
Search: from Algorithms to Systems

Youssef Hamadi
Microsoft Research,

7 J J Thomson Avenue,
Cambridge CB3 0FB, United Kingdom

LIX École Polytechnique,
F-91128 Palaiseau, France
youssefh@microsoft.com

July 13, 2012

2

Contents

1 Acknowledgments 11

2 Introduction 13

I Research Synthesis 1

3 Distributed Constraint Networks 3

3.1 Introduction . 4

3.2 Related Work . 5

3.3 Background . 7

3.3.1 Distributed Constraint Satisfaction Problems 7

3.3.2 DisCSP Algorithms . 8

3.3.3 Performance of DisCSP Algorithms 9

3.4 Risks in Search . 10

3.4.1 Randomization Risk . 10

3.4.2 Selection Risk . 13

3.5 Boosting Distributed Constraint Satisfaction 13

3.5.1 Utilizing Competition With Portfolios 14

3.5.2 Utilizing Cooperation With Aggregation 15

3.5.3 Categories of Knowledge 16

3.5.4 Interpretation of Knowledge 16

3.5.5 Practical Implementation of the Knowledge Sharing Policies 17

3.5.6 Complexity . 18

3.6 Empirical Evaluation . 20

3.6.1 Basic Performance . 20

3.6.2 Randomization Risk . 21

3.6.3 Selection-Risk . 22

3.6.4 Performance with Aggregation 24

3.6.5 Scalability . 25

3.6.6 Idle Time . 26

3.7 Summary . 27

3

4 CONTENTS

4 Parallel Satisfiability 29

4.1 Introduction . 31

4.2 Previous Work . 32

4.3 Technical Background . 33

4.3.1 DPLL Search . 34

4.3.2 Modern SAT Solvers . 34

4.3.3 Multicore Architectures 35

4.3.4 AIMD Feedback Control-based Algorithm 35

4.4 ManySAT: a Parallel SAT Solver 36

4.4.1 Restart Policies . 36

4.4.2 Heuristic . 38

4.4.3 Polarity . 38

4.4.4 Learning . 39

4.4.5 Clause Sharing . 42

4.4.6 Summary . 44

4.5 Evaluation . 44

4.5.1 Performance Against a Sequential Algorithm 44

4.5.2 Performance Against Other Parallel SAT Solvers 44

4.6 Control-based Clause Sharing . 47

4.6.1 Throughput and Quality-based Control Policies 48

4.6.2 Experiments . 50

4.7 Summary . 51

5 Continuous Search 55

5.1 Introduction . 56

5.2 Related Work . 58

5.3 Background and Notations . 59

5.3.1 Constraint Satisfaction Problems 59

5.3.2 Supervised Machine Learning 59

5.4 Continuous Search in Constraint Programming 60

5.5 Dynamic Continuous Search . 61

5.5.1 Representing Instances: Feature Definition 62

5.5.2 Feature pre-Processing . 64

5.5.3 Learning and Using the Heuristics Model 64

5.5.4 Generating Examples in Exploration Mode 65

5.5.5 Imbalanced Examples . 65

5.6 Experimental Validation . 66

5.6.1 Experimental Settings . 66

5.6.2 Practical Performances . 67

5.6.3 The Power of Adaptation 69

5.7 Summary . 71

CONTENTS 5

6 Autonomous Search 73

6.1 Introduction . 74
6.2 Solvers Architecture . 76

6.2.1 Problem Modeling/Encoding 77
6.2.2 The Evaluation Function 78
6.2.3 The Solving Algorithm . 78
6.2.4 Configuration of the solver: the Parameters 79
6.2.5 Control . 80
6.2.6 Existing Classifications and Taxonomies 80

6.3 Architecture of Autonomous Solvers 82
6.3.1 Control by Self Adaptation 83
6.3.2 Control by Supervised Adaptation 83
6.3.3 Searching for a Solution vs. Solutions for Searching 84
6.3.4 A Rule-Based Characterization of Solvers 84

6.4 Case Studies . 91
6.4.1 Tuning Before Solving . 91
6.4.2 Control During Solving 94
6.4.3 Control During Solving in Parallel and Distributed Search 97

6.5 Summary . 98

7 Conclusion and Perspectives 101

II Curriculum Vitae 125

6 CONTENTS

List of Figures

3.1 Heavy-tail behaviour of IDIBT and ABT. 11
3.2 DisCSP (left) and agent topologies implied by the variable order-

ings max-degree (middle) and min-degree (right). 14
3.3 Two contexts for the agent hosting X4 from Figure 3.2 resulting

from two variable orderings. 15
3.4 Communication and runtime in M- portfolios. 21
3.5 Randomization-Risk emerging from message delays and thread

activation. 22
3.6 No heavy-tails with M-ABT and M-IDIBT. 23
3.7 S-Risk (standard-dev of the parallel runtime) including the R-

Risk emerging from distribution. 24

4.1 Restart strategies . 37
4.2 Implication graph / extended implication graph 41
4.3 SAT-Race 2008: different limits for clause sharing 42
4.4 SAT-Competition 2007: different limits for clause sharing 43
4.5 SAT-Race 2008: ManySAT e=8, m=1..4 against Minisat 2.02 . . 46
4.6 Throughput based control policy 49

5.1 Continuous Search scenario . 61
5.2 dyn-CS : selecting the best heuristic at each restart point 62
5.3 Langford-number (lfn): Number of instances solved in less than

5 min with dyn-CS , wdeg , and dom-wdeg . Dashed lines illustrate
the performance of dyn-CS for a particular instance ordering. . . 67

5.4 Number of instances solved in less than 5 minutes 68

6.1 The general architecture of a solver 77
6.2 Control taxonomy proposed by Eiben et al. [EHM99] 80
6.3 Classification of hyper-heuristics proposed by Burke et al. [BHK+10] 81
6.4 The global architecture of an Autonomous Search System 83
6.5 The solver and its action with respect to different spaces 85

7

8 LIST OF FIGURES

List of Tables

3.1 Methods of aggregation. 17
3.2 Performance of aggregation methods for M-IDIBT. 24
3.3 Median parallel runtime (pt) and instances solved (out of 20) of

quasigroup completion problems with 42% pre-assigned values. . 26
3.4 Idle times of agents in DisCSP. 26

4.1 ManySAT: different strategies . 45
4.2 SAT-Race 2008: comparative performance (number of problems

solved) . 46
4.3 SAT-Race 2008: parallel solvers against the best sequential solver

(Minisat 2.1) . 47
4.4 SAT-Race 2008: runtime variation of parallel solvers 47
4.5 SAT-Race 2008, industrial problems 52

5.1 Total solved instances . 70
5.2 Predictive accuracy of the heuristics model (10-fold cross validation) 71
5.3 Total solved instances . 71

9

10 LIST OF TABLES

Chapter 1

Acknowledgments

11

12 CHAPTER 1. ACKNOWLEDGMENTS

Chapter 2

Introduction

13

14 CHAPTER 2. INTRODUCTION

This document summarizes some of my post PhD contributions. They were
carried out while working at Microsoft Research, one of the largest software
research organizations in the world. This unique context gave me the chance
to be exposed to various research problems and application domains. This
often led to fruitful collaborations in areas where some expertise in combina-
torial search is beneficial. This mainly includes work on Reconciliation in dis-
tributed database [CH06, HS05, SBCH04], Scheduling for large scale Data Cen-
ters [Ham05, BFH+05], application to Digital Photography [RBHB06], Business
Intelligence [HQ06], Computational Biology [CBH+07], Knowledge Compilation
[SBH07], Sequential Satisfiability [PHS09, PHS08, ABH+08], new SMT theories
for improved Software Verification [WHdM10], and Computational Sustainabil-
ity [FHS12, FHS11]. None of these works will be exposed here.

Instead, I will focus my presentation on contributions to general combinato-
rial search for the constraint satisfaction (CSP), and propositional satisfiability
(SAT) formalisms. I will develop several advanced techniques which bring search
algorithms closer to fully fledged complex systems capable of self performances
analysis to correct and improve their search strategies.

This document contains two parts. The second part presents a curriculum vitae
which provides along an extensive publication list, an overview of my profes-
sional engagements including student supervisions, and teaching activities. In
the first part, I present a synthesis of my research. The presentation is gradual,
and describes search systems of raising complexity and efficiency.

The Chapter 3 presents portfolios of distributed CSP algorithms which demon-
strate that competition and cooperation can improve the performance of ex-
isting distributed search techniques by several orders of magnitude. We show
that a portfolio approach makes a better use of computational resources by
reducing the idle time of agents. Indeed, by allowing search agents to simulta-
neously work at different tree-search levels it provides a solution to the classical
work imbalance problem of distributed backtracking. It also shows the value of
knowledge sharing to significantly speed-up search and provide portfolios whose
performance is better than any constituent algorithm.

The previous notions are then applied to the important problem of propositional
satisfiability in Chapter 4. Parallel SAT became important in the last few years
from the practical solving successes of modern SAT solvers combined to the wide
availability of multicore computing platforms. We present ManySAT, the first
parallel SAT portfolio which completely redefined the parallel SAT landscape.
In ManySAT different modern SAT solvers are organized around a cooperative
framework to quickly solve a given instance. ManySAT brings portfolios one
step closer to fully fledged search systems with the addition of control theory
techniques to incrementally adjust the relevance of the knowledge shared.

The Chapter 5 considers Constraint Programming, and presents Continuous

15

Search (CS). In CS, we move to complex solving systems which incrementally
learn a predictive model able to accurately match instances features to good
solver’s parameters. CS interleaves two functioning modes. In exploitation
mode, the instance submitted by the user is processed by the constraint solver;
the current heuristics model is used to parameterize the solver depending on the
instance at hand. In learning or exploration mode, CS reuses the last submit-
ted instance, running other heuristics than the one used in exploitation mode
in order to find which strategy would have been most efficient for this instance.
New information is thus generated and exploited in order to refine the heuristics
model, in a transparent manner: without requiring the user’s input and by only
using the idle computer’s CPU cycles. CS acts like an autonomous search sys-
tem able to analyses its performances and gradually correct its search strategies.

To conclude the presentation of our research, we present the concept of Au-
tonomous Search in Chapter 6. We define autonomous solvers as solvers that
contain control in their search process, and study such autonomous systems
w.r.t. their specific control methods. A control process includes a strategy that
manages the modification of some of the solver’s components and behavioral
features after the application of some solving functions. The overall strategy
to combine and use components and parameters can be based on learning that
uses information from the current solving process and/or from previously solved
instances. This chapter proposes a taxonomy of search processes w.r.t. their
computation characteristics, and provides a rule-based characterization of au-
tonomous solvers. This allows a formalizing of solvers adaptations and modi-
fications with computation rules that describe the modification of the solver’s
components transformation.

16 CHAPTER 2. INTRODUCTION

Part I

Research Synthesis

1

Chapter 3

Distributed Constraint
Networks

3

4 CHAPTER 3. DISTRIBUTED CONSTRAINT NETWORKS

The work presented in this Chapter finds its premises in the perspectives of my
PhD manuscript [Ham99b]. It was put to test during the summer internship of
Georg Ringwelski at MSR Cambridge. It led to two publications and to one US
patent:

• Georg Ringwelski and Youssef Hamadi. Boosting distributed constraint
satisfaction. In Peter van Beek, editor, CP, volume 3709 of Lecture Notes
in Computer Science, pages 549–562. Springer, 2005.

• Youssef Hamadi and Georg Ringwelski. Boosting distributed constraint
satisfaction. J. Heuristics, 17(3):251–279, 2011.

• US Patent No. 7472094, Multi-Ordered Distributed Constraint Search,
Youssef Hamadi, and Georg Ringwelski, Dec 30, 2008 (filed in 2005).

3.1 Introduction

In combinatorial tree-based search, finding a good labelling strategy is a dif-
ficult and tedious task which usually requires long and expensive preliminary
experiments on a set of representative problem instances. Performing those ex-
periments or defining realistic input samples is far from being simple for today’s
large scale real life applications. The previous observations are exacerbated in
the processing of distributed constraint satisfaction problems (DisCSPs). In-
deed, the distributed nature of those problems makes any preliminary experi-
mental step difficult since constrained problems usually emerge from the inter-
action of independent and disconnected agents transiently agreeing to look after
a set of globally consistent local solutions [FM02].
This work targets on those cases where bad performance in DisCSP can be
prevented by choosing a good labelling strategy i.e., decide on an ordered set
of variables and values pairs to branch on, and executing it in a benefiting
order within the agents. In the following, we define a notion for the risks we
have to face when choosing a strategy and present the new Multi-directional
Search Framework or M-framework for the execution of distributed search. An
M- portfolio executes several distributed search strategies in parallel and lets
them compete for being the first to finish. Additionally, cooperation of the
distributed searches is implemented with the aggregation of knowledge within
agents. The knowledge gained from all the parallel searches is used by the agents
for their local decision making in each single search. We present two principles
of aggregation and employ them in communication-free methods, applicable to
the limited scope of the agents in DisCSP.
Each DisCSP agent still has access to only a subset of the variables as usual
but itself runs several copies of the search process on these variables under
different ”search contexts”, potentially integrating information across these dif-
ferent contexts. Since these contexts have different indirect information about
other agents (based on the messages they have received), this indirectly allows
aggregating information across different agents as well.

3.2. RELATED WORK 5

We apply our framework in two case studies where we define the algorithms M-
ABT and M-IDIBT that improve their counterparts ABT [YDIK92] and IDIBT
[Ham02b] by several orders of magnitude. With these case studies we can show
the benefit of competition and cooperation for the underlying distributed search
algorithms. We expect the M- framework to be similarly beneficial for other
tree-based DisCSP algorithms. The framework presented here may be applied
to them in a straightforward way that is described in this chapter.

3.2 Related Work

The benefit of cooperating searches executed in parallel was first investigated for
CSP in [HH93]. They used multiple agents, each of which executed one mono-
lithic search algorithm. Agents cooperated by writing/reading hints to/from
a common blackboard. The hints were partial solutions or nogoods its sender
has found and the receiver could re-use them in its efforts. In contrast to our
work, this multi-agent system was an artifact created for the cooperation. Thus
the overhead it produced, especially when not every agent could use its own
processor, added directly to the overall performance. Another big difference
between Hogg’s work and ours is that DisCSP agents do not have a global view
of the searches and can thus only communicate what’s in their agent-view which
usually captures partial solutions for comparably few variables only.

Later the expected performance and the expected (Randomization-) risk in port-
folios of algorithms was investigated in [GS97, GS01]. No cooperation between
the processes was used here. In the newer paper the authors concluded that
portfolios, provided there are enough processors, reduce the risk and improve
the performance. When algorithms do not run in parallel (i.e., when it is not the
case that each search can use its own processor) the portfolio approach becomes
equivalent to random restarts [GSK98]. Using only one processor, the expected
performance and risk of both are equivalent. In contrast to Gomes and Selman
we cannot allocate search processes to CPUs. In DisCSP we have to allocate
each agent, that participates in every search, to one process. Consequently
parallelism is in our setting not an overhead-prune artifact. We distribute our
computations to the concurrent processes. However, this is done in a different
way than in [GS01], we do not assign each search to one process, but each search
is temporarily performed in each process. Or from the other perspective, each
agent participates in all the concurrent search efforts at the same time. Thus
load-balancing is performed by the agents and not by the designer of the port-
folio. In this work we consider agents that do this on a first-come-first-serve
basis. Another major difference to Gomes’ and Selman’s work is that we use
cooperation (Aggregation) between the agents.

Recent work on constraint optimization [CB04] has shown that letting multiple
search algorithms compete and cooperate can be very beneficial without having
to know much about the algorithms themselves. They successfully use various
optimization methods on one processor which compete for finding the next best
solutions. Furthermore they cooperate by interchanging the best known feasi-

6 CHAPTER 3. DISTRIBUTED CONSTRAINT NETWORKS

ble solutions. However, this method of cooperation cannot be applied to our
distributed constraint satisfaction settings for two reasons: first, we do not have
(or want) a global view to a current variable assignment and second we have no
reliable metric to evaluate partial assignments in CSP.
Concurrent search in DisCSP [ZM05, Ham02b, Ham02a] differs from M- in a
significant way. These approaches also use multiple contexts in parallel to ac-
celerate search. However, in the named work certain portions of the search
space are assigned to search efforts. These work apply divide-and-conquer ap-
proaches. In the framework presented here we do not split the search space
but let every context work on the complete problem. This makes a signifi-
cant difference in the application of both concepts; M- is a framework while
divide-and-conquer is a class of algorithms. M- requires algorithms to do the
work while making use of available resources to try multiple things in parallel.
Consequently concurrent search could be integrated in M- by letting multiple
concurrent search-algorithms (each hosting multiple concurrent searches) run in
parallel.
In DisCSP research many ways to improve the performance of search have been
found in recent years, including for example [YD98, BBMM05, ZM05, SF05,
MSTY05]. All of the named approaches can be integrated easily in the M-
framework. The steps to take in order to do this were described in this chapter.
The data structures have to be generalized to handle M contexts, and the search
functions and procedures have to integrate an extra context parameter during
their execution. Depending on the algorithm we may achieve heterogeneous
portfolios in different ways. In this work we demonstrated the use of different
agent topologies but other properties of algorithms can similarly be diversified
in a portfolio. As described in the previous paragraph, the main difference
between the work presented here and the named DisCSP research is that we
do not provide but require a DisCSP algorithm to serve as input to create an
instance of M-.
A different research trend performs “algorithm selection” [Ric76]. Here, portfo-
lio does not represent competing methods but complementary ones. The prob-
lem is then to select from the portfolio the best possible method in order to
tackle some incoming instance. [XHHLB07, LBNA+03] applies the previous
to combinatorial optimization. The authors use portfolios which combine al-
gorithms with uncorrelated easy inputs. Their approach requires an extensive
experimental step. It starts with the identification of problem’s features which
are representative of runtime performances. These features are used to gener-
ate a large set of problem instances which allow the collection of runtime data
for each individual algorithm. Finally, statistical regression is used to learn a
real-valued function of the features which allows runtime prediction. In real situ-
ation, the previous function predicts each algorithm’s running time and the real
instance is solved with the algorithm identified as the fastest one. The key point
is to combine uncorrelated methods in order to exploit their relative strengths.
The most important drawback here is the extensive offline step. This step must
be performed for each new domain space. Moreover a careful analysis of the
problem must be performed by the end-user to identify key parameters. The

3.3. BACKGROUND 7

previous makes this approach highly unrealistic in a truly distributed system
made by opportunistically connected components [FM02]. Finally knowledge
sharing is not applicable in this approach.

3.3 Background

In this section we define some notions used later in the chapter. We briefly
define the problem class considered, two algorithms to solve them and three
metrics to evaluate the performance of these algorithms.

3.3.1 Distributed Constraint Satisfaction Problems

DisCSP is a problem solving paradigm usually deployed in multi-agent applica-
tions where the global outcome depends on the joint decisions of autonomous
agents. Examples of such applications are distributed planning [AD97], and
distributed sensor networks management [FM02]. Informally, a DisCSP is rep-
resented by a set of variables, each of which is associated with a domain of
values, and a set of constraints that restrict combinations of values between
variables. The variables are partitioned amongst a set of agents, such that each
agent owns a proper subset of the variables. The task is for each agent to assign
a value to each variable it owns without violating the constraints.
Modelling a distributed problem in this paradigm involves the definition of the
right decision variables (e.g., in [FM02] one variable to encode the orientation of
the radar beam of some sensor) with the right set of constraints (e.g., in [FM02]
at least three sensors must agree on the orientation of their beams to correctly
track a target).
Solving a DisCSP is equivalent to finding an assignment of values to variables
such that all the constraints are satisfied.
Formally, a DisCSP is a quadruplet (X,D,C,A) where:

1. X is a set of n variables X1, X2, . . . , Xn.

2. D is a set of domain D1, D2, . . . , Dn of possible values for the variables
X1, X2, . . . , Xn respectively.

3. C is a set of constraints on the values of the variables. The constraint
Ck (Xk1, . . . , Xkj) is a predicate defined on the Cartesian product Dk1 ×
. . .×Dkj . The predicate is true if the value assignment of these variables
satisfies the constraint.

4. A = {A1, A2, . . . , Ap} is a partitioning of X amongst p autonomous pro-
cesses or agents where each agent Ak “owns” a subset of the variables in
X with respect to some mapping function f : X→ A, s.t. f(Xi) = Aj .

A basic method for finding a global solution uses the distributed backtracking
paradigm [YDIK92]. The agents are prioritized into a partial ordering graph

8 CHAPTER 3. DISTRIBUTED CONSTRAINT NETWORKS

such that any two agents are connected if there is at least one constraint be-
tween them. The ordering is determined by user-defined heuristics. Solution
synthesis begins with agents finding solutions to their respective problems. The
local solutions are then propagated to respective children i.e., agents with lower
priorities. This propagation of local solutions from parent to child proceeds
until a child agent is unable to find a local solution. At that point, a nogood is
discovered. These elements record inconsistent combinations of values between
local solutions, and can be represented as new constraints. Backtracking is then
performed to some parent agent and the search proceeds from there i.e., prop-
agation of an alternative local solution or new backtrack. The detection and
the recording of inconsistent states are the main features which distinguish dis-
tributed backtracking algorithms. This process carries on until either a solution
is found or all the different combinations of local solutions have been tried and
none of them can satisfy all the constraints. Since these algorithms run without
any global management point, successful states - where each agent has a sat-
isfiable local solution - must be detected through some additional termination
detection protocol (e.g., [CL85]).

3.3.2 DisCSP Algorithms

As a case study to investigate the benefit of competition and cooperation in
distributed search we applied our framework to the distributed tree-based search
IDIBT [Ham02b] and ABT [YDIK92].
IDIBT exploits the asynchronous nature of the agents in a DisCSP to perform
parallel backtracking. This is achieved by splitting the solution space of the
top priority agent into independent sub-spaces. Each sub-space combined with
the remaining parts of the problem represents a new sub-problem or context.
In each context, the same agent ordering is used. Globally, the search is truly
parallel since two agents can simultaneously act in different sub-spaces. At the
agent level, search contexts are interleaved and explored sequentially.
This divide and conquer strategy allows the algorithm to perform well when
the value selection strategy is poorly informed. Beside this parallelization of
the exploration, IDIBT uses a constructive approach to thoroughly explore the
space by an accurate book-keeping of the explored states. It does not add
nogoods to the problem definition. However, it often requires the extension of
the parent-child relation to enforce the completeness of the exploration.
In this work, IDIBT agents use exactly one context to implement (each) dis-
tributed backtracking. Please note that we also use contexts but in a different
way. We only use them to implement our portfolio of variable-orderings. In
contrast to [Ham02b] we thus apply each of them to the complete search tree.
IDIBT requires a hierarchical ordering among the agents. Agents with higher
priority will send their local solution through infoVal-messages to agents with
lower priority. In order to set up a static hierarchy among agents, IDIBT uses
the DisAO algorithm [Ham02b]. In this chapter we do not use DisAO but define
an order a priori by hand. However, the DisAO has an extra functionality which
is essential for the correctness of IDIBT: it establishes extra links between agents

3.3. BACKGROUND 9

which are necessary to ensure that every relevant backtrack-message is actually
received by the right agent. In order to prevent this pre-processing of the agent
topology with DisAO we changed the IDIBT algorithm to add the required
extra links between agents dynamically during search (similar to the processing
of “addLink”-messages in ABT). Finally we extended the algorithm to support
dynamic value selection which is essential for the Aggregation described later
in this chapter.

ABT is the most prominent tree-based distributed search algorithm. Just as
IDIBT it uses a hierarchy to identify the receivers of messages that inform oth-
ers of currently made choices, of the need to backtrack or the need to establish
an extra link. In contrast to IDIBT, ABT uses a nogood-store to ensure com-
pleteness.

In this work, we used ABT in its original version where the hierarchy of agents
is given a priori.

Remark that even if IDIBT is used with a single context in our experiments,
that does not make it similar to ABT. Indeed, IDIBT does not record nogood,
while ABT does. This make a huge difference between these algorithms.

3.3.3 Performance of DisCSP Algorithms

The performance of distributed algorithms is comparably hard to capture in
a meaningful way. The challenge is to find a metric which includes the com-
plexity of the locally executed computations and the need for communication
while reducing this by the work that can practically be done in parallel. The
community has proposed different metrics which meet these requirements.

Non Concurrent Constraint Checks Constraint checks (cc) is an established
metric to express the effort of CSP algorithms. It is the number of queries made
to constraints whether they are satisfied with a set of values or not. Non Con-
current Constraint Checks (nccc) [GZG+08] apply this metric to a concurrent
context. nccc counts the constraint checks which cannot be made concurrently.
When two agents A and B receive information about a new value from another
agent C, they then can check their local consistency independently and thus
concurrently. Assuming this costs 10 constraint checks each, it will be 20 cc but
only 10 nccc. However, when agent C needs 10 cc to find this value this is not
independent of A and B and will result in 20 nccc and 30 cc respectively.

Sequential Messages Counting messages (mc) is an established method to
evaluate the performance of distributed systems. The number of messages is
relevant because their transportation often requires much more time than local
computations. Analogously to counting cc in distributed systems we also have
to distinguish the messages that can be sent concurrently [Lam78]. This also
applies to DisCSP [SSHF00]. If an agent C informs two agents A and B of its
new value then it uses two messages. However, the 2 mc will only count as
one sequential message (smc) because both are independent and can be sent in
parallel. When agent A now replies to this message then we will have two smc
(and 3 mc), because the reply is dependent of the message sent by C. The metric

10 CHAPTER 3. DISTRIBUTED CONSTRAINT NETWORKS

thus refers to the longest sequence of messages that is sent for the execution of
the algorithm.

Parallel runtime Runtime is a popular metric in practice today. It expresses
in a clear and easily understandable way the actual performance of an algorithm.
Its drawback is that it is hardly comparable when using different hardware. In
multi-tasking operating systems we usually use CPU time in order to capture
just the time the considered process requires. Again, in concurrent systems this
metric cannot be applied so easily. We have multiple processes and CPUs which
share the workload. In order to capture parallel runtime (pt) we have to track
dependencies of computations and accumulate the dependent runtime required
by different processes. The longest path through such depending activities will
be the required parallel time. In simulators of distributed systems which run
on one processor we can capture the pt in the same way. With every message
we transmit the pt required so far. The receiver will add the time it needs to
process the message and pass the sum on with the next (depending) message.

3.4 Risks in Search

Here we present two definitions of risk in search. Both kinds of risks motivate
our work. We want to reduce the risk of poor performance in DisCSP. The
first notion called randomization risk is related to the changes in performances
when the same non-deterministic algorithm is applied multiple times to a single
problem instance. The second notion called selection risk represents the risk of
selecting the wrong algorithm or labeling strategy, i.e., one that performs poorly
on the considered problem instance.

3.4.1 Randomization Risk

In [GS01] “risk” is defined as the standard deviation of the performance of one
algorithm applied to one problem multiple times. This risk increases when more
randomness is used in the algorithms. With random value selection for example
it is high and with a completely deterministic algorithm it will be close to zero.
In order to prevent confusion we will refer to this risk as the Randomization-Risk
(R-Risk) in the rest of the chapter.

Definition 1. The R-Risk is the standard deviation of the performance of one
algorithm applied multiple time to one problem.

In asynchronous and distributed systems we are not able to eliminate random-
ness completely. Besides explicitly intended randomness (e.g., in value selection
functions) it emerges from external factors including the CPU scheduling of
agents or unpredictable times for message passing [ZM03].

Reducing the R-Risk leads in many cases to trade-offs in performance [GSK98],
such that the reduction of this risk is in general not desirable. For instance,
we would in most cases rather wait between 1–10 seconds for a solution than

3.4. RISKS IN SEARCH 11

waiting 7–8 seconds. In the latter case the risk is lower but we do not have the
chance to get the best performance.

Moreover, increasing randomization and thus the R-risk is known to reduce
the phenomenon of heavy-tail behaviour in search [Gom03]. Heavy-tailedness
exposes the phenomena that wrong decisions made early during search may lead
to extensive thrashing and thus unacceptable performance. In a preliminary
experiment we could detect this phenomenon in DisCSP with the algorithms
ABT and IDIBT. We used lexicographic variable and value selection to solve 20
different quasigroup completion problems [GW]. A quasigroup is an algebraic
structure resembling a group in the sense that ”division” is always possible.
Quasigroups differ from groups mainly in that they need not be associative.

The problems were encoded in a straightforward model: N2 variables, one vari-
able per agent, no symmetry breaking, binary constraints only. We solved prob-
lems with a 42% ratio of pre-assigned values which is the peak value in the phase
transition for all orders, i.e., we used the hardest problem instances for our test.
Each problem was solved 20 times resulting in a sample size of 400. With ABT
we solved problems of order 6 and with the faster IDIBT problems of order 7.
Randomness resulted from random message delays and the inpredictable agent
activation of the simulator.

 0.1

 1

 10000 100000 1e+006

1-
cu

m
ul

at
iv

e
di

st
rib

ut
io

n
fu

nc
tio

n

concurrent constraint checks

IDIBT
ABT

Figure 3.1: Heavy-tail behaviour of IDIBT and ABT.

12 CHAPTER 3. DISTRIBUTED CONSTRAINT NETWORKS

The results of this experiment are presented in Figure 3.1. We can observe a
linear decay of the cumulative distribution function of ABT on a log-log scale.
For IDIBT, since this algorithm is more performant than ABT, the linear decay
is not visible, but would have been apparent at a different scale, i.e., for the
processing of larger problems. The cumulative distribution function of x gives
us the probability (y-axis) that the algorithm will perform worse than x. It
can be seen that the curves display a pareto-distribution having a less than
exponential decay. A pareto-distribution or power law probability distribution
is seen in many natural phenomenon (wealth distribution, sizes of sand particles,
etc.) it implies that the phenomenon under consideration distribute a particular
characteristic in an unbalanced way, e.g., ”80-20 rule” which says that 20% of
the population controls 80% of the wealth.
This hyperbolic (i.e., less than exponential) decay is identified on the log-log
scale when the curves look linear. This is a common means of characterizing
a heavy tail [Hil75]. Thus, we could (for the first time) observe heavy tails for
both considered DisCSP algorithms in these experiments.
In order to diminish the heavy tail Gomes and Selman propose the use of random
restarts during search. With this technique we interrupt thrashing and restart
search once the effort does not seem promising anymore. Nowadays, restart
is an essential part of any modern tree-based SAT solver [BHZ06], and is also
successfully applied to large scale CP applications [OGD06].
With a central control this decision to restart can be based on information gained
from a global view on the search space e.g., overall number of fails or backtrack
decisions. In DisCSP we do not have such a global view and could thus only
decide locally either to restart or to keep trying. However, the local view may
not be informed enough for this decision. In these algorithms different efforts
are concurrently made on separate sets of variables. Thus we must face the risk
that while one effort may thrash and identify the need to restart, another effort
may have almost solved its sub-problem. Furthermore, stopping and restarting
a distributed system is costly since it involves extra communications. It requires
a wave of messages to tell all agents to stop. After that, global quiescence has to
be detected before a restart can be launched. Thus, we do not consider restarts
to be very practical for DisCSP.
In [GS01] the authors incorporate random restarts in a different way. When
we use a portfolio of algorithms performing random searches in parallel then
this can be equivalent to starting all of these algorithms one after each other
in a restart-setting. They showed that, if one processor is available, the use of
portfolios of algorithms or labeling strategies has equivalent performance as the
application of random restarts. When we use a portfolio of random searches in
parallel sharing the same computational resources then the expected value of the
performance is the same as running these random searches one after each other
using random restarts. If we have more than one processor, the performance
may increase.
In this chapter we make use of this in order to reduce heavy-tail behaviour
in DisCSP. We use portfolios as a surrogate of random restarts to reduce the
risk of extensive thrashing paralyzing the algorithm. This will reduce the risk

3.5. BOOSTING DISTRIBUTED CONSTRAINT SATISFACTION 13

of very slow runs and thus reduce the R-risk as well, and improve the mean
runtime. The randomness may result from random value selection or from the
distribution itself (message transportation and process activation). As we will
show in Section 3.6 we can avoid heavy-tailedness with this new technique.

3.4.2 Selection Risk

The risk we take when we select a certain algorithm or a heuristic to be applied
within an algorithm to solve a problem will always be that this is the wrong
choice. For most problems we do not know in advance, which algorithm or
heuristic will be the best and may select one which performs much worse than
others. We’ll refer to this risk as to the Selection-Risk (S-Risk).

Definition 2. The S-Risk of a set of algorithms/heuristics A is the standard
deviation of the performance of each a ∈ A applied the same number of times
to one problem.

We investigated the S-Risk emerging from the chosen agent ordering in IDIBT
in a preliminary experiment on small, fairly hard random problems (15 vari-
ables, 5 values, density 0.3, tightness 0.4). These problems represent randomly
generated CSPs where the link density between variables is set to 30%, whereas
the tightness density of each constraint is set to 40%, i.e., 40% of the values
combinations are disabled in each constraint. We used one variable per agent
and could thus implement variable-orderings in the ordering of agents. We used
lexicographic value selection and four different static variable-ordering heuris-
tics: a well-known “intelligent” heuristic (namely maxDegree), its inverse (which
should be bad) and two different blind heuristics. As expected, we could observe
that the intelligent heuristic dominates in average but that it is not always the
best. It was the fastest in 59% of the tests, but it was also the slowest in 5% of
the experiments. The second best heuristic (best in 18%) was also the second
worst (also 18%). The “anti-intelligent” heuristic turned out to be the best of
the four in 7% after all. The differences between the performances were quite
significant with a factor of up to 5. Applied to the same problems, ABT gave
very similar results with a larger performance range of up to factor 40.

3.5 Boosting Distributed Constraint Satisfaction

In DisCSP the variable ordering is partially implied by the agent topology.
Neighboring agents will have to be labelled directly after each other. For ex-
ample, if each agent hosts one variable then for each constraint a connection
between two agents/variables must be imposed. From this follows that the thus
connected variables are labelled directly one after the other because they com-
municate along this established link. In other topologies where we have inner
and outer constraints, naturally only the outer constraints must be implemented
as links between agents and we have free choice of variable selection inside the
nodes.

14 CHAPTER 3. DISTRIBUTED CONSTRAINT NETWORKS

For the inter-agent constraints we have to define a direction for each link. This
direction defines the priority of the agents [YDIK92] and thus the direction in
which backtracking is performed. It can be chosen in any way for each of the
existing connections. In Figure 3.2 we show two different static agent-topologies
emerging from two different variable-ordering heuristics in DisCSP.

X2

X6

X3

X7

X1

X5

DisCSP

X4 X1

X2

X3 X4 X5

X7 X6

max-degree
ordering

X1

X2

X3 X4

X5

X6 X7

min-degree
ordering

Figure 3.2: DisCSP (left) and agent topologies implied by the variable orderings
max-degree (middle) and min-degree (right).

3.5.1 Utilizing Competition With Portfolios

The idea presented in this chapter is that several variable orderings and thus
several agent topologies are used by concurrent distributed searches. We refer to
this idea as the M-framework for DisCSP. Applied to an algorithm X it defines a
DisCSP algorithm M-X which applies X multiple times in parallel. Each search
operates in its usual way on one of the previously selected topologies. In each
agent the multiple searches use separate contexts to store the various pieces
of information they require. These include for example adjacent agents, their
current value, their beliefs about the current values of other agents, etc.
In Figure 3.3 we show how an agent hosting variable X4 from Figure 3.2 could
employ the two described variable orderings. The figures shows the internal
information, and the associated pseudo code. On the right part of the figure,
we can see that this agent hosts two different current values, one for each search
and two different agent-views which contain its beliefs about the values of higher-
priority agents. The set of these higher-priority agents depends on the chosen
topology and thus on the chosen variable ordering. The figure also shows on the
left the pseudo-code associated with some tree-based search algorithm. There,
the function and procedures are augmented with an extra context parameter,
which is used to access the right subset of data.
In a M- search, different search-efforts can be made in parallel. Each message

3.5. BOOSTING DISTRIBUTED CONSTRAINT SATISFACTION 15

X4: Agent

int[2] current_value;
map<agent,int>[2] agent_view;
list<agent>[2] higher_priority_neighbors;
list<agent>[2] lower_priority_neighbors;

when received(ok(sender,value,context))
 ...

when received(backtrack(sender,context))
 ...

Code State

current_value[1] = 1
agent_view[1] = [(X1,?),(X2,1)]
higher_priority_neighbors[1] = [X1,X2]
lower_priority_neighbors[1] = [X7]

current_value[2] = 2
agent_view[2] = [(X2,2),(X7,?)]
higher_priority_neighbors[2] = [X2,X7]
lower_priority_neighbors[2] = [X1]

context 1

context 2

Figure 3.3: Two contexts for the agent hosting X4 from Figure 3.2 resulting
from two variable orderings.

will refer to a context and will be processed in the scope of this context. The
first search to terminate will deliver the solution or report failure. Termination
detection has thus to be implemented for each of the contexts separately. This
does not result in any extra communication as shown for the multiple contexts
of IDIBT in [Ham02b].
With the use of multiple contexts we implement a portfolio of heuristics which
is known to reduce the heavy-tail of CSP [GS01]. As we will show in our
experiments this is also beneficial for DisCSP. In contrast to random restarts
we do not stop any search although it may be stuck due to bad early choices.
We rather let such efforts run while concurrent efforts may find a solution. As
soon as a solution is detected in one of the contexts all searches are stopped.
Additionally, we can reduce the S-Risk by adding more diversity to the used
portfolio. Assuming we do not know anything about the quality of orderings, the
chance of including a good ordering in a set of M different orderings is M -times
higher than selecting it for execution in one search. When we know intelligent
heuristics we should include them but the use of many of them will reduce the
risk of bad performance for every single problem instance (cf. experiment in
Section 3.4.2). Furthermore, the expected performance is improved with the
M-framework since always the best heuristic in the portfolio will deliver the
solution or report failure. If we have a portfolio of orderings M where the
expected runtime of each m ∈ M is t(m) then ideally (if no overhead emerges)
the system terminates after min({t(m)|m ∈M}).

3.5.2 Utilizing Cooperation With Aggregation

Besides the idea of letting randomized algorithms compete such that overall
we are always “as good as the best heuristic” the M-framework can also use
cooperation. Cooperation through knowledge-sharing is a very powerful concept
which allows a collection of agents to perform even better than the best of them.

16 CHAPTER 3. DISTRIBUTED CONSTRAINT NETWORKS

As suggested by Reid Smith, Power = KnowledgeShared, where the exponent
represents the number of agents whose knowledge is brought to the problem
[Buc06]. With this, M- portfolios may be able to accelerate the search effort even
more by providing it with useful knowledge others have found. Cooperation is
implemented in the aggregation of knowledge within the agents. The agents use
the information gained from one search context to make better decisions (value
selection) in another search context. This enlarges the amount of knowledge on
the basis of which local decisions are made.
In distributed search, the only information that agents can use for aggregation
is their view of the global system. With multiple contexts, the agents have
multiple - sometime orthogonal - views and thus more information available for
their local reasoning. Since all these views are recorded by each individual agent
within his local knowledge base, sharing inter-context information is costless. It
is just a matter of reading in the local knowledge base what has been decided
for context c, in order to make a new decision in context c′. In this setting,
the aggregation yields no extra communication costs (i.e., no message
passing). It is performed locally and does not require any messages or accesses
to some shared blackboard.

3.5.3 Categories of Knowledge

In order to implement Aggregation we have to make two design decisions: first,
which knowledge is used and second, how it is used. As mentioned before we
use knowledge that is available for free from the internally stored data of the
agents. In particular this may include the following four categories:

• Usage Each agent knows the values it currently has selected in each search
context.

• Support Each agent can store for each search context, currently known
values of other agents (agent-view) and the constraints that need to be
satisfied with these values.

• Nogoods Each agent can store for each search context, partial assign-
ments that are found to be inconsistent.

• Effort Each agent knows for each search context how much effort in terms
of the number of backtracks it has already invested.

3.5.4 Interpretation of Knowledge

The interpretation of this knowledge can follow two orthogonal principles: di-

versity and emulation. Diversity implements the idea of traversing the search
space in different parts simultaneously in order not to miss the part in which
a solution can be found. The concept of emulation implements the idea of co-
operative problem solving, where agents try to combine (partial) solutions in
order to make use of work which others have already done.

3.5. BOOSTING DISTRIBUTED CONSTRAINT SATISFACTION 17

diversity emulation

Usage minUsed: the value which
is used the least in other
searches

maxUsed: the value which is
used most in other searches

Support – maxSupport: the value
that is most supported by
constraints w.r.t., current
agent-views

Nogoods differ: the value which is
least included in nogoods

share: always use nogoods
of all searches

Effort minBt: a value which is not
the current value of searches
with many backtracks

maxBt: the current value of
the search with most back-
tracks

Table 3.1: Methods of aggregation.

With these concepts of providing and interpreting knowledge we can define the
portfolio of aggregation methods shown in Table 3.1. In each box we provide
a name (to be used in the following) and a short description of which value is
preferably selected by an agent for a search.

3.5.5 Practical Implementation of the Knowledge Sharing
Policies

The implementation of each knowledge sharing policies is rather simple since
they only require regular lookups to other contexts in order to make a decision.
More concretely,

• minUsed, maxUsed. Each value of the initial domain of a local variable
is associated to a counter. This counter is updated each time a decision
for that variable is made in any search context. Each counter takes values
between 0 and the number of contexts. For each variable, pointers to
the min (resp. max) used variables are incrementally updated. During
a decision, minUsed selects the value which is the least used in other
contexts, while maxUsed selects the most used.

• maxSupport. Each value of the initial domain of a local variable is associ-
ated to a counter. This counter stores the number of supports each value
has in other contexts. In order to illustrate this policy, let us consider an
example with an inter-agent constraint X ≤ Y where X and Y have initial
domains {a, b, c}. Now let us assume that two different agents own the
variables, and that the M- framework uses three contexts where, Y = a
in the first one, and Y = b in the second one. If the agent owning X has

18 CHAPTER 3. DISTRIBUTED CONSTRAINT NETWORKS

to decide for its value in the third context, it will have the following val-
ues for the maxSupport counters: maxSupport(a)=2, maxSupport(b)=1,
maxSupport(c)=0. It will then select the value a since this value is the
most supported w.r.t., its current agent-views. Remark that implementing
a minSupport policy would be straight forward with the previous counters.
We did not try that policy, just because it does not really make sense from
a problem solving view point.

• differ. Each value of the initial domain of a local variable is associated to
a counter. This counter is increased each time a nogood which contains
a particular value is recorded by ABT in any search context. During a
decision, the value with the lowest counter is selected.

• share. With this policy, each nogood learnt by ABT is automatically
reused in other search contexts.

• minBt, maxBt. The number of local backtracks performed by the agent in
each of the context is recorded. Each time a value has to be selected for
a particular variable, minBt forces the selection of the value used for the
same variable in the search with the least number of backtracks. Inversely,
maxBt forces the selection of the value used in the search with the largest
number of backtracks.

As we can see, even the most complex policies only requires the association
of counters to domains values. These counters aggregate information between
search contexts at the agent level. They are updated during any decision of
any particular context, and used to perform better decisions in any particular
context. Updating these counters can be done naively or incrementally, for
instance with the help of some bookkeeping technique.

3.5.6 Complexity

Before presenting the empirical evaluation of M-, we discuss its costs hereafter.

Space

The trade-off in space for the application of M- is linear in the number of applied
orderings. This is obvious for our implementation (see Figure 3.3). Thus, it
clearly depends on the size of the data structures that need to be duplicated for
the contexts. This will include only internal data structures which are related
to the state of the search. M- does not duplicate the whole agent. For instance,
the data structures for communication are jointly used by all the concurrent
search efforts as shown in the Figure 3.3.
It turned out in our experiments that this extra space requirement is very small.
We observed that the extra memory needed with a portfolio of size ten applied
to IDIBT is typically only about 5–10%. For ABT the extra memory when using
10 instead of one context differed depending on the problem. For easy problems,

3.5. BOOSTING DISTRIBUTED CONSTRAINT SATISFACTION 19

where few nogoods need to be stored the extra memory consumption was about
5–20%. For hard problems we could observe up to 1000% more memory usage of
the portfolio. This clearly relates to the well-known space-trade-off of nogood-
recording.

Network load

The trade-off in network load, that is the absolute number of messages is linear
in the portfolio size. When using M parallel contexts that perform one search
effort each we will in the worst case have M times more messages. However,
on average this may be less because not all of the M searches will terminate.
As soon as one has found a solution the complete system will stop and M − 1
search efforts will omit the rest of their messages.

Furthermore, the absolute number of messages is not the most crucial metric
in DisCSP. As described earlier sequential messages are more appropriate. The
sequential messages do not increase in complexity because the parallel search
efforts are independent of one each other such that the number of sequential
messages (smc) is the maximum of the smc of all searches in the worst case. In
average, however, it will be the smc of the search that is best. Consequently,
the smc-complexity when using M-X is the same as the smc-complexity of X.

Using Aggregation will not increase the number of required messages because
this is performed internally by the agents.

Algorithm Monitoring

The complexity of monitoring M-X is the same as it is necessary for the al-
gorithm X. This includes starting the agents and termination detection. Since
the number of agents is not increased when using M- we do not need any extra
communication or computation for these tasks.

Time

The trade-off in computational costs increases with the use of M-. Similar to
the increase in absolute messages we have a linear increase in constraint checks.
However, looking at non-concurrent constraint checks (nccc) the complexity of
X and M-X is the same provided there is no aggregation. The derivation of this
conclusion can be made analogously to the derivation concerning smc.

When we use Aggregation, however, there may be an increase in computational
costs of the agents. Depending on the effort an agent puts in using information
it gets from other contexts this may also increase the number of nccc. This will
be analyzed in the next Section.

Therefore, the overall cost of M-X is the same as the worst-case complexity of X
when we use the concurrent metrics. In average, however, M- will be “as good
as the best search heuristic” or even “better than the best” when knowledge
sharing techniques are implemented. This will be presented in the next section.

20 CHAPTER 3. DISTRIBUTED CONSTRAINT NETWORKS

3.6 Empirical Evaluation

For the empirical evaluation of the M-framework we processed more than 180,000
DisCSPs with M-IDIBT and M-ABT. We solved random binary problems (15
variables, 5 values), n-queens-problems with n up to 20 and quasigroup com-
pletion problems with up to 81 agents.
All tests were run in a Java multi-threaded simulator where each agent im-
plements a thread. The common memory of the whole process was used to
implement message channels. Agents can send messages to channels where they
are delayed randomly for 1 to 15 milliseconds. This was done to simulate real
world contingencies in messages deliveries. After this delay they may be picked
up by their addressee. All threads have the same priority such that we have no
influence on the activation of them and on the computational resources assigned
to them by the JVM or the operating system.
In this simulator we implemented the metrics described in Section 3.3.3. The
absolute numbers of messages (mc), constraint checks (cc) and backtracks (bt)
were counted locally and accumulated after termination of the algorithm. The
more sophisticated metrics which reflect the parallelism were computed during
the execution of the algorithms. Whenever a message is passed from A to B
then A will include its current value of nccc and smc. The receiver takes the
maximum of the value and its locally stored values, adds the costs it is now
performing and passes the result on with the next message it sends. After
termination of the algorithm we select the maximum of all these values among
all agents. Remark that there have been recent research which tried to define
alternative performance metrics for DisCSP and DCOP (optimization) problems
(see [SLS+08, GZG+08]).

3.6.1 Basic Performance

In Figure 3.4 we show the median1 numbers of messages sent and the runtime
to find one solution by different sized portfolios on fairly hard instances (den-
sity 0.3, tightness 0.4) of random problems (sample size 300). These problems
represent randomly generated CSPs where the link density between variables is
set to 30%, whereas the tightness density of each constraint is set to 40%, i.e.,
40% of the values combinations for the underlying constraint are disabled. No
aggregation was used in these experiments. The best known2 variable-ordering
(maxDegree) was used in each portfolio including those of size 1 which are
equivalent to the basic algorithms. In the larger portfolios we added instances
of lex, random and minDegree and further instances of all four added in this
order. For example 6-ABT would use the orders (maxDeg, lex, rand, minDeg,
maxDeg, lex). It can be seen that with increasing portfolio-size there is more
communication between agents. The absolute number of messages rises. In the

1We decided to use the median instead of the mean to alleviate the effects of messages
interleaving. Indeed, interleaving can give disparate measures which can be pruned by the
median calculation.

2We made preliminary experiments to determine this.

3.6. EMPIRICAL EVALUATION 21

same Figure we show the runtime. It can be seen that the performance improves
up to a certain point when larger portfolios are used. In our experimental setting
this point is reached with size 10. With larger portfolios no further speedup can
be achieved which would make up the communication cost and computational
overhead. The same behaviour can be observed when considering smc or nccc.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 2 4 6 8 10 12 14 16 18 20
 200

 300

 400

 500

 600

 700

 800

nu
m

be
r

of
 m

es
sa

ge
s

ru
nt

im
e

in
 m

ill
is

ec
on

ds

portfolio size

M-IDIBT runtime
M-ABT runtime

M-IDIBT messages
M-ABT messages

Figure 3.4: Communication and runtime in M- portfolios.

3.6.2 Randomization Risk

The Randomization-Risk is defined as the standard deviation within each sample
in our experimental setup. To evaluate it we applied M-IDIBT with homoge-
neous portfolios 30 times each to a set of 20 hard random problem instances
< 15, 5, 0.3, 0.5 >. All portfolios used the same deterministic value selection
function and variable ordering (both lexicographic) in all searches. For each
problem instance we considered the standard deviation of the 30 runs. Then we
took the average of these standard deviations over all 20 problem instances for
each portfolio size. This would give us the R-Risk that emerges exclusively from
the distribution. The results for portfolios size 1 to 8 can be seen in Figure 3.5.
It can be seen that all three relevant performance measures (nccc, smc, and pt)
decrease with portfolio size increased from 1 to 2. This means the randomiza-
tion risk decreases when we apply the M-framework. Beyond two there is only
a slight decrease.
In order to check the influence of the M-framework to the heavy-tail behaviour
we repeated the experiment described in Section 3.4.1 (quasigroup completion of
order 6 for ABT and order 7 for IDIBT with 42% preassigned values, sample size

22 CHAPTER 3. DISTRIBUTED CONSTRAINT NETWORKS

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 1 2 3 4 5 6 7 8
 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

m
ea

n
st

an
da

rd
 d

ev
ia

tio
n

portfolio size

concurrent constraint checks
sequential messages

parallel time

Figure 3.5: Randomization-Risk emerging from message delays and thread ac-
tivation.

800) with portfolios of size 10. In Figure 3.6 we show the cumulated distribution
function of the absolute number of backtracks when applying M-ABT and M-
IDIBT to the quasigroup completion problems on a log-log scale. It can be
seen that both curves decrease in more than a linear manner. As described
earlier this implies the non-heavy-tailedness of the runtime distribution of these
algorithms.

3.6.3 Selection-Risk

To evaluate the selection-risk we used a similar experimental setting as before
but with heterogeneous variable orderings in the portfolios. We chose to use M
different random variable orderings in a portfolio of size M . This would reduce
the effects we get from knowledge about variable selection heuristics. The value
selection was the same (lexicographic) in all experiments in order to reduce the
portion of R-Risk as widely as possible and to expose the risk emerging from
the selection of a particular variable ordering. In this setting we would get an
unbiased evaluation of the risk we take when choosing variable orderings. The
mean standard-deviation of the parallel runtime for M-ABT and M-IDIBT is
shown in Figure 3.7 on a logarithmic scale. It can be seen that the risk is reduced
significantly with the use of portfolios. With portfolio size 20, for instance, the
S-risks of M-IDIBT and M-ABT are 344 and 727 times smaller than the ones
of IDIBT and ABT, respectively.

3.6. EMPIRICAL EVALUATION 23

 0.1

 1

 1000 10000 100000 1e+006

1-
cu

m
ul

at
iv

e
di

st
rib

ut
io

n
fu

nc
tio

n

concurrent constraint checks

M-ABT
M-IDIBT

Figure 3.6: No heavy-tails with M-ABT and M-IDIBT.

24 CHAPTER 3. DISTRIBUTED CONSTRAINT NETWORKS

 100

 1000

 10000

 100000

 1e+06

 2 4 6 8 10 12 14 16 18 20

se
le

ct
io

n
ris

k
(lo

g
sc

al
e)

portfolio size

M-ABT
M-IDIBT

Figure 3.7: S-Risk (standard-dev of the parallel runtime) including the R-Risk
emerging from distribution.

3.6.4 Performance with Aggregation

The benefit of Aggregation which is implemented with the different value se-
lection heuristics is presented in Table 3.2. Each column in the table shows
the median values of at least 100 samples solved with M-IDIBT with a port-
folio of size 10 applied to 30 different hard random and quasigroup completion
problems.

hard randoms quasigroups
smc nccc pt smc

1000

nccc
1000

pt
minUsed 367 2196 1.563 102 1625 448
maxUsed 379 2118 1.437 40 635 182
minBt 392 2281 1.640 104 1330 367
maxBt 433 2541 1.820 43 694 171

maxSupp 57 5718 1.922 1.9 3727 143

random 409 2406 1.664 73 1068 298

Table 3.2: Performance of aggregation methods for M-IDIBT.

In the table we refer to the aggregation methods introduced in Table 3.1, the
bottom line shows the performance with random value selection (and thus no
aggregation). When we consider the parallel runtime, it seems that the choice
of the best method depends on the problem. For the quasigroup, aggregation

3.6. EMPIRICAL EVALUATION 25

based on the emulation principle seems to be better, on random problems not.

Interestingly, message passing operations present a different picture. It can be
seen that maxSupport uses by far the least messages. These operations are
reduced by a factor of 7 (resp. 38) for random (resp. quasigroups) problems.
However, when we consider parallel time, it cannot outperform the others signif-
icantly since our implementation of this aggregation method is relatively costly3.
However, message passing is the most critical operation in real systems be-
cause of either long latencies or high energy consumption (e.g., ad-hoc networks
[FM02]). This makes the maxSupport aggregation method really promising. In-
deed, there is a clear correlation between the amount of messages sent and the
amount of local computations. Especially in DisCSPs where agents are hosting
complex sub-problems. In these situations, since every incoming message may
trigger the search of a new solution for the local problem, it is important to
restrict message passing.

The performance of maxSupport can be explained as follows. It benefits from the
efforts done in other contexts by capitalizing on compatible values i.e., support
relation. As a result this aggregation strategy effectively mixes the partial

solutions constructed in the different contexts. It corresponds to an
effective juxtaposition of partial solutions.

3.6.5 Scalability

In order to evaluate the relevance of the M-framework we investigated how
it scales in larger and more structured problems. For this we applied good
configurations found in the previous experiments to the quasigroup completion
problem as described earlier in Section 3.4.1 (straightforward modelling with
binary constraints, most difficult instances with 42% pre-assignment).

Table 3.3 shows the experimental results of distributed search algorithms on
problems of different orders (each column represents an order). ABT and IDIBT
used the domain/degree (domDeg) variable ordering [BR96], which was tested
best in preliminary experiments. In the larger portfolios we used domain/degree
and additional heuristics including maxDegree, minDomain, lex and random.
In all portfolios Aggregation with the method maxUsed was applied4. For each
order (column) we show the median parallel runtime (in seconds) to solve 20
different problems (once each) and the number of solved problems. When less
than 10 instances could be solved within a timeout of two hours we naturally
cannot provide meaningful median results. In the experiments with M-ABT we
have also observed runs which were aborted because of memory problems in our
simulator. For order 8 these were about one third of the unsolved problems, for
order 9 this problem occurred in all unsuccessful tests. This memory problem
arising from the nogood-storage of ABT was addressed in [BBMM05] and is not
the subject of this research.

3It seems that bookkeeping could help to reduce the amount of constraint checks.
4We decided to use this method since it was shown to minimize nccc on previous tests (see

Table 3.2).

26 CHAPTER 3. DISTRIBUTED CONSTRAINT NETWORKS

5 6 7 8 9
ABT 0.3, 20 -, 8 -, 1 -, 0 -, 0

M-ABT, size 5 0.5, 20 5.9, 19 35.8, 14 -, 2 -, 0
M-ABT, size 10 0.6, 20 6.1, 20 40.6, 17 -, 8 -, 1

IDIBT 1.8, 20 12.4, 20 234, 20 4356, 16 -, 5
M-IDIBT, size 5 0.2, 20 0.9, 20 9.3, 20 709, 20 -, 6
M-IDIBT, size 10 0.3, 20 1.7, 20 8.2, 20 339, 20 -, 8

Table 3.3: Median parallel runtime (pt) and instances solved (out of 20) of
quasigroup completion problems with 42% pre-assigned values.

From the successful tests it can be seen that portfolios improve the median
performance of IDIBT significantly. In the problems of order 7 a portfolio of
10 was 28 times faster than the regular IDIBT. Furthermore, portfolios seem to
become more and more beneficial in larger problems as the portfolio of size 10
seems to scale better than the smaller one. ABT does not benefit in the median
runtime but the reduced risk makes a big difference. With the portfolio of size
10, we could solve 17 instances of order 7 problems whereas the plain algorithm
could only solve one.

3.6.6 Idle Time

To complete the presentation of our experimental results let us consider time
utilization in distributed search. It appears that agents in both considered
classical algorithms under use available resources. This is figured in the first two
columns of Table 3.4 for various problem classes. The numbers represent the
average idle times (10-100 samples) of the agents. In our simulator we captured
the idle times in each agent separately. Each agent accumulates the time it
waits for new messages to be processed. Whenever an agent finished processing
one message and has no new message received it starts waiting until something
arrives in its message channel. This waiting time is accumulated locally. After
termination of the algorithm we take the mean of these accumulated times of
all agents to compute the numbers shown in Table 3.4.

problem class idle time of agents
ABT IDIBT M-ABT M-IDIBT

easy random 87% 92% 56% 47%
hard random 92% 96% 39% 59%
n-queens 91% 94% 48% 52%
hard quasigroups 87% 93% 28% 59%

Table 3.4: Idle times of agents in DisCSP.

We can observe that ABT (Asynchronous BackTracking) and IDIBT (Inter-

3.7. SUMMARY 27

leaved Distributed Intelligent BackTracking) are most of the time idle. This
idleness comes from the inherent disbalance of work in DisCSPs. Indeed, it
is well known that the hierarchical ordering of the agents makes low priority
agents (at the bottom) more active than high priority ones. Ideally the work
should be balanced. Thus, ideally one agent on the top of the hierarchy in
context 1 should be in the bottom in context 2, etc (e.g., see agent in charge of
variable X1 in figure 3.2). Obviously, since we use well known variable order-
ing heuristics we cannot enforce such a property. However, the previous is an
argument for M- which can use idle time “for free” in order to perform further
computations in concurrent search efforts. This effect is shown in the last two
columns of the table where the M-framework with a portfolio of size 10 applied
to the same problems. These algorithms make a better use of computational
resources. Certainly it is not a goal to reduce idleness to a minimum since the
performance of our algorithm also depends in the response-times of the agents
which may become very long with low idleness. However, without having stud-
ied this intensively we are convinced that a mean idleness of more than 90% is
not necessary for fast responses.

3.7 Summary

We have presented a generic framework for the execution of DisCSP algorithms.
It was tested on two standard methods but any tree-based distributed search
should easily fit in the M-framework. The framework executes a portfolio of
cooperative DisCSP algorithms with different agent-orderings concurrently un-
til the first of them terminates. In real (truly distributed) applications, our
framework will have to start with the computation of different orderings. The
generic Distributed Agent Ordering heuristic (DisAO) [HBQ98] could easily be
generalized at no extra message passing cost to concurrently compute several
distributed hierarchies. The main idea is to simultaneously exchange multiple
heuristic evaluation of a sub-problem instead of one.
Heterogeneous portfolios are shown to be very beneficial. They improve the
performance and reduce the risk in distributed search. With our framework we
were able to achieve a speedup of one order of magnitude while reducing the
risk by up to three orders of magnitude compared to the traditional execution
of the original algorithm. The chances of extensive thrashing due to bad early
decisions (so called heavy-tails) are significantly diminished.
A portfolio approach seem to make a better use of computational resources by
reducing the idle time of agents. This is the first of two special advantages
of the application of portfolios in DisCSP: we do not have to artificially add
parallelism and the related overhead but can use idle resources instead. The
M-framework can be seen as a solution to the classical “work imbalance” flaw
of tree-based distributed search.
We analyzed and defined distributed cooperation (Aggregation) with respect to
two orthogonal principles diversity and emulation. Each principle was applied
without overhead within the limited scope of each agent’s knowledge. This is

28 CHAPTER 3. DISTRIBUTED CONSTRAINT NETWORKS

the second special advantage of using portfolios in DisCSP: aggregation yields
no communication costs and preserves privacy ([GGS07]) because processes are
not related to search efforts but to agents instead. Our experiments identified
the emulation-based maxSupport heuristic as the most promising one. It is able
to efficiently aggregate partial solutions which results in a large reduction in
message passing operations.
In the next chapter we will see that the ideas developed here can be applied in
the context of parallel satisfiability.

Chapter 4

Parallel Satisfiability

29

30 CHAPTER 4. PARALLEL SATISFIABILITY

The work developed in this Chapter was initiated in Cambridge, and extended
during the co-supervision of the PhD thesis of Said Jabbour and Long Luo
(CRIL-CNRS), and the supervision of the post-doc of Said Jabbour (MSR-
INRIA). It also led to two MSR summer internships (Said Jabbour, and Christoph
Wintersteiger). It produced the following publications and US patent applica-
tion:

• Youssef Hamadi, Said Jabbour, and Lakhdar Sais. ManySAT: solver
description. Technical Report MSR-TR-2008-83, Microsoft Research, May
2008.

• Youssef Hamadi, Said Jabbour, and Lakhdar Sais. ManySAT: a parallel
SAT solver. JSAT, 6(4):245–262, 2009.

• Youssef Hamadi, Said Jabbour, and Lakhdar Sais. Control-based clause
sharing in parallel SAT solving. In IJCAI 2009, Proceedings of the 21st
International Joint Conference on Artificial Intelligence, pages 499–504,
2009.

• Lucas Bordeaux, Youssef Hamadi, and Horst Samulowitz. Experiments
with massively parallel constraint solving. In IJCAI 2009, Proceedings
of the 21st International Joint Conference on Artificial Intelligence, pages
443–448, 2009.

• Christoph M. Wintersteiger, Youssef Hamadi, and Leonardo Mendonça
de Moura. A concurrent portfolio approach to SMT solving. In Ahmed
Bouajjani and Oded Maler, editors, CAV, volume 5643 of Lecture Notes
in Computer Science, pages 715–720. Springer, 2009.

• Long Guo, Youssef Hamadi, Said Jabbour, and Lakhdar Sais. Diversifica-
tion and intensification in parallel SAT solving. In David Cohen, editor,
CP, volume 6308 of Lecture Notes in Computer Science, pages 252–265.
Springer, 2010.

• Youssef Hamadi, Said Jabbour, Cédric Piette, and Lakhdar Sais. Deter-
ministic parallel DPLL. JSAT, 7(4):127–132, 2011.

• Youssef Hamadi, João Marques-Silva, and Christoph M. Wintersteiger.
Lazy decomposition for distributed decision procedures. In Jiri Barnat
and Keijo Heljanko, editors, PDMC, volume 72 of EPTCS, pages 43–54,
2011.

• Alejandro Arbelaez and Youssef Hamadi. Improving parallel local search
for SAT. In Carlos A. Coello Coello, editor, LION, volume 6683 of Lecture
Notes in Computer Science, pages 46–60. Springer, 2011.

• Youssef Hamadi and Christoph M. Wintersteiger. Seven challenges in
parallel SAT solving. In AAAI, Invited paper, to appear, 2012.

4.1. INTRODUCTION 31

• Youssef Hamadi and Christoph M. Wintersteiger. Challenges in parallel
SAT solving. In AI Magazine, Invited article, to appear, 2012.

• US Patent App. No. 12465440, Controlled Constraint Sharing in Parallel
Problem Solvers, Youssef Hamadi and Said Jabbour, May 13, 2009.

It also led to the following awards:

• SAT-Race 2008 : Gold medal for the ManySAT solver with title of Best
Parallel SAT Solver. SAT’08, Guangzhou, P. R. China.

• SAT-Competition 2009: ManySAT ranked first, second, and third, indus-
trial category. SAT’09, Swansea, United Kingdom.

• SAT-Race 2010: Silver and Bronze medals for the ManySAT solver. SAT’10,
Edinburgh, United Kingdom.

• SAT-Competition 2011: CSLS solver, silver medal SAT+Random cate-
gory. SAT’11 Ann Arbor, USA.

Finally, it was presented in numerous invited talks and tutorials (see Part II).

4.1 Introduction

In the previous chapter, we have seen how a portfolio of algorithms, opportunis-
tically exchanging knowledge about the problem can be used to boost the per-
formance of distributed search by several orders of magnitude. In this chapter,
we are going to apply the same concepts to centralized search, i.e., to situations
where the problem is fully expressed in one particular node or agent. More
specifically, we are going to apply parallel portfolios to the important domain
of propositional satisfiability.
In recent years, SAT solvers had a huge impact in their traditional hardware and
software verification domains. Today, they are also gaining popularity in new
fields like Automated Planning, General Theorem Proving or Computational
Biology [Rin11, dMB08, CBH+07]. This widespread adoption is the result of the
efficiency gains made during the last decade [BHZ06]. Indeed, many industrial
problems with hundreds of thousands of variables and millions of clauses are
now solved within a few minutes. This impressive progress can be related to
both low level algorithmic improvements and to the ability of SAT solvers to
exploit the hidden structures of a practical problem.
However, many new applications with instances of increasing size and complex-
ity are coming to challenge modern solvers, while at the same time, it becomes
clear that the gains traditionally given by low level algorithmic adjustments are
almost gone. As a result, a large number of industrial instances from the last
competitions remain challenging for all the available SAT solvers. Fortunately,
the previous comes at a time where the generalization of multicore hardware
gives parallel processing capabilities to standard PCs. While in general it is

32 CHAPTER 4. PARALLEL SATISFIABILITY

important for existing applications to exploit new hardwares, for SAT solvers,
this becomes crucial.
Many parallel SAT solvers have been previously proposed. Most of them are
based on the divide-and-conquer principle (see Section 4.2). They either divide
the search space using for example guiding paths or the formula itself using
decomposition techniques. The main problem behind these approaches rises in
the difficulty to get workload balanced between the different processor units or
workstations. Another drawback of these approaches rises in the fact that for
a given large SAT instance with hundreds of thousands of variables it is very
difficult to find the most relevant set of variables to divide the search space.
In the following, we detail ManySAT, a new parallel SAT solver, winner of the
2008 Sat-Race1. The design of ManySAT takes advantage of the main weakness
of modern solvers: their sensitivity to parameter tuning. For instance, chang-
ing the parameters related to the restart strategy or to the variable selection
heuristic can completely change the performance of a solver on a particular
problem class. In a multicore context, we can easily take advantage of this lack
of robustness by designing a portfolio which will run different incarnations of a
sequential solvers on the same instance. Each solver would exploit a particular
parameter set and their combination should represent a set of orthogonal yet
complementary strategies. Moreover, individual solvers could perform knowl-
edge exchange in order to improve the performance of the system beyond the
performance of its individual components.
As we can see, the ManySAT approach is a direct application of our previous M-
framework to SAT. Unlike in M-, ManySAT solves centralized problems and use
multiple resources to speed-up processing. Here M- search-context correspond
to proper execution of a sequential SAT engine. In the portfolio, engines are
not only differentiated with respect to their labelling strategies but to various
other features of SAT solvers.

4.2 Previous Work

We present here the most noticeable approaches related to parallel SAT solving.
PSATO [ZBH96] is based on the SATO (SAtisfiability Testing Optimized) se-
quential solver [ZS94]. Like SATO, it uses a trie data structure to represent
clauses. PSATO uses the notion of guiding-paths to divide the search space of
a problem. These paths are represented by a set of unit clauses added to the
original formula. The parallel exploration is organized in a master/slave model.
The master organizes the work by addressing guiding-paths to workers which
have no interaction with each others. The first worker to finish stops the system.
The balancing of the work is organized by the master.
In [JLU05] a parallelization scheme for a class of SAT solvers based on the DPLL
procedure is presented. The scheme uses a dynamic load-balancing mechanism
based on work-stealing techniques to deal with the irregularity of SAT problems.
PSatz is the parallel version of the well known Satz solver.

1http://www-sr.informatik.uni-tuebingen.de/sat-race-2008/index.html

4.3. TECHNICAL BACKGROUND 33

Gradsat [CW03] is based on zChaff. It uses a master-slave model and the notion
of guiding-paths to split the search space and to dynamically spread the load
between clients. Learned clauses are exchanged between all clients if they are
smaller than a predefined limit on the number of literals. A client incorporates
a foreign clause when it backtracks to level 1 (top-level).
In [BSK03], the authors use an architecture similar to Gradsat. However, a
client incorporates a foreign clause if it is not subsumed by the current guiding-
path constraints. Practically, clause sharing is implemented by mobile-agents.
This approach is supposed to scale well on computational grids.
Nagsat [FS02] is a parallel SAT solver which exploits the heavy-tailed distribu-
tion of random 3-SAT instances. It implements nagging, a notion taken from
the DALI theorem prover. Nagging involves a master and a set of clients called
naggers. In Nagsat, the master runs a standard DPLL algorithm with a static
variable ordering. When a nagger becomes idle, it requests a nagpoint which
corresponds to the current state of the master. Upon receiving a nagpoint, it
applies a transformation (e.g., a change in the ordering or the remaining vari-
ables), and begins its own search on the corresponding subproblem.
In [BS96], the input formula is dynamically divided into disjoint subformulas.
Each subformula is solved by a sequential SAT-solver running on a particular
processor. The algorithm uses optimized data structures to modify Boolean
formulas. Additionally workload balancing algorithms are used to achieve a
uniform distribution of workload among the processors.
MiraXT [LSB07], is designed for shared memory multiprocessors systems. It
uses a divide-and-conquer approach where threads share a unique clause database
which represents the original and the learnt clauses. When a new clause is learnt
by a thread, it uses a lock to safely update the common database. Read access
can be done in parallel.
PMSat uses a master-slave scenario to implement a classical divide-and-conquer
search [GFS08]. The user of the solver can select among several partinioning
heuristics. Learnt clauses are shared between workers, and can also be used to
stop efforts related to search spaces that have been proven irrelevant. PMSat
runs on networks of computer through an MPI implementation.
In [CS08], the authors use a standard divide-and-conquer approach based on
guiding-paths. However, it exploits the knowledge on these paths to improve
clause sharing. Indeed, clauses can be large with respect to some static limit,
but when considered with the knowledge of the guiding path of a particular
thread, a clause can become small and therefore highly relevant. This allows
pMiniSat to extend the sharing of clauses since a large clause can become small
in another search context.

4.3 Technical Background

In this section, we first recall the basis of the most commonly used DPLL search
procedure. Then, we introduce some computational features of modern SAT
solvers. A brief description of multicore based architectures is given. Finally,

34 CHAPTER 4. PARALLEL SATISFIABILITY

we present the principle of the AIMD feedback control-based algorithm used by
advanced versions of ManySAT to manage knowledge sharing.

4.3.1 DPLL Search

Most of the state of the art SAT solvers are simply based on the Davis, Putnam,
Logemann and Loveland procedure, commonly called DPLL [DLL62]. DPLL is
a backtrack search procedure; at each node of the search tree, a decision literal is
chosen according to some branching heuristics. Its assignment to one of the two
possible values (true or false) is followed by an inference step that deduces and
propagates some forced literal assignments such as unit and monotone literals.
The assigned literals (decision literal and the propagated ones) are labeled with
the same decision level starting from 1 and increased at each decision (or branch-
ing) until finding a model or reaching a conflict. In the first case, the formula is
answered to be satisfiable, whereas in the second case, we backtrack to the last
decision level and assign the opposite value to the last decision literal. After
backtracking, some variables are unassigned, and the current decision level is
decreased accordingly. The formula is answered to be unsatisfiable when a back-
track to level 0 occurs. Many improvements have been proposed over the years
to enhance this basic procedure, leading now to what is commonly called mod-
ern SAT solvers. We also mention that, some look-ahead based improvements
are at the basis of other kind of DPLL SAT solvers (e.g. Satz [LA97], kcnfs
[DD01], march-dl [HvM06]) particularly efficient on hard random and crafted
SAT categories.

4.3.2 Modern SAT Solvers

Modern SAT solvers [MMZ+01, ES03a], are based on classical DPLL search
procedure [DLL62] combined with (i) restart policies [GSK98, KHR+02], (ii)
activity-based variable selection heuristics (VSIDS-like) [MMZ+01], and (iii)
clause learning [MSS96]. The interaction of these three components being per-
formed through efficient data structures (e.g., watched literals [MMZ+01]). All
the state-of-the-art SAT solvers are based on a variation in these three important
components.
Modern SAT solvers are especially efficient with ”structured” SAT instances
coming from industrial applications. VSIDS and other variants of activity-based
heuristics [BGS99], on the other hand, were introduced to avoid thrashing and to
focus the search: when dealing with instances of large size, these heuristics direct
the search to the most constrained parts of the formula. Restarts and VSIDS
play complementary roles since the first component reorder assumptions and
compacts the assumptions stack while the second allows for more intensification.
Conflict Driven Clause Learning (CDCL) is the third component, leading to non-
chronological backtracking. In CDCL a central data-structure is the implication
graph, which records the partial assignment that is under construction together
with its implications [MSS96]. Each time a dead end is encountered (say at
level i) a conflict clause or nogood is learnt due to a bottom up traversal of the

4.3. TECHNICAL BACKGROUND 35

implication graph. This traversal is also used to update the activity of related
variables, allowing VSIDS to always select the most active variable as the new
decision point. The learnt conflict clause, called asserting clause, is added to
the learnt data base and the algorithm backtracks non chronologically to level
j < i.
Progress saving is another interesting improvement, initially introduced in [FD94]
it was recently presented in the Rsat solver [PD07]. It can be seen as a new
selection strategy of the literal polarity. More precisely, each time a backtrack
occurs from level i to level j, the literal polarity of the literals assigned between
the two levels are saved. Then, such polarity is used in subsequent search tree.
This can be seen as a partial component caching technique that avoids solving
some components multiple times.
Modern SAT solvers can now handle propositional satisfiability problems with
hundreds of thousands of variables or more. However, it is now recognised (see
the recent SAT competitions) that the performances of the modern SAT solvers
evolve in a marginal way. More precisely, on the industrial benchmarks category
usually proposed to the annual SAT-Race and/or SAT-Competitions, many in-
stances remain open (not solved by any solver within a reasonable amount of
time). These problems which cannot be solved even using a 3 hours time limit
are clearly challenging to all the available SAT solvers. Consequently, new ap-
proaches are clearly needed to solve these challenging industrial problems.

4.3.3 Multicore Architectures

We can abstract a multicore architecture as a set of processing units which com-
municate through a shared memory. In theory, access to the memory is uniform,
i.e., can be done simultaneously. Practically, the use of cache mechanisms in
processing units creates coherence problems which can slow down the memory
accesses.
Our work is built on this shared-memory model. The communication between
the DPLLs solvers of a portfolio is organized through lockless queues that con-
tain the lemmas that a particular core wants to exchange.

4.3.4 AIMD Feedback Control-based Algorithm

The Additive Increase/Multiplicative Decrease (AIMD) algorithm is a feedback
control algorithm used in TCP congestion avoidance. The problem solved by
AIMD is to guess the communication bandwidth available between two commu-
nicating nodes. The algorithm performs successive probes, increasing the com-
munication rate w linearly as long as no packet loss is observed, and decreasing
it exponentially when a loss is encountered. More precisely, the evolution of w
is defined by the following AIMD(a, b) formula:

• w = w − a× w, if loss is detected

• w = w + b
w
, otherwise

36 CHAPTER 4. PARALLEL SATISFIABILITY

Different proposals have been made in order to prevent congestion in commu-
nication networks based on different numbers for a and b. Today, AIMD is the
major component of TCP’s congestion avoidance and control [Jac88]. On probe
of network bandwidth increasing too quickly will overshoot limits (underlying
capacities). On notice of congestion, decreasing too slowly will not be reactive
enough.
In the context of ManySAT, it is important to exchange knowledge between
solvers. We will see that AIMD-based control policies can be used to achieve
a particular throughput or a particular throughput of maximum quality. Since
any increase in the size limit can potentially generate a very large number of
new clauses, AIMD’s slow increase can help us to avoid a quick overshoot of the
throughput. Similarly, in case of overshooting, aggressive decrease can help us
to quickly reduce clause sharing by a very large amount.

4.4 ManySAT: a Parallel SAT Solver

ManySAT is a parallel portfolio of several DPLL-engines which includes all
the classical features like two-watched-literal, unit propagation, activity-based
decision heuristics, lemma deletion strategies, and clause learning. In addition
to the classical first-UIP scheme [ZMMM01], it incorporates a new technique
which extends the implication graph used during conflict-analysis to exploit
the satisfied clauses of a formula [ABH+08]. In the following, we describe and
motivate for a set of important parameters used to differentiate the different
solvers in the portfolio.

4.4.1 Restart Policies

Restart policies represent an important component of modern SAT solvers. Con-
trary to the common belief, in SAT restarts are not used to eliminate the heavy
tailed phenomena [GSK98, GSCK00] since after restarting SAT solvers dive in
the part of the search space that they just left. In SAT, restarts policies are
used to compact the assignment stack and improve the order of assumptions.
Different restart policies have been previously presented. Most of them are
static, and the cutoff value follows different evolution scheme (e.g. arithmetic,
geometric, Luby). To ensure the completeness of the SAT solver, in all these
restarts policies, the cutoff value in terms of the number of conflicts increases
over the time. The performance of these different policies clearly depends on the
considered SAT instances. More generally, rapid restarts (e.g. Luby) perform
well on industrial instances, however on hard SAT instances slow restarts are
more suitable. Generally, it is hard to say in advance which policy should be
used on which problem class [Hua07].
Our objective was to use complementary restart policies to define the restart
cutoff xi.
We decided to use the well known Luby policy [LSZ93], and a classical geometric
policy, xi = 1.5× xi−1 with x1 = 100 [ES03a]. The Luby policy was used with

4.4. MANYSAT: A PARALLEL SAT SOLVER 37

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 0 5 10 15 20 25 30 35 40 45

nb
 c

on
fli

ct
s

restarts

"Core0"
"Core1"
"Core2"
"Core3"

Figure 4.1: Restart strategies

a unit factor set to 512. In addition, we decided to introduce two new policies.
A very slow arithmetic one, xi = xi−1 + 16000 with x1 = 16000, and a new
dynamic one.

New Dynamic Restart Policy

The early work on dynamic restart policy goes back to 2008. Based on the
observation that frequent restarts significantly improve the performance of SAT
solvers on industrial instance, Armin Biere presents in [Bie08] a novel adaptive
restart policy that measures the “agility” of the search process dynamically,
which in turn is used to control the restart frequency. The agility measures the
average number of recently flipped assignments. Low agility enforces frequent
restarts, while high agility tends to prohibit restarts.

In [RS08], the authors propose to apply restarts according to measures local
to each branch. More precisely, for each decision level d a counter c(d) of the
number of conflicts encountered under the decision level d is maintained. When
backtracking to the decision level d occurs, if the value c(d) is greater than a
given threshold, the algorithm restarts.

Considering CDCL-based SAT solvers, it is now widely admitted that restarts
are an important component when dealing with industrial SAT instances, whereas
on crafted and random instances they play a marginal role. More precisely, on
industrial (respectively crafted) category, rapid (respectively long) restarts are

38 CHAPTER 4. PARALLEL SATISFIABILITY

more appropriate. It is important to note that on hard SAT instances, learning
is useless. Indeed, on such instances, conflict analysis generally leads to a learnt
clause which includes at least one literal from the level just before the current
conflict level. In other words the search algorithm usually backjumps to the
level preceding that of the current conflict. For example, if we consider the well
known Pigeon-hole problem, learning from conflicts will produce a clause which
includes at least one literal from each level. It is also obvious on this example,
that learning does not achieve important backjumps in the search tree. The
algorithm usually carries out a chronological backtracking.
In the following, we define a new dynamic restart policy based on the evolution
of the average size of backjumps. First, such information is a good indica-
tor of the decision errors made during search. Secondly, it can be seen as an
interesting measure of the relative hardness of the instance. Our new policy
is designed in such a way that, for high (respectively low) fluctuation of the
average size of backjumps (between the current and the previous restart), it
delivers a low (respectively high) cutoff value. In other words, the cutoff value
of the next restart depends on the average size of backjumps observed during
the two previous and consecutive runs. We define it as, x1 = 100, x2 = 100, and
xi+1 = α

yi
×|cos(1− ri)|, i ≥ 2 where α = 1200, yi represents the average size of

backjumps at restart i, ri =
yi−1

yi
if yi−1 < yi, ri =

yi

yi−1

otherwise. The cutoff

value xi is minimal when the ratio between the average size of jumps between
the two previous and consecutive runs is equal to one.
From the figure 4.1, we can observe that the cutoff value in terms of the number
of conflicts is low in the first restarts and high at the last ones. This mean
that the fluctuation between two consecutive restarts is more important at the
beginning of the resolution process. Indeed, the activity of the variables is not
sufficiently accurate in the first restarts, and the sub-problem on which the
search focuses is not sufficiently circumscribed.
The dynamic restart policy, presented in this section is implemented in the first
version of ManySAT [HJS08] presented at the parallel track of the SAT Race
2008.

4.4.2 Heuristic

We decided to increase the random noise associated to the VSIDS heuristic
[MMZ+01] of core 0 since its restart policy is the slowest one. Indeed, that core
tends to intensify the search, and slightly increasing the random noise allows us
to introduce more diversification.

4.4.3 Polarity

Each time a variable is chosen, one needs to decide if such a variable might be
assigned true (positive polarity) or false (negative polarity). Different kinds of
polarity have been defined. For example, Minisat usually chooses the negative
polarity, whereas Rsat uses progress saving. More precisely, each time a back-
track occurs, the polarity of the assigned variables between the conflict and the

4.4. MANYSAT: A PARALLEL SAT SOLVER 39

backjumping level are saved. If one of these variables is chosen again its saved
polarity is preferred. In CDCL based solvers, the chosen polarity might have a
direct impact on the learnt clauses and on the performance of the solver.
The polarity of the core 0 is defined according to the number of occurrences of
each literal in the learnt data base. Each time a learnt clause is generated, the
number of occurrences of each literal is increased by one. Then to maintain a
more constrained learnt data base, the polarity of l is set to true when #occ(l)
is greater than #occ(¬l); and to false otherwise. For example by setting the
polarity of l to true, we bias the occurrence of its negation ¬l in the next learnt
clauses.
This approach tends to balance the polarity of each literal in the learnt data
base. By doing so, we increase the number of possible resolvents between the
learnt clauses. If the relevance of a given resolvent is defined as the number of
steps needed to derive it, then a resolvent between two learnt clauses might lead
to more relevant clauses in the data base.

As the restart strategy in core 0 tends to intensify the search, it is important
to maintain a learnt data base of better quality. However, for rapid restarts as
in the core 1 and 3, progress saving is most suitable in order to save the work
accomplished. For the core 2, we decided to apply a complementary polarity
(false by default as in Minisat).

4.4.4 Learning

Learning is another important component which is crucial for the efficiency of
modern SAT solvers. Most of the known solvers use similar CDCL approaches
associated with the first UIP (Unique Implication Point) scheme.
In our parallel SAT solver ManySAT, we used a new learning scheme obtained
using an extension of the classical implication graph [ABH+08]. This new notion
considers additional arcs, called inverse arcs. These are obtained by taking
into account the satisfied clauses of the formula, which are usually ignored by
classical conflict analysis. The new arcs present in our extended graph allow
us to detect that even some decision literals admit a reason, something which
is ignored when using classical implication graphs. As a result, the size of the
backjumps is often increased.
Let us illustrate this new extended conflict analysis using a simple example. We
assume that the reader is familiar with classical CDCL scheme used in modern
SAT solvers (see [MSS96, MMZ+01, ABH+08]).
Let F be a CNF formula and ρ a partial assignment given below : F ⊇
{c1, . . . , c9}

(c1) x6 ∨ ¬x11 ∨ ¬x12 (c2) ¬x11 ∨ x13 ∨ x16 (c3) x12 ∨ ¬x16 ∨ ¬x2

(c4) ¬x4 ∨ x2 ∨ ¬x10 (c5) ¬x8 ∨ x10 ∨ x1 (c6) x10 ∨ x3

(c7) x10 ∨ ¬x5 (c8) x17 ∨ ¬x1 ∨ ¬x3 ∨ x5 ∨ x18 (c9) ¬x3 ∨ ¬x19 ∨ ¬x18

ρ = {〈. . .¬x1
6 . . .¬x

1
17〉〈(x

2
8) . . .¬x

2
13 . . . 〉〈(x

3
4) . . . x

3
19 . . . 〉 . . . 〈(x

5
11) . . . 〉}. The

sub-sequence 〈(x2
8) . . .¬x

2
13 . . . 〉 of ρ expresses the set of literals assigned at level

40 CHAPTER 4. PARALLEL SATISFIABILITY

2 with the decision literal mentioned in parenthesis and the set of propagated
literals (e.g. ¬x13). The current decision level is 5. The classical implication
graph GρF associated to F and ρ is shown in Figure 4.2 with only the plain arcs.
In the sequel, η[x, ci, cj] denotes the resolvent between a clause ci containing the
literal x and cj a clause containing the literal ¬x. In other words η[x, ci, cj] =
ci ∪ cj\{x,¬x}. Also a clause c subsume a clause c′ iff c ⊆ c′.
The traversal of the graph GρF allows us to generate three asserting clauses
corresponding to the three possible UIPs (see figure 4.2). Let us illustrate the
such resolution process leading to the first asserting clause ∆1 corresponding to
the first UIP.

• σ1 = η[x18, c8, c9] = (x1
17 ∨ ¬x

5
1 ∨ ¬x

5
3 ∨ x5

5 ∨ ¬x
3
19)

• σ2 = η[x1, σ1, c5] = (x1
17 ∨ ¬x

5
3 ∨ x5

5 ∨ ¬x
3
19 ∨ ¬x

2
8 ∨ x5

10)

• σ3 = η[x5, σ2, c7] = (x1
17 ∨ ¬x

5
3 ∨ ¬x

3
19 ∨ ¬x

2
8 ∨ x5

10)

• σ4 = η[x3, σ3, c6] = (x1
17 ∨ ¬x

3
19 ∨ ¬x

2
8 ∨ x5

10)

As we can see, σ4 gives us a first asserting clause (that we’ll also name ∆1)
because all of its literals are assigned before the current level except one (x10)
which is assigned a the current level 5. The intermediate clauses σ1, σ2 and
σ3 contain more than one literal of the current decision level 5, and ¬x10 is a
first UIP. If we continue such a resolution process, we obtain the two additional
asserting clauses ∆2 = (x1

17 ∨¬x
3
19 ∨¬x

2
8 ∨¬x

3
4 ∨x

5
2), corresponding to a second

UIP ¬x5
2; and ∆3 = (x1

17 ∨ ¬x
3
19 ∨ ¬x

2
8 ∨ ¬x

3
4 ∨ x2

13 ∨ x1
6 ∨ ¬x

5
11), corresponding

respectively to a 3rd UIP (¬x5
11) which is the last UIP since it corresponds to

the last decision literal in the partial assignment.
In modern SAT solvers, clauses containing a literal x that is implied at the
current level are essentially ignored by the propagation. More precisely, because
the solver does not maintain the information whether a given clause is satisfied
or not, a clause containing x may occasionally be considered by the propagation,
but only when another literal y of the clause becomes false. When this happens
the solver typically skips the clause. However, in cases where x is true and
all the other literals are false, an ”arc” was revealed for free that could as well
be used to extend the graph. Such arcs are those we exploit in our proposed
extension.
To explain further the idea behind our extension, let us consider, again, the
formula F and the partial assignments given in the previous example. We
define a new formula F ′ as follow : F ′ ⊇ {c1, . . . , c9} ∪ {c10, c11, c12} where
c10 = (¬x19 ∨ x8), c11 = (x19 ∨ x10) and c12 = (¬x17 ∨ x10)

The three added clauses are satisfied under the instantiation ρ. c10 is satisfied
by x8 assigned at level 2, c11 is satisfied by x19 at level 3, and c12 is satisfied
by ¬x17 at level 1. This is shown in the extended implication graph (see Figure
4.2) by the doted edges. Let us now illustrate the usefulness of our proposed
extension. Let us consider again the the asserting clause ∆1 corresponding to

4.4. MANYSAT: A PARALLEL SAT SOLVER 41

the classical first UIP. We can generate the following strong asserting clause:
c13 = η[x8,∆1, c10] = (x1

17 ∨ ¬x
3
19 ∨ x5

10), c14 = η[x19, c13, c11] = (x1
17 ∨ x5

10)
and ∆s

1 = η[x17, c14, c12] = x5
10. In this case we backtrack to the level 0 and we

assign x10 to true.

As we can see ∆s
1 subsumes ∆1. If we continue the process we also obtain other

strong asserting clauses ∆s
2 = (¬x3

4 ∨ x5
2) and ∆s

3 = (¬x3
4 ∨ x2

13 ∨ x1
6 ∨ ¬x

5
11)

which subsume respectively ∆2 and ∆3.

This first illustration gives us a new way to minimize the size of the asserting
clauses.

x19(3)

!x6(1)

x11(5)

!x13(2)

x16(5)

!x2(5)

!x12(5)

x4(3)

x3(5)

!x5(5)

x1(5)

x18(5)

!x18(5)

c1

c2

c3
c4 c5

c6

c7

c8

!x17(1)

c9

c11

!x10(5)

c12

x8(2)

c10

Figure 4.2: Implication graph / extended implication graph

Let us now explain briefly how the extra arcs can be computed. Usually unit
propagation does not keep track of implications from the satisfiable sub-formula.
In this extension the new implications (deductions) are considered. For instance
in the previous example, when we deduce x19 at level 3, we ”rediscover” the
deduction x8 (which was a choice (decision literal) at level 2). Our proposal
keeps track of these re-discoveries.

Our approach makes an original use of inverses arcs to back-jump farther, i.e.
to improve the back-jumping level of the classical asserting clauses. It works in
three steps. In the first step (1) : an asserting clause, say σ1 = (¬x1 ∨ ¬y3 ∨
¬z7 ∨ ¬a9) is learnt using the usual learning scheme where 9 is the current
decision level. As ρ(σ1) = false, usually we backtrack to level 7. In the second
step (2): our approach aims to eliminate the literal ¬z7 from σ1 using the new
arcs of the extended graph. Let us explain this second and new processing. Let
c = (z7 ∨ ¬u2 ∨ ¬v9) such that ρ(z) = true, ρ(u) = true and ρ(v) = true. The
clause c is an inverse arc i.e. the literal z assigned at level 7 is implied by the
two literals u and v respectively assigned at level 2 and 9. From c and σ1, a new
clause σ2 = η[z, c, σ1] = (¬x1 ∨ ¬u2 ∨ ¬y3 ∨ ¬v9 ∨ ¬a9) is generated. We can
remark that the new clause σ2 contains two literals from the current decision
level 9. In the third step (3), using classical learning, one can search from σ2

for another asserting clause σ3 with only one literal from the current decision

42 CHAPTER 4. PARALLEL SATISFIABILITY

level. Let us note that the new asserting clause σ3 might be worse in terms of
back-jumping level. To avoid this main drawback, the inverse arc c is chosen
if the two following conditions are satisfied : i) the literals of c assigned at the
current level (v9) has been already visited during the first step and ii) all the
other literals of c are assigned before the level 7 i.e. level of z. In this case, we
guaranty that the new asserting clause achieve better back-jumping.
This new learning scheme is integrated on the SAT solvers of the cores 0 and 3.

4.4.5 Clause Sharing

Unlike in the previously presented M- framework, knowledge in SAT is made of
conflict clauses, and knowledge sharing is referred to clause sharing.

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70 80 90

ti
m

e
 (

s
e

c
o

n
d

s
)

nb instances

e=0
e=4
e=8

e=12
e=16

Figure 4.3: SAT-Race 2008: different limits for clause sharing

To start with, we can use a static clause sharing policy where each core ex-
changes a learnt clause if its size is less or equal to 8. This decision is based
on extensive tests with representative industrial instances. Figure 4.3 (respec-
tively Figure 4.4) shows for different limits e the performance of ManySAT on
instances taken from the SAT-Race 2008 (respectively SAT-Competition 2007).
We can observe that on each set of benchmarks a limit size of 8 gives the best
overall performance.
The communication between the solvers of the portfolio is organized through
lock-less queues which contain the lemmas that a particular core wants to ex-
change.

4.4. MANYSAT: A PARALLEL SAT SOLVER 43

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100 120 140

ti
m

e
 (

s
e

c
o

n
d

s
)

nb instances

e=0
e=4
e=8

e=12
e=16

Figure 4.4: SAT-Competition 2007: different limits for clause sharing

Each core imports unit-clauses when it reaches level 0 (e.g., after a restart).
These important clauses correspond to the removal of Boolean variables, and
therefore are more easily enforced at the top level of the tree.
All the other clauses are imported on the fly, i.e., after each decision. Several
cases have to be handled for the integration of a foreign clause c:

• c is false in the current context. In this case, conflict-analysis has to
start, allowing the search process to backjump. This is clearly the most
interesting case.

• c is unit in the current context. The clause can be used to enforce more
unit propagation, allowing the process to reach a smaller fix-point or a
conflict.

• c is satisfied by the current context. It has to be watched. To exploit such
a clause in the near future, we consider two literals assigned at the highest
levels.

• otherwise, c has to be watched. In this last case, the first two unassigned
literals are watched.

The following example illustrates the different cases mentioned above.
Let F be a CNF formula and ρ = {〈. . .¬x1

6 . . .¬x
1
17〉〈(x

2
8) . . .¬x

2
13 . . . 〉〈(x

3
4) . . . x

3
19 . . . 〉 . . .

〈(x5
11)¬x

5
12, x

5
16,¬x

5
2, . . . ,¬x

5
10, x

5
1, . . . , x

5
18〉} a partial assignment. To make the

44 CHAPTER 4. PARALLEL SATISFIABILITY

shared clause c exploitable in a near future, it might be watched in a certain
way. Suppose that,

• c = (x1
17 ∨¬x

3
19 ∨ x

5
10) ∈ F . The clause c is false and the two literals ¬x3

19

and x5
10 are watched.

• c = (x1
17 ∨¬x

3
19 ∨ x30) ∈ F . The clause c is unit and the two literals ¬x3

19

and x30 are watched;

• c = (x1
17 ∨ ¬x

3
19 ∨ ¬x

5
10) ∈ F . We watch the last satisfied literal ¬x10 and

another literal with the highest level from the remaining ones.

• c = (x25 ∨ ¬x34¬x29) ∈ F . We watch any two literals from c.

4.4.6 Summary

Table 4.1 summarizes the choices made for the different solvers of the ManySAT
portfolio. For each solver (core), we mention the restart policy, the heuristic,
the polarity, the learning scheme and the size of shared clauses.

4.5 Evaluation

4.5.1 Performance Against a Sequential Algorithm

ManySAT was built on top of Minisat 2.02 [ES03a]. SatElite was applied sys-
tematically by each core as a pre-processor [EB05]. In all the figures, instances
solved by Satellite in the preprocessing step are not included. In this section,
we evaluate the performance of the solver on a large set of industrial problems.
Figure 4.5, shows the improvement of performances provided by our solver when
opposed to the sequential solver Minisat 2.02 on the problems of the Sat-Race
2008. It shows the performance of ManySAT running with respectively 1,2,3
and 4 cores. When more than one core is used, clause sharing is done up to
clause size 8.
We can see that even the sequential version of ManySAT (single core) out-
performs Minisat 2.02. This simply means that our design choices for core 1
represent a good combination to put in a sequential solver. Interestingly, with
each new core, the performance increases both in speed and number of problems
solved. This is the result of the diversification of the search but also the fact
that clause sharing quickly boosts these independent search processes.

4.5.2 Performance Against Other Parallel SAT Solvers

We report here the official results of the 2008 Sat-Race. They can be downloaded
from the competition website2. They demonstrate the performance of ManySAT
as opposed to other parallel SAT solvers. These tests were done on 2x Dual-Core
Intel Xeon 5150 running at 2.66 GHz, with a timeout set to 900 seconds.

2http://www-sr.informatik.uni-tuebingen.de/sat-race-2008/

4.5. EVALUATION 45

S
tr
a
te
g
ie
s

C
o
r
e
0

C
o
r
e
1

C
o
r
e
2

C
o
r
e
3

R
e
s
ta

r
t

G
eo
m
et
ri
c

D
y
n
am

ic
(F
as
t)

A
ri
th
m
et
ic

L
u
b
y
5
1
2

x
1
=

10
0

x
1
=

10
0,
x
2
=

10
0

x
1
=

16
00
0

x
i
=

1.
5
×
x
i−

1
x
i
=

f
(y

i−
1
,y

i
),
i
>

2
x
i
=

x
i−

1
+
16
00
0

if
y i

−
1
<

y i
f
(y

i−
1
,y

i
)
=

α y
i
×
|c
os
(1
−

y
i
−

1

y
i
)|

el
se f
(y

i−
1
,y

i
)
=

α y
i
×
|c
os
(1
−

y
i

y
i
−

1

)|

α
=

12
00

H
e
u
r
is
ti
c

V
S
ID

S
(3
%

ra
n
d
.)

V
S
ID

S
(2
%

ra
n
d
.)

V
S
ID

S
(2
%

ra
n
d
.)

V
S
ID

S
(2
%

ra
n
d
.)

P
o
la
r
it
y

P
ro
gr
.
sa
v
in
g

fa
ls
e

P
ro
g
r.

sa
v
in
g

if
#
oc
c(
l)
>
#
oc
c(
¬
l)

l
=

tr
u
e

el
se

l
=

f
a
ls
e

L
e
a
r
n
in
g

C
D
C
L
(e
x
t.

[A
B
H

+
08
])

C
D
C
L

C
D
C
L

C
D
C
L
(e
x
t.

[A
B
H

+
0
8
])

C
l.

s
h
a
r
in
g

si
ze
≤

8
si
ze
≤

8
si
ze
≤

8
si
ze
≤

8

T
ab

le
4.
1:

M
an

y
S
A
T
:
d
iff
er
en
t
st
ra
te
gi
es

46 CHAPTER 4. PARALLEL SATISFIABILITY

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 10 20 30 40 50 60 70 80 90

ti
m

e
 (

s
e

c
o

n
d

s
)

nb instances

’Minisat 2.02’
’ManySAT 1 core’

’ManySAT 2 cores’
’ManySAT 3 cores’
’ManySAT 4 cores’

Figure 4.5: SAT-Race 2008: ManySAT e=8, m=1..4 against Minisat 2.02

ManySAT pMinisat MiraXT

SAT 45 44 43
UNSAT 45 41 30

Table 4.2: SAT-Race 2008: comparative performance (number of problems
solved)

The Table 4.2 shows the number of problems (out of 100) solved before the time
limit for ManySAT, pMinisat [CS08], and MiraXT [LSB07] - these solvers are
described in the next section. We can see that ManySAT solves 5 more problems
than pMinisat, which solves 12 more problems than MiraXT. Interestingly, the
performance of our method is well balanced between SAT and UNSAT problems.

Table 4.3 shows the speed-up provided by these parallel SAT algorithms as
opposed to the best sequential algorithm of the Sat-Race 2008, Minisat 2.1. We
can see that on average, ManySAT is able to provide a superlinear speed-up of
6.02. It is the only solver able of such performance. The second best provides
on average a speed-up of 3.10, far from linear. When we consider the minimal
speed-up we can see that the performance of the first two solvers is pretty similar.
They decrease the performance against the best sequential solver of the 2008
Sat-Race by up to a factor 4, while the third solver decreases the performance
by a factor 25. Finally, the maximal speed-up is given by ManySAT which can

4.6. CONTROL-BASED CLAUSE SHARING 47

ManySAT pMinisat MiraXT

Average speed-up 6.02 3.10 1.83
by SAT/UNSAT 8.84 /3.14 4.00/2.18 1.85/1.81
Minimal speed-up 0.25 0.34 0.04
by SAT/UNSAT 0.25/0.76 0.34/0.46 0.04/0.74
Maximal speed-up 250.17 26.47 7.56
by SAT/UNSAT 250.17/4.74 26.47/10.57 7.56/4.26

Table 4.3: SAT-Race 2008: parallel solvers against the best sequential solver
(Minisat 2.1)

be up to 250 times faster than Minisat 2.1. These detailed results show that
the performance of the parallel solvers is usually better on SAT problems than
on UNSAT ones.

ManySAT pMinisat MiraXT

Average variation 13.7% 14.7% 15.2%
by SAT/UNSAT 22.2%/5.5% 23.1%/5.7% 19.5%/9.7%

Table 4.4: SAT-Race 2008: runtime variation of parallel solvers

It is well known that parallel search is not deterministic. Table 4.4 gives the
average runtime variation of each parallel solver. ManySAT exhibits a lower
variation than the other techniques, but the small differences between the solvers
do not allow us to draw any definitive conclusion.

4.6 Control-based Clause Sharing

The clause sharing approach based on some predefined size limit has several
flaws. The first and most apparent being that an overestimated value might
induce a very large cooperation overhead, while an underestimated one might
completely inhibit the cooperation. The second flaw comes from the observation
that the size of learnt clauses tends to increase over time, leading to an eventual
halt of the cooperation. The third flaw is related to the internal dynamic of
modern solvers which tend to focus on particular subproblems thanks to the
activity/restart mechanisms. In parallel SAT, this can lead two search pro-
cesses toward completely different subproblems where clause sharing becomes
pointless.
We propose a dynamic clause sharing policy which uses pairwise size limits to
control the exchange between any pair of processing units. Initially, high limits
are used to enforce the cooperation, and allow pairwise exchanges. On a regu-
lar basis, each unit considers the number of foreign clauses received from other
units. If this number is below/above a predefined threshold, the pairwise lim-
its are increased/decreased. This mechanism allows the system to maintain a

48 CHAPTER 4. PARALLEL SATISFIABILITY

throughput. It addresses the flaws one and two. To address the last flaw related
to the poor relevance of the shared clauses, we extend our policy to integrate
the quality of the exchanges. Each unit evaluates the quality of the received
clauses, and the control is able to selectively increase/decrease the pairwise lim-
its based on the underlying quality of the recently communicated clauses. The
rationale being that the information recently received from a particular source
is qualitatively linked to the information which could be received from it in the
very near future. The evolution of the pairwise limits w.r.t., the throughput or
quality criterion follows an AIMD (Additive-Increase-Multiplicative-Decrease)
feedback control-based algorithm (see section 4.3).

4.6.1 Throughput and Quality-based Control Policies

In this section, we describe our dynamic control-based clause sharing policies
which control the exchange between any pair of processing units through dy-
namic pairwise size limits.

The first policy controls the throughput of clause sharing. Each unit consid-
ers the number of foreign clauses received from other units. If this number
is below/above a predefined throughput-threshold, the pairwise limits are all
increased/decreased using an AIMD feedback algorithm. The second policy is
an extension of the previous one. It introduces a measure of the quality of
foreign clauses. With this information, the increase/decrease of the pairwise
limits become proportional to the underlying quality of the clauses shared by
each unit. The first (respectively second) policy allows the system to maintain
a throughput (respectively throughput of better quality).

We consider a parallel SAT solver with n different processing units. Each unit
ui corresponds to a SAT solver with clause learning capabilities. Each solver can
either work on a subspace of the original instance as in divide-and-conquer tech-
niques, or on the full problem, as in ManySAT. We assume that these different
units communicate through a shared memory (as in multicore architectures).

In our control strategy, we consider a control-time sequence as a set of steps
tk with t0 = 0 and tk = tk−1 + α where α is a constant representing the time
window defined in term of number of conflicts. The step tk of a given unit ui

corresponds to the conflict number k × α encountered by the solver associated
to ui. In the sequel, when there is no ambiguity, we sometimes note tk simply
k. Then, each unit ui can be defined as a sequence of states Sk

i = (F ,∆k
i , R

k
i),

where F is a CNF formula, ∆k
i the set of its proper learnt clauses and Rk

i the set
of foreign clauses received from the other units between two consecutive steps
k−1 and k. The different units achieve pairwise exchange using pairwise limits.
Between two consecutive steps k− 1 and k, a given unit ui receives from all the
other remaining units uj where 0 ≤ j < n and j 6= i a set of learnt clauses ∆k

j→i

of length less or equal to a size limit ekj→i i.e., ∆k
j→i = {c ∈ ∆k

j / |c| ≤ ekj→i}.

Then, the set Rk
i can be formally defined as ∪0≤j<n,j 6=i∆

k
j→i.

Using a fixed throughput threshold T of shared clauses, we describe our control-
based policies which allow each unit ui to guide the evolution of the size limit

4.6. CONTROL-BASED CLAUSE SHARING 49

ej→i using an AIMD feedback mechanism.

Throughput-based Control

As illustrated in figure 4.6, at step k a given unit ui checks whether the through-
put is exceeded or not. if |Rk

i | < T (respectively |Rk
i | > T) the size limit ek+1

j→i

is additively increased (respectively multiplicatively decreased). More formally,
the upper bound ek+1

j→i on the size of clauses that a solver j shares with the solver
i between k and k + 1 are changed using the following AIMD function:

aimdT (Rk
i){

∀j|0 ≤ j < n, j 6= i

ek+1
j→i =

{

ekj→i +
b

ek
j→i

, if(|Rk
i | < T)

ekj→i − a× ekj→i, if(|R
k
i | > T)

} where a and b are positive con-

stants.

✡

☛

✠

✟

✲

❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙✇

❅
❅
❅

❅
❅

❅
❅❅❘

✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡✣

✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁✁✕

✓
✓
✓
✓
✓
✓
✓
✓
✓✓✼

✟✟✟✟✟✟✟✯

❩
❩
❩

❩
❩
❩

❩❩⑦

❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏❏❫

✻

✚
✚
✚

✚
✚
✚

✚✚❃
✲ ✲

PPPPPPq

u0

u1

ui

un−1

ui−1

uj

(ekj→i,∆
k
j→i)

ui+1

ek+1
j→i = aimdT (Rk

i)

Figure 4.6: Throughput based control policy

Throughput and Quality Based Control

In this policy, to control the throughput of a given unit ui, we introduce a
quality measure Qk

j→i (see definition 3) to estimate the relative quality of the
clauses received by ui from uj . In the throughput and quality based control
policy, the evolution of the size limit ekj→i is related to the estimated quality.
Our quality measure is defined using the activity of the variables at the basis
of VSIDS heuristic [MMZ+01] another important component of modern SAT
solvers. The variables with greatest activity represent those involved in most
of the (recent)-conflicts. Indeed, when a conflict occurs, the activity of the
variables whose literals appear in the clauses encountered during the generation
of a learnt clause are updated. The most active variables are those related
to the current part of the search space. Consequently, our quality measure
exploits these activities to quantify the relevance of a clause learnt by unit uj

50 CHAPTER 4. PARALLEL SATISFIABILITY

to the current state of a given unit ui. To define our quality measure, suppose
that, at any time of the search process, we have Amax

i the current maximal
activity of ui’s variables, and Ai(x) the current activity of a given variable x.

Definition 3 (Quality). Let c be a clause and LAi
(c) = {x/x ∈ c s.t. Ai(x) ≥

Amax
i

2
} the set of active literals of c with respect to unit ui. We define Pk

j→i =

{c/c ∈ ∆k
j→i s.t. |LAi

(c)| ≥ Q} be the set of clauses received by i from j between
steps k−1 and k with at least Q active literals. We define the quality of clauses

sent by uj to ui at a given step k as Qk
j→i =

|Pk
j→i|+1

|∆k
j→i

|+1

Our throughput and quality based control policy change the upper bound ek+1
j→i

on the size of clauses that a solver j shares with the solver i between k and k+1
using the following AIMD function:

aimdTQ(Rk
i){

∀j|0 ≤ j < n, j 6= i

ek+1
j→i =

ekj→i + (
Qk

j→i

100
)× b

ek
j→i

, if(|Rk
i | < T)

ekj→i − (1−
Qk

j→i

100
)× a× ekj→i, if(|R

k
i | > T)

} where a and b are positive constants.

As shown by the AIMD function of the throughput and quality based control
policy, the adjustment of the size limit depends on the quality of shared clauses.
Indeed, as it can be seen from the above formula, when the exchange quality
between uj and ui (Q

k
j→i) tends to 100% (respectively 0%), then the increase

in the limit size tends to be maximal (respectively minimal) while the decrease
tends to be minimal (respectively maximal). Our aim in this second policy
is to maintain a throughput of good quality. The rationale being that the
information recently received from a particular source is qualitatively linked to
the information which could be received from it in the very near future.

4.6.2 Experiments

Our tests were done on Intel Xeon Quadcore machines with 16GB of RAM run-
ning at 2.3Ghz. We used a timeout of 1500 seconds for each problem. ManySAT
was used with 4 DPLLs strategies each one running on a particular core (unit).
To alleviate the effects of unpredictable threads scheduling, each problem was
solved three times and the average was taken.

Our dynamic clause sharing policies were added to ManySAT and compared
against ManySAT with its default static policy ManySAT e=8 which exchanges
clauses up to size 8. Remark that since each pairwise limit is read by a unit,
and updated by another one, our proposal can be integrated without any lock.

We have selected a = 0.125, b = 8 for aimdT and aimdTQ, associated to a time
window of α = 10000 conflicts. The throughput T is set to α

2
and the upper

4.7. SUMMARY 51

bound Q on the number of active literals per clause c is set to |c|
3

(see definition
3). Each pairwise limit ej→i was initialized to 8.
The Table 4.5 presents the results on the 100 industrial problems of the 2008
SAT-Race. The problem set contains families with several instances or individ-
ual instances.
From left to right we present, the family/instance name, the number of instances
per family. Results associated to the standard ManySAT, with the number of
problems solved before timeout, and the associated average runtime. The right
part reports results for the two dynamic policies. For each dynamic policy we
provide ē, the average of the ej→i observed during the computation. The last
row provides for each method, the total number of problems solved, and the
cumulated runtime. For the dynamic policies, it also presents the average of the
ē values.
At that point we have to stress that the static policy (e = 8) is optimal in the
way that it gives the best average performance on this set of problems. We
can observe that the static policy solves 83 problems while the dynamic policies
aimdT and aimdTQ solve respectively 86 and 89 problems. Except on the ibm *
and manol * families, the dynamic policies always exhibit a runtime better or
equivalent to the static one. Unsurprisingly, when the runtime is significant but
does not drastically improve over the static policy, the values of ē are often close
to 8, i.e., equivalent to the static size limit. When we consider the last row, we
can see that the aimdT is faster than the aimdTQ. However, this last policy
solves more problems. We can explain this as follows. The quality-based policy
intensifies the search by favoring the exchange of clauses related to the current
exploration of each unit. This intensification leads to the resolution of more
difficult problems. However, it increases the runtime on easier instances where
a more diversified search is often more beneficial. Overall these results are very
good since our dynamic policies are able to outperform the best possible static
tuning.

4.7 Summary

We have presented ManySAT, a portfolio-based parallel SAT solver which ad-
vantageously exploits multicore architectures. ManySAT is based on an under-
standing of the main weakness of modern sequential SAT solvers, their sensi-
tivity to parameter tuning and their lack of robustness. As a result, ManySAT
uses a portfolio of complementary sequential algorithms, and let them cooper-
ate in order to improve further the overall performance. This design philosophy
of ManySAT which clearly contrasts with well known parallel SAT solvers, is
directly inspired by our work in the previous M- framework for distributed con-
straint satisfaction problems. The good performance obtained by ManySAT on
industrial SAT instances clearly suggests that the parallel portfolio approach is
more interesting than the traditional divide-and-conquer one.
We have also presented how knowledge sharing could be finely controlled through
dynamic clause sharing policies which can adjust the size of shared clauses be-

52 CHAPTER 4. PARALLEL SATISFIABILITY

M
an

y
S
A
T

e=
8

M
an

y
S
A
T

aim
d
T

M
an

y
S
A
T

aim
d
T
Q

fa
m
ily

/
in
sta

n
ce

#
in
st

#
S
olved

tim
e(s)

#
S
olved

tim
e(s)

ē
#
S
olved

tim
e(s)

ē

ib
m

*
2
0

19
2
0
4

19
218

7
19

286
6

m
a
n
o
l
*

1
0

10
1
1
7

10
1
1
7

8
10

205
7

m
izh

*
1
0

6
762

7
746

6
1
0

4
4
1

5
p
o
st

*
1
0

9
325

9
3
1
6

7
9

375
7

velev
*

1
0

8
585

8
4
4
8

5
8

517
7

een
*

5
5

2
5

2
8

5
2

7
sim

o
n
*

5
5

111
5

84
10

5
5
9

9
b
m
c
*

4
4

7
4

7
7

4
6

9
g
o
ld

*
4

1
1160

1
1
1
0
3

12
1

1159
12

a
n
b
u
l
*

3
2

742
3

2
1
1

11
3

689
11

b
a
b
ic

*
3

3
2

3
2

8
3

2
8

sch
u
p
*

3
3

129
3

1
2
0

5
3

160
5

fu
h
s
*

2
2

90
2

5
9

11
2

77
10

g
rieu

*
2

1
783

1
7
5
0

8
1

7
5
0

8
n
a
ra
in

*
2

1
786

1
7
7
6

8
1

792
8

p
a
la
c
*

2
2

20
2

8
3

2
54

7
a
lo
u
l-ch

n
l1
1
-1
3

1
0

1500
0

1500
11

0
1500

10
ja
rv
i-eq

-a
tree-9

1
1

70
1

69
25

1
4
3

17
m
a
rijn

-p
h
ilip

s
1

0
1500

1
1133

34
1

1
1
3
2

29
m
a
ris-s0

3
-g
rip

p
er1

1
1

1
11

1
11

10
1

11
8

va
n
g
e-co

l-a
b
b
3
1
3
g
p
ia
-9
-c

1
0

1500
0

1500
12

0
1500

12

T
o
ta
l/
(avera

g
e)

1
0
0

83
10406

86
9180

(10.28
)

89
9760

(9.61)

T
ab

le
4.5:

S
A
T
-R

ace
2008,

in
d
u
strial

p
rob

lem
s

4.7. SUMMARY 53

tween any pair of processing units. The first one controls the overall number of
exchanged clauses whereas the second additionally exploits the relevance quality
of shared clauses. This part has been described in [HJS09].
As stated here, our four-cores portfolio was carefully crafted in order to mix
complementary strategies. If ManySAT could be run on dozens of computing
units, what would be the performance? We have considered this question in a
more general context in [BHS09]. This work presents the first study on scalabil-
ity of constraint solving on 100 processors and beyond. It proposes techniques
that are simple to apply and shows empirically that they scale surprisingly well.
It proves that portfolio-based approaches can also scale-up to several dozens of
processors.
Finally, as stated in the introduction, SAT is now applied to other domains.
One domain which particularly benefits from the recent advances in SAT is Sat-
isfiability Modulo Theory [NOT06]. There, our ManySAT approach has been
integrated to the Z3 SMT solver [dMB08], allowing it to achieve impressive
speed-ups on several classes of problems [WHdM09].

In the next chapter we will consider purely sequential search. We will present
an approach which can incrementally and dynamically learn the performance of
different solver’s settings in relation with the actual input distribution.

54 CHAPTER 4. PARALLEL SATISFIABILITY

Chapter 5

Continuous Search

55

56 CHAPTER 5. CONTINUOUS SEARCH

This line of work was initiated in Cambridge, while supervising Frank Hut-
ter in an MSR summer internship. This original work had two positive out-
comes. First of all, it boosted Frank interest in automated parameter tuning
and helped his decision to choose this domain as a dissertation topic [Hut09].
Second of all, it led two years later to the creation of the Adaptive Combinatorial
Search for e-Science (Adapt) research project in the MSR-INRIA joint lab. This
project co-directed with Marc Schoenauer aims at improving the applicability of
constraint-based or heuristic-based solvers to complex scientific problems. The
goal in this project is to develop tools able to automatically choose the optimal
parameter configuration of a given search algorithm for a given problem or class
of problems.

This line of work led to several publications and one US patent:

• Frank Hutter and Youssef Hamadi. Parameter adjustment based on per-
formance prediction: Towards an instance-aware problem solver. Techni-
cal Report MSR-TR-2005-125, Microsoft Research, Cambridge, UK, jan
2005.

• Frank Hutter, Youssef Hamadi, Holger H. Hoos, and Kevin Leyton-Brown.
Performance prediction and automated tuning of randomized and para-
metric algorithms. In Frédéric Benhamou, editor, CP, volume 4204 of
Lecture Notes in Computer Science, pages 213–228. Springer, 2006.

• Alejandro Arbelaez, Youssef Hamadi, and Michele Sebag. Online heuristic
selection in constraint programming. In International Symposium on
Combinatorial Search (SoCS), Lake Arrowhead, USA, July 2009.

• Alejandro Arbelaez and Youssef Hamadi. Continuous Search in Constraint
Programming: An Initial Investigation. In Karen Petrie and Olivia Smith,
editors, Constraint Programming Doctoral Program, pages 7-12, Lisbon,
Portugal, September 2009.

• Alejandro Arbelaez, Youssef Hamadi, and Michele Sebag. Continuous
Search in Constraint Programming. In Eric Gregoire, editor, 22th Inter-
national Conference on Tools With Artificial Intelligence (ICTAI), volume
1, pages 53-60, Arras, France, October 2010. IEEE.

• US Patent No. 7890439. Tuning of Problem Solvers, Youssef Hamadi, Feb
15, 2011 (filed in 2006).

This Chapter presents some work performed during the co-supervision of the
PhD of Alejandro Arbelaez (MSR-INRIA joint-lab).

5.1 Introduction

In the previous chapters, we have seen that portfolios of algorithms can posi-
tively impact the robustness of Search. In Chapter 3, our portfolio was using

5.1. INTRODUCTION 57

multiple variables ordering heuristics whose executions were interleaved at the
agent level. In Chapter 4, we moved to fully fledged parallelism with a portfo-
lio of parallel CDCL solvers competing and cooperating to tackle a given SAT
instance.
The present chapter considers the sequential case where a given Constraint
Programming engine is used to successively solve problems coming from a given
application domain. The objective is to incrementally learn a predictive model
able to accurately match instances features to good solver’s parameters. The
learning is possible thanks to the relative coherence of the instances, and the
goal is to eventually achieve top performance for the underlying application
domain.
In Constraint Programming, properly crafting a constraint model which cap-
tures all the constraints of a particular problem is often not enough to ensure
acceptable runtime performance. Additional tricks, e.g. adding redundant and
channeling constraints, or using some global constraint (depending on your con-
straint solver) which can efficiently do part of the job, are required to achieve
efficiency. Such tricks are far from being obvious, unfortunately; they do not
change the solution space, and users with a classical mathematical background
might find it hard to see why adding redundancy helps.
For this reason, users are often left with the tedious task of tuning the search
parameters of their constraint solver, and this again, is both time consuming
and not necessarily straightforward. Parameter tuning indeed appears to be
conceptually simple (i/ try different parameter settings on representative prob-
lem instances, ii/ pick up the setting yielding best average performance). Still,
most users would easily consider instances which are not representative of their
problem, and get misled.
The goal of the work presented in this chapter is to allow any user to eventu-
ally get their constraint solver achieving a top performance on their problems.
The proposed approach is based on the original concept of Continuous Search
(CS), gradually building a heuristics model tailored to the user’s problems, and
mapping a problem instance onto some appropriate parameter setting. A main
contribution compared to the state of the art (see [SM08] for a recent survey;
more in section 5.4) is to relax the requirement of a large set of representative
problem instances to be available beforehand to support offline training. The
heuristics model is initially empty (set to the initial default parameter setting
of the constraint solver) and it is enriched along a lifelong learning approach,
exploiting the problem instances submitted by the user to the constraint solver.
Formally, CS interleaves two functioning modes. In production or exploitation
mode, the instance submitted by the user is processed by the constraint solver;
the current heuristics model is used to parameterize the constraint solver de-
pending on the instance at hand. In learning or exploration mode, CS reuses the
last submitted instance, running other heuristics than the one used in produc-
tion mode in order to find which heuristics would have been most efficient for
this instance. CS thus gains some expertise relative to this particular instance,
which is used to refine the general heuristics model through Machine Learning
(section 5.3.2). During the exploration mode, new information is thus generated

58 CHAPTER 5. CONTINUOUS SEARCH

and exploited in order to refine the heuristics model, in a transparent manner:
without requiring the user’s input and by only using the idle computer’s CPU
cycles.

We claim that the CS methodology is realistic (most computational systems are
always on, especially production ones, most systems waste a large amount of
CPU cycles) and compliant with real-world settings, where the solver is criti-
cally embedded within large and complex applications. The CS computational
cost must be balanced against the huge computational cost of offline training
[XHHLB07]. Finally, lifelong learning appears a good way to construct an effi-
cient and agnostic heuristics model, and able to adapt to new modelling styles
or new classes of problem.

5.2 Related Work

This section briefly reviews and discusses some related works, devoted to heuris-
tic selection within CP and SAT solvers.

SATzilla [XHHLB07] is a well known SAT portfolio solver which is built upon
a set of features. Roughly speaking SATzilla includes two kinds of basic fea-
tures: general features such as number of variables, number of propagators, etc.
and local search features which actually probe the search space in order to esti-
mate the difficulty of each problem-instance for a given algorithm. The goal of
SATzilla is to learn a run-time prediction function by using a linear regression
model. In the same direction of SATzilla in [HW09] Haim et al., build the port-
folio taking into account several restarts policies for a set of well known SAT
solvers.

CPHydra [OHH+08] is a portfolio approach based on case-based reasoning; it
maintains a database with all solved instances (so-called cases). Later on, once
a new instance I arrives a set of similar cases C is computed and based on C
it builds a switching policy selecting a set of CSP solvers that maximizes the
possibilities of solving I within a given amount of time.

The approach most similar to the presented one is that of [SM07], who likewise
apply Machine Learning techniques to perform on-line combination of heuristics
into search tree procedures. Unfortunately, this work requires an important
number of training instances to build a model with good generalization property.

In [CB05] low-knowledge is used to select the best algorithm in the context
of optimization problems, this work assumes a black-box optimization scenario
where the user has no information about the problem or even about the domain
of the problem, and the only known information is the output (i.e., solution
cost for each algorithm in the portfolio). Unfortunately this mechanism is only
applicable to optimization problems and cannot be used to solve CSPs.

The purpose in The Adaptive Constraint Engine (ACE) [EFW+02] is to unify
the decision of several heuristics in order to guide the search process. In this
way, each heuristic votes for a possible variable/value decision to solve a CSP.
Afterwards, a global controller selects the most appropriate pair variable/value
according to previously (offline) learnt weights associated to each heuristic. The

5.3. BACKGROUND AND NOTATIONS 59

authors however did not present any experimental scenario taking into account
any restart strategy, although these nowadays are an essential part of constraint
solvers
Combining Multiple Heuristics Online [SGS07] and Portfolios with deadlines
[WB08] are designed to build a scheduler policy in order to switch the execution
of black-box solvers during the resolution process. However, in these papers the
switching mechanics is learnt/defined beforehand, while our approach relies on
the use of machine learning to on-the-fly switch the execution of heuristics.
Finally, in [AST09] and [HHS07] the authors studied the automatic configuration
problem which objective is to find the best parameters of a given algorithm in
order to efficiently solve a class of problems.

5.3 Background and Notations

5.3.1 Constraint Satisfaction Problems

A constraint Satisfaction Problem (CSP) is a triple (X,D,C) where, X repre-
sents a set of variables, D a set of associated domains (i.e., possible values for
the variables) and C a finite set of constraints.
Solving a CSP involves finding a solution, i.e., an assignment of values to vari-
ables such as all constraints are satisfied. If a solution exists the problem is
stated as satisfiable and unsatisfiable otherwise. A depth-first search backtrack-
ing algorithm can be used to tackle CSPs. At each step of the search, an
unassigned variable X and a valid value v for X are selected, the exploration of
variables/values is combined with a look-ahead strategy able to narrow the do-
mains of the variables and reduce the remaining search space through constraint
propagation. Restarting the search engine [GSK98, KHR+02] helps to reduce
the effects of early mistakes in the search process. A restart is done when some
cutoff limit in the number of failures (backtracks) is met (i.e., at some point in
the search tree), before restarting the search each heuristic stores its ranking
metrics in order to start the next tree-based search.
In this work, we consider five well known variable selection heuristics. min-dom
[HE79] selects the variable with the smallest domain, wdeg [BHLS04b] selects
the variable which is involved in the highest number of failed constraints, dom-
deg selects the variable which minimizes the ratio dom

deg
, dom-wdeg [BHLS04b]

selects the variable which minimizes the ratio dom
wdeg

and impacts [Ref04] selects

the (variable, value) pair which maximizes the reduction of the remaining search
space. While only deterministic heuristics will be considered, the proposed
approach can be extended to randomized algorithms by following the approach
proposed in [HHHLB06].

5.3.2 Supervised Machine Learning

Supervised Machine Learning exploits data labelled by the expert to automati-
cally build hypotheses emulating the expert’s decisions [Vap95]. Only the binary

60 CHAPTER 5. CONTINUOUS SEARCH

classification case will be considered in the following. Formally, a learning al-
gorithm processes a training set E = {(xi, yi), xi ∈ Ω, yi ∈ {1,−1}, i = 1 . . . n}
made of n examples (xi, yi), where xi is the example description (e.g. a vector
of values, Ω = IRd) and yi is the associated label; example (x, y) is referred to
as positive (respectively, negative) iff y is 1 (resp., -1). The learning algorithm
outputs a hypothesis f : Ω 7→ Y associating to each example description x a
label y = f(x) in {1,−1}. Among ML applications are pattern recognition,
ranging from computer vision to fraud detection [LB08], game playing [GS07],
or autonomic computing [RBea05].

Among the prominent ML algorithms are Support Vector Machines (SVM)
[CST00]. Linear SVM considers real-valued positive and negative instances
(Ω = IRd) and constructs the separating hyperplane which maximizes the mar-
gin, i.e. the minimal distance between the examples and the separating hyper-
plane. The margin maximization principle provides good guarantees about the
stability of the solution and its convergence towards the optimal solution when
the number of examples increases.

The linear SVM hypothesis f(x) can be described from the sum of the scalar
products between the current instance x and some of the training instances xi,
called support vectors:

f(x) =< w, x > +b =
∑

αi < xi, x > +b

The SVM approach can be extended to non-linear spaces, by mapping the
instance space Ω into a more expressive feature space Φ(Ω). This mapping
is made implicit through the so-called kernel trick, by defining K(x, x′) =<
Φ(x),Φ(x′) >; it preserves all good SVM properties provided the kernel be pos-
itive definite. Among the most widely used kernels are the Gaussian kernel

(K(x, x′) = exp{− ||x−x′||2

σ2 }) and the polynomial kernel (K(x, x′) = (< x, x′ >
+c)d). More complex separating hypotheses can be built on such kernels,

f(x) =
∑

αiK(xi, x) + b

using the same learning algorithm core as in the linear case. In all cases, a
new instance x is classified as positive (respectively negative) if f(x) is positive
(resp. negative).

5.4 Continuous Search in Constraint Program-

ming

The Continuous Search paradigm, illustrated on Figure 5.1, considers a func-
tioning system governed from a heuristics model (which could be expressed as
e.g., a set of rules, a knowledge base, a neural net). The core of continuous
search is to exploit the problem instances submitted to the system along a 2-
step process:

5.5. DYNAMIC CONTINUOUS SEARCH 61

Instances

Exploitation mode

Exploration mode

I0 I1 ... Ik

Figure 5.1: Continuous Search scenario

1. Exploitation mode: unseen problem instances are solved using the current
heuristics model;

2. Exploration mode:

(a) these instances are solved with other heuristics, yielding new informa-
tion. This information associates to the description x of the example
(accounting for the problem instance and the heuristics), a boolean
label y (the heuristics improves/does not improve on the current
heuristics model);

(b) the training set E , augmented with these new examples (x, y), is used
to revise or relearn the heuristics model.

The Exploitation or production mode (step 1) aims at solving new problem
instances as quickly as possible. The Exploration or learning mode (steps 2 and
3) aims at learning a more accurate heuristics model.

Definition 1. A continuous search system is endowed with a heuristics model,
which is used as is to solve the current problem instance in production mode,
and which is improved using the previously seen instances in learning mode.

Initially, the heuristics model of a continuous search system is empty, that is,
it is set to the default settings of the search system. In the proposed CS-based
constraint programming, the default setting is a given heuristics noted DEF in
the following (section 5.5). Assumedly, DEF is a reasonably good strategy on
average; the challenge is to improve on DEF for the particular types of instances
which have been encountered in production mode.

5.5 Dynamic Continuous Search

The Continuous Search paradigm is applied to a restart-based constraint solver,
defining the dyn-CS algorithm. After a general overview of dyn-CS , this section
details the different modules thereof.
Figure 5.2 depicts the general scheme of dyn-CS . The constraint-based solver
involves several restarts of the search. A restart is launched after the number
of backtracks in the search tree reaches a user-specified threshold. The search
stops after a given time limit. Before starting the tree-based search and after

62 CHAPTER 5. CONTINUOUS SEARCH

...

Checkpoint
f(x)=Hk

Checkpoint
f(x)=Hk

Checkpoint
f(x)=Hk

Figure 5.2: dyn-CS : selecting the best heuristic at each restart point

each subsequent restarts, the description x of the problem instance is computed
(section 5.5.1). We will call checkpoints the calculation of these descriptions.

In production mode, the heuristics model f is used to compute the heuristic
f(x) to be applied for the entire checkpoint window, i.e., until the next restart.
Not to be confused with the choice point which selects a variable/value pair at
each node in the search tree, dyn-CS selects the most promising heuristic at a
given checkpoint and uses it for the whole checkpoint window. In learning mode,
other combination of heuristics are applied (section 5.5.4) and the eventual result
(depending on whether the other heuristics improved on heuristics f(x)) leads
to build training examples (section 5.5.3). The augmented training set is used
to relearn the heuristics model f(x).

5.5.1 Representing Instances: Feature Definition

At each checkpoint (or restart), the description of the problem instance is com-
puted including static and dynamic features.

While a few of these descriptors had already been used in SAT portfolio solvers
[HHHLB06, XHHLB07], many descriptors had to be added as CSPs are more
diverse than SAT instances: SAT instances only involve boolean variables and
clauses, contrasting with CSPs using variables with large domains, and a variety
of constraints and pruning rules.

Static Features

Encode the general description of a given problem instance; they are computed
once for each instance as they are not modified along the resolution process.
The static features also allow one to discriminate between types of problems,
and different instances.

• Problem definition (4 features): Number of variables, constraints, vari-
ables assigned/not assigned at the beginning of the search.

• Variables size information (6 features): Size prod, sum, min, max,
mean and variance of all variables domain size.

5.5. DYNAMIC CONTINUOUS SEARCH 63

• Variables degree information (8 features): min, max, mean and variance
of all variables degree (resp. variables’ domain/degree)

• Constraints Information (6 features): The degree (or arity) of a given
constraint c is represented by the total number of variables involved in c.
Likewise the size of c is represented by the product of its corresponding
variables domain sizes. Taking into account this information, the following
features are computed min, max, mean of constraints size and degree.

• Filtering cost category (8 features): Each constraint c is associated a
category1. In this way, we compute the number of constraints for each
category. Intuitively each category represents the implementation cost
of the filtering algorithm. Cat = {Exponential, Cubic, Quadratic, Linear
expensive, Linear cheap, Ternary, Binary, Unary}. Where Linear expen-
sive (resp. cheap) indicates the complexity of a linear equation constrain
and the last three categories indicate the number of variables involved in
the constraint. More information about the filtering cost category can be
found in [Gec06].

Dynamic Features

Two kinds of dynamic features are used to monitor the performance of the
search effort at a given checkpoint: global statistics describe the progress of the
overall search process; local statistics check the evolution of a given strategy.

• Heuristic criteria (15 features): each heuristic criteria (e.g., wdeg , dom-
wdeg , impacts) is computed for each variable; their prod, min, max, mean
and variance over all variables are used as features.

• Constraints weight (12 features): likewise report the min, max, mean and
variance of all constraints weight (i.e., constraints wdeg). Additionally
the mean for each filtering cost category is used as feature.

• Constraints information (3 features): min, max and mean of constraint’s
run-prop, where run-prop indicates the number of times the propagation
engine has called the filtering algorithm of a given constraint.

• Checkpoint information (33 features): for every checkpointi relevant
information from the previous checkpointi−1 (when available) is included
into the feature vector. From checkpointi−1 we include the total number
of nodes and maximum search depth. From the latest non-failed node, we
consider the total number of assigned variables, satisfied constraints, sum
of variables wdeg (resp. size and degree) and product of variables degree
(resp. domain, wdeg and impacts) of non assigned variables. Finally using
the previous 11 features the mean and variance is computed taking into
account all visited checkpoints.

1Out of 8 categories, detailed in
http://www.gecode.org/doc-latest/reference/classGecode 1 1PropCost.html

64 CHAPTER 5. CONTINUOUS SEARCH

The attributes listed above include a collection of 95 features.

5.5.2 Feature pre-Processing

Feature pre-processing is a most important step in Machine Learning [WF05],
which can significantly improve the predictive accuracy of the learned hypoth-
esis. Typically, the descriptive features detailed above are on different scales;
the number of variables and/or constraints can be high while the Impact of
(variable, value) is between 0 and 1. A data normalization step, scaling down
feature values in [−1, 1] (minmax-normalization) is used.
Although selecting the most informative features might improve the perfor-
mance, in this work we do not consider any feature selection algorithm, and
only features that are constant over all examples are removed as they offer no
discriminant information.

5.5.3 Learning and Using the Heuristics Model

The selection of the best heuristic for a given problem instance is formulated as
a binary classification problem, as follows. Let H denote the set of k candidate
heuristics, two particular elements in H being DEF (the default heuristics yield-
ing reasonably good results on average) and dyn-CS , the (dynamic) ML-based
heuristics model initially set to DEF.

Definition 2. Each training example pi = (xi, yi) is generated by applying
some heuristics h (h ∈ H, h 6= dyn-CS) at some checkpoint in the search tree of
a given problem instance. Description xi (∈ IR97) is made of the static feature
values describing the problem instance, the dynamic feature values computed
at this check point and describing the current search state, and two additional
features: checkpoint-id gives the number of checkpoints up to now and cutoff-
information gives the cutoff limit of the next restart. The associated label yi
is positive iff the associated runtime (using heuristic h instead of dyn-CS at
the current checkpoint) improves on the heuristics model-based runtime (using
dyn-CS at every checkpoint); otherwise, label yi is negative.

If the problem instance cannot be solved (whatever the heuristics used, i.e., time
out during the exploration and exploitation modes), it is discarded (since the
associate training examples do not provide any relevant information).
In production mode, the hypothesis f learned from the above training examples
(their generation is detailed in next subsection) is used as follows:

Definition 3. At each checkpoint, for each h ∈ H, the description xh and the
associated value f(xh) are computed. If there exists a single h such that f(xh)
is positive, it is selected and used in the subsequent search effort. If there exists
several heuristics with positive f(xh), the one with maximal value is selected2.
If f(xh) is negative for all h, the default heuristic DEF is selected.

2The rationale for this decision is that the margin, i.e. the distance of the example w.r.t
the separating hyperplane, is interpreted as the confidence of the prediction [Vap95].

5.5. DYNAMIC CONTINUOUS SEARCH 65

5.5.4 Generating Examples in Exploration Mode

The Continuous Search paradigm uses the idle computer’s CPU cycles to ex-
plore different heuristic combinations on the last seen problem instance, and see
whether one could have done better than the current heuristics model on this
instance. The rationale for this exploration is that improving on the last seen
instance (albeit meaningless from a production viewpoint since the user already
got a solution) will deliver useful indications as to how to best deal with further
similar instances. In this way, the heuristics model will expectedly be tailored
to the distribution of problem instances actually dealt with by the user.
The CS exploration proceeds by slightly perturbing the heuristics model. Let
dyn-CS −i,h denote the policy defined as: use heuristics model dyn-CS at all
checkpoints except the i-th one, and use heuristic h at the i-checkpoint.

Algorithm 1 Exploration-time(instance: I)

1: E = {} //initialize the training set
2: for all i in checkpoints(I) do
3: for all h in H do

4: Compute x describing the current checkpoint i and heuristic h
5: if h 6= dyn-CS then

6: Launch dyn-CS −i,h

7: Define y = 1 iff dyn-CS −i,h improves on dyn-CS and −1 otherwise
8: E ← E ∪ {x, y}
9: end if

10: end for

11: end for

12: return E

Algorithm 1 describes the proposed Exploration mode for Continuous Search.
A limited number (10) of checkpoints in the dyn-CS based resolution of instance
I are considered (line 2); for each checkpoint and each heuristic h (distinct from
the dyn-CS), a lesion study is conducted, applying h instead of dyn-CS at the
i-th checkpoint (heuristics model dyn-CS −i,h); the example (described from the
i-th checkpoint and h) is labelled positive iff dyn-CS −i,h improves on dyn-CS ,
and added to the training set E , once the exploration mode for a given instance
is finished the hypothesis model is updated by retraining the SVM including the
feature pre-processing as stated in section 5.5.2.

5.5.5 Imbalanced Examples

It is well known that one of the heuristics often performs much better than the
others for a particular distribution of problems [CB08]. Accordingly, negative
training examples considerably outnumber the positive ones (it is difficult to im-
prove on the winning heuristics). This phenomenon, known as Imbalanced dis-
tribution, might severely hinder the SVM algorithm [AKJ04]. Two simple ways
of enforcing a balanced distribution in such cases, intensively examined in the

66 CHAPTER 5. CONTINUOUS SEARCH

literature and considered in earlier work [AHS09], are to over-sample examples
in the minority class (generating additional positive examples by Gaussianly
perturbing the available ones) and/or undersample examples in the majority
class.
Another option is to use prior knowledge to rebalance the training distribution.
Formally, instead of labeling an example positive (resp, negative) iff the associ-
ated runtime is strictly less (resp. greater) than that of the heuristic model, we
consider the difference between the runtimes. If the difference is less than some
tolerance value dt, then the example is relabeled as positive.
The number of positive examples and hence the coverage of the learned heuristics
model increase with dt; in the experiments (Section 5.6), dt is set to 1 minute iff
time-exploitation (time required to solve a given instance in production mode)
is greater than 1 minute, otherwise dt is set to time-exploitation.

5.6 Experimental Validation

This section reports on the experimental validation of the proposed Continuous
Search approach. All tests were conducted on Linux Mandriva-2009 boxes with
8 GB of RAM and 2.33 Ghz Intel processors.

5.6.1 Experimental Settings

The presented experiments consider 496 CSP instances taken from different
repositories.

• nsp: 100 nurse-scheduling instances from the MiniZinc3 repository.

• bibd: 83 Balance Incomplete Block Design instances from the XCSP4

repository, translated into Gecode using Tailor5

• js: 130 Job Shop instances from the XCSP repository.

• geom: 100 Geometric instances from the XCSP repository.

• lfn: 83 Langford-number instances, translated into Gecode using global
and channelling constraints.

The learning algorithm used in the experimental validation of the proposed ap-
proach is a Support Vector Machine with Gaussian kernel, using the libSVM
implementation with default parameters6. All considered CSP heuristics (Sec-
tion 5.3) are home-made implementations integrated in the Gecode 2.1.1 [Gec06]
constraint solver. Our dyn-CS technique was used as a heuristics model on top

3http://www.g12.cs.mu.oz.au/minizinc/download.html
4http://www.cril.univ-artois.fr/∼lecoutre/benchmarks.html
5http://www.cs.st-andrews.ac.uk/∼andrea/tailor/
6http://www.csie.ntu.edu.tw/∼cjlin/libsvm/

5.6. EXPERIMENTAL VALIDATION 67

of the heuristics set H = {dom-wdeg , wdeg , dom-deg , min-dom, impacts }, tak-
ing min-value as value selection heuristic. The cutoff value used to restart the
search was initially set to 1000 and the cutoff increase policy to ×1.5, the same
cutoff policy is used in all the experimental scenarios.

Continuous Search was assessed comparatively to the best two dynamic variable
ordering heuristics on the considered problems, namely dom-wdeg and wdeg . It
must be noted that Continuous Search, being a lifelong learning system, will
depend on the curriculum, that is the order of the submitted instances. If
the user “pedagogically” starts by submitting informative instances first, the
performance in the first stages will be better than if untypical and awkward
instances are considered first. For the sake of fairness, the performance reported
for Continuous Search on each problem instance is the median performance over
10 random orderings of the CSP instances.

5.6.2 Practical Performances

Figure 5.3 highlights the Continuous Search results on Langford-number prob-
lems, comparatively to dom-wdeg and wdeg . The x-axis gives the number of
problems solved and the y-axis presents the cumulated runtime. The (median)
dyn-CS performance (grey line) is satisfactory as it solves 12 more instances
than dom-wdeg (black line) and wdeg (light gray line). The dispersion of the
dyn-CS results depending on the instance ordering is depicted from the set
of dashed lines. Let us remark that traditional portfolio approaches such as
[HHHLB06, SM07, XHHLB07] do not present such performance variations as
they assume a complete set of training examples to be available beforehand.

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40

ti
m

e
 (

s
e

c
)

solved instances

dist-1
dist-2
dist-3
dist-4
dist-5
dist-6
dist-7
dist-8
dist-9

dist-10
dom-wdeg

wdeg
dyn-CS

Figure 5.3: Langford-number (lfn): Number of instances solved in less than 5
min with dyn-CS , wdeg , and dom-wdeg . Dashed lines illustrate the performance
of dyn-CS for a particular instance ordering.

68 CHAPTER 5. CONTINUOUS SEARCH

Figure 5.4 depicts the performance of dyn-CS , dom-wdeg and wdeg on all other
problem families, respectively (bibd, js, nsp, and geom). On the bibd (Figure
5.4(a)) and js (Figure 5.4(b)) problems, the best heuristics is dom-wdeg , solving
3 more instances than dyn-CS . Note that dom-wdeg and wdeg coincide on bibd
since all decision variables are boolean.

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70

ti
m

e
 (

s
e
c
)

solved instances

dist-1
dist-2
dist-3
dist-4
dist-5
dist-6
dist-7
dist-8
dist-9

dist-10
dom-wdeg

wdeg
dyn-CS

(a) Balance incomplete block designs (bibd)

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80

ti
m

e
 (

s
e
c
)

solved instances

dist-1
dist-2
dist-3
dist-4
dist-5
dist-6
dist-7
dist-8
dist-9

dist-10
dom-wdeg

wdeg
dyn-CS

(b) Job-shop (js)

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80 90

ti
m

e
 (

s
e
c
)

solved instances

dist-1
dist-2
dist-3
dist-4
dist-5
dist-6
dist-7
dist-8
dist-9

dist-10
dom-wdeg

wdeg
dyn-CS

(c) Nurse scheduling problem (nsp)

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70

ti
m

e
 (

s
e
c
)

solved instances

dist-1
dist-2
dist-3
dist-4
dist-5
dist-6
dist-7
dist-8
dist-9

dist-10
dom-wdeg

wdeg
dyn-CS

(d) Geometric (geom)

Figure 5.4: Number of instances solved in less than 5 minutes

On nsp (Figure 5.4(c)), dyn-CS solves 9 more problems than dom-wdeg , but
is outperformed by wdeg by 11 problems. On geom (Figure 5.4(d)), dyn-CS
improves on the other heuristics, solving respectively 3 more instances and 40
more instances than dom-wdeg and wdeg .
These results suggest that dyn-CS is most often able to pick up the best heuris-
tics on a given problem family, and sometimes able to significantly improve on
the best of the available heuristics.
All experimental results are summarized in Table 5.1, reporting for each consid-
ered heuristics the number of instances solved (#sol), the total computational
cost for all instances (time, in hour), and the average time (avg-time, in min-
utes) per instance, over all problem families. These results confirm that dyn-CS
outperforms dom-wdeg and wdeg , solving respectively 18 and 41 instances more
out of 315. Furthermore, it shows that dyn-CS is slightly faster than the other

5.6. EXPERIMENTAL VALIDATION 69

heuristics, with an average time of 2.11 minutes, against respectively 2.39 for
dom-wdeg and 2.61 for wdeg . It is also worth mentioning that the total CPU
time required to complete the exploration (or learning) mode after solving a
given instance was on average no longer than 2 hours.
Additionally, a random heuristic selection scenario was also experimented (i.e.,
executing 10 times each instance with a uniform heuristic selection and reporting
the median value over the 10 runs). The random selection strategy was able to
solve 278 out of 496 instances, 19 instances less than dom-wdeg and 37 instances
less than dyn-CS .
Another interesting lesson learned from the experiments concerns the difficulty
of the underlying learning problem, and the generalization error of the learned
hypothesis. The generalization error in the Continuous Search framework is
estimated by 10-fold Cross Validation on the whole training set (including all
training examples generated in exploration mode). Table 5.2 reports on the
predictive accuracy of the SVM algorithm (with same default setting) on all
problem families, with an average accuracy of 67%. As could have been ex-
pected, the predictive accuracy is correlated to the performance of Continuous
Search: the problems with best accuracy and best performance improvement
are geom and lfn.
To give an order of idea, 62% predictive accuracy was reported in the context
of SATzilla [XHHLB07], aimed at selecting of the best heuristic in a portfolio.
A direct comparison of the predictive accuracy might however be biased. On the
one hand SATzilla errors are attributed to the selection of some near-optimal
heuristics, after the authors; on the other hand, Continuous Search would in-
volve several selection steps (in each checkpoint) and could thus compensate
from earlier errors.

5.6.3 The Power of Adaptation

Our second experimental test combines instances from different domains in order
to show how CS is able to adapt to changing problems distribution. Indeed,
unlike classical portfolio-based approaches which can only be applied if the
training and exploitation sets come from the same domain, CS can adapt to
changes and provide top performances even if the problems change.
In this context, Table 5.3 reports the results on the geom (left) and bibd (right)
problems by considering the following two scenarios. In the first scenario, we are
going to emulate a portfolio-based search which would use the wrong domain to
train. In nsp-geom‡, CS incrementally learns while solving the 100 nsp instances,
and then solves one by one the 100 geom instances. However, when switching
to this second domain, incremental learning is switched off, and checkpoints
adaptation uses the model learnt on nsp. In the second scenario, nsp-geom† we
solve nsp, then geom instances one by one, but this time, we keep the incremental
learning on when switching from the first domain to the second one - as if CS
was not aware of the transition.
As we can see in the first line of the Table, training on the wrong domain gives
poor performance (55 instances solved in 4.1 hours). At contrary, the second

70 CHAPTER 5. CONTINUOUS SEARCH

T
ab

le
5.1:

T
otal

solv
ed

in
stan

ces

P
ro
b
lem

d
o
m
-w

d
eg

w
d
eg

d
yn

-C
S

#
so
l

tim
e(h

)
av
g-tim

e(m
)

#
sol

tim
e(h

)
av
g-tim

e(m
)

#
sol

tim
e(h

)
av
g-tim

e(m
)

n
sp

6
8

3
.9

2.34
8
8

2
.6

1
.5
6

77
2.9

1.74
b
ib
d

6
8

1
.8

1
.3
7

68
1.8

1.37
65

2.0
1.44

js
7
6

4
.9

2
.2
6

73
5.1

2.35
73

5.2
2.4

lfn
2
1

5
.2

3.75
21

5.3
3.83

3
3

4
.1

2
.9
6

g
eo
m

6
4

3
.9

2.34
27

6.8
4.08

6
7

3
.3

1
.9
8

T
o
ta
l

2
9
7

1
9
.7

2.39
274

21.6
2.61

3
1
5

1
7
.5

2
.1
1

5.7. SUMMARY 71

Table 5.2: Predictive accuracy of the heuristics model (10-fold cross validation)
bibd nsp geom js lfn
63.2% 58.8% 76.9% 63.6% 73.8%

line shows that CS can recover from training on the wrong domain thanks to
its incremental adaptation (solving 67 instances in 3.4 hours). The right part
of the Table reports similar results for the bibd problem.
As can be observed in nsp-geom† and lfn-bibd†, CS successfully identifies the
new distribution of problems solving respectively the same number and 2 less
instances than geom and bibd when CS is only applied to this domain starting
from scratch. However the detection of the new distribution introduces an
overhead in the solving time (see results for single domain in Table 5.1).

Problem #Sol time (h) Problem #Sol time (h)
nsp-geom‡ 55 4.1 lfn-bibd‡ 23 5.3
nsp-geom† 67 3.4 lfn-bibd† 63 2.3

Table 5.3: Total solved instances

5.7 Summary

The main contribution of the presented approach, the Continuous Search frame-
work aims at designing a heuristics model tailored to the user problem distribu-
tion, allowing her to get top performance from the constraint solver. The rep-
resentative instances needed to train a good heuristics model are not assumed
to be available beforehand; they are gradually built and exploited to improve
the current heuristics model, by stealing the idle CPU cycles of the computing
system. Metaphorically speaking, the constraint solver uses its spare time to
play against itself and gradually improve its strategy along time; further, this
expertise is relevant to the real-world problems considered by the user, all the
more so as it directly relates to the problem instances submitted to the system.
The experimental results suggest that Continuous Search is able to pick up the
best of a set of heuristics on a diverse set of problems, by exploiting the incoming
instances; in 2 out of 5 problems, Continuous Search swiftly builds up a mixed
strategy, significantly overcoming all baseline heuristics. With the other classes
of problems, its performance is comparable to the best two single heuristics.
Our experiments also showed the capacity of adaptation of CS. Moving from
one problem domain to another one is possible thanks to its incremental learning
capacity. This capacity is a major improvement against classical portfolio-based
approaches which only work when offline training and exploitation use instances
from the same domain.

72 CHAPTER 5. CONTINUOUS SEARCH

Chapter 6

Autonomous Search

73

74 CHAPTER 6. AUTONOMOUS SEARCH

The work presented in this Chapter led to the following events and publications:

• International Workshop on Autonomous Search, co-located with CP’07,
Providence (RI), USA.

• Guest co-Editor Special Issue on Autonomous Search, Y. Hamadi, E.
Montfroy, and F. Saubion, Constraint Programming Letters (CPL), Vol-
ume 4, 2008.

• Book chapter, ”Autonomous Search”, in ”CPAIOR 10th anniversary”,
Y. Hamadi, E. Monfroy, and F. Saubion, Eds. M. Milano and P. Van
Hentenryck, Springer 2010.

• Edited book ”Autonomous Search”, Springer, ISBN 978-3-642-21433-2,
January 31, 2012.

6.1 Introduction

The selection and the correct setting of the most suitable algorithm for solving
a given problem has already been investigated many years ago [Ric75]. The pro-
posed abstract model suggested to extract features in order to characterize the
problem, to search for a suitable algorithm in the space of available algorithms
and then to evaluate its performances with respect to a set of measures. These
considerations are still valid and this general problem can indeed be considered
at least from two complementary points of view:

• Selecting solving techniques or algorithms from a set of available tech-
niques

• Tuning an algorithm with respect to a given instance of a problem

To address these issues, the proposed approaches include tools from different
computer science areas, especially from machine learning. Moreover, they have
been developed to answer the algorithm selection problem in various fields as
described in the recent survey of K. Smith-Miles [SM08].
In this chapter, we will focus on the restriction of this general question to con-
straint satisfaction and optimization problems. In this particular area, the prob-
lem of finding the best configuration in a search space of heuristic algorithms
is also related to the recent notion of Hyper-heuristics [BHK+09, BGJ+03,
CKS02]. Hyper-heuristics are methods that aim at automating the process of
selecting, combining, generating, or adapting several simpler heuristics (or com-
ponents of such heuristics) to efficiently solve computational search problems.
Hyper-heuristics are also defined as “heuristics to choose heuristics” [CS00] or
“heuristics to generate heuristics” [BEDP08]. This idea was pioneered in the
early 60’s with the combination of scheduling rules [FT63, CGTT63]. Hyper-
heuristics that manage a set of given available basic search heuristics by means
of search strategies or other parameters have been widely used for solving com-
binatorial problems (see Burke et al. [BHK+09] for a recent survey).

6.1. INTRODUCTION 75

From a practical point of view, Burke et al. [BHK+10] proposed a comprehen-
sive classification of hyper-heuristics considering two dimensions: the nature of
the heuristics and the source of the feedback for learning. They thus distin-
guish between heuristics that select heuristics from a pre-existing set of search
heuristics and heuristics that generate new heuristics from basic components.
Concerning the feedback, they identify three categories: online learning, offline
learning, and no learning. The distinction between online and offline processes
was previously proposed in order to classify parameter setting in evolutionary
algorithms [EHM99], distinguishing parameter tuning (offline) from parameter
control (online).
As classical offline mechanisms, we may mention portfolio algorithms [HHHLB06,
XHHLB08], where previously acquired knowledge is used in order to select the
suitable solving method with regards to a given problem instance. M. Gagliolo
et al. [GS08] use reinforcement learning based techniques for algorithm selec-
tion.
Online control of heuristics has been widely addressed, for instance in adaptive
strategies in evolutionary computation [Thi07, Kra08], in adaptive neighbor-
hood selection for local search [HR06, CB01, PR08] or in constraint program-
ming solvers [EFW+02].
When considering parameter setting, the space of possible algorithms is the set
of possible configurations of a given algorithmic scheme induced by the possible
values of its parameters that control its computational behavior. Parameter
tuning of evolutionary algorithms has been investigated for many years (we
refer the reader to the book [LLM07] for a recent survey). Adaptive control
strategies were also proposed for other solving approaches such as local search
[Hoo02, PK01]. Offline mechanisms are also available for tuning parameters,
such as the work of Hutter et al. [HHS07], which proposes to use a local search
algorithm in order to automatically find a good (i.e., efficient) configuration of
an algorithm in the parameters space. Including this work, a more complete
view of the configuration of search algorithms is presented in the PhD thesis
of F. Hutter [Hut09]. Revac [NE07, NE06] is a method that uses information
theory to identify the most important parameters and calibrate them efficiently.
We may also mention that racing techniques [BSPV02, YG04, YG05, YG07] can
be used to choose suitable parameters settings when facing multiple choices.
Another important research community that focuses on very related problems
has been established under the name Reactive Search by R. Battiti et al. [BBM08,
BB09]. After focusing on local search with the seminal works on reactive tabu
[BT94] or adaptive simulated annealing [Ing89], this community is now growing
through the dedicated Learning and Intelligent OptimizatioN (LION) confer-
ence.

It clearly appears that these approaches share common principles and purposes
and have been developed in parallel in different but connected communities.
Their foundations rely on the fact that, since the solving techniques and search
heuristics are more and more sophisticated and the problems structures more
and more intricate, the choice and the correct setting of a solving algorithm is

76 CHAPTER 6. AUTONOMOUS SEARCH

becoming an intractable task for most users. Therefore, there is a rising need
for an alternative problem solving framework. According to the above brief
historical review, we have remarked that these approaches have indeed their
own specificities that are induced by their seminal supporting works. In this
chapter, we propose to integrate the main motivations and goal into the more
general concept of Autonomous Search (AS) [HMS08a, HMS08b].

This chapter is organized as follows. In Section 6.2, we describe the general ar-
chitecture of modern solvers. We present the specificities of autonomous solvers
and formalize their solving mechanisms with a set of rules in section . In Sec-
tion 6.4, we illustrate different solver architectures by providing examples from
the literature and we characterize these solvers using our previous rule-based
description framework.

6.2 Solvers Architecture

In this section, we present the general basic concepts related to the notion of
solver in the context of general constraint problems solving, which provides a
general introduction on problem solving. By general problems, we mean op-
timization or constraint satisfaction problems, whose variables may take their
values over various domains (Boolean, integers, real numbers,...). In fact, solv-
ing such problems is the main interest of different but complementary communi-
ties in computer science: operation research, global optimization, mathematical
programming, constraint programming, artificial intelligence, ... Among the
different underlying paradigms that are associated to these research areas, we
may try to identify common principles, which are shared by the resulting solv-
ing algorithms and techniques that can be used for the ultimate solving purpose.

As it has finally be suggested by the notion of metaheuristics [GK03], solvers
could be viewed as a general skeleton whose components are selected according
to the problem or the class of problems to be solved. Indeed, from our point
of view we want to look carefully at the components of the solver that define
its structural properties and at its parameters or external features that define
its behavior. On one hand, one has to choose the components of the solver and
on the other hand one should configure how these internal components are used
during the solving process. We identify the core of the solver which is composed
by one or several solving algorithms. Note that here we distinguish between the
solver and the solving algorithm, which is a part of the solver but corresponds
to the real operational solving process. A basic solving algorithm corresponds
to the management of solving techniques, abstracted by the notion of operators,
making use of a solving strategy that schedules the use of these operators. A
solving algorithm is designed of course according to the internal model, that
defines the search space, and uses a function to evaluate the elements of the
search spaces. All these components can be subjected to various parameters
that define their behavior. A given parametrization defines thus what we call
a configuration of the solver. At this level, a control layer can be introduced,

6.2. SOLVERS ARCHITECTURE 77

especially in an autonomous solver, to manage the previous components and
modify the configuration of the solver during the solving process. The general
description of a solver architecture is illustrated by Figure 6.1.

Model

Evaluation

Strategy

Operators

Parameters

Control

Algorithm

Configuration

Figure 6.1: The general architecture of a solver

6.2.1 Problem Modeling/Encoding

The encoding of the problem is considered apart from the solver itself. In fact,
most of the time, a solver is designed for a specific encoding framework that
induces a specific internal representation that corresponds to the model. While
the classic CSP modeling framework [Tsa93] is commonly used as a description
tool for all solving methods, the internal encoding of the problem and its possible
configurations involve different representations (e.g., complete vs. partial assign-
ments, ...). One should note that different modeling and encoding paradigms
can be used. In constraint programming [Apt03, Dec03, MS98, Hen89] one could
encode constraints as tuples of allowed values or using a more declarative first
order language with relations and functions. Moreover, other paradigms can be
used to encode CSPs, such as SAT [BHvMW09], and various transformation
schemes have been investigated [BHZ06, Wal00, Hoo99]. On the metaheuristics
side, the encoding of the possible configurations of the problem has a direct
impact on the search space and on the search landscape. For instance, one
may include directly some of the constraints of the problem in the encoding
as this is the case when using permutations for the Traveling Salesman Prob-
lem (TSP [ABCC07]), which corresponds to the constraint: Each city is visited
once and only once. In genetic algorithms [De 06, ES03b, Mic92] or local search
[AL03, HM05], encoding may have a significant impact on the performance of

78 CHAPTER 6. AUTONOMOUS SEARCH

the algorithm. The encoding of continuous optimization problems (i.e., over real
numbers) also requires providing suitable data structures, for instance, floating
point representation for genetic algorithms [JM91] or continuous and interval
arithmetic in constraint programming [BG06]. The internal representation of
the model can be considered as a component of the solver. This representation
has of course a direct computational impact on the evaluation function and also
on the solving techniques that are implemented through operators.

6.2.2 The Evaluation Function

The evaluation function is related to the nature of the problem. From a gen-
eral point of view, a function is needed to evaluate possible configurations of
the problem with regards to its constraints and variables values. An evalua-
tion function may evaluate the number of conflicts or check the satisfiability of
a given constraint set, or use particular consistency notions (global or local).
Such a function can also be used to prune the search space when dealing with
optimization problems. Again, this notion is more classically used in the context
of metaheuristics than in classic complete constraint programming solvers. But
it seems rather intuitive to have such a function to assess the current search
state in order to be able to check if the solver has reached a solution or not.
Moreover, this evaluation function clearly appears when dealing with constraint
optimization problems and using branch-and-bound algorithms.

6.2.3 The Solving Algorithm

Our purpose is to distinguish between the basic structure of the algorithm and its
configurable components. For instance, in a classic complete constraint solver,
the skeleton of the algorithm is the basic backtracking process, whose heuristics
and propagation rules can be configured. In an evolutionary algorithm, the
core of the solver is constituted by the population management. A solver may
include the following components that we have to take into account:

• A set of operators: operators are used in the solving process to com-
pute search states. These operators may basically achieve variable instan-
tiation, constraint propagation, local moves, recombination or mutation
operators, selection, etc. Most of the time, they are parametrized and use
an evaluation function to compute their results (e.g., number of violated
constraints or evaluation of the neighborhood in local search algorithms).
Note that these operators may be used to achieve a complete search (i.e.,
able to find a solution or prove unsatisfiability of the problem) or to per-
form an incomplete search (i.e., find a solution if possible or a sub-optimal
solution).

– Concerning tree search based methods, the notion of operator for per-
forming solving steps during the search process rather corresponds to

6.2. SOLVERS ARCHITECTURE 79

basic solving techniques. For instance if we consider a classic back-
tracking based solver in constraint programming, we need an enumer-
ation operator that is used to assign values to variables and reduction
operators that enforce consistencies in order to reduce the domains
of the variables. The search process then corresponds to the progres-
sive construction of a search tree whose nodes are subjected to the
application of the previously described operators. When considering
numerical variables over intervals, we may add splitting operators. Of
course these operators may include heuristics concerning the choice of
the variables to be enumerated, the choice of the values but also other
parameters to adjust their behavior. Indeed, constraint propagation
can be formalized by means of rules [Apt03, FA03], which support
operators-based description and provide a theoretical framework to
assess properties of the solver such as termination.

– On the metaheuristics side, in evolutionary computing [Gol89, De 06,
ES03b] we usually consider variation operators (mutation operators
and recombination operators) and selection operators. Considering
an evolutionary algorithm, it is possible to established some con-
vergence properties such as the famous schemata theorem [Hol75].
There exist some general purpose operators as, for instance, the uni-
form crossover [Syw89] or the Gaussian mutation [Kje91]. To get
better performances, these operators are often designed with respect
to the specificities of the problem to be solved. In local search[AL03],
local moves are based on neighborhoods functions.

All these operators are most of the time subjected to parameters that
may modify their behavior but, more important that also control their
application along the search process.

• A solving strategy: the solving strategy schedules how operators are
used. Back to previous example, in a complete tree-based search process,
the strategy will consist in alternating enumeration and constraint prop-
agation. The strategy can be subjected to parameters that will indicate
which operators to choose in the general scheduling of the basic solving
process.

6.2.4 Configuration of the solver: the Parameters

The solver usually includes parameters that are used to modify the behavior
of its components. A configuration of the solver is then an instance of the
parameters together with its components. Parameters are variables that can
be used in the general search process to decide how the other components are
used. These parameters may correspond to various data that will be involved
in the choice of the operator to be applied at a given search state. For instance,
we may consider the probability of application of the operators (e.g., genetic
operators in evolutionary algorithms, the noise in random walk for local search

80 CHAPTER 6. AUTONOMOUS SEARCH

algorithms [SKC94]) or to some tuning of the heuristics themselves (e.g., tabu
list length in Tabu Search [GL97]).
Parameters setting is an important issue for evolutionary algorithms [LLM07].
Parameters setting for local search algorithms is also handled in [BBM08].
In constraint programming much work has been done to study basic choice
heuristics (see [EFW+02] for instance), but also to evaluate the possible diffi-
culties related to the classic use of basic heuristics such as heavy-tailed problems
[GSCK00] (these studies particularly demonstrate the benefit of randomization
when solving multiple instances of a given family of problem compared to the
use of a single predefined heuristics) .

6.2.5 Control

Modern solvers also include external or internal mechanisms that allow the
solver to change its configuration by selecting the suitable operators to apply,
or tuning the parameters, or adding specific information to the model. These
mechanisms often include machine learning techniques and will be detailed later.
Of course, control rules will often focus on the management of the parameters
and/or of the operators of the solver.

6.2.6 Existing Classifications and Taxonomies

As mentioned before, we may identify at least three important domains where
related work has already been conducted. These lines of work have led to the
use of different terminologies and concepts that we try to recall here.

In evolutionary computing, parameters setting [LLM07] constitutes a major
issue and we may recall the taxonomy proposed by Eiben et al. [EHM99] (see
Figure 6.2).

Figure 6.2: Control taxonomy proposed by Eiben et al. [EHM99]

Methods are classified depending on whether they attempt to set parameters
before the run (tuning) or during the run (control). The goal of parameter
tuning is to obtain parameters values that could be useful over a wide range of
problems. Such results require a large number of experimental evaluations and
are generally based on empirical observations. Parameter control is divided into
three branches according to the degree of autonomy of the strategies. Control is
deterministic when parameters are changed according to a previously established
schedule, adaptive when parameters are modified according to rules that take

6.2. SOLVERS ARCHITECTURE 81

into account the state of the search, and self-adaptive when parameters are
encoded into individuals in order to evolve conjointly with the other variables
of the problem.

In [SE09], Eiben and Smit recall the difference between numeric and symbolic
parameters. In [NSE08], symbolic parameters are called components whose
elements are operators. In this chapter, we choose to use the notions of param-
eters for numeric parameters. As defined above, the operators are configurable
components of the solver that implement solving techniques.

In [BB09], reactive search is characterized by the integration of machine learning
techniques into search heuristics. A classification of the source of information
that is used by the algorithm is proposed to distinguish between problem de-
pendent information, task dependent information, and local properties.

In their survey [BHK+10], Burke et al. propose a classification of hyper-
heuristics that are defined as ’search methods or learning mechanisms for se-
lecting or generating heuristics to solve computational search problems’. As
mentioned above, this classification also distinguishes between two dimensions:
the different sources of feedback information and the nature of the heuristics
search space. This classification is summarized in Figure 6.3.

Figure 6.3: Classification of hyper-heuristics proposed by Burke et al. [BHK+10]

The feedback, when used, corresponds here to the information that is learned
during solving (online) or using a set of training instances (offline). The au-
thors identify two families of low level heuristics : construction heuristics (used
to incrementally build a solution) and perturbation heuristics (used to itera-
tively improve a starting solution). The hyper-heuristics level can use heuristics
selection methodologies, that produce combinations of pre-existing low level
heuristics, or heuristics generation methodologies, that generate new heuristics
from basic blocks of low level heuristics.

Another interesting classification is proposed in [GS08], in which Gagliolo et al.
are interested in the algorithm selection problem [Ric75] and describe the differ-
ent selection techniques according to the following points of views. The problem
consists in assigning algorithms from a set of possible alternatives solving meth-
ods to a set of problem instances in order to improve the performance. Different

82 CHAPTER 6. AUTONOMOUS SEARCH

dimensions are identified with regards to this algorithm selection problem :

• The nature of the problems to be solved : decision vs. optimization prob-
lems.

• The generality of the selection process : selection of an algorithm for a set
of instances or selection of an algorithm for each instance.

• The reactivity of the selection process : the selection can be static and
made before running all the selected algorithms or can be dynamically
adapted during execution.

• The feedback used by the selection process : the selection can be made
from scratch or using previously acquired knowledge.

• The source of feedback: as in the previous classification, when learning
is used in the selection process, one may consider offline (using separated
training instances) or online (updating information during solving) learn-
ing techniques.

As claimed in the introduction, autonomous search aims at providing a more
uniform description and characterization of these different trends, which have
close relationships.

6.3 Architecture of Autonomous Solvers

We may define autonomous solvers as solvers that contain control in their search
process (i.e., the solvers described in Section 6.4.2). We want to study such
autonomous systems w.r.t. their specific control methods.
A general control process includes a strategy that manages the modification of
some of the solver’s components and behavioral features after the application
of some solving functions. The overall strategy to combine and use components
and parameters can be based on learning that uses information from the current
solving process or from previous solved instances (see remarks in Section 6.2.6).
Therefore, modifications are often based on a subset of search states. Given
a solver, we have to consider the interactions between the heuristics and the
strategy which selects the heuristics at a meta-level (notion of hyper-heuristics).
On the one hand, one can consider the solver and its history and current environ-
ment (i.e., the previously computed search states and eventually other external
information related to previous computations) as an experimental system, which
is observed from an external point of view. Such a supervised approach then
consists in correctly controlling the solver by adjusting its components accord-
ing to criteria and decision rules (these rules may be automatically generated
by means of statistics and machine learning tools or even by human experts).
On the other hand, one may consider that the solver changes the environment
at each step of the solving process and that this environment returns feedback
information to the solver in order to manage its adaptation to this changing

6.3. ARCHITECTURE OF AUTONOMOUS SOLVERS 83

context (different types of feedback may be taken into account as mentioned in
Section 6.2.6). In this case, we will use self adaptation. To illustrate these ideas,
we propose a high level picture of an autonomous search system (see Figure 6.4).

Supervised adaptation

Solver Changeable configuration

Interpret data

Environment
interaction

event

feedback
measurement

Figure 6.4: The global architecture of an Autonomous Search System

6.3.1 Control by Self Adaptation

In self adaptation, the adaptive mechanism is coupled with the search com-
ponents, directly changing them in response to the consequences of their ac-
tions. Self-adaptive techniques are tightly integrated with the search process
and should usually require little overhead. The algorithm is observing its own
behavior in an online fashion, modifying its parameters accordingly. This infor-
mation can be either directly collected on the problem or indirectly computed
through the perceived efficiency of individual components. Because the adap-
tation is done online, there is an important trade-off between the time spent
computing heuristic information and the gains that are to be expected from
this information.

6.3.2 Control by Supervised Adaptation

Supervised adaptation works at a higher level. It is usually external and its
mechanisms are not coupled with the search process. It can be seen as a moni-
tor that observes the search and analyzes it. It can modify the components of
the solver (or requires the solver to modify its components) in order to adapt
it. Supervised adaptation can use more information, e.g., learning-based knowl-
edge, etc. In some cases, we can imagine that typical supervised actions could
be ’compiled’ into self-adaptive mechanisms.

84 CHAPTER 6. AUTONOMOUS SEARCH

6.3.3 Searching for a Solution vs. Solutions for Searching

It appears now that the problem of building a good Autonomous Search solver
is more ambitious than finding a solution to a given instance of a problem.
Indeed, inspired by the seminal consideration of John Rice [Ric75] when he
was abstracting the problem of finding the best algorithm for solving a given
problem, we need to take into account at least three important spaces in which
an autonomous search process takes place.

• The search space: the search space is induced by the encoding of the
problem and corresponds to the set of all potential configurations of the
problem that one has to consider in order to find a solution (or to find all
solutions, or to find an optimal solution, ...). This search space can also
be partitioned, for optimization problems, into the set of feasible solutions
and infeasible solutions with respect to the constraints of the problem.

• The search landscape: the search landscape is related to the evaluation
function that assigns a quality value to the elements of the search space. If
indeed this notion is rather of limited use in the area of complete solvers,
this is a crucial notion when using heuristics or metaheuristics, search al-
gorithms whose purpose is to explore and exploit this landscape in order to
find solutions. Most of the metaheuristics are designed accordingly to the
management of this exploration-exploitation balance and the characteris-
tics of the search landscapes, often use geographical metaphors: How to
travel across plateaus? How to escape from a local optimum by climbing
hills?, ...

• The algorithms’ space: according to the previous description of solvers ar-
chitecture, we have highlighted that a solver consists of components that
define its structural properties together with a set of behavioral features
(parameters and control rules). As mentioned before, given a basic algo-
rithmic skeleton we may consider a set of possible solvers that correspond
to the possible components choices and configurations. This algorithms’
space can also be composed of different solvers when dealing with portfolio-
based algorithm selection.

The relationships between these spaces are illustrated in Figure 6.5. Indeed, the
ultimate autonomous search purpose can be formulated as: finding a suitable
algorithm that is able to efficiently explore and exploit the search landscape
in order to suitably manage the search space and find solutions to the initial
problem.

6.3.4 A Rule-Based Characterization of Solvers

As already mentioned, the solving techniques used for solving such problems may
include very different features from complete tree based solvers to local search
or evolutionary algorithms. In this presentation, we will attempt to abstract

6.3. ARCHITECTURE OF AUTONOMOUS SOLVERS 85

Model

Evaluation

Parameters

Search Space

Search Landscape

Algorithms’ Space

Solver

Select

Search

Solve

Figure 6.5: The solver and its action with respect to different spaces

theses solving features in order to be able to address general solving algorithms,
focusing on their autonomous aspects as described above. Indeed, such rule-
based formalizations have already been proposed for modeling some constraint
programming solving processes [Apt03, FA03] and also for hybrid solvers in-
cluding local search [MSL04]. Here, our purpose is not really to prove some
properties of the solvers but rather to highlight their basic operational mecha-
nisms in order to classify them with regards to their behavioral and structural
characteristics.
When using a solver, one may distinguish two main tasks that correspond indeed
to different but closely related levels of technical accuracy that can be achieved
by more or less specialized users:

• The component design: this phase, consists in choosing the suitable com-
ponents described in Section 6.2.3 that should be included in the solver
with regards to the problem characteristics for instance. As mentioned
above, these components constitute the architecture of the solver.

• The configuration of the solver through parameters settings and control:
this second phase consists in defining through control features how the
components can be used during the solving process.

Based on this consideration and on the general solver architecture depicted in
Figure 6.1, we propose a formal description in the next section.

Formal Description

We define here some basic notions in order to characterize the behavior of solvers
with a computationally oriented taxonomy. This approach will allow us to
characterize the solvers. We first recall some basic concepts related to constraint
satisfaction and optimization problems.

Definition 4. CSP

A CSP is a triple (X,D, C), where X = {x1, · · · , xn} is a set of variables whose
values are restricted to given domains D = {D1, · · · , Dn}. There exists a bi-
jective mapping that assigns each variable xi to its corresponding domain, that

86 CHAPTER 6. AUTONOMOUS SEARCH

will be noted Dxi
. We consider a set of constraints C as a set of relations over

the variables X.

Definition 5. Search Space

The search space S is a subset of the possible configurations of the problem and
can be the Cartesian product of domains Πx∈XDx. The choice of the internal
representation (i.e., the model) defines the search space. An element s of the
search space will be called a candidate solution.

Definition 6. Solution

A feasible solution is an assignment of values to variables, which can be seen as
an element of S (i.e., given an assignment θ : X → Πn

i=1Di, θ(xi) ∈ Dxi
), and

which satisfies all the constraints of C. In the context of optimization problems,
we also consider an objective function f : S → R. An optimal solution is a
feasible solution maximizing or minimizing, as appropriate, the function f .

We have now to define, according to Section 6.2, the different elements that are
included in the solver.

Definition 7. Evaluation Functions

We denote by E the set of evaluation functions e : S → R.

Definition 8. Parameters

We denote by P the set of parameters and a parametrization π is a mapping that
assigns a value to each parameter. We denote by Π the set of parameterizations.

Definition 9. Solving operators

We denote by Ω a set of solving operators (operators for short) that are functions
o : 2S → 2S .

Definition 10. Solving strategy

We denote by H the set of solving strategies that are functions h : 2S×Π×E →
Ω.

For sake of simplicity, in the following we will refer to solving strategies as strate-
gies. Solving strategies and solving operators are the key-points of the solving
algorithm (see Figure 6.1): a strategy manages some operators to compute the
solutions. We obtain:

Solving algorithm = solving strategy + solving operators

We now formalize the solving processes as transitions using rules over compu-
tation states.

Definition 11. Computation State

Given a CSP (X,D, C), a search space S, a set of operators Ω, a set of eval-
uation functions E, a set of parameters P and a set of solving strategies H, a
computation state is a tuple < O,S, e, π, h|S > where:

• O ⊆ Ω, where O is the set of operators currently used in the solver,

6.3. ARCHITECTURE OF AUTONOMOUS SOLVERS 87

• S ⊆ S, is the current subset of candidate solutions,

• e ∈ E, is an evaluation function,

• π ∈ Π is the current parametrization,

• h ∈ H is the current solving strategy.

Remarks:

• It is important to note that Ω, E, and H are sets that may not be yet
computable. For example, H represents the set of all possible strategies,
either already existing or that will be discovered by the solver (as defined
in Definition 14). Similarly, all the operators of Ω are not known since
they can be designed later by the solver. However, O is known and all its
operators as well.

• S corresponds to the internal basic search structure: the search state.
For instance, if we consider a genetic algorithm the search state will be a
population. In the case of a complete backtracking solver, it will consist
in an incomplete assignment, ...

• O is the current set of operators available in the solver at a given stage
and that are extracted from a set Ω of potential operators that could be
used in this solver. Indeed, some solvers may use new solving operators
that are produced online or offline according to a general specification
or according to design rules. Note that an operator allows the solver to
perform a transition from one search state to another. This is therefore
the key concept of the solving process and we want to keep it as general
as possible to handle various solving paradigms (as mentioned above).

• The evaluation function e must evaluate the candidate solutions. This
evaluation is used by the strategy in order to drive the basic solving task
and by the control in order to drive the solver behavior.

• The solving strategy h will be used to select the suitable operator to apply
on the current candidate solutions with respect to the current parametriza-
tion π and the evaluation function e.

Note that, for the sake of simplicity, we restrict ourselves to solvers that have
only one evaluation function and one search space at a time. This is typically
the case but this framework could be easily generalized to capture more ’exotic’
situations.

We denote by CS the set of computation states. Note that a computation state
corresponds in fact to a search state together with the current configuration of
the solver.

Definition 12. Computation Rules

A computation rule is a rule σ
σ
′ where σ and σ′ are computation states from

CS.

88 CHAPTER 6. AUTONOMOUS SEARCH

Identification of Computation Rules

We identify here specific families of computation rules with respect to the way
they modify the computation states.

• Solving: The fundamental solving task of a classic solver consists in com-
puting a new state from the current one according to a solving strategy
that chooses the suitable operator to apply with respect to the current can-
didate solutions, the parametrization, and the evaluation function. This
corresponds to the following rule:

[Solv] Solving
< O,S, e, π, h|S >
< O,S, e, π, h|S′ >

where S′ = o(S) and o = h(S, π, e) ∈ O.

• Parametrization: The modification of the solver’s parameters changes
its configuration and can be used either to tune the solver before running
it or to adjust its behavior during the run. A parametrization rule can be
abstracted as:

[Par] Parametrization

< O,S, e, π, h|S >
< O,S, e, π′, h|S >

• Evaluation function modification: Since we address here autonomous
systems that are able to modify not only their configuration trough their
parameters but also their internal components, we have to consider more
intricate rules. A first way to adapt the solver to changes is to mod-
ify its evaluation function, which directly induces changes on the search
landscape. This is the case when changing weights or penalties in the eval-
uation function (there are many examples, for instance [KP98, PH06]).

[EvalCh] Evaluation modification

< O,S, e, π, h|S >
< O,S, e′, π, h|S >

• Operators modification: Another possibility to modify the internal
configuration of the solver is to change its set of operators. Note that

6.3. ARCHITECTURE OF AUTONOMOUS SOLVERS 89

operators can be added or discarded from the set O.

[OpCh] Operators modification

< O,S, e, π, h|S >
< O′,S, e, π, h|S >

• Strategy modification: Similarly, solving strategies can be changed to
manage differently the operators and achieve a different solving algorithm.
As mentioned above, a backtracking algorithm can applied different strat-
egy for enforcing local consistency at each node, or in hybrid solving one
may switch from complete to approximate methods.

[StratCh] Strategy modification

< O,S, e, π, h|S >
< O,S, e, π, h′|S >

• Encoding modification: We also have to take into account solvers that
will be able to change their encoding during execution. As this is the
case for the evaluation modification, such changes will affect the search
landscape.

[EncCh] Encoding modification

< O,S, e, P, h|S >
< O,S ′, e, P, h|S >

Note that applying one of these rules (except [Res]) will generally require ap-
plying other computation rules. For example, a change of encoding ([EncCh])
will certainly require a change of operators ([OpCh]), of evaluation function
([EvalCh]), of strategy ([StratCh]), and of parametrization ([Par]). However, a
change of strategy does not always imply a change of operators.

Control of the Computation Rules and Solvers

The most important part of our characterization concerns the control of the
algorithm to finally build the solver. The control is used to act on the con-
figuration of the solver through its parameters but also to modify the internal
components of the solver (parameters, operators, strategies, ...).

90 CHAPTER 6. AUTONOMOUS SEARCH

Definition 13. Control

Let SCS be the set of all the finite sequences of elements of CS. A control
function K : SCS → R is a function that selects a computation rule from the
set R according to a sequence of computation states.

A solver state can be defined by a set of computation rules, and a sequence of
computation states that have been previously computed.

Definition 14. Solver

A solver is a pair (K,R) composed of a control function K and a set of com-
putation rules R that will define a sequence of solver states.

A way of describing a solver is to use regular expressions which schedule com-
putation rules to describe its control. Let’s come back to the rules defined
in Section 6.3.4. We consider the set of rules R = Par ∪ Res ∪ EvalCh ∪
EncCh ∪ OpCh ∪ StratCh where Par represents some parametrization rules
[Par], EvalCh some evaluation modification rules [EvalCh], . . . Given two sub-
sets R1 and R2 of R, R∗

1 means that zero or more rules of R1 are sequentially
applied and R1R2 means the sequential application of one rule of the subset
R1 followed by the application of one rule of R2. R1|R2 corresponds to use of
one rule from R1 or one from R2. These notations will be used in the following
section to highlight the characteristics of the solvers by means of the sequences
of rules that they apply in their solving processes.

Definition 15. Solver State

A solver state is a pair (R,Σ) where:

• R is a set of computation rules as defined above

• Σ is a sequence of computation states that are recorded along the solving
process.

Starting from a solver state (R,Σ), with Σ = (σ0, · · · , σn) the next state is ob-
tained as (R,Σ′) where ∃r ∈ R, such that K(Σ) = r and Σ′ = (σ0, · · · , σn, σn+1 =
r(σn)).

Note that in practice, a solver state does not contain the complete history. Thus,
the sequence of computation states is either limited to a given length, or only
the most relevant computation states are kept.
We now have:

Solver = Control + Configured Solving Algorithms

We recall that we stated before that Solving algorithm = Solving Strategy +
Solving Operators. Coming back to Figure 6.3 that shows a classification of
hyper-heuristics, we can notice that we obtain similar distinction here: solvers
correspond to the hyper-heuristics of Figure 6.3, solving algorithms to heuristics
search space, strategies to heuristics selection or generation, and operators to
construction or perturbation heuristics. We can finally identify an autonomous
solver:

6.4. CASE STUDIES 91

Definition 16. Autonomous Solver

Consider a solver given by a regular expression ex of computation rules from
R = Par∪Solv∪EvalCh∪EncCh∪OpCh∪StratCh. A solver is autonomous
if ex contains at least a rule from Par ∪ EvalCh ∪ EncCh ∪OpCh ∪ StratCh
(i.e., ex is not only composed of rules from Solv).

An autonomous solver is a solver that modifies its configuration during solving,
using a control rule. Of course, there are various degrees in this autonomy scale.
We can now come back to the previous taxonomy of offline/tuning and online/-
control (e.g., for parameters). Consider a solver given by a regular expression ex
of computation rules from R = Par∪Solv∪EvalCh∪EncCh∪OpCh∪StratCh,
and the word w given by flattening this expression ex. The offline/tuning of
a solver consists of the rules that appear in ex before the first Solv rule of ex.
The online/control is composed of all the rules that appear after the first rule
Solv and that are not of the Solv family of rules.
In the next section we will illustrate how these rules are used in real solvers and
how they can be used to characterize families of solvers within our autonomous
search scope.

6.4 Case Studies

In this section, we will not attempt to present an exhaustive view of existing
solvers but we will rather choose some representative solvers or algorithms in
order to illustrate different solving approaches and how the previous computa-
tion rules can be used to characterize these approaches. As mentioned in the
introduction, autonomous search has been indeed investigated for many years,
across many different areas and under different names. Therefore, we could not
imagine providing an exhaustive discussion of all approaches.

6.4.1 Tuning Before Solving

As in [EHM99, LLM07], we use the word tuning for the adjustment of the dif-
ferent components of the algorithm before trying to solve an instance (see end
of Section 6.3.4).

Preprocessing techniques

Even if preprocessing is not directly linked to the core of the solving mecha-
nism but relies on external processes, we have to consider it as an important
component in the design of modern solvers. Nowadays, efficient solvers (e.g.
DPLL) use simplification preprocessing before trying to solve an instance (see
for instance the SAT solver SatElite [EMS07]). Note that the model transfor-
mation can maintain equisatisfiability or a stronger equivalence property (the
set of solutions is preserved).

92 CHAPTER 6. AUTONOMOUS SEARCH

Parameter Tuning on Preliminary Experiments

Such a tuning phase may consist in setting correct parameters in order to adjust
the configuration of the solver. Here, these settings are performed according to a
given set of preliminary experiments. Tuning before solving, will correspond to
the configuration of the solver and then its use for properly solving the problem.
Therefore, the general profile of the solvers will be mainly described as :

[Config]Solv∗

where [Config] is of the form (Par|EvalCh|OpCh|EncCh)∗.

Empirical Manual Tuning: we include in this family the classic tuning task
involved when using single metaheuristics based solvers where experiments are
required to tune the various parameters [SE09, NSE08]. Of course there exist
similar studies in constraint programming to choose the suitable variable and
value choice heuristics, and this task is often not formalized. Most of the time,
parameters are tuned independently since it appears difficult to control their
mutual interaction without a sophisticated model. Here, the parametrization is
not really part of the solver but rather a preliminary experimental process.

Solver: Solv∗

Deciding the Size of a Tabu List: experiments or other previous analysis can
be used to extract general parameters or heuristics’ settings. In the context of
Tabu Search for SAT, [MSG97] have used an extensive offline experimental step
to determine the optimal length of a tabu list. They used simple regression to
derive the length of the list according to the number of variables n. Remarkably,
the length is independent of the size of the constraints, and their formula applies
to any hard-random k-SAT instance. Therefore the parametrization can be
included as a first step of the solving process.

Solver: Par Solv∗

Automatic Parameter Tuning by an External Algorithm: recently,
[HHS07] proposed an algorithm to search for the best parameters in the pa-
rameter space and therefore to automatically tune a solver. Now, if we consider
that this automated process is included in the solver, we have then the following
description.

Solver: (Solv∗Par)∗Solv∗

Note that (Solv∗Par)∗ corresponds to a series of runs and parameter tuning,
which is achieved automatically.

Components Setting Before Solving

We consider here methods that consist in choosing the correct components of the
solver by using experiments and/or external knowledge that has been acquired
apart from the current solving task. This knowledge can be formulated as

6.4. CASE STUDIES 93

general rules, can use more or less sophisticated learning techniques, or may
also use an external computation process.

A. Learning Solver’s Components External mechanisms can be used before

tuning to discover or learn efficient components for the solver.

Discovering Heuristics: in [Fuk08], genetic programming is used to discover
new efficient variable selection heuristics for SAT solving with local search al-
gorithms. Candidate variable selection heuristics are evaluated on a set of test
instances. This automatic process can be inserted before solving (the variable
selection heuristics can induce a change of parameters or operators depending
on the description granularity). Note that here the first Solv∗ is not applied to
the problem at hand.

Solver: (Solv∗(OpCh|Par))∗Solv∗

The choice heuristics can be parameters of the operators in our formalism,
heuristics discovering can be considered as the selection of suitable operators
and their parametrization.

Learning Evaluation Functions: in [BMK00], a new method is proposed
in order to learn evaluation functions in local search algorithms and improve
search efficiency based on previous runs.

Solver: (Solv∗EvalCh)∗Solv∗

B. Empirical Prediction of Instances Hardness

The following techniques are based on a learning component (e.g., clustering
tools), which can be used to detect automatically the suitable heuristics and
strategies to apply.

Portfolio-based: in SATzilla [XHHLB08], offline linear basis function regres-
sion and classifiers are used on top of instances-based features to obtain models
of SAT solvers runtime. During the exploitation phase, instances features are
used to select the best algorithm from a portfolio of tree and local search based
SAT solvers. We may also cite the works of Gebruers et al. [GGHM04] and
Guerri et al. [GM04] that use case based reasoning and learning techniques to
choose the appropriate solving technique among constraint programming and in-
teger linear programming. In these solvers schemes, the first Solv∗ corresponds
again to preliminary experiments.

Solver: Solv∗(OpCh|StratCh|Par|EvalCh)∗Solv∗

Parameter-based: in [HH05, HHHLB06], the authors use an approach similar
to SATzilla. They showed that it is possible to predict the runtime of two
stochastic local searches (SLS). In this work, the selection of the best method
to apply on a given instance is changed into the selection of the best parameters
of a given SLS algorithm.

Solver: ParSolv∗

94 CHAPTER 6. AUTONOMOUS SEARCH

6.4.2 Control During Solving

The control of the solver’s behavior during the run can be achieved by either
modifying its components and/or its parameters. This corresponds, for instance,
to an online adjustment of the parameters or heuristics. Such control can be
achieved by means of supervised control schemes or by self adaptive rules. Of
course, such approaches often rely on a learning process that tries to benefit from
previously encountered problems along the search or even during the solving of
other problems. Therefore, the profile of the solvers will generally be:

([Config]Solv∗)∗

where [Config] is of the form (Par|EvalCh|OpCh|EncCh)∗. Note that the
outter ∗ loop represents indeed the control loop.

Controlling Encoding

[Han08] proposes an adaptive encoding in an evolutionary algorithm in order
to solve continuous function optimization problems. The representation of the
solutions are changed along the search to reach an optimal representation that
could simplify the solving of the initial problem.

Solver: (EncChSolv∗)∗

Controlling Variable Orderings and Values Selection in Search Heuris-

tics

We consider here approaches where the heuristics functions change during the
search w.r.t. the current state and parameters.

Hybrid Approaches to Discover Efficient Variable Ordering: To il-
lustrate this kind of approach, we may mention the SAT solving technique of
[MSG98] where a Tabu Search is used at each node of a DPLL to find the next
variable to branch on.

Solver: ((OpChStratCh)Solv∗ParSolv∗)∗

Continuous Search: in [AHS10], the authors propose to exploit the result of
an offline learning stage to select the best variable and value heuristics. They
use a restart-based tree-search algorithm and tune the previous heuristics at
each new restart point. Moreover, this approach perpetually refines its learning
stage by reassessing its past choices in between successive calls to the search
procedure. This approach is presented in Chapter 5.

Solver: (ParSolv)∗

A Conflict-driven Heuristic: in [BHLS04a], important variables are deemed
to be the ones linked to constraints that have frequently participated in dead-
ends. During the search, this information is collected and used to order variables.
Eventually, the system has enough knowledge to branch on important variables

6.4. CASE STUDIES 95

and quickly solve the problem. The system ’learns’ weights from conflicts that
are used in the computation of the variable selection heuristics, this corresponds
to an update of the parameters each time a conflict is met.

Solver: (ParSolv∗)∗

A variable-dependency based Heuristic: in [AH09], the constraint propa-
gation engine is exploited to detect so called weak-dependencies between vari-
ables. These correspond to situations when the instantiation of a given variable
leads to the instantiation of others. These events are perceived as positive, and
are used to rank the variables, favoring the ones whose branching-on results
in the largest number of instantiation. This heuristic is shown to outperform
[BHLS04a] on many domains.

Solver: (ParSolv∗)∗

Implicit feed-back loops in modern DPLL solvers: in modern SAT solvers
like the one presented in [ES03a], many implicit feed-back loops are used. For
instance, the collect of conflicts feeds the variable selection heuristic, and the
quality of unit propagation is sometimes used to control the restart strategy.
Similarly, the deletion of learned clauses which is necessary to preserve perfor-
mances uses activity-based heuristics that can point to the clauses that were
the least useful for the unit propagation engine. Therefore, it induces changes
in the model itself and in the heuristics parameters.

Solver: ((EncCh|Par)Solv∗)∗

Adapting Neighborhood During the Search: variable neighborhood search
[MH97, HR06, PR08] consists in managing simultaneously several neighborhood
functions and or parameters (according to the description granularity) in order
to benefit from various exploration/exploitation facilities.

Solver: ((OpCh|Par)Solv)∗

Evolving Heuristics

Hyper-heuristics: hyper-heuristics [BGJ+03] is a general approach that con-
sists in managing several meta heuristics search methods from a higher strategy
point of view. Therefore, it is closely related to autonomous search and has
already been applied for many problems (e.g., SAT solving [BEDP08]). Since
they switch from one solving technique to another, hyper-heuristics could be
characterized by :

Solver: ((OpCh|StratCh|Par|EvalCh)∗Solv∗)∗

Learning Combinations of Well-known Heuristics: in the ACE project
[EFW05], learning is used to define new domain-based weighted combinations of
branching heuristics (for variable and value selection). ACE learns the weights
to apply through a voting mechanism. Each low-level heuristic votes for a partic-
ular element of the problem (variable, value). Weights are updated according to

96 CHAPTER 6. AUTONOMOUS SEARCH

the nature of the run (successful or not). The learning is applied to a given class
of problems. The combination is learned on a set of representative instances and
used during the exploitation step. A similar approach has been used in [GJ08]
in order to learn efficient reduction operators when solving numerical CSPs.

Solver: (ParSolv∗)∗

Controlling Evaluation Function

This aspect may concern local search algorithms that use for instance adaptive
weighting of the constraints in their evaluation function [Mor93, Tho00]. Con-
straint weighting schemes solve the problem of local minima by adding weights
to the cost of violated constraints. These weights increase the cost of violating
a constraint and so change the shape of the cost surface w.r.t. the evalua-
tion function. Note that these techniques are also widely used in SAT solvers
[BHvMW09].

Solver: (EvalChSolv∗)∗

Parameters Control in Metaheuristics Algorithms

We consider here approaches that change the parameters during the search
w.r.t. the current state and other parameters. Of course, these parameters have
a direct influence on the heuristics functions, but these latter functions stay the
same during the solving process.

Reactive Search: in [BBM08] (formerly presented in [BBM07]), Battiti et
al. propose a survey of so-called reactive search techniques, highlighting the
relationship between machine learning and optimization processes. In reactive
search, feedback mechanisms are able to modify the search parameters accord-
ing to the efficiency of the search process. For instance, the balance between
intensification and diversification can be automated by exploiting the recent
past of the search process through dedicated learning techniques.

Solver: (ParSolv∗)∗

Adaptive Genetic Algorithms: adaptability is well-known in evolution-
ary algorithms design. For instance, there are classical strategies to dynami-
cally compute the usage probability of GA search operators [Thi05, WPS06a,
WLLH03]. Given a set of search operators, an adaptive method has the task
of setting the usage probability of each operator. When an operator is used, a
reward is returned. Since the environment is non-stationary during evolution,
an estimate of the expected reward for each operator is only reliable over a short
period of time [WPS06b]. This is addressed by introducing a quality function,
defined such that past rewards influence operator quality by an extent that de-
cays exponentially with time. We may also mention other works that use more

6.4. CASE STUDIES 97

sophisticated evaluation functions, rewards computation and operator probabil-
ity adjustment in order to manage dynamically the application parameters of
the EA [MFS+09, MS08, FDSS08].

Solver: (ParSolv∗)∗

6.4.3 Control During Solving in Parallel and Distributed
Search

The solvers described in this section also belong to the previous family of
solvers that include control within their proper solving process. But here,
due to the parallel/distributed architecture of solver, the sequence of computa-
tion rules is more difficult to schedule. Thus, the profile could be described as
([Config]|Solv∗)∗

Value-ordering in Portfolio-based Distributed Search: in [RH05], the
authors present a portfolio-based distributed search. The system allows the
parallel execution of several agent-based distributed search. Each search re-
quires the cooperation of a set of agents which coordinate their local decisions
through message passing. An agent is part of multiple distributed search, and
maintains the context of each one. Each agent can aggregate its context to
dynamically rank the values of its local variables. The authors define several
efficient portfolio-based value-ordering heuristics. For instance, one agent can
pick up the value which is used most frequently in competing search, or the one
which is most supported in other searches, etc. This approach is fully described
in Chapter 3.

Solver: (Par|Solv∗)∗

Adaptive Load-balancing Policies in Parallel Tree-based Search: Di-
solver is an advanced Constraint Programming library which particularly tar-
gets parallel search [Ham03]. This search engine is able to dynamically adapt its
inter-processes knowledge-sharing activities (load balancing, bound sharing). In
Disolver, the end-user can define constraint-based knowledge sharing policies by
adding new constraints. This second modeling can be linked to the constraint-
based formulation of the problem to control the knowledge sharing according to
the evolution of some problem components. For instance, the current value of
the objective function can be used to allow answers to incoming load-balancing
requests when the quality of the current subtree is perceived as good, etc. In-
terestingly, since the control of the knowledge sharing policies is made through
classical constraints, it is automatically performed by the constraint propaga-
tion engine. We can see this as a dynamic adjustment of knowledge sharing
activities, and assimilate it to model (learned clauses) and parameters (selec-
tion heuristics) change.

Solver: ((EncCh|Par)|Solv∗)∗

98 CHAPTER 6. AUTONOMOUS SEARCH

Control-based Clause Sharing in Parallel SAT Solving: Conflict driven
clause learning, one of the most important component of modern DPLL, is
crucial to the performance of parallel SAT solvers. Indeed, this mechanism al-
lows clause sharing between multiple processing units working on related (sub-
)problems. However, without limitation, sharing clauses might lead to an ex-
ponential blow up in communication or to the sharing of irrelevant clauses.
In [HJS09], the authors propose new innovative policies to dynamically select
shared clauses in parallel solvers. The first policy controls the overall number
of exchanged clauses whereas the second one additionally exploits the relevance
or quality of the clauses. This dynamic adaptation mechanism allows to rein-
force/reduce the cooperation between different solvers which are working on the
same SAT instance. This approach is fully described in Chapter 4.

Solver:(Par|Solv∗)∗

6.5 Summary

In this chapter, we have proposed a taxonomy of search processes w.r.t. their
computation characteristics. To this end, we have presented the general basic
concepts of a solver architecture: the basic components of a solver, and its
configurations. We have then identified autonomous solvers as solvers that can
control their solving process, either by self adaptation (internal process) or by
supervised adaptation (external process).
We have proposed a rule-based characterization of autonomous solvers: the
idea is to formalize solvers adaptations and modifications with some computa-
tion rules that describe solver transformation. Using our formalism, we could
then classify, characterize, and identify in the scope of autonomous search rep-
resentative solvers by outlining their global mechanism.

Our description framework allows us to handle solving techniques:

• of various and different types: either complete, incomplete, or hybrid,

• based on different computation paradigms: sequential, distributed, or par-
allel

• dedicated to different problem families: CSP, SAT, optimization, ...

This work was also an attempt to highlight the links and similarities between
different communities that aim at building such autonomous solvers and that
may benefit from more exchanges and more collaborative approaches (including
constraint programming, SAT, machine learning, numerical optimization, clus-
tering, ...).

We have identified the notion of control in autonomous constraint solvers and
two main techniques for achieving it: control by supervised adaptation and

6.5. SUMMARY 99

control by self-adaptation, depending on the level of interaction between the
solver, its environment, and the control itself. These two control management
approaches are indeed complementary. Moreover, they open new challenges for
the design of more autonomous search systems that would run continuously,
alternating (or combining, or executing in parallel) solving and self-improving
phases. A first attempt in this direction has been presented in Chapter 5.

100 CHAPTER 6. AUTONOMOUS SEARCH

Chapter 7

Conclusion and
Perspectives

101

102 CHAPTER 7. CONCLUSION AND PERSPECTIVES

The writing of this document gave me the occasion to put my work into per-
spectives and to reassess its homogeneity and consistency. Clearly, my work on
distributed constraint satisfaction put me on the distributed system side very
early. In that world, algorithms are more than monolithic sets of instructions
and have value in their well timed and controlled interactions.

I decided to exploit the richness of this setting to mitigate the risk of being
wrong in a constructive search process. Initially by adding parallelism to dis-
tributed search [Ham99b, Ham02b], then as presented in Chapter 3 by organiz-
ing competition and cooperation between multiple distributed search strategies.
Competition is rather straight forward to organize. On the other hand, cooper-
ation opens a new space where the benefit of the knowledge exchanged has to
be balanced against the cost of sharing knowledge. When information is shared,
we have to consider the ramp-up time to prepare information, and the time it
takes to effectively exchange the information. When information is not shared
we have to consider that costly redundant work can occur, and in divide-and-
conquer systems, that task starvation can happen.

Therefore, controlling the way knowledge is shared and which knowledge is ex-
changed is crucial to the performance. In DisCSP settings, we managed to
exploit agents’ locality to share information between strategies. This allowed
exchange at virtually no cost. Concerning the knowledge to share, we tried to
be systematic by exploring policies based on diversification and emulation prin-
ciples.

In the parallel SAT settings, modern solvers allow the exchange of conflict-
clauses. However, since they can generate millions of clauses during their effort,
the exchange has to be well controlled. Technically, we decided to exploit lock-
less data structures to maximize performance. Content wise, we managed to
develop new techniques to assess the quality of conflict-clauses in an attempt to
exchange meaningful information. We got inspired by control-theory techniques
to finely tune the exchanges.

When one cannot multiply search strategies to avoid being wrong, the selection
of the right strategy is crucial. One way to avoid mistakes is to offline tune a
predictive model which accurately matches instances features to good solver’s
parameters [HH05, HHHLB06]. This approach requires a good understanding
of the application domain and a large set of representative instances. This last
requirement can be dropped by streamlining the learning process between ex-
ecutions of the search procedure. Since the learning is performed on ”real”
instances, the model is more accurate. As a downturn, such a system cannot
give top performance with the first instances but can only gradually improve
over time. Such a Continuous Search system was presented in Chapter 5.

Finally, to capture our contributions in an unifying framework which will also
embed related work as much of possible, we moved to the notion of Autonomous

103

Search. We defined autonomous solvers as solvers that contain control in their
search process, and study such autonomous systems w.r.t. their specific control
methods. A control process includes a strategy that manages the modification
of some of the solver’s components and behavioral features after the applica-
tion of some solving functions. We gave a formalizing of solvers adaptations
and modifications with computation rules that describe the modification of the
solver’s components transformation.

In the following, we discuss some of the main challenges for each sub domains.

Distributed Constraint Networks

Our present results greatly improve the applicability of DisCSP algorithms by
providing greater efficiency and robustness to two classical tree search algo-
rithms. In future work we would like to investigate how portfolios are best
composed and how they could implement a more informed Aggregation (be-
yond agent’s scope). The composition could be studied with different hand or
system made portfolios or by dynamic adaptation during search. The latter
could provide more resources to the most promising efforts. The former could
take advantage of heterogeneous portfolios involving various tree and local-
search combined with some distributed consistency-enforcement method (e.g.,
[Ham99a, Ham02c]). Finally, knowledge Aggregation could be easily improved
at no cost by adding extra information to existing message passing operations
(search effort, etc). This would give a better view of the distributed system,
and could benefit from new aggregation methods.

Parallel SAT Solving

Clearly, the parallel portfolio approach for SAT has been adopted by the whole
SAT community [Bie10, Kot10, SLB10]. This approach came as a surprise at
the 2008 SAT-Race. Until then, the divide-and-conquer approach seemed the
only way for many people. Parallel portfolios exploit the fact that modern
SAT solvers are highly stochastic and are worth differentiating for better per-
formances. More crucially, they benefit from a crucial property of modern SAT
solvers: they do not need to exhaust a search space to definitely qualify an input
as satisfiable or not. We came up with the ManySAT architecture thanks to
our early experience on distributed portfolios, and thanks to our experience of
parallel divide-and-conquer in constraint programming [Ham03].
As future work, the question of the scalability of parallel SAT portfolios able
to exchange conflict-clauses has to be asked. Many attempts have been done to
mix portfolios and divide-and-conquer approaches [MML10], however the results
so far are not convincing.
Here is one big challenge for parallel search in general: being able to scale to
very large search systems while maintaining the ability to exchange knowledge
opportunistically and efficiently1. I am confident that Parallel SAT solvers will

1See [HW12] for other challenges in Parallel SAT Solving.

104 CHAPTER 7. CONCLUSION AND PERSPECTIVES

improve in the near future, notably, through regular competitions [JBRS12].

Continuous Search

Continuous computation addresses the issue not of finding the best (boundedly
optimal) use of time in solving a given problem, but the best use of idle compu-
tational resources between bouts of problem solving. This approach broadens
the definition of a ’problem’ to include not just individual instances, but the
class of challenges that a given computational system is expected to face its
lifetime. Eventually, the end of the current search is just another event for the
AS system. As an effect, the priority of its long lasting self-improving task is
raised and the task becomes foreground. The latest resolution is here to enrich
the knowledge of the system and is eventually exploited during this new task.
We can envision a wide range of actions that can be overtaken by the search
algorithm while it is idle:

• Analyzing the strategies that have succeeded and failed during the last
runs.

• Performing costly machine learning techniques in order to improve a su-
pervised tuning method.

• Using knowledge compilation techniques in order to compile new deduction
rules, or new patterns that were detected in the recently solved problems
and that can prove useful for future problems of the same application area.

• Exchange gained knowledge with similar AS systems, e.g., features-based
prediction function.

In fact, such a continuous system would include a self-adaptive strategy during
the solving process while it could switch to a supervised controller while waiting
for another problem instance. This architecture would allow it to react dynam-
ically to incoming events during solving and to exploit the knowledge acquired
through its successive experiences.
The performance evaluation of an AS able to work in continuous search mode
is also an important problem which is highly related to the arrival rate and to
the quality of new problem instances. Here quality corresponds on how good
the instances are for the AS to gain important knowledge on the whole problem
class.

Autonomous Search

An important issue is evaluating performances of Autonomous Search systems
with respect to or compared to classical criteria, used in solver competitions for
instance. We think that the performance evaluation of an autonomous search
may actually focus on three points:

105

• show that an autonomous search can (re)discover the best known or ap-
proximate a very good strategy for a specific problem,

• show the ability of an autonomous search to adapt itself to a changing
environment, e.g., more or less computational resources,

• show that an autonomous search could adapt itself and converge to an
efficient strategy for a class of problems.

There exists an optimal search strategy for a particular problem. However,
determining such strategy could require much more computational power than
solving the problem at hand. One possible way to assess the performance of AS
systems is to run them on artificial problems where the optimal strategy is well
known and to see if their adaptive mechanisms are able to build a strategy close
to the optimal.
The efficiency of an AS system can also be measured as its ability to maintain
the competitiveness of its search strategy in a changing environment. Here, the
goal is more to assess the reaction-time of the system under changing settings
rather than the ultimate quality of the produced strategies.
A major challenge associated to AS is that classical tools for algorithm anal-
ysis typically provide weak support for understanding the performance of au-
tonomous algorithms. This is because autonomous algorithms exhibit a complex
behavior that is not often amenable to a worst/average -case analysis. Instead,
autonomous algorithms should be considered as full-fledged complex systems,
and studied as such.

106 CHAPTER 7. CONCLUSION AND PERSPECTIVES

Bibliography

[ABCC07] D. Applegate, R. Bixby, V. Chvatal, and W. Cook. The Traveling
Salesman Problem: A Computational Study (Princeton Series in
Applied Mathematics). Princeton University Press, January 2007.

[ABH+08] G. Audemard, L. Bordeaux, Y. Hamadi, S. Jabbour, and L. Sais.
A generalized framework for conflict analysis. In Büning and Zhao
[BZ08], pages 21–27.

[AD97] A. Armstrong and E. Durfee. Dynamic prioritization of complex
agents in distributed constraint satisfaction problems. In Proc. of
the 15th Int. Joint Conf. on AI (IJCAI-97), pages 620–625, 1997.

[AH09] Alejandro Arbelaez and Youssef Hamadi. Exploiting weak depen-
dencies in tree-based search. In Sung Y. Shin and Sascha Ossowski,
editors, SAC, pages 1385–1391. ACM, 2009.

[AHS09] Alejandro Arbelaez, Youssef Hamadi, and Michele Sebag. Online
heuristic selection in constraint programming. In International
Symposium on Combinatorial Search (SoCS), Lake Arrowhead,
USA, July 2009.

[AHS10] Alejandro Arbelaez, Youssef Hamadi, and Michèle Sebag. Contin-
uous search in constraint programming. In ICTAI (1) [DBL10],
pages 53–60.

[AKJ04] Rehan Akbani, Stephen Kwek, and Nathalie Japkowicz. Applying
support vector machines to imbalanced datasets. In ECML, vol-
ume 3201 of LNCS, pages 39–50, Pisa, Italy, Sept 2004. Springer.

[AL03] E. Aarts and J.K. Lenstra, editors. Local Search in Combinatorial
Optimization. Princeton University Press, 2003.

[Apt03] K. Apt. Principles of Constraint Programming. Cambridge Uni-
versity Press, 2003.

[AST09] Carlos Ansótegui, Meinolf Sellmann, and Kevin Tierney. A
gender-based genetic algorithm for the automatic configuration of
algorithms. In CP, volume 5732 of LNCS, pages 142–157, Lisbon,
Portugal, Sept 2009. Springer.

107

108 BIBLIOGRAPHY

[BB09] R. Battiti and M. Brunato. Handbook of Metaheuristics (2nd edi-
tion), chapter Reactive Search Optimization: Learning while Op-
timizing. Springer, 2009. In press.

[BBM07] R. Battiti, M. Brunato, and F. Mascia. Reactive search and intelli-
gent optimization. Technical report, Dipartimento di Informatica
e Telecomunicazioni, Univerita di Tranto, Italy, 2007.

[BBM08] R. Battiti, M. Brunato, and F. Mascia. Reactive Search and Intel-
ligent Optimization, volume 45 of Operations research/Computer
Science Interfaces. Springer Verlag, 2008.

[BBMM05] C. Bessiere, I. Brito, A. Maestre, and P. Meseguer. Asynchronous
backtracking without adding links: A new member in the ABT
family. Artificial Intelligence, 161:7–24, 2005.

[BEDP08] M. Bader-El-Den and R. Poli. Generating SAT local-search heuris-
tics using a gp hyper-heuristic framework, artificial evolution. In
8th International Conference, Evolution Artificielle, EA 2007. Re-
vised Selected Papers, number 4926 in Lecture Notes in Computer
Science, pages 37–49. Springer, 2008.

[BFH+05] Mark Bartlett, Alan M. Frisch, Youssef Hamadi, Ian Miguel, Ar-
magan Tarim, and Chris Unsworth. The temporal knapsack prob-
lem and its solution. In Roman Barták and Michela Milano, ed-
itors, CPAIOR, volume 3524 of Lecture Notes in Computer Sci-
ence, pages 34–48. Springer, 2005.

[BG06] F. Benhamou and L. Granvilliers. Continuous and interval con-
straints. In F. Rossi, P. van Beek, and T. Walsh, editors, Handbook
of Constraint Programming, chapter 16. Elsevier, 2006.

[BGJ+03] E.K. Burke, G.Kendall, J.Newall, E.Hart, P.Ross, and
S.Schulenburg. Handbook of Meta-heuristics, chapter Hyper-
heuristics: An Emerging Direction in Modern Search Technology,
pages 457–474. Kluwer, 2003.

[BGS99] L. Brisoux, E. Grégoire, and L. Sais. Improving backtrack search
for SAT by means of redundancy. In Foundations of Intelligent
Systems, 11th International Symposium, ISMIS ’99, volume 1609
of Lecture Notes in Computer Science, pages 301–309. Springer,
1999.

[BHK+09] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and
R. Qu. A survey of hyper-heuristics. Technical Report Technical
Report No. NOTTCS-TR-SUB-0906241418-2747, School of Com-
puter Science and Information Technology, University of Notting-
ham, Computer Science, 2009.

BIBLIOGRAPHY 109

[BHK+10] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and
J. Woodward. Handbook of Meta-heuristics2nd Edition, chapter
A Classification of Hyper-heuristics Approaches, pages 449–468.
Springer, 2010.

[BHLS04a] F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting sys-
tematic search by weighting constraints. In R. López de Mántaras
and L. Saitta, editors, Proceedings of the 16th Eureopean Con-
ference on Artificial Intelligence, ECAI’2004, pages 146–150. IOS
Press, 2004.

[BHLS04b] Frederic Boussemart, Fred Hemery, Christophe Lecoutre, and
Lakhdar Sais. Boosting systematic search by weighting con-
straints. In ECAI, pages 146–150, Valencia, Spain, Aug 2004.
IOS Press.

[BHS09] Lucas Bordeaux, Youssef Hamadi, and Horst Samulowitz. Ex-
periments with massively parallel constraint solving. In Boutilier
[Bou09], pages 443–448.

[BHvMW09] A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Hand-
book of Satisfiability, volume 185 of Frontiers in Artificial Intelli-
gence and Applications. IOS Press, February 2009.

[BHZ06] L. Bordeaux, Y. Hamadi, and L. Zhang. Propositional satisfia-
bility and constraint programming: A comparative survey. ACM
Computing Survey, 9(2):135–196, 2006.

[Bie08] A. Biere. Adaptive restart strategies for conflict driven SAT
solvers. In Büning and Zhao [BZ08], pages 28–33.

[Bie10] A. Biere. Lingeling, plingeling, picosat and precosat at SAT race
2010. Technical Report 10/1, FMV Reports Series, 2010.

[BMK00] J. Boyan, A. Moore, and P. Kaelbling. Learning evaluation func-
tions to improve optimization by local search. Journal of Machine
Learning Research, 1:200–0, 2000.

[Bou09] Craig Boutilier, editor. IJCAI 2009, Proceedings of the 21st In-
ternational Joint Conference on Artificial Intelligence, Pasadena,
California, USA, July 11-17, 2009, 2009.

[BR96] C. Bessiere and J. C. Regin. Mac and combined heuristics: Two
reasons to forsake FC (and CBJ?) on hard problems. In CP, pages
61–75, 1996.

[BS96] M. Böhm and E. Speckenmeyer. A fast parallel SAT-solver - ef-
ficient workload balancing. Annals of Mathematics and Artificial
Intelligence, 17(3-4):381–400, 1996.

110 BIBLIOGRAPHY

[BSK03] W. Blochinger, C. Sinz, and W. Küchlin. Parallel propositional
satisfiability checking with distributed dynamic learning. Parallel
Computing, 29(7):969–994, 2003.

[BSPV02] M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp. A racing
algorithm for configuring metaheuristics. In GECCO ’02: Proceed-
ings of the Genetic and Evolutionary Computation Conference,
pages 11–18. Morgan Kaufmann Publishers, 2002.

[BT94] R. Battiti and G. Tecchiolli. The reactive tabu search. INFORMS
Journal on Computing, 6(2):126–140, 1994.

[Buc06] B. G. Buchanan. What do we know about knowledge? AI maga-
zine, 27(4):35–46, 2006.

[BZ08] H. K. Büning and X. Zhao, editors. Theory and Applications of
Satisfiability Testing - 11th International Conference, SAT 2008,
Guangzhou, China, May 12-15, 2008. Proceedings, volume 4996
of Lecture Notes in Computer Science. Springer, 2008.

[CB01] J. Crispim and J. Brandão. Reactive tabu search and variable
neighbourhood descent applied to the vehicle routing problem
with backhauls. In Proceedings of the 4th Metaheuristics Inter-
national Conference, Porto, MIC 2001, pages 631–636, 2001.

[CB04] Tom Carchrae and J. Christopher Beck. Low-knowledge algorithm
control. In Deborah L. McGuinness and George Ferguson, editors,
AAAI, pages 49–54. AAAI Press / The MIT Press, 2004.

[CB05] Tom Carchrae and J. Christopher Beck. Applying machine learn-
ing to low-knowledge control of optimization algorithms. Compu-
tational Intelligence, 21(4):372–387, 2005.

[CB08] Marco Correira and Pedro Barahona. On the efficiency of impact
based heuristics. In CP, volume 5202 of LNCS, pages 608–612,
Sydney, Australia, Sept 2008. Springer.

[CBH+07] F. Corblin, L. Bordeaux, Y. Hamadi, E. Fanchon, and L. Trilling.
A SAT-based approach to decipher gene regulatory networks. In
Integrative Post-Genomics, RIAMS, Lyon, 2007.

[CGTT63] W. Crowston, F. Glover, G. Thompson, and J. Trawick. Prob-
abilistic and parametric learning combinations of local job shop
scheduling rules. Technical report, ONR Research Memorandum
No. 117, GSIA, Carnegie-Mellon University, Pittsburg, PA, 1963.

[CH06] Yek Loong Chong and Youssef Hamadi. Distributed log-based
reconciliation. In Gerhard Brewka, Silvia Coradeschi, Anna Perini,
and Paolo Traverso, editors, ECAI, volume 141 of Frontiers in
Artificial Intelligence and Applications, pages 108–112. IOS Press,
2006.

BIBLIOGRAPHY 111

[CKS02] P. Cowling, G. Kendall, and E. Soubeiga. Hyperheuristics: A tool
for rapid prototyping in scheduling and optimisation. In Applica-
tions of Evolutionary Computing, EvoWorkshops 2002: EvoCOP,
EvoIASP, EvoSTIM/EvoPLAN, volume 2279 of Lecture Notes in
Computer Science, pages 1–10. Springer, 2002.

[CL85] K. M. Chandy and L. Lamport. Distributed snapshots: Deter-
mining global states of distributed systems. TOCS, 3(1):63–75,
Feb 1985.

[CS00] P. Cowling and E. Soubeiga. Neighborhood structures for per-
sonnel scheduling: A summit meeting scheduling problem (ab-
stract). In E. K. Burke and W. Erben W., editors, proceedings of
the 3rd International Conference on the Practice and Theory of
Automated Timetabling, Constance, Germany, 2000.

[CS08] G. Chu and P. J. Stuckey. Pminisat: a parallelization of minisat
2.0. Technical report, Sat-race 2008, solver description, 2008.

[CST00] Nello Cristianini and John Shawe-Taylor. An Introduction to Sup-
port Vector Machines and other kernel-based learning methods.
Cambridge University Press, 2000.

[CW03] W. Chrabakh and R. Wolski. GrADSAT: A parallel SAT solver
for the grid. Technical report, UCSB Computer Science Technical
Report Number 2003-05, 2003.

[DBL09] Proceedings of the IEEE Congress on Evolutionary Computation,
CEC 2009, Trondheim, Norway, 18-21 May, 2009. IEEE, 2009.

[DBL10] 22nd IEEE International Conference on Tools with Artificial Intel-
ligence, ICTAI 2010, Arras, France, 27-29 October 2010 - Volume
1. IEEE Computer Society, 2010.

[DD01] O. Dubois and G. Dequen. A backbone-search heuristic for effi-
cient solving of hard 3-SAT formulae. In Proceedings of the In-
ternational Joint Conference on Artificial Intelligence, IJCAI’01,
pages 248–253, 2001.

[De 06] K. De Jong. Evolutionary computation: a unified approach. MIT
Press, 2006.

[Dec03] R. Dechter. Constraint Processing. Morgan Kaufmann Publishers,
2003.

[DLL62] M. Davis, G. Logemann, and D. W. Loveland. A machine program
for theorem-proving. Communications of the ACM, 5(7):394–397,
1962.

112 BIBLIOGRAPHY

[dMB08] L. Mendonça de Moura and N. Bjørner. Z3: An efficient SMT
solver. In C. R. Ramakrishnan and J. Rehof, editors, TACAS,
volume 4963 of Lecture Notes in Computer Science, pages 337–
340. Springer, 2008.

[EB05] N. Eén and A. Biere. Effective preprocessing in SAT through
variable and clause elimination. In F. Bacchus and T. Walsh, edi-
tors, Theory and Applications of Satisfiability Testing, SAT 2005,
volume 3569 of Lecture Notes in Computer Science, pages 61–75.
Springer, 2005.

[EFW+02] S. Epstein, E. Freuder, R. Wallace, A. Morozov, and B. Samuels.
The adaptive constraint engine. In Principles and Practice of
Constraint Programming - CP 2002, 8th International Conference,
volume 2470 of Lecture Notes in Computer Science, pages 525–
542. Springer, 2002.

[EFW05] S. Epstein, E. Freuder, and R. Wallace. Learning to support con-
straint programmers. Computational Intelligence, 21(4):336–371,
2005.

[EHM99] A. E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control
in evolutionary algorithms. IEEE Trans. Evolutionary Computa-
tion, 3(2):124–141, 1999.

[EMS07] N. Eén, A. Mishchenko, and N. Sörensson. Applying logic syn-
thesis for speeding up SAT. In Theory and Applications of Sat-
isfiability Testing - SAT 2007, volume 4501 of Lecture Notes in
Computer Science, pages 272–286. Springer, 2007.

[ES03a] N. Eén and N. Sörensson. An extensible SAT-solver. In
E. Giunchiglia and A. Tacchella, editors, SAT, volume 2919 of Lec-
ture Notes in Computer Science, pages 502–518. Springer, 2003.

[ES03b] A. Eiben and J.E. Smith. Introduction to Evolutionary Comput-
ing. Natural Computing Series. Springer, 2003.

[FA03] T. Fruewirth and S. Abdennadher. Essentials of Constraint Pro-
gramming. Springer, 2003.

[FD94] D. Frost and R. Dechter. In search of the best constraint satis-
faction search. In Proceedings of the 12th National Conference on
Artificial Intelligence, AAAI’94, pages 301–306, 1994.

[FDSS08] A. Fialho, L. Da Costa, M. Schoenauer, and M. Sebag. Extreme
value based adaptive operator selection. In G. Rudolph et al., ed-
itor, Parallel Problem Solving from Nature - PPSN X, 10th Inter-
national Conference, volume 5199 of Lecture Notes in Computer
Science, pages 175–184. Springer, 2008.

BIBLIOGRAPHY 113

[FHS11] Álvaro Fialho, Youssef Hamadi, and Marc Schoenauer. Optimizing
architectural and structural aspects of buildings towards higher
energy efficiency. In Natalio Krasnogor and Pier Luca Lanzi, edi-
tors, GECCO (Companion), pages 727–732. ACM, 2011.

[FHS12] Álvaro Fialho, Youssef Hamadi, and Marc Schoenauer. A multi-
objective approach to balance buildings construction cost and en-
ergy efficiency. In ECAI, page to appear, 2012.

[FM02] S. Fitzpatrick and L. Meertens. Scalable, anytime constraint op-
timization through iterated, peer-to-peer interaction in sparsely-
connected networks. In Proc. IDPT’02, 2002.

[FS02] S. L. Forman and A. M. Segre. Nagsat: A randomized, complete,
parallel solver for 3-sat. In Proceedings of Theory and Applications
of Satisfiability Testing, SAT’02, pages 236–243, 2002.

[FT63] H. Fisher and L. Thompson. Industrial Scheduling, chapter Prob-
abilistic learning combinations of local job-shop scheduling rules.
Prentice Hall, 1963.

[Fuk08] A. Fukunaga. Automated discovery of local search heuristics
for satisfiability testing. Evolutionary Computation, 16(1):31–61,
2008.

[Gec06] Gecode Team. Gecode: Generic constraint development environ-
ment, 2006. Available from http://www.gecode.org.

[GFS08] L. Gil, P. Flores, and L. M. Silveira. PMSat: a parallel version of
minisat. Journal on Satisfiability, Boolean Modeling and Compu-
tation, 6:71–98, 2008.

[GGHM04] C. Gebruers, A. Guerri, B. Hnich, and M. Milano. Making choices
using structure at the instance level within a case based reasoning
framework. In Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, First In-
ternational Conference, CPAIOR, volume 3011 of Lecture Notes
in Computer Science, pages 380–386. Springer, 2004.

[GGS07] R. Greenstadt, B. J. Grosz, and M. D. Smith. Ssdpop: improving
the privacy of dcop with secret sharing. In AAMAS, page 171,
2007.

[GJ08] F. Goualard and C. Jermann. A reinforcement learning approach
to interval constraint propagation. Constraints, 13(1-2):206–226,
2008.

[GK03] F. Glover and G. Kochenberger. Handbook of Metaheuristics (In-
ternational Series in Operations Research & Management Sci-
ence). Springer, January 2003.

114 BIBLIOGRAPHY

[GL97] F. Glover and M. Laguna. Tabu Search. Kluwer Academic, Dor-
drecht, 1997.

[GM04] A. Guerri and M. Milano. Learning techniques for automatic al-
gorithm portfolio selection. In Proceedings of the 16th Eureopean
Conference on Artificial Intelligence, ECAI’2004, pages 475–479.
IOS Press, 2004.

[Gol89] D. Goldberg. Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley Professional, January 1989.

[Gom03] Carla Gomes. Randomized backtrack search. In M. Milano, editor,
Constraint and Integer Programming: Toward a Unified Method-
ology, pages 233–283. Kluwer, 2003.

[GS97] C.P. Gomes and B. Selman. Algorithm portfolio design: Theory
vs. practice. In Proc. UAI’97, pages 190–197, 1997.

[GS01] C.P. Gomes and B. Selman. Algorithm portfolios. Artificial In-
telligence, 126:43–62, 2001.

[GS07] Sylvain Gelly and David Silver. Combining online and offline
knowledge in UCT. In ICML, volume 227 of ACM International
Conference Proceeding Series, pages 273–280, Corvalis, Oregon,
USA, June 2007. ACM.

[GS08] M. Gagliolo and J. Schmidhuber. Algorithm selection as a bandit
problem with unbounded losses. Technical report, Tech. report
IDSIA - 07 - 08, 2008.

[GSCK00] C. Gomes, B. Selman, N. Crato, and H. Kautz. Heavy-tailed
phenomena in satisfiability and constraint satisfaction problems.
Journal of Automated Reasoning, 24(1/2):67–100, 2000.

[GSK98] Carla Gomes, Bart Selman, and Henry Kautz. Boosting com-
binatorial search through randomization. In AAAI/IAAI, pages
431–437, 1998.

[GW] Ian Gent and Toby Walsh. CSPLib, a problem library for con-
straints, http://www-users.cs.york.ac.uk/~tw/csplib/.

[GZG+08] Amir Gershman, Roie Zivan, Tal Grinshpoun, Alon Grubstein,
and Amnon Meisels. Measuring distributed constraint optimiza-
tion algorithms. In AAMAS DCR, 2008.

[Ham99a] Youssef Hamadi. Optimal distributed arc-consistency. In Proc.
CP’99, pages 219–233, 1999.

[Ham99b] Youssef Hamadi. Traitement des problèmes de satisfaction de con-
traintes distribués. PhD thesis, Université Montpellier II, 1999. (in
french).

BIBLIOGRAPHY 115

[Ham02a] Youssef Hamadi. Distributed, interleaved, parallel and coopera-
tive search in constraint satisfaction networks. Technical Report
Technical Report No. HPL-2002-21, HP Laboratories, 2002.

[Ham02b] Youssef Hamadi. Interleaved backtracking in distributed con-
straint networks. International Journal on Artificial Intelligence
Tools, 11(2):167–188, 2002.

[Ham02c] Youssef Hamadi. Optimal distributed arc-consistency. Con-
straints, 7(3-4):367–385, 2002.

[Ham03] Youssef Hamadi. Disolver : A Distributed Constraint Solver.
Technical Report MSR-TR-2003-91, Microsoft Research, 2003.

[Ham05] Youssef Hamadi. Continuous resources allocation in internet data
centers. In CCGRID, pages 566–573. IEEE Computer Society,
2005.

[Han08] N. Hansen. Adaptative encoding : How to render search coordi-
nate system invariant. In Springer, editor, Parallel Problem Solv-
ing from Nature - PPSN X, 10th International Conference, volume
5199 of Lecture Notes in Computer Science, pages 204–214, 2008.

[HBQ98] Youssef Hamadi, Christian Bessière, and Joël Quinqueton. Dis-
tributed intelligent backtracking. In ECAI, pages 219–223, 1998.

[HE79] R. M. Haralick and G. L. Elliott. Increasing tree search efficiency
for constraint satisfaction problems. In IJCAI, pages 356–364, San
Francisco, CA, USA, 1979.

[Hen89] P. Van Hentenryck. Constraint satisfaction in logic programming.
MIT Press, Cambridge, MA, USA, 1989.

[HH93] T. Hogg and B. A. Huberman. Better than the best: The power
of cooperation. In 1992 Lectures in Complex Systems, volume V
of SFI Studies in the Sciences of Complexity, pages 165–184.
Addison-Wesley, 1993.

[HH05] F. Hutter and Y. Hamadi. Parameter adjustment based on per-
formance prediction: Towards an instance-aware problem solver.
Technical Report MSR-TR-2005-125, Microsoft Research, Cam-
bridge, UK, jan 2005.

[HHHLB06] Frank Hutter, Youssef Hamadi, Holger H. Hoos, and Kevin
Leyton-Brown. Performance prediction and automated tuning of
randomized and parametric algorithms. In Frédéric Benhamou,
editor, CP, pages 213–228, 2006.

116 BIBLIOGRAPHY

[HHS07] Frank Hutter, Holger H. Hoos, and Thomas Stützle. Automatic al-
gorithm configuration based on local search. In AAAI, pages 1152–
1157, Vancouver, British Columbia, Canada, July 2007. AAAI
Press.

[Hil75] B. Hill. A simple general approach to inference about the tail of
a distribution. Annals of Statistics, pages 1163–1174, 1975.

[HJS08] Y. Hamadi, S. Jabbour, and L. Sais. ManySAT: solver descrip-
tion. Technical Report MSR-TR-2008-83, Microsoft Research,
may 2008.

[HJS09] Youssef Hamadi, Said Jabbour, and Lakhdar Sais. Control-based
clause sharing in parallel SAT solving. In Boutilier [Bou09], pages
499–504.

[HM05] P. Van Hentenryck and L. Michel. Constraint-Based Local Search.
The MIT Press, 2005.

[HMS08a] Y. Hamadi, E. Monfroy, and F. Saubion. Special issue on au-
tonomous search. Contraint Programming Letters, 4, 2008.

[HMS08b] Y. Hamadi, E. Monfroy, and F. Saubion. What is autonomous
search? Technical Report MSR-TR-2008-80, Microsoft Research,
2008.

[Hol75] J. Holland. Adaptation in natural and artificial systems. Univer-
sity of Michigan Press, 1975.

[Hoo99] H. Hoos. SAT-encodings, search space structure, and local search
performance. In Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence, IJCAI 99, pages 296–303.
Morgan Kaufmann, 1999.

[Hoo02] H.. Hoos. An adaptive noise mechanism for walksat. In AAAI/I-
AAI, pages 655–660, 2002.

[HQ06] Youssef Hamadi and Claude-Guy Quimper. The smart workflow
foundation. Technical Report MSR-TR-2006-114, Microsoft Re-
search, 2006.

[HR06] B. Hu and G. Raidl. Variable neighborhood descent with self-
adaptive noeighborhood-ordering. In Proc. of the 7th EU Meeting
on Adaptive, Self-Adaptive and Multilevel Metaheuristics, 2006.

[HS05] Youssef Hamadi and Marc Shapiro. Pushing log-based recon-
ciliation. International Journal on Artificial Intelligence Tools,
14(3):445–458, 2005.

[Hua07] J. Huang. The effect of restarts on the efficiency of clause learning.
In M. M. Veloso, editor, IJCAI, pages 2318–2323, 2007.

BIBLIOGRAPHY 117

[Hut09] F. Hutter. Automating the Configuration of Algorithms for Solv-
ing Hard Computational Problems. PhD thesis, Department of
Computer Science, University of British Columbia, 2009.

[HvM06] M. J.H. Heule and H. van Maaren. March dl: Adding adaptive
heuristics and a new branching strategy. Journal on Satisfiability,
Boolean Modeling and Computation, 2:47–59, mar 2006.

[HW09] Shain Haim and Toby Walsh. Restart strategy selection using
machine learning techniques. In SAT, volume 5584 of LNCS, pages
312–325, Swansea, UK, June 2009. Springer.

[HW12] Youssef Hamadi and Christoph M.Wintersteiger. Seven challenges
in parallel SAT solving. In AAAI, Invited paper, to appear, 2012.

[Ing89] L. Ingber. Very fast simulated re-annealing. Mathematical Com-
puter Modelling, 12(8):967–973, 1989.

[Jac88] V. Jacobson. Congestion avoidance and control. In SIGCOMM,
pages 314–329, 1988.

[JBRS12] Matti Järvisalo, Daniel Le Berre, Olivier Roussel, and Laurent
Simon. The international sat solver competitions. AI Magazine,
33(1), 2012.

[JLU05] B. Jurkowiak, C. Min Li, and G. Utard. A parallelization scheme
based on work stealing for a class of SAT solvers. Journal of
Automated Reasoning, 34(1):73–101, 2005.

[JM91] C. Janikow and Z. Michalewicz. An experimental comparison of
binary and floating point representations in genetic algorithms.
In Fourth International Conference on Genetic Algorithms, pages
31–36, 1991.

[KHR+02] Henry A. Kautz, Eric Horvitz, Yongshao Ruan, Carla P. Gomes,
and Bart Selman. Dynamic restart policies. In AAAI/IAAI, pages
674–681, 2002.

[Kje91] G. Kjellstroem. On the efficiency of gaussian adaptation. Journal
of Optimization Theory and Applications, 71(3), 1991.

[Kot10] S. Kottler. SArTagnan: solver description. Technical report, SAT
Race 2010, July 2010.

[KP98] S. Kazarlis and V. Petridis. Varying fitness functions in genetic
algorithms: Studying the rate of increase of the dynamic penalty
terms. In Parallel Problem Solving from Nature - PPSN V, 5th
International Conference, volume 1498 of Lecture Notes in Com-
puter Science, pages 211–220, 1998.

118 BIBLIOGRAPHY

[Kra08] O. Kramer. Self-Adaptive Heuristics for Evolutionary Computa-
tion. Springer, 2008.

[LA97] C.M. Li and Anbulagan. Heuristics based on unit propagation for
satisfiability problems. In Proceedings of the International Joint
Conference on Artificial Intelligence, IJCAI’97, pages 366–371,
1997.

[Lam78] L. Lamport. Time, clocks and the ordering of events in distributed
systems. Communications of the ACM, 2:95–104, 1978.

[LB08] Hugo Larochelle and Yoshua Bengio. Classification using discrim-
inative restricted boltzmann machines. In ICML, volume 307 of
ACM International Conference Proceeding Series, pages 536–543,
Helsinki, Finland, June 2008. ACM.

[LBNA+03] K. Leyton-Brown, E. Nudelman, G. Andrew, J. McFadden, and
Y. Shoham. A portfolio approach to algorithm selection. In Proc.
IJCAI’03, page 1542, 2003.

[LLM07] F. Lobo, C. Lima, and Z. Michalewicz, editors. Parameter Setting
in Evolutionary Algorithms, volume 54 of Studies in Computa-
tional Intelligence. Springer, 2007.

[LSB07] M. Lewis, T. Schubert, and B. Becker. Multithreaded SAT solving.
In 12th Asia and South Pacific Design Automation Conference,
2007.

[LSZ93] M. Luby, A. Sinclair, and D. Zuckerman. Optimal speedup of
las vegas algorithms. Information Processing Letters, 47:173–180,
1993.

[MFS+09] Jorge Maturana, Álvaro Fialho, Frédéric Saubion, Marc Schoe-
nauer, and Michèle Sebag. Extreme compass and dynamic multi-
armed bandits for adaptive operator selection. In IEEE Congress
on Evolutionary Computation [DBL09], pages 365–372.

[MH97] N. Mladenovic and P. Hansen. Variable neighborhood search.
Computers & OR, 24(11):1097–1100, 1997.

[Mic92] Z. Michalewicz. Genetic algorithms + Data structures = Evolution
program. Artificial Intelligence, Berlin: Springer, 1992, 1992.

[MML10] Ruben Martins, Vasco M. Manquinho, and Inês Lynce. Improv-
ing search space splitting for parallel sat solving. In ICTAI (1)
[DBL10], pages 336–343.

[MMZ+01] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Ma-
lik. Chaff: Engineering an efficient SAT solver. In Proceedings
of the 38th Design Automation Conference (DAC’01), pages 530–
535, 2001.

BIBLIOGRAPHY 119

[Mor93] P. Morris. The breakout method for escaping from local minima.
In Proceedings of the 11th National Conference on Artificial Intel-
ligence (AAAÏı¿ 1

2
93), pages 40–45. AAAI Press, 1993.

[MS98] K. Marriott and P. Stuckey. Programming with constraints : an
introduction. MIT Press, Cambridge, Mass., 1998.

[MS08] J. Maturana and F. Saubion. A compass to guide genetic algo-
rithms. In G. Rudolph et al., editor, Parallel Problem Solving from
Nature - PPSN X, 10th International Conference, volume 5199
of Lecture Notes in Computer Science, pages 256–265. Springer,
2008.

[MSG97] B. Mazure, L. Sais, and E. Grégoire. Tabu search for SAT. In
AAAI/IAAI, pages 281–285, 1997.

[MSG98] B. Mazure, L. Sais, and E. Grégoire. Boosting complete techniques
thanks to local search methods. Ann. Math. Artif. Intell., 22(3-
4):319–331, 1998.

[MSL04] E. Monfroy, F. Saubion, and T. Lambert. On hybridization of
local search and constraint propagation. In Logic Programming,
20th International Conference, ICLP 2004, volume 3132 of Lecture
Notes in Computer Science, pages 299–313. Springer, 2004.

[MSS96] J. Marques-Silva and K. A. Sakallah. GRASP - A New Search
Algorithm for Satisfiability. In Proceedings of IEEE/ACM Inter-
national Conference on Computer-Aided Design, pages 220–227,
November 1996.

[MSTY05] Pragnesh Jay Modi, Wei-Min Shen, Milind Tambe, and Makoto
Yokoo. Adopt: Asynchronous distributed constraint optimization
with quality guarantees. Artificial Intelligence, 161, 2005.

[NE06] V. Nannen and A. E. Eiben. A method for parameter calibration
and relevance estimation in evolutionary algorithms. In Genetic
and Evolutionary Computation Conference, GECCO 2006, Pro-
ceedings, pages 183–190. ACM, 2006.

[NE07] V. Nannen and A. E. Eiben. Relevance estimation and value cal-
ibration of evolutionary algorithm parameters. In IJCAI 2007,
Proceedings of the 20th International Joint Conference on Artifi-
cial Intelligence, pages 975–980, 2007.

[NOT06] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT
modulo theories: From an abstract davis–putnam–logemann–
loveland procedure to dpll(). J. ACM, 53(6):937–977, 2006.

120 BIBLIOGRAPHY

[NSE08] V. Nannen, S. Smit, and A. Eiben. Costs and benefits of tun-
ing parameters of evolutionary algorithms. In Parallel Problem
Solving from Nature - PPSN X, 10th International Conference,
volume 5199 of Lecture Notes in Computer Science, pages 528–
538. Springer, 2008.

[OGD06] L. Otten, M. Grönkvist, and D. P. Dubhashi. Randomization in
constraint programming for airline planning. In CP, pages 406–
420, 2006.

[OHH+08] Eoin O’Mahony, Emmanuel Hebrard, Alan Holland, Conor Nu-
gent, and Barry O’Sullivan. Using case-based reasoning in an
algorithm portfolio for constraint solving. In AICS, Aug 2008.

[PD07] K. Pipatsrisawat and A. Darwiche. A lightweight component
caching scheme for satisfiability solvers. In J. Marques-Silva and
K. A. Sakallah, editors, Theory and Applications of Satisfiability
Testing SAT 2007, volume 4501 of Lecture Notes in Computer
Science, pages 294–299. Springer, 2007.

[PH06] Wayne J. Pullan and Holger H. Hoos. Dynamic local search for the
maximum clique problem. J. Artif. Intell. Res. (JAIR), 25:159–
185, 2006.

[PHS08] Cédric Piette, Youssef Hamadi, and Lakhdar Sais. Vivifying
propositional clausal formulae. In Malik Ghallab, Constantine D.
Spyropoulos, Nikos Fakotakis, and Nikolaos M. Avouris, editors,
ECAI, volume 178 of Frontiers in Artificial Intelligence and Ap-
plications, pages 525–529. IOS Press, 2008.

[PHS09] Cédric Piette, Youssef Hamadi, and Lakhdar Sais. Efficient com-
bination of decision procedures for mus computation. In Silvio
Ghilardi and Roberto Sebastiani, editors, FroCos, volume 5749
of Lecture Notes in Computer Science, pages 335–349. Springer,
2009.

[PK01] D. Patterson and H. Kautz. Auto-walksat: A self-tuning imple-
mentation of walksat. Electronic Notes in Discrete Mathematics,
9:360–368, 2001.

[PR08] J. Puchinger and G. Raidl. Bringing order into the neighborhoods:
relaxation guided variable neighborhood search. J. Heuristics,
14(5):457–472, 2008.

[RBea05] I. Rish, M. Brodie, and S. Ma et al. Adaptive diagnosis in dis-
tributed dystems. IEEE Trans. on Neural Networks, 16:1088–
1109, 2005.

[RBHB06] Carsten Rother, Lucas Bordeaux, Youssef Hamadi, and Andrew
Blake. Autocollage. ACM Trans. Graph., 25(3):847–852, 2006.

BIBLIOGRAPHY 121

[Ref04] Philippe Refalo. Impact-based search strategies for constraint pro-
gramming. In Mark Wallace, editor, CP, volume 3258 of LNCS,
pages 557–571, Toronto, Canada, Sept 2004. Springer.

[RH05] Georg Ringwelski and Youssef Hamadi. Boosting distributed con-
straint satisfaction. In Peter van Beek, editor, CP, volume 3709
of Lecture Notes in Computer Science, pages 549–562. Springer,
2005.

[Ric75] John R. Rice. The algorithm selection problem. Technical Report
CSD-TR 152, Computer science department, Purdue University,
1975.

[Ric76] John R. Rice. The algorithm selection problem. In Advances in
Computers, volume 15, pages 65–118, 1976.

[Rin11] J. Rintanen. Heuristics for planning with SAT and expressive
action definitions. In F. Bacchus, C. Domshlak, S. Edelkamp, and
M. Helmert, editors, ICAPS. AAAI, 2011.

[RS08] V. Ryvchin and O. Strichman. Local restarts. In Büning and Zhao
[BZ08], pages 271–276.

[SBCH04] Marc Shapiro, Karthikeyan Bhargavan, Yek Chong, and Youssef
Hamadi. A formalism for consistency and partial replication. Rap-
port technique, 2004.

[SBH07] Sathiamoorthy Subbarayan, Lucas Bordeaux, and Youssef
Hamadi. Knowledge compilation properties of tree-of-bdds. In
AAAI, pages 502–507. AAAI Press, 2007.

[SE09] Selmar K. Smit and A. E. Eiben. Comparing parameter tuning
methods for evolutionary algorithms. In IEEE Congress on Evo-
lutionary Computation [DBL09], pages 399–406.

[SF05] M.-C. Silaghi and B Faltings. Asynchronous aggregation and con-
sistency in distributed constraint satisfaction. Artificial Intelli-
gence, 161, 2005.

[SGS07] Matthew Streeter, Daniel Golovin, and Stephen F. Smith. Com-
bining multiple heuristics online. In AAAI, pages 1197–1203, Van-
couver, British Columbia, Canada, July 2007. AAAI Press.

[SKC94] B. Selman, H. Kautz, and B. Cohen. Noise strategies for improving
local search. In AAAI, pages 337–343, 1994.

[SLB10] T. Schubert, M. Lewis, and B. Becker. Antom: solver description.
Technical report, SAT Race, 2010.

122 BIBLIOGRAPHY

[SLS+08] Marius Silaghi, Rob Lass, Evan Sultanik, William Regli, Toshi-
hiro Matsui, and Makoto Yokoo. The operation point units of
distributed constraint solvers. In AAMAS DCR, 2008.

[SM07] Horst Samulowitz and Roland Memisevic. Learning to solve QBF.
In AAAI, pages 255–260, Vancouver, British Columbia, July 2007.
AAAI Press.

[SM08] K. Smith-Miles. Cross-disciplinary perspectives on meta-learning
for algorithm selection. ACM Computing Surveys, 41(1):1–25,
2008.

[SSHF00] Marius-Calin Silaghi, Djamila Sam-Haroud, and Boi Faltings.
Asynchronous search with aggregations. In Proc. AAAI/IAAI
2000, pages 917–922, 2000.

[Syw89] G. Sywerda. Uniform crossover in genetic algorithms. In Proceed-
ings of the third international conference on Genetic algorithms,
pages 2–9, San Francisco, CA, USA, 1989. Morgan Kaufmann
Publishers Inc.

[Thi05] D. Thierens. An adaptive pursuit strategy for allocating operator
probabilities. In H.-G. Beyer, editor, Proc. GECCO’05, pages
1539–1546. ACM Press, 2005.

[Thi07] D. Thierens. Adaptive Strategies for Operator Allocation. In F.G.
Lobo, C.F. Lima, and Z. Michalewicz, editors, Parameter Setting
in Evolutionary Algorithms, pages 77–90. Springer Verlag, 2007.

[Tho00] J. Thornton. Constraint Weighting for Constraint Satisfaction.
PhD thesis, School of Computing and Information Technology,
Griffith University, Brisbane, Australia, 2000.

[Tsa93] E. Tsang. Foundations of Constraint Satisfaction. Academic
Press, 1st edition, August 1993.

[Vap95] Vladimir Vapnik. The Nature of Statistical Learning. Springer
Verlag, 1995.

[Wal00] T. Walsh. SAT v CSP. In Proc. of CP 2000, volume 1894 of Lec-
ture Notes in Computer Science, pages 441–456. Springer, 2000.

[WB08] Huayue Wu and Peter Van Beek. Portfolios with deadlines for
backtracking search. In IJAIT, volume 17, pages 835–856, 2008.

[WF05] Ian H. Witten and Eibe Frank. Data Mining - Practical Machine
Learning Tools and Techniques. Elsevier, 2005.

BIBLIOGRAPHY 123

[WHdM09] Christoph M. Wintersteiger, Youssef Hamadi, and Leonardo Men-
donça de Moura. A concurrent portfolio approach to SMT solving.
In Ahmed Bouajjani and Oded Maler, editors, CAV, volume 5643
of Lecture Notes in Computer Science, pages 715–720. Springer,
2009.

[WHdM10] Christoph M. Wintersteiger, Youssef Hamadi, and Leonardo Men-
donça de Moura. Efficiently solving quantified bit-vector formu-
las. In Roderick Bloem and Natasha Sharygina, editors, FMCAD,
pages 239–246. IEEE, 2010.

[WLLH03] Wong, Lee, Leung, and Ho. A novel approach in parameter
adaptation and diversity maintenance for GAs. Soft Computing,
7(8):506–515, 2003.

[WPS06a] J. Whitacre, Q. Tuan Pham, and R. Sarker. Credit assignment
in adaptive evolutionary algorithms. In Genetic and Evolutionary
Computation Conference, GECCO 2006, pages 1353–1360. ACM,
2006.

[WPS06b] J. Whitacre, T. Pham, and R. Sarker. Use of statistical outlier
detection method in adaptive evolutionary algorithms. In Pro-
ceedings of the Genetic and Evolutionary Computation Conference
(GECCO), pages 1345–1352. ACM, 2006.

[XHHLB07] L. Xu, F Hutter, H. Hoos, and K. Leyton-Brown. Satzilla-07:
The design and analysis of an algorithm portfolio for SAT. In
Principles and Practice of Constraint Programming - CP 2007,
2007.

[XHHLB08] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Satzilla:
Portfolio-based algorithm selection for SAT. Journal of Artificial
Intelligence Research, 32:565–606, 2008.

[YD98] M. Yokoo and E. H. Durfee. The distributed constraint satisfac-
tion problem: Formalization and algorithms. IEEE Transactions
on Knowledge and Data Engineering, 10(5), 1998.

[YDIK92] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. Distributed
constraint satisfaction for formalizing distributed problem solving.
In Proc. ICDCS’92, pages 614–621, 1992.

[YG04] B. Yuan and M. Gallagher. Statistical racing techniques for im-
proved empirical evaluation of evolutionary algorithms. In X. Yao
et al., editor, Parallel Problem Solving from Nature - PPSN VIII,
8th International Conference, volume 3242 of Lecture Notes in
Computer Science, pages 172–181. Springer, 2004.

124 BIBLIOGRAPHY

[YG05] F. Yu-Hui Yeh and M. Gallagher. An empirical study of hoeffd-
ing racing for model selection in k-nearest neighbor classification.
In M. Gallagher, J. Hogan, and F. Maire, editors, IDEAL, vol-
ume 3578 of Lecture Notes in Computer Science, pages 220–227.
Springer, 2005.

[YG07] B. Yuan and M. Gallagher. Combining meta-eas and racing for
difficult EA parameter tuning tasks. In Lobo et al. [LLM07], pages
121–142.

[ZBH96] H. Zhang, M. P. Bonacina, and J. Hsiang. Psato: a distributed
propositional prover and its application to quasigroup problems.
Journal of Symbolic Computation, 21:543–560, 1996.

[ZM03] R. Zivan and A. Meisels. Synchronous vs asynchronous search on
DisCSPs. In Proc. EUMAS’03, 2003.

[ZM05] Roie Zivan and Amnon Meisels. Concurrent search for distributed
csps. Artificial Intelligence, 161, 2005.

[ZMMM01] L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik. Ef-
ficient conflict driven learning in boolean satisfiability solver. In
ICCAD, pages 279–285, 2001.

[ZS94] H. Zhang and M. E. Stickel. Implementing the davis-putnam al-
gorithm by tries. Technical report, Artificial Intelligence Center,
SRI International, Menlo, 1994.

Part II

Curriculum Vitae

125

Professional Appointments

2009 – present Founder, co-Director, Microsoft-CNRS chair Optimization and Sustainable

 Development at École Polytechnique, Palaiseau, France.

2009 – present Associate Researcher, LIX Laboratory, École Polytechnique, Palaiseau,

France.

2007 – present Project co-Leader, Adaptive Combinatorial Search for e-Sciences, MSR/INRIA

joint-lab, Orsay, France.

2003 – present Senior Researcher (Directeur de Recherche), Head of Constraint-Reasoning,

Microsoft Research, Cambridge, United Kingdom.

2001 – 2003 Research Scientist, Hewlett-Packard Laboratory, Bristol, United Kingdom.

2000 – 2001 Research Scientist, Laboratoire Central de Recherche, Thales-Research,

Orsay, France.

1998 – 1999 Associate Lecturer, University of Montpellier, France.

Education

2009 General Management Certificate (selected MBA courses), Executive Education,

 Judge Business School, University of Cambridge, United Kingdom.

1999 Ph.D. in Computer Science, University of Montpellier, (Summa Cum Laude) France.

1995 Master in Computer Science, University of Montpellier, France.

1993 Bachelor in Mathematics and Computer Sciences, University of Montpellier, France.

 Bachelor in Applied Mathematics (MASS), University of Montpellier, France

Board Memberships

2012 Intelligent Systems Applications Technical Committee of the IEEE

Computational Intelligence Society.

2011 – 2014 Institut National de Recherche en Agronomie, Mathematics and Applied

Computer Sciences department (INRA-MIA), Scientific board.

2009 – present Reactive Search SrL, Scientific advisor.

2004 – present University of Saint-Andrews, School of Computer Science, Industrial Board.

Awards

2011

 SAT-Competition 2011: Silver medal for the CSLS solver in the SAT+Random category.

2010

 ROADEF/EURO Challenge 2010: A large-scale energy management problem with varied

constraints, supervision for winning team senior category, Lisbon, Portugal.

 SAT-Race 2010: Silver and Bronze medals for the ManySAT solver, Edinburgh, Scotland.

2009

 IEEE Ramamoorthy Best Paper Award, “Learning for Dynamic Subsumption”,
International Conference on Tools for Artificial Intelligence (ICTAI’09), Newark, USA.

 SAT-Competition 2009: Gold, Silver and Bronze medals for the ManySAT solver with title

of « Best Parallel SAT Solver », Swansea, United Kingdom.

 Microsoft Gold Star Award for the definition of the “Optimization for Sustainable

Development” project.
2008

 SAT-Race 2008 : Gold medal for the ManySAT solver with title of « Best Parallel SAT

Solver », http://baldur.iti.uka.de/sat-race-2008/, Guangzhou, P. R. China.

 Microsoft Gold Star Award for the work on the Disolver constraint solver and its

integration into Microsoft Office (MS-Project).

Press

2011

 EDF R&D Magazine, « Un challenge pour mieux gérer le parc thermique », number 1,

July 2011.

2009

 Futures Microsoft’s European Innovation Magazine, « The Marriage of Maths and

Ecology », number 5, December 2009.

 Interview, La Tribune, “Microsoft, l’X et le CNRS font chaire commune", June 5th.

 Featured in Le Monde Informatique, “ Microsoft, le CNRS et Polytechnique créent une

chaire « Optimisation et Développement durable»“, June 9th.

 Featured in Le Journal du Net, “Microsoft et le CNRS créent une chaire commune“ , June

4th.

 Featured in Silicon.fr, “Microsoft Solver Foundation”, February 15th.

 Microsoft Futures Magazine, “No Constraints”, number 4, June 2009.

 Featured in Le Monde Informatique, “Le labo commun Microsoft-Inria expose ses

projets“, January 29th.

2008

 Regards sur le numérique, Portrait, Youssef Hamadi : Sans Contraintes, numéro 3, June

2008.

 Feverish Foray into Satisfiability Proves Satisfying, Microsoft feature-story.

Systems and Software

2009

 Parallel algorithms for the Z3 2.0, Satisfiability Modulo Theory Solver,

http://research.microsoft.com/en-us/um/redmond/projects/z3/.

 Microsoft Solver Foundation 2.0, Constraint Programming and Local Search components.

http://www.solverfoundation.com.

2008

 Microsoft Solver Foundation 1.0, Constraint Programming and Local Search components

(Disolver-based). http://www.solverfoundation.com.

2006

 Microsoft Office Project, Disolver-based Portfolio optimization component.

http://office.microsoft.com/en-gb/project/default.aspx.

 Microsoft Research’s AutoCollage graphics tool, http://research.microsoft.com/en-

us/um/cambridge/projects/autocollage/.

2005

 Scalable, Automated, Guided Execution (SAGE) Disolver-based engine for automated

software verification.

2003

 Disolver, the distributed constraint solver, v1.0.

2001

 Thales Research, in charge of the online scheduling algorithm for the Principal Anti-Air

Missile System (PAAMS). http://en.wikipedia.org/wiki/PAAMS.

Recent Invited Keynotes, Lectures, and Courses

2011

 On Microsoft Research Policies, Towards a Global Observatory of Policy Instruments on

Science, Technology and Innovation UNESCO Workshop, Paris October 19-20th 2011.

 SmartBuildings, Green Growth Leaders Workshop, Copenhagen, October 12th 2011.

 Approaches to Parallel SAT, lecturer first MIT Summer School on SAT/SMT, Cambridge

(MA), June 2011.

 Parallel SAT, Instituto de Engenharia de Sistemas e Computadores Investigação (INESC-

ID), Lisbon, Portugal, February 2011.

2010

 The Smart Workflow Foundation, Cambridge Network Special Interest Groups on

Business Intelligence, Anglia Business Solutions, Cambridge, UK.

 An Overview of Parallel SAT solving, 22th International Conference on Tools with

Artificial Intelligence (ICTAI’10), Arras, France, October 2010.

 Parallel SAT Solving, 9th International Workshop on Parallel and Distributed Methods in

verification (PDMC’10), Twente, The Netherlands, October 2010.
 Recent Improvements in Parallel SAT Solving, Federated Logic Conference, tutorial,

Edinburgh, Scotland, POS, July 2010.

 Decision Procedures in Software, Hardware and Bioware, Schloss Dagstuhl Seminar

10161, Germany, April 2010.

 Constraints in Microsoft, Industrial Talks for Constraint Satisfaction Module, University of

Essex.

 On SAT and Parallel SAT, École Polytechnique, cours INF580, March 2010.

2009

 Control-based clause-sharing in Parallel SAT, CS seminar, University of Caen, December

2009.

 Algorithms and Applications for Next Generation SAT Solvers, Schloss Dagstuhl Seminar

09461, Germany, November 2009.

 From SAT to efficient Parallel SAT solving, École Polytechnique, (cours INF580) France.

 From SAT to efficient Parallel SAT solving, Oxford University, CS seminar.

 From SAT to efficient Parallel SAT solving, Tutorial, Learning for Intelligent Optimization

(LION’09), University of Trento, Italy.
 Control-based clause-sharing in Parallel SAT, Conference on “Complex Networks across

the Natural and Technological Sciences”, Institute for Advanced Studies, University of

Strathclyde, UK.

 Control-based clause-sharing in Parallel SAT, Thales Research, seminar, Paris, France.

2007

 Constraint Programming and Satisfiability: a Comparative Survey, Tutorial, Summer

School on Decision Aiding (COSI’07), Oran, Algeria.

Editorial Responsibilities

2012

 Conference co-Chair Learning for Intelligent Optimization (LION), Paris, January 16-20

2012.

 Member of Program Committee, Formal Methods in Computer-Aided Design (FMCAD),

15th International Conference on Theory and Applications of Satisfiability Testing (SAT),

International Conference on Integration of AI and OR Techniques in Constraint

Programming for Combinatorial Optimization Problems (CPAIOR), Learning and

Intelligent Optimization Conference (LION), Colloque sur l'Optimisation et les Systèmes

d'Information (COSI), Workshop on Practical and Distributed Model Checking (PDMC).

 External Reviewing, Constraints Journal, Journal of Artificial Intelligence Research (JAIR).

2011

 co-Editor Book “Autonomous Search”, ISBN 978-3-642-21433-2, Springer 2011.

 Member of Program Committee, 14th International Conference on Theory and

Applications of Satisfiability Testing (SAT), International Conference on Integration of AI

and OR Techniques in Constraint Programming for Combinatorial Optimization Problems

(CPAIOR), Learning and Intelligent Optimization Conference (LION), Colloque sur

l'Optimisation et les Systèmes d'Information (COSI), High Performance Computing

Symposium (HPCS) Workshop on Parallel SAT, 3rd International workshop on Constraints

in Software Testing, Verification and Analysis (CSTVA), Workshop on Practical and

Distributed Model Checking (PDMC), International Conference on Tools for Artificial

Intelligence (ICTAI),), Journées Francophones de Programmation par Contraintes (JFPC).

 External Reviewing, Constraints Journal, IEEE Transactions on Parallel and Distributed

Systems, Journal of Artificial Intelligence Research (JAIR).

2010

 Member of Advisory Panel, SAT Race 2010.

 Member of Program Committee, International Conference on Artificial Intelligence

(AAAI), International Conference on Artificial Intelligence (AAAI) Nectar Track,

International Conference on Principles and Practice of Constraint Programming (CP),

Learning and Intelligent Optimization Conference (LION), International Conference on

Integration of AI and OR Techniques in Constraint Programming for Combinatorial

Optimization Problems (CPAIOR), Colloque sur l'Optimisation et les Systèmes

d'Information (COSI), High Performance Computing Symposium (HPCS) Workshop on

Parallel SAT, Second International workshop on Constraints in Software Testing,

Verification and Analysis (CSTVA), 3rd Workshop on Techniques for Implementing

Constraint Programming Systems, 3rd Workshop on Constraint Reasoning and

Optimization for Computational Sustainability.

 External Reviewing, INFORMS Journal on Computing, ACM Transaction on Intelligent

Systems and Technology, Constraints Journal.

2009

 Tutorials Chair, Learning and Intelligent Optimization Conference (LION).

 Member of Program Committee, International Joint Conference on Artificial Intelligence

(IJCAI), Learning and Intelligent Optimization Conference (LION), International

Symposium on Combinatorial Search (SoCS), Journées Francophones de Programmation

par Contraintes (JFPC), Distributed Constraint Reasoning (DCR) Workshop, High

Performance Computing Symposium (HPCS) Workshop on Parallel SAT.

 Guest Editor, Journal on Satisfiability, Boolean Modeling and Computation, Volume 6

Special Issue on “Parallel SAT Solving”.
 Workshop co-organizer: First International Workshop on Constraint Reasoning and

Optimization for Computational Sustainability (CP’09).
2008

 Guest co-Editor, Constraint Programming Letters, Special Issue on “Autonomous

Search”.

 Member of Program Committee, International Conference on Artificial Intelligence

(AAAI), International Conference on Integration of AI and OR Techniques in Constraint

Programming for Combinatorial Optimization Problems (CPAIOR), IEEE International

Symposium on Cluster, Cloud, and Grid Computing (ccGrid), Learning and Intelligent

Optimization Conference (LION), Journées Francophones de Programmation par

Contraintes (JFPC), Colloque sur l'Optimisation et les Systèmes d'Information (COSI),

Search in AI and Robotics Workshop (AAAI’08), Distributed Constraint Reasoning (DCR)

Workshop (AAMAS’08), CONFIG Workshop (ECAI’08).
 Workshop organizer: First Int. Workshop on “Search in ManyCore” (CP’08).
 External Reviewing, INFORMS Journal on Computing, Journal on Satisfiability, Boolean

Modeling and Computation.

2007

 Guest Editor, Journal on Satisfiability, Boolean Modeling and Computation, Special Issue

on “SAT/CP Integration”.

 Member of Program Committee, IEEE International Symposium on Cluster, Cloud, and

Grid Computing (ccGrid), Journées Francophones de Programmation par Contraintes

(JFPC), Learning and Intelligent Optimization Conference (LION), Colloque sur

l'Optimisation et les Systèmes d'Information (COSI), Learning for Search Workshop

(AAAI’07), Distributed Constraint Reasoning (DCR) Workshop (CP’07), CONFIG Workshop
(AAAI’07).

 Workshop co-organizer: First Int. Workshop on Autonomous Search (CP’07).
 External Reviewing, Journal on Satisfiability, Boolean Modeling and Computation (JSAT),

Journal of Artificial Intelligence Research (JAIR).

2006

 Member of Program Committee, IEEE International Symposium on Cluster, Cloud, and

Grid Computing (ccGrid), Journées Francophones de Programmation par Contraintes

(JFPC), Colloque sur l'Optimisation et les Systèmes d'Information (COSI).

 Workshop organizer: First Int. Workshop on SAT/CP Integration (CP’06).
2005

 Member of Program Committee, IEEE International Symposium on Cluster, Cloud, and

Grid Computing (ccGrid), Journées Francophones de Programmation par Contraintes

(JFPC), Learning and Intelligent Optimization Conference (LION), Colloque sur

l'Optimisation et les Systèmes d'Information (COSI), Distributed Constraint Reasoning

(DCR) Workshop.

2004

 Member of Program Committee, Distributed Constraint Reasoning (DCR) Workshop.

PhD Committee Membership

2011 Alejandro Arbelaez, Université Paris-Sud/INRIA-MSR, France.

Ruben Martins, INESC-ID Lisboa, Portugal.

2010 Alvaro Fialho, LRI, Université Paris-Sud, France.

2008 Fabien Corblin, IMAG-LSR, Université Joseph Fourier, France.

 Said Jabbour, Université d’Artois CRIL/CNRS, France.

2007 Cédric Piette, Université d’Artois CRIL/CNRS, France.

PhD co-Supervision

2011 – present Van-Anh Nguyen, University of Caen, GREYC, France.

2009 – present Long Guo, Université d’Artois. CRIL-CNRS, France.

2009 – present Nadarajen Veerapen, Université d’Angers, France.

2008 – present Nicolas Mobilia, TIMC-IMAG, Grenoble, France

2007 – 2011 Alejandro Arbaleaz, Université Paris-Sud/INRIA-MSR, France.

2006 – 2008 Fabien Corblin, IMAG-LSR, Université Joseph Fourier France.

PhD Summer Internship Supervisions

2012 Walid Trabelsi, University College Cork, Ireland.

2010 Mauro Bampo, Monash University, Australia.

2009 Said Jabbour, Université d’Artois, Lens, France.
2008 Dejan Vojanovic, New-York University, USA.

2007 Fabien Corblin, TIMC-IMAG, Grenoble, France.

2007 Cedric Piette, Université d’Artois, Lens, France.
2006 Claude-Guy Quimper, Université Laval, Québec, Canada.

2006 Frank Hutter, University of British Colombia, Canada.

2005 Sathiamoorthy Subbarayan, ITU, Denmark.

2004 Georg Ringwelski, Cork Constraint Computation Centre, Ireland.

Patents

1 Ordering decision nodes in distributed decision making, Youssef Hamadi, Yek Loong Chong,

Marc Shapiro. US Patent No. 7222149, May 2007.

2 Multi-Ordered Distributed Constraint Search, Youssef Hamadi, and Georg Ringwelski, US
Patent No. 7472094, December 2008.

3 Auto Collage, Carsten Rother, Lucas Bordeaux, Youssef Hamadi, Andrew Blake, US Patent

No. 7529429, May 2009.

4 Tuning of Problem Solvers, Youssef Hamadi, US Patent No. 7890439, February 2011.

5 Graphical Acquisition of an Objective Function, Youssef Hamadi and Stéphane Ubeda, US
Patent No. 7975234, July 2011.

6 Generation of commercial presentations, Youssef Hamadi, and Carsten Rother, US Patent
App. No. 11465335, August 2006.

7 Constrained Exploration for Search Algorithms, Youssef Hamadi, US Patent App. No.

11170290, June 2005.

8 Resource balancing in distributed peer to peer networks, Youssef Hamadi, US Patent App.
No. 10891262, July 2004.

9 Adapting computer resource usage based on forecasted resource availability, Youssef
Hamadi, US Patent App. No. 10931818, September 2004.

10 Context Sensitive Camera (RFID-based), Youssef Hamadi, US Patent App. No. 10659121,
September 2003.

11 Online recognition of robots, Youssef Hamadi, Maher Rahmouni, US Patent App. No.

10421301, April 2003.

12 Configuration of computer networks, Youssef Hamadi, US Patent App. No. 10281923,

October 2002.

13 Method for constraining file systems in peer to peer networks, Youssef Hamadi, US Patent

App. No. 10269359, October 2002.

14 Method for designing optimization algorithms integrating a time limit, Youssef Hamadi,

Simon De Givry, US. Patent App. 10496513, November 2002.

15 Robustness of a Workflow, Youssef Hamadi and Claude-Guy Quimper, US Patent App. No.

11669064.

16 Allocating Resources to Tasks in Workflows, Youssef Hamadi and Claude-Guy Quimper, US

Patent App. No. 11669098.

17 Synchronizing Workflow, Youssef Hamadi and Claude-Guy Quimper, US Patent App. No.
11669082.

18 Controlled Constraint Sharing in Parallel Problem Solvers, Youssef Hamadi and Said
Jabbour, US Patent App. No. 12465440.

Peer-reviewed publications

Books

1. Autonomous Search, Y. Hamadi, F. Saubion, and E. Monfroy, edited book, ISBN 978-3-642-
21433-2, Springer 2012.

2. Autonomous Search, Y. Hamadi, E. Monfroy, and F. Saubion, invited book chapter in
“CPAIOR 10th anniversary” Eds. M. Milano and P. Van Hentenryck, Springer 2010.

3. Connection and Integration with SAT Solvers: A Survey and a Case Study with the Problem of
Deciphering Discrete Genetic Networks, F. Corblin, E. Fanchon, L. Bordeaux, Y. Hamadi, and
L. Trilling, invited book chapter in “CPAIOR 10th anniversary” Eds. M. Milano and P. Van
Hentenryck, Springer 2010.

4. On the First SAT/CP Integration Workshop, L. Bordeaux, Y. Hamadi, invited book chapter in
“Trends in Constraint Programming”, p105-123, ISTE, 2007.

5. Problèmes de satisfaction de contraintes et systèmes Multi-agents, Y. Hamadi, and S.
Piechviak, invited book chapter in “Systèmes Multi-agents“ Ed. Editor R. Mandieu. Hermès
p169-205, 2002.

Journals

1. Efficiently solving quantified bit-vector formulas, C. M. Wintersteiger, Y. Hamadi, and L. de
Moura, Formal Methods in System Design (FMSD) Invited article, Special issue 10 years to
the SMT initiative, 2012.

2. Challenges in Parallel SAT Solving, Y. Hamadi, and C. M. Wintersteiger, Invited article, AI
Magazine (AI-Mag), to appear.

3. Learning from Conflicts in Propositional Satisfiability, Y. Hamadi, S. Jabbour, and L. Sais,
Invited Survey, 4OR: A Quarterly Journal of Operations Research (4OR), 10(1), 2012.

4. Deterministic Parallel DPLL: System Description, Y. Hamadi, S. Jabbour, C. Piette, and L. Sais,
Int. Journal on Satisfiability, Boolean Modeling and Computation (JSAT), Volume 7, 2011.

5. Boosting Distributed Constraint Satisfaction, Y. Hamadi, and G. Ringwelski, Journal of

Heuristics 2011, Volume 17, Number 3, 251-279
6. Learning for Dynamic Subsumption, Y. Hamadi, S. Jabbour, and L. Sais, invited in Special

Issue of the International Journal on Artificial Intelligence Tools (IJAIT) vol 19 no 4, August
2010.

7. ManySAT: a Parallel SAT Solver, Y. Hamadi, S. Jabbour, and L. Sais, Int. Journal on
Satisfiability, Boolean Modeling and Computation (JSAT), Volume 6, Special Issue on Parallel
SAT, Ed. Y. Hamadi, IOS Press, 2009.

8. Conclusion to the Special Issue on Parallel SAT Solving, Editor Y. Hamadi, Int. Journal on
Satisfiability, Boolean Modeling and Computation (JSAT), Volume 6, IOS Press 2009.

9. Editor Special Issue on Autonomous Search, Y. Hamadi, E. Montfroy, and F. Saubion,
Constraint Programming Letters (CPL), Volume 4, 2008.

10. Editor Special Issue on SAT/CP Integration, L. Bordeaux, Y. Hamadi, Int. Journal on
Satisfiability, Boolean Modeling and Computation (JSAT), IOS Press, 2007.

11. Propositional Satisfiability and Constraint Programming: A comparative Survey L. Bordeaux,
Y. Hamadi, and L. Zhang, ACM Computing Surveys (CSUR), Volume 38, Issue 4 (2006).

12. AutoCollage, C. Rother, L. Bordeaux, Y. Hamadi, and A. Blake, (SIGGRAPH'06) ACM Trans.
Graph. 25(3): 847-852 (2006).

13. Conflicting Agents in Distributed Search, Y. Hamadi,in International Journal on Artificial
Intelligence Tools (IJAIT), N. G. Bourbakis editor-in-chief, Volume 14, Number 3-4, 2005.
(Invited Paper.)

14. Pushing log-based Reconciliation, Y. Hamadi and M. Shapiro,in International Journal on
Artificial Intelligence Tools (IJAIT), N. G. Bourbakis editor-in-chief, Volume 14, Number 3-4,
2005.

15. Interleaved search in distributed constraint networks, Y. Hamadi, in International Journal on
Artificial Intelligence Tools (IJAIT), N. G. Bourbakis editor-in-chief, Volume 11, Number 4,
p167-188, 2002.

16. Optimal Distributed Arc-Consistency, Y. Hamadi, in Constraints Journal, Invited paper for the
special Issue on 1998 and 1999 International Conference on Principles and Practice of
Constraint Programming. Editors Joxan Jaffar and Michael J. Maher. Kluwer Academic
Publishers vol. 7, No. 3/4, July/October 2002.

17. Architectures reconfigurables et traitement de problèmes NP-difficiles : un nouveau
domaine d’application, Y. Hamadi, D. Merceron, Revue Techniques et Sciences
Informatiques, (TSI) numéro spécial Architectures reconfigurables, vol. 18 n. 10, p1113-
1135, Editions Hermès 1999.

Conferences

1. Seven Challenges in Parallel SAT Solving, Y. Hamadi, and C. M. Wintersteiger, Invited paper,
Twenty-Sixth AAAI Conference (AAAI-12), to appear.

2. A Multi-objective Approach to Balance Buildings Construction Cost and Energy Efficiency, A
Fialho, Y. Hamadi, and M. Schoenauer, Twentieth European Conference on Artificial
Intelligence (ECAI'12), Montpellier, to appear.

3. Improving Parallel Local Search for SAT, A. Arbelaez, Y. Hamadi, Learning and Intelligent
Optimization (LION'11), Roma, Italy.

4. Efficiently Solving Quantified Bit-Vector Formulas, C. Wintersteiger, Y. Hamadi, and L. de
Moura, Formal Methods in Computer Aided Design (FMCAD'10), Lugano, Switzerland.

5. Adaptive K-Parallel Best-First Search: A Simple but Efficient Algorithm for Multi-Core
Domain-Independent Planning, V. Vidal, L. Bordeaux, and Y. Hamadi, Third International
Symposium on Combinatorial Search (SoCS'10), July 2010, Stone Mountain, Atlanta, USA.

6. Diversification and Intensification in Parallel SAT Solving, L. Guo, Y. Hamadi, S. Jabbour, and
L. Sais, 16th International Conference on Principles and Practice of Constraint Programming
(CP’10).

7. Continuous Search in Constraint Programming, A. Arbelaez, Y. Hamadi, and M. Sebag,
Twenty-second International Conference on Tools with Artificial Intelligence (ICTAI'10),
October 2010, Arras, France.

8. Control-based Clause Sharing in Parallel SAT Solving, Y. Hamadi, S. Jabbour, and L. Sais,
Twenty-first International Joint Conference on Artificial Intelligence (IJCAI'09), July 2009,
Pasadena, USA.

9. Experiments with Massively Parallel Constraint Solving, L. Bordeaux, Y. Hamadi, and H.
Samulowitz, Twenty-first International Joint Conference on Artificial Intelligence (IJCAI'09),
July 2009, Pasadena, USA.

10. A Concurrent Portfolio Approach to SMT Solving, C. Wintersteiger, Y. Hamadi, and L. de
Moura, Twenty-one International Conference on Computer Verification (CAV'09), June 2009,
Grenoble, France.

11. A new collaborative scheme for computing a MUS, C. Piette, Y. Hamadi, and L. Sais, Seventh
International Symposium on Frontiers of Combining Systems (FroCos’09), September 2009,
Trento, Italy.

12. Learning for Dynamic Subsumption, Y. Hamadi, S. Jabbour, and L. Sais, Twenty-first
International Conference on Tools with Artificial Intelligence (ICTAI'09), November 2009,
Pasadena, USA. (Best Paper Award.)

13. Continuous Search in Constraint Programming: An Initial Investigation, A. Arbelaez, and Y.
Hamadi, The Fifteen International Conference on Principles and Practice of Constraint
Programming (CP'09), doctoral program, September 2009, Lisbon, Portugal.

14. Online Heuristic Selection in Constraint Programming, A. Arbelaez, Y. Hamadi, and M. Sebag,
International Symposium on Combinatorial Search (SoCS'09), July 2009, Lake Arrowhead,
USA.

15. Subsumption dynamique basée sur l'apprentissage, Y. Hamadi, S. Jabbour, and L. Sais,
Journées Francophones de Programmation par Contraintes (JFPC’09), Juin 2009.

16. Réordonnancement dynamique basé sur l'apprentissage, Y. Hamadi, S. Jabbour, and L. Sais,
Journées Francophones de Programmation par Contraintes (JFPC’09), Juin 2009.

17. Exploiting Weak Dependencies in Tree-based Search, A. Arbelaez, and Y. Hamadi, 24th
Annual ACM Symposium on Applied Computing (SAC’09), March 2009 Hawaii, USA.

18. Vivifying Propositional Clausal Formulae, C. Piette, Y. Hamadi, and L. Sais, Eighteen European
Conference on Artificial Intelligence (ECAI’08), July 2008, Patras, Greece.

19. A Generalized Framework for Conflict Analysis, G. Audemard, L. Bordeaux, Y. Hamadi, S.
Jabbour, and L. Sais, (SAT’08).

20. Un cadre général pour l'analyse de conflits, G. Audemard, L. Bordeaux, Y. Hamadi, S.
Jabbour, and L. Sais, Journées Francophones de Programmation par Contraintes (JFPC’08),
Juin 2008.

21. Vivification de formules propositionnelles clausales, C. Piette, Y. Hamadi, and L. Sais,
Journées Francophones de Programmation par Contraintes (JFPC’08), Juin 2008.

22. Knowledge Compilation Properties of Trees-of-BDDs, S. Subbarayan, L. Bordeaux, and Y.
Hamadi, (AAAI’07), p502-507.

23. An analysis of Slow Convergence in Interval Propagation, L. Bordeaux, Y. Hamadi, and M.
Vardi, (CP’07), p790-797.

24. Iterated Expressions in Constraint Programming, L. Bordeaux, Y. Hamadi, C-G Quimper, and
H. Samulowitz, Journées Francophones de Programmation par Contraintes (JFPC’07), Juin
2007.

25. Performance Prediction and Automated Tuning of Randomized and Parametric Algorithms,
F. Hutter, Y. Hamadi, H. Hoos and K. L. Brown, Twelfth International Conference on
Principles and Practice of Constraint Programming (CP’06).

26. Performance Prediction and Automated Tuning of Randomized and Parametric Algorithms:
An Initial Investigation, F. Hutter, Y. Hamadi, H. Hoos and K. L. Brown, (AAAI’06), First
International Workshop on Learning for Search.

27. Distributed Log-based Reconciliation, Y. Chong and Y. Hamadi, Seventeen European
Conference on Artificial Intelligence (ECAI’06), August 2006, Riva del Garda, Italy.

28. Boosting Distributed Constraint Satisfaction, G. Ringwelski and Y. Hamadi, Eleventh
International Conference on Principles and Practice of Constraint Programming (CP’05).

29. An Overview of Sangam: A System for Integrating Data to Investigate Stress-Circuitry-Gene
Coupling, M. Saxena, S. Kim, G. Burns, A. M. Khan, J. Su, Y. Hamadi and S. Ghandeharizadeh,
(IVNET’05).

30. Continuous Resources Allocation in Internet Data Centers, Y. Hamadi, 5th IEEE/ACM
International Symposium on Cluster Computing and the Grid (ccGRID’05) , 9-12 May 2005,
Cardiff, United Kingdom.

31. The Temporal Knapsack Problem and its Solution, M. Bartlett,A. M. Frisch, Y. Hamadi, I.
Miguel, S. A.Tarimand C. Unsworth, Int. Conf. on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems (CP-AI-OR’05) 29-1 June
2005.

32. A formalism for consistency and partial replication, K. Bhargavan, M. Shapiro, Y. Chong and
Y. Hamadi, in the 18th Annual Conference on Distributed Computing (DISC’04), Trippenhuis,
Amsterdam, the Netherlands, October 4-7.

33. Interleaved Backtracking in Distributed Constraint Networks, 13th International Conference
on Tools with Artificial Intelligence (ICTAI’01), IEEE, p33-41, October 2001.

34. Optimal Distributed Arc-Consistency, Y. Hamadi, Fifth International Conference on Principles
and Practice of Constraint Programming (CP’99), Alexandria USA, Lecture Notes in Computer
Science Vol. 1713, p219-233, Springer, October 1999.

35. Communication et Emergence : une épidémie chez les termites J. Quinqueton et Y. Hamadi,
Actes des Journées Francophones d’Intelligence Artificielle Distribuée et de Système Multi-
Agents (JFIADSMA'99), La Réunion, France, Editions Hermès p225-235.

36. Backtracking in Distributed Constraint Networks, Y. Hamadi, C. Bessière and J. Quinqueton ,
Thirteen European Conference on Artificial Intelligence (ECAI’98), Brighton, England, p219-
223.

37. Reconfigurable architectures: A new vision for optimization problems, Y. Hamadi, D.
Merceron, Third International Conference of Principles and Practice of Constraint
Programming (CP97), Linz Austria, Lecture Notes in Computer Science Vol. 1330, p209-221,
Springer, October/November 1997.

38. Using Bidirectionality to Reduce Message Passing in a Distributed Filtering Algorithm Y.
Hamadi, Fifth International Conference on Advanced Computing (ADCOMP’97), Madras,
India, p53-58, December 1997.

39. Improving GSAT behavior by using FPGA Y. Hamadi, D. Merceron, Fifteenth International
Joint Conference on Artificial Intelligence (IJCAI’97), Nagoya Japan, August 1997.

40. Distribution de GSAT Y. Hamadi, Actes des Journées Francophones d’Intelligence Artificielle
Distribuée et de Système Multi-Agents (JFIADSMA'96), Port Camargue, France, Editions
Hermès p189-199, Avril 1996.

41. GSAT Distribution Y. Hamadi, C. Bessière and J. Quinqueton, Proceedings of the Second
International Conference on Multi-Agents Systems (ICMAS’96), Kyoto, Japon, AAAI press,
December 1996.

Workshops and others

1. Optimizing Architectural and Structural Aspects of Buildings towards Higher Energy
Efficiency, A. Fialho, Y. Hamadi, and M. Schoenauer, (GECCO'11), Workshop on GreenIT
Evolutionary Computation, July 2011.

2. Lazy Decomposition for Distributed Decision Procedures, Y. Hamadi, J. Marques-Silva, and C.
M. Wintersteiger, International Workshop on Parallel and Distributed Methods in
verifiCation (PDMC’11).

3. Building Portfolios for the Protein Structure Prediction Problem, A. Arbelaez, Y. Hamadi, and
M. Sebag, Workshop on Constraint Based Methods for Bioinformatics (WCB'10), July 2010,
Edinburgh, UK.

4. A SAT-based approach to decipher Gene Regulatory Networks, F. Corblin, L. Bordeaux, Y.
Hamadi, E. Fanchon, and L. Trilling, (RIAMS’07).

5. Solving Configuration Problems in Excel, L. Bordeaux and Y. Hamadi, (AAAI’07) Int.
Workshop on Configuration.

6. Delegation in Tree-search for Distributed Constraint Satisfaction, M. Basharu, K. Brown, and
Y. Hamadi, IJCAI’07 Eight International Workshop on Distributed Constraint Reasoning
(DCR’07).

7. Multi-Directional Distributed Search with Aggregation, G. Ringwelski and Y. Hamadi, IJCAI’05
Sixth International Workshop on Distributed Constraint Reasoning (DCR’05).

8. Distributed Constraint Satisfaction applied to Log-based Reconciliation, Y. Chong and Y.
Hamadi, IJCAI’05 Sixth International Workshop on Distributed Constraint Reasoning
(DCR’05).

9. Cycle-cut decomposition and log-based reconciliation, Y. Hamadi, in 14th International
Conference on Automated Planning & Scheduling (ICAPS’04), Workshop: Connecting
Planning Theory with Practice, Whistler, British Columbia, Canada, June 3-7 2004.

10. An Overview of the Gridline Project, Y. Hamadi, A. M. Frischand I. Miguel, in 14th
International Conference on Automated Planning & Scheduling (ICAPS’04), Workshop:
Planning and Scheduling for Web and Grid Services, Whistler, British Columbia, Canada ,
June 3-7 2004.

11. DisCSPs: Tools for efficient and generic multi-agents negotiations, 4th IEEE International
Workshop on Advanced Issues of E-Commerce and Web-based Information Systems
(WECWIS'02), p245-248 Newport Beach, June 2002.

12. EOLE project: Toward an on-line optimization framework dedicated for Telecom domain
EOLE consortium, Seventh International Conference on Principles and Practice of Constraint
Programming (CP01), Workshop on On-Line combinatorial problem solving and Constraint

Programming (OLCP'01), October 2001.
13. Traitement des problèmes de satisfaction de contraintes distribués, PhD thesis,

LIRMM/CNRS, Montpellier, France.

