likelihood-
based selector. About 86% of the photons from the signal B
are retained and about 62% from the accompanying B are
rejected. If more than one candidate satisfies the selection
criteria for the prompt photon, the most energetic photon is
chosen as the prompt photon candidate. The selection
efficiency of the prompt photon is approximately 50%,
and 99.5% are found to be correctly matched in signal MC
sample.
K0

S candidates are reconstructed from two oppositely
charged tracks. A displaced vertex consistent with K0

S →
πþπ− decay is required using a neural network (NN)
discriminator with 20 inputs [19]; this selection also
suppresses Λ → pπ− decays. The invariant mass of the
pion pairs is then required to satisfy jMππ −mK0

S
j <

4.7 MeV=c2, corresponding to a �2.6σ interval in mass
resolution, where mK0

S
is the nominal K0

S mass [7]. B0

candidates are formed by combining twoK0
S candidates and

one prompt photon candidate. The energy difference ΔE≡
Ecms
B − Ecms

beam and the beam-energy-constrained mass
Mbc ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðEcms
beamÞ2 − jp⃗cms

B j2c2p

=c2, where Ecms
beam is the

beam energy, and Ecms
B and p⃗cms

B are the energy and
momentum of the reconstructed B0, respectively, are used
to identify B0 candidates. The candidates satisfying the
requirements 5.20 GeV=c2 < Mbc < 5.29 GeV=c2 and
jΔEj < 0.5 GeV are retained for further analysis. We
find that 6% of the events have more than one B0 candidate.
In case of multiple candidates, we choose the one with
the smallest χ2, as defined by χ2 ¼ P

2
i¼1½ðmK0

S
−

Miðπþπ−ÞÞ=σππ�2, where σππ is the mass resolution for
the reconstructed K0

S.
The dominant background arises from eþe− → qq̄ðq ¼

u; d; s; cÞ continuum events. We use another NN with four

0B

b

d

d

s

s

d

S
0K

S
0K

t,c,u

+W

γ

FIG. 1. b → dγ penguin diagram for B0 → K0
SK

0
Sγ decay.
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input variables calculated in the CMS to suppress this
background [20]: the cosine of the polar angle (cos θB) of
the B0 candidate flight direction; the cosine of the angle
(cos θT) between the thrust axis of the B0 candidate and that
of the rest of the event; a flavor-tagging quality parameter
of the accompanying B meson [21]; and a likelihood ratio
obtained from the modified Fox-Wolfram moments [22].
The NN outputs for the signal and continuum MC events
peak at þ1 and −1, respectively. A figure-of-merit (FOM)
is calculated as [23]:

FOM ¼ ϵSðtÞ
a=2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NbkgðtÞ
p ; ð1Þ

where t is the NN output; ϵSðtÞ is the signal efficiency as a
function of t determined by using the signal MC sample;
Nbkg is the number of background events for a high t
selection and a is taken to be 3 for a 3σ significance due
to the low signal-to-background ratio, as suggested in
Ref. [23]. The FOM is maximized for the t > 0.93 region
which rejects 99% of the continuum MC events and retains
37% of the signal MC events. Since we expect only a few
signal events and relatively large backgrounds, we further
suppress the continuum background by using the helicity
angle, θH, which is the angle between the direction opposite
to the B0 candidate and that of theK0

S momentum in the rest
frame of the K0

SK
0
S system. To maximize the FOM, we

require 0.24 < j cos θHj < 0.86 which removes 60% of the
background while retaining 86% of the signal.
We use a Crystal Ball line shape [24] and a first-order

polynomial for the signal and contributions from mis-
reconstructed events, respectively. The signal region is de-
fined as −0.16GeV<ΔE<0.09GeV and 5.272 GeV=c2 <
Mbc < 5.290 GeV=c2, corresponding to �3σ windows. In
signal MC samples, about 99% of the reconstructed B0

candidates in the signal region correctly match a true B0.
From MC, we estimate that 2.2� 0.6 background events

from continuum processes contribute to the signal region.
In addition to the continuum, various BB̄ background
sources are also studied. Both neutral and charged BB̄
MC samples corresponding to an integrated luminosity six
times larger than that of the full data sample are used. We
expect 0.3� 0.2 events from generic BB̄ decays in the
signal region. The decay B0 → D0ð→ K0

Sπ
0ÞK0, with a

branching fraction of 5.2 × 10−5 [7], is treated separately
from the generic BB̄ because its ΔE and Mbc distributions
are different from those of generic BB̄ events. We estimate
a contribution of about 0.1 background events from
this decay.
A dedicated MC sample consisting of rare B decays was

produced. Various decays with branching fractions smaller
thanOð10−4Þ are included and their total branching fraction
is Oð10−3Þ. Rare B decays having one or two K0

S with
γ in the final state can peak in the Mbc distribution.
The backgrounds from the charged B meson pairs do

not show any peaking behavior in the ΔE −Mbc signal
region. On the other hand, the background from the neutral
B meson pairs peaks in the signal region and the largest
contribution (34%) to the peak comes from B0 → Xdd̄γ.
Here, Xdd̄ is a meson whose flavor wave function includes a
dd̄ pair, and all b → dγ processes except B0 → ρ0γ and
B → ωγ are included. We regard this as signal because the
quark level transition and the final state are the same as for
the signal. When we treat this decay mode as signal by
using MC information, the peaking background is
removed. Neutral and charged rare B backgrounds are
estimated to be 1.0� 0.1 and 0.9� 0.1 events in the signal
region, respectively.
Four additional rare decay modes which are not included

in the rare B MC samples, with the following branching
fractions, are considered: BðB0 → K0

SK
0
Sπ

0Þ < 9 × 10−7

[25]; BðB0→K0
SK

0
SηÞ<1.0×10−6; BðB0 → K0

Sπ
þπ−γÞ ¼

1.99 × 10−5 [26]; BðB0 → πþπ−πþπ−π0Þ < 9.1 × 10−3

[7]. The first two decay modes occur via a b → s quark
transition and become background when π0 or η are
replaced by a photon. B0 → K0

Sπ
þπ−γ decays occur

through a b → sγ quark transition and can be misidentified
as the signal. B0 → πþπ−πþπ−π0 decays occur at the tree
level via a b → u transition and can be misidentified as the
signal when the π0 is replaced by a photon. We estimate
that the background contribution from these four decay
modes is negligible.
We estimate the total number of background events in the

signal region to be 4.5� 0.7 via the counting method. To
estimate the background events in the signal region using
an extended unbinned maximum-likelihood fitting method,
we fit the Mbc distribution satisfying −0.16 GeV < ΔE <
0.09 GeV with an ARGUS function [27] and a Crystal Ball
line shape for the continuum and peaking backgrounds,
respectively. The fitting parameters of the Crystal Ball line
shape are fixed to those for the signal MC. We obtain 5.6�
0.8 background events in the signal region. This result is
consistent with that of the counting method.
The signal efficiency depends on the reconstructed

K0
S-pair mass (MK0

SK
0
S
) as shown in Table I and is obtained

from signal MC by performing an extended unbinned
maximum-likelihood fit to the Mbc distribution satisfying
−0.16 GeV < ΔE < 0.09 GeV and 5.2 GeV=c2 < Mbc <
5.9 GeV=c2 in ten equal-size bins in MK0

SK
0
S
between

1 GeV=c2 and 3 GeV=c2.
The systematic uncertainties on the number of produced

BB̄ pairs and the ϒð4SÞ → B0B̄0 branching fraction are
1.4% and 1.2% [7], respectively. The systematic uncer-
tainty in the photon detection efficiency is studied using
radiative Bhabha events and estimated to be 2.0% [28].
Using a systematic uncertainty of 0.2% for K0

S
reconstruction efficiency and per track uncertainty in
efficiency of 0.4% [29] leads to the estimate of 1.4% for
the uncertainty in the reconstruction efficiency for the two
K0

S → πþπ− decays. The systematic uncertainty due to the

SEARCH FOR THE RADIATIVE PENGUIN DECAYS B0 → K0
SK

0
Sγ … PHYS. REV. D 106, 012006 (2022)

012006-5



background suppression using the NN selection and π0=η
veto is 0.6% [28]. The signal efficiency depends on MK0

SK
0
S

and the MC statistical uncertainty in the efficiency varies
between 0.5% and 0.7% depending on MK0

SK
0
S
. The total

systematic uncertainty is 3.2% and is summarized in
Table II.
There are 9 events in theΔE-Mbc signal region. The fit to

the Mbc distribution is carried out with an extended
unbinned maximum-likelihood with a Crystal Ball line
shape including contributions from the peaking back-
ground for the signal and an ARGUS function for the
background, respectively, as shown in Fig. 2. We obtain
3.8� 3.0 signal and 5.6� 0.8 background events in the
signal region. The fitting parameters for the signal are fixed
to those for the signal MC. The number of the background
events in the signal region agrees well with that of the
estimated background events in the signal region from MC
samples.
The j cos θHj distributions for events in the ΔE −Mbc

signal region are shown in Fig. 3 for data and MC samples.
The j cos θHj distribution results from data are consistent
with MC simulation.
The observed number of events in each MK0

SK
0
S
bin is

obtained by counting the events in the ΔE-Mbc signal
region. Figure 4 shows the observed number of events

(Nobs) in the full data sample and the estimated background
events in each MK0

SK
0
S
bin. No significant excess over the

estimated background is observed in the data, and we
derive an upper limit for the signal yield (S90) at the
90% confidence level (C.L.) using the POLE program by
taking into account the uncertainties associated with the
signal selection efficiency, background expectation, and
systematic uncertainty [30]. The branching fractions are
obtained from

BðB0 → K0
SK

0
SγÞ ¼

S90
ϵS × NBB̄

; ð2Þ

where NBB̄ and ϵS are the number of BB̄ pairs and signal
efficiency, respectively. We obtain 90% C.L. upper
limits on the partial branching fractions for the decay

TABLE II. Systematic uncertainties in branching fractions.

Source Uncertainty (%)

Number of BB̄ 1.4
Branching fraction of ϒð4SÞ → B0B̄0 1.2
Photon detection efficiency 2.0
Two K0

S reconstruction 1.4
NN selection and π0=η veto 0.6
MC statistics in MK0

SK
0
S
bin efficiency 0.5–0.7

Total 3.2
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FIG. 2. Distribution of the data in the variable Mbc,
together with the fit to contributions from background and
signal events, after requiring −0.16 GeV < ΔE < 0.09 GeV and
0.24 < j cos θHj < 0.86.

TABLE I. Summary of the number of observed events (Nobs),
number of estimated background events (Nbkg), efficiencies (ϵS),
upper limits on the signal yield (S90), and branching fraction
upper limits (U.L.) at the 90% C.L. in each MK0

SK
0
S
bin for the

B0 → K0
SK

0
Sγ decay.

Mass bin
ðGeV=c2Þ

ϵS
ð%Þ Nbkg

σsys
ð%Þ Nobs S90

U:L:
ð10−7Þ

1.0–1.2 3.3 0.8� 0.3 3.2 0 1.8 0.7
1.2–1.4 3.0 0.9� 0.3 3.2 3 6.5 2.8
1.4–1.6 2.7 0.8� 0.3 3.2 1 3.6 1.7
1.6–1.8 2.5 0.3� 0.1 3.2 0 2.1 1.1
1.8–2.0 2.3 0.8� 0.3 3.2 2 5.1 2.9
2.0–2.2 2.2 0.2� 0.1 3.2 1 4.2 2.5
2.2–2.4 2.2 0.4� 0.2 3.2 1 3.9 2.4
2.4–2.6 2.2 0.2� 0.2 3.2 0 2.2 1.3
2.6–2.8 2.3 0.0� 0.0 3.2 1 4.2 2.3
2.8–3.0 2.4 0.1� 0.0 3.2 0 2.3 1.2
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FIG. 3. The helicity angle distribution of the observed events in
the signal region. The background and signal histograms are
stacked.
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B0 → K0
SK

0
Sγ in ten bins of MK0

SK
0
S
for 1.0 GeV=c2 <

MK0
SK

0
S
< 3.0 GeV=c2, which are listed in Table I.

For the full range 1.0 GeV=c2 < MK0
SK

0
S
< 3.0 GeV=c2,

we use the average efficiency of all bins, ð2.5� 0.4Þ%.
The standard deviation of efficiencies amongMK0

SK
0
S
bins is

assigned as a systematic uncertainty (16.0%). Adding to
other systematic uncertainties listed in Table II in
quadrature, the total systematic uncertainty is 16.2%.
Using the POLE program with 9 observed events and
expected background of 4.5� 0.7, we obtain the upper
limit on the branching fraction for the 1.0 GeV=c2 <

MK0
SK

0
S
< 3.0 GeV=c2 mass range to be 5.8 × 10−7 at the

90% C.L.
We also obtain upper limits on the product branching

fractions for the intermediate tensor f2 states, BðB0 →
f2γÞ × Bðf2 → K0

SK
0
SÞ. The signal mass regions are

taken to be 1.00 GeV=c2 < MK0
SK

0
S
< 1.44 GeV=c2 and

1.44 GeV=c2 < MK0
SK

0
S
< 1.63 GeV=c2 for f2ð1270Þ and

f02ð1525Þ, respectively. These mass regions contain 80% of
signal events. The results are summarized in Table III.
In summary, we have reported the results from the first

search for radiative B-meson decays to the K0
SK

0
Sγ final

state using a data sample of 772 × 106BB̄ pairs.
No significant signal is observed for the full data
sample. The signal efficiency depends on MK0

SK
0
S
and

we obtain upper limits at the 90% C.L. on the partial
branching fractions for the decay B0 → K0

SK
0
Sγ in ten bins

of MK0
SK

0
S
for 1.0 GeV=c2 < MK0

SK
0
S
< 3.0 GeV=c2 to be

½0.7–2.9� × 10−7. We also obtain an upper limit on its
branching fraction as 5.8 × 10−7 at the 90% C.L. for
the 1.0 GeV=c2 < MK0

SK
0
S
< 3.0 GeV=c2 mass range. The

upper limits at the 90% C.L. on the products of the
branching fractions BðB0 → f2γÞ × Bðf2ð1270Þ → K0

SK
0
SÞ

and BðB0 → f02γÞ × Bðf02ð1525Þ → K0
SK

0
SÞ are obtained to

be 3.1 × 10−7 and 2.1 × 10−7, respectively.
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