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Abstract

The basic concepts of two search methods in structural optimization, genetic al-
gorithms and evolution strategies, are introduced. These methods require only
information of function-values. Because of their simple search mechanisms, they
are well suited for wide classes of optimization problems . The increasing avail-
ability of high-speed and parallel computing caused a renewed interest in these
zero-order methods, in particular in Monte-Carlo techniques, genetic algorithms
and evolution strategies, which are described herein.

1 Introduction

Since more than thirty years mathematical programming has become a
standard tool for structural optimization. Initially, methods which used
only local information of the functions and which required no gradients
were favoured. Grid- and tabu-search were first proposed and faced with
highly non-convex problems and searching for a most general tool for their
solution, the statistical trial and error methods found renewed interest in
the mid-sixties. The Monte-Carlo-Method (MCM) as introduced by the
famous “Metropolis-Algorithm” [1], generates a set of uncorrelated statis-
tically independent events. These events are random numbers assigned to
the variables and the problem under consideration is “tested” by computing
and comparing the function values. The MCM has been used for the ap-
proximation of integrals and also for the computation of failure probabilities
of structures [2]. When applied to optimization problems, the MCM can
be compared to a pattern search where the grid size is chosen at random
and varies after each function evaluation. In general, in a Monte-Carlo ap-
proximation like in a grid search, the number of function evaluations grows
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exponentially with the number of variables.

These zero-order and direct methods were followed in the seventies by
first- and second-order methods, which required the analytical or numerical
computation of first- and second-order gradients. The restriction to the class
of differentiable optimization problems was honoured by faster and even su-
perlinear convergence. Due to the high non-linearity and because of the
non-convexity of most engineering problems, these gradient-based methods
ended up at best at a local optimal design point. Furthermore, their lack of
robustness for problems with hundreds of design variables and constraints
became apparent. A decomposition of the engineering problems which pre-
served the superlinear convergence proved to be difficult: The decompos-
ability decreases with the complexity of the problems and the complexity
imcreases with the realistic modelling of the problems. For this reason, the
zero-order and direct methods gained renewed interest in the early eighties.
This tendency was further enhanced by the availability of high-speed paral-
lel computing. Influenced by this development, stochastic search methods
and Darwinian methods have been the subject of many publications during
the past fifteen years. Among these, the genetic algorithms ((1As) and the
evolution strategies (ESs) are two of the most discussed search strategies.
In the following, the basic concepts and a parallelization technique of GAs
and ESs are described.

2 The basic genetic algorithm

The basic genetic algorithm was proposed in 1975 by Holland [3] and De-
jong [4]. In 1989 Goldberg [5] extended the eatly work to optimization and
machine learning. Applications to structural analysis and design were pro-
posed by many other researchers. A genetic algorithm can be considered
as an iterative scheme, where each iteration cycle forms a generation of an
evolutionary process.

2.1 Encoded representation of the design variables

As a main property of GAs the fact of using binary encoded individuals
{genotype level) has to be noted. The components x; of the vector

A\’:(.L‘],Iz,'".,.’l?,,"',.’l‘n)rly (1)

are considered as genes. By using a binary coding:

m—1

()10 = Z b; x 92 b;=10r0 (
1=0

(8
~—

a component x; can be represented by a substring with a length of m.
The encoded components can be considered as chromosomes. A vector of
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design variables, usually called an individual, is characterized by a string of
chromosomes:

In the following optimization process GAs work only with these coded bi-
nary strings.

For a discrete design variable, the length m of the substring depends
on the number of the feasible diskrete values of the variable. In case of
m = 4, for example, 16 discrete values can be represented by the substrings
(0000)to(1111). For a continuous design variable, the length m of the
substring depends on the required precision A., then the length m of the
binary substring may be estimated from the folloewing relationship [6]:

2™ > (zp — zp)/A: + 1] (3)

Here, 27 and zp are the lower and upper bounds of a continuous variable
z;. It is obviously that a continuous variable is treated as a discrete one by
dividing its feasible region [zr, x¢] into 2™ discrete values.

2.2 Mating, crossover and mutation

In the v-th generation, a population of y individuals, characterized by their
genes (chromosomes) exists:

1. 110 10 1 1,
2.1 0 0 0 1 0 0 1,
gt 1 1 0 0 ... 1 0 1 0.

The p individuals are mated at random. As a result of mating, a
crossover of chromosomes takes place. The crossover of two individuals A
and B results in A* and B*. In a one-site crossover, the set of chromosomes
is subdivided into two groups by one borderline (|) which is set at random.
The chromosomes in one of the groups are exchanged as pointed out in the
following example:

(before crossover)

A =((0110] ..1011)

B = (001} ..1101
(after a one-site crossover)

A = (1 0 0 1 | 1 01 1)

B = (0110 | 11 0 1)
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In a two-site crossover the chromosomes between two arbitrarily set border-
lines are exchanged, e.g.
(before crossover)

A=(011]0 101 1)

B = (100 ]1 1 1] 01
(after a two-site crossover)

A= (011 |1 ..11]11)

B = (1 00]0..10] 01

As rare and secondary events, mutations occur: With a low probability,
certain chromosomes in the genetic code of individuals, selected at random,
are exchanged from 1 to 0 or inversely, e.g.:

from A" = (0 1 1 1 .. 1111)

to A" = (0 110 .. 1111

After crossover and mutation i new individuals are generated. The u
old individuals die out.

2.3 Reproduction

For a specific optimization problem of the form

minimize F(X) (4)
subject to  ¢(X) <0 1=1,2,...,m

the fitness of each individual must be defined. For an admissible point X the
value of the objective function can be used for the definition of its fitness.
In general it is difficult to generate admissible points in a random process.
For this reason, a penalty transformation

minimize f(X)+p Z ®lg:(X)] (5)

can be used, where ® is an appropriate penalty function [7] and p is a
penalty coefficient.

With considering Eq. (4), the fitness of a individual X; can be defined
as follows(8]:

FJ :(fmaz*’fmin)_fja (6)

where f,... is the maximal value of the objective function between the u
individuals and f,,;, is the minimal one. According to their fitness values,
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each of the y new individuals gets o copies into the mating pool of the next
generation, where « is calculated as follows, with rounding off:

5
25:1 PWJ/# .

A good individual X; (with @ > 1) will get more than one copy in the next
generation and a bad one gets no copy. This process is called reproduction
following the Darwinian principle “survival of the fittest”. After reproduc-
tion a meting pool of the (v +1)-th generation with x individuals is formed,
which has a higher average fitness value than that of the v-th generation.
In general, the population is kept constant and the evolutionary process

G; =

is carried on until some stopping criteria are met.
Modifications and extensions are known from literature, e.g. [5] and
will not be discussed here.

3 The basic multi-membered evolution strategy

Evolution strategies are often presented and discussed as a technique com-
peting with genetic algorithms. A concluding decision, which one is supe-
rior, is certainly impossible, a comparison of similarities and differences is
given in next section.

The evolution strategies were first proposed by Rechenberg [9] in 1964.
Applications to optimization of technical systems were proposed by Rechen-
berg in 1973 [10]. A comprehensive description is given by Schwefel [11] and
Hartmann [12]. Applications to structural analysis and design can also be
found in [13]. Both, genetic algorithms and evolutions strategies. are di-
rected or controlled statistical search techniques.

In the following we first restrict ourselves to a basic form of the multi-
membered evolution.

3.1 Recombination and mutation

A main property of ESs that differs from GAs is that ESs work with real
values of the variables (phenotype) instead of encoded binary strings.

In the v-th generation a population of x design points, called y parent
vectors, are given:

Pr=(X{ XY, XD (8)
with -
X1 = [11,1, Ty, " Il,n]
X'zp = [12‘1~ T2, " Iz,n] (9)
‘Xf = [33;4,17 Tp2s " ‘L’u,n]

From these o parent vectors, A new design points, called offspring vectors,
will be generated. For every offspring vector a temporary parent vector



\'}ﬁ Transactions on the Built Environment vol 28, © 1997 WIT Press, www.witpress.com, ISSN 1743-3509
158 Computer Aided Optimum Design of Structures V

X =13, 34,..., #,)T should be first built by means of recombination. For
a continuous problem five recombination cases which can be used selectively
are given by Hoffmeister and Baeck [15]:

xg 0t xp,; randomly  (A)
L/2(xe: + 2p,) (B)
:2‘1' = Thii (C) (10)
T4i0r Ty, randomly (D)
V/2(2q; + 2;,) (E)

where #; is the i-th component of the temporary parent vector XF, Tay
and xp; are the i-th components of the vectors Xf and Xf which are two
parent vectors randomly chosen from the population. In case (C) of Eq.
(10), & = x;; means that the i-th component of X* is chosen randomly
from the i-th components of all u parent vectors.

For discrete optimization problems the following recombinations are
employed [14]:

T 0r &, randomly  (A)
Loji (B)
T; = ¢ 2gi0rap;; randomly (C) (11)
Tm,iOr 2, randomly (D)
T, O Ty;; tandomly (E)

Where the vector XP is not chosen at random but as the best of the p
parent vectors in the v—th generation. In cases (D) and (E) of Eq (11)
the information from the best parent can be used which results in a better
convergence for many problems.

From the temporary parent X* an offspring vector X7O can be created
by means of mutation as follows: ‘

X0 = X'+ 75, (12)

where Z; = [zj1,2j2,..-,2jn] ] is a vector of random change. For con-
tinuous problems the components z;,; are random numbers from a normal
distribution [11]:
2
(20 — &) 13
5 ) (13)
2

exp(— 7o

1
p(“],z) = \/EZ‘W‘)O','

where &; is the expectation, which should have the value zero, and o? is the
variance, which should be small.

For a discrete problem, the components of the random change vector
Z; have the form [14]

(k+ 1)éz; (I <n) randomly chosen
Zii = components, (14)
0 n—1 other components,
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Where §2; is the current difference between two adjacent values in the dis-
crete set and & is a Poisson-distributed integer random number with the
distribution

"

pr) = e (15)

where ~ is the deviation of the random number x and should range from
0.001 to 0.1. A uniformly distributed random choice decides which [ com-
ponents should be changed for a mutation according to Eq. (14). For
structural optimization problems. according to our research, a suitable /
value ranges from 8 to 12 [14]. The first line of Eq. (14) has a symbolic
sense: a mutation should be taken from the current discrete value to the
(k+1)-th adjacent discrete value up or down randomly.

During the optimization process, not only the variables, but also the
optimization parameter like o and v will be changed for improving the con-

vergence rate. This is called self-adaptation of the optimization parameters
11, 14].

3.2 Selection

Now we have a population of (u+2A) individuals. Following the Darwinian
principle “survival of the fittest” p best individuals will be selected accord-
ing to their fitness for surviving to the next generation. The fitness of a
individual is defined as its value of objective function:

Fy = f(X;). (16)

There are two variants of the multi-membered evolution strategy:
(+A)-ES and (g, A)-ES. In the case of (p+X)-ES, all the p+A individ-

uals are ordered according to their fitness values:
Fl S 1'72 S F’;H—,\ (17)

The first set of the p elements are chosen as the parent vectors of next
generation

prl=(xPoXE X (18)

In the case of (g, A)-ES (A > p), only the A offspring vectors of the v-
generation are ordered according to their fitness values:

O (19)

The first set of the p elements are chosen as the parent vectors of next
generation. The y parent vectors of the v-generation die out.
For a continuous problem the search will be terminated [11],

1) if the absolute or relative difference hetween the best and the worst
objective function values is less than a given value €1, or
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2) if the mean value of the objective function values of all parent vectors
in the last K (> 2n) generations has been improved by less than a
given value e;.

For discrete problems the following termination criteria can be used
[14]. The search will be terminated,

a) if the best value of the objective function in the last K (> 4nu/A)
generations has not been improved, or

b) if the mean value of the objective function values from all parent
vectors in the last Ky (> 2nu/A) generations has been improved by
less than a given value ¢, or

c) if the relative difference between the best objective function value and
the mean value of objective function values from all parent vectors in
the current generation is less than a given value ¢, or

d) if the ratio pp/p has reached a given value €4, where p;, is the number
of the parent vectors in the current generation with the best objective
function value.

4 Parallelization

Both ESs and GAs imitate biological evolution and work simultaneously
with a population of design points in the space of variables. This inherent
parallelism allows for an implementation of in a parallel computing envi-
ronment.

With an increasing size of the population, the probability to obtain
a global optimum increases almost proportionally. However, large scale
problems with an increasing size of population also require much comput-
ing time. Following an idea of natural evolution, a parallel sub-evolution-
strategy (PSES) was suggest by the authors [14, 17]. A similar paralleliza-
tion called “islands model” is discussed by Surry and Radcliffe [16]. The
population can be divided into several smaller subpopulations which can
undergo their evolution separately and in parallel. In order to prevent the
development of evolutionary niches, migration between the subpopulations
must be allowed.

In the parallel implementation on a n-processor computer, the whole
population is divided into n subpopulations, each processor runs the GAs
or the ESs on its own subpopulation. Periodically some good individuals
will be selected and copies of them will be sent to one of its neighbors
(migration). Every subpopulation also receives copies from its neighbors,
which replace its own “bad” individuals.

The information exchange will be carried out in a determined sequence,
For example, from processor i-1 to i and from i to i+1 [14]. During a
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optimization process, except for the information exchange, the job on every
processor runs independently and a local search can be stopped according to
its own termination criterion. If a job on a processor terminated normally,
it sends a signal to its neighbours. To keep the cyclic exchange working,
exchange between the processor and its neighbours is carried out until all
computations are terminated.

5 Conclusions and Acknowledgements

Heuristic methods like the Darwinian methods show important advantages
compared with conventional methods from mathematical programming:
First, they are easily parallelized and second, discrete optimization prob-
lems and mixed discrete-continuous problems can be solved approximately.
The methods developed for using mathematical programming, e.g. fast
techniques for redesign and approximate evaluations of gradients, could be
incorporated in the future. An extension to include chance-constraints and
the non-deterministic nature of material properties and loading seems to be
straightforward. Solutions in this field might give better insight into the
optimal design and into the safety of optimized structures.

The research described in this paper was partially supported by Ger-
man Research Association (DFG) under grant TH-218/12-1/2. The authors
would like to thank DFG for the support.
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