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We propose the characterization of binary cellular automata using a set
of behavioral metrics that are applied to the minimal Boolean form of
a cellular automaton’s transition function. These behavioral metrics
are formulated to satisfy heuristic criteria derived from elementary
cellular automata. Behaviors characterized through these metrics are
growth, decrease, chaoticity, and stability. From these metrics, two
measures of global behavior are calculated: 1) a static measure that
considers all possible input patterns and counts the occurrence of the
proposed metrics in the truth table of the minimal Boolean form of the
automaton; 2) a dynamic measure, corresponding to the mean of the
behavioral metrics in n executions of the automaton, starting from n

random initial states. We use these measures to characterize a cellular
automaton and guide a genetic search algorithm, which selects cellular
automata similar to the Game of Life. Using this method, we found
an extensive set of complex binary cellular automata with interesting
properties, including self-replication.

1. Introduction

Cellular automata with complex behavior exhibit dynamical patterns
that can be interpreted as the movement of particles through a phys-
ical medium. These particles are interpretable as loci for information
storage, and their movement through space is interpretable as infor-
mation transfer. The collisions of these particles in the cellular au-
tomaton’s lattice are sites of information processing [1, 2, 3, 4]. Cel-
lular automata with complex behavior have immense potential to de-
scribe physical systems and their study has had impact in the design
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Rule Sample Evolution Boolean Form Behavior

R204 q Stable

R160 p AND r Decreasing

R252 p OR q Growing

R90 p XOR q Chaotic

Table 1. Elementary cellular automata with simple Boolean forms, which are

unequivocally associated to a particular behavior. The Boolean values of the

cells in the neighborhood are p for the left neighbor, q for the central cell,

and r for the right neighbor. Black cells are in 1 state, white cells are in 0

state.

of self-assembling structures [5, 6, 7, 8] and the modelling of biological
processes like signaling, division, apoptosis, necrosis and differentia-
tion [9, 10, 11, 12, 19]. John Conway’s Game of Life [13] is the most
renowned complex binary cellular automaton, and the archetype used
to guide the search methodology for other complex binary cellular au-
tomata that we describe in this work. Previously, complex behavior in
binary cellular automata has been characterized through measures such
as entropy [3], Lyapunov exponents [14, 15], and Kolmogorov-Chaitin
complexity [16]. We propose the characterization of the behavior of
n-dimensional cellular automata through heuristic measures derived
from the evaluation of their minimal Boolean forms. This proposed
characterization is derived from heuristic criteria validated in elemen-
tary cellular automata with simple Boolean forms. Table 1 illustrates
the rationale for this characterization showing elementary cellular au-
tomata whose Boolean forms are minimally simple, and whose behavior
can be unequivocally identified. Cellular behaviors of growth, decrease,
and chaoticity are characterized by the Boolean operations OR, AND,
and XOR, respectively. The cellular behavior of stability can be char-
acterized by the absence of a Boolean operator or the use of the NOT

operator.
We define an evaluation criterion to produce metrics that charac-

terize the behavior of cellular automata whose minimal Boolean ex-
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pressions are more complex (i.e. have more terms and the combination
of various operators) than those appearing in Table 1. The produced
metrics are used to create static and dynamic measures of behavior.
The static measure of behavior is calculated from the truth table of
the minimal Boolean expression of the cellular automaton, and the dy-
namic measure of behavior is derived from the averaged appearance of
the metrics in n executions of the cellular automaton from n random
initial conditions. We use the Euclidean distance of these measures
in a given cellular automaton to the measures of the Game of Life to
assess its capacity for complex behavior, and use this distance as a cost
function to guide the genetic search of n-dimensional cellular automata
with complex behavior.

2. Definition of binary cellular automaton

A cellular automaton is formally represented by a quadruple {Z, S, N, f},
where

Z is the finite or infinite cell lattice,

S is a finite set of states or values for the cells,

N is the finite cell neighborhood,

f is the local transition function, defined by the state transition rule.

Each cell in the lattice Z is defined by its discrete position (an
integer number for each dimension) and by its discrete state value S.
In a binary cellular automaton, S = {0, 1}. Time is also discrete. The
state of the cell is determined by the evaluation of the local transition
function on the cell’s neighborhood at time t; t + 1 is the next time
step after time t. The neighborhood is defined as a finite group of cells
surrounding and/or including the observed cell.

2.1 Lattice, cell and configuration

The global state is the configuration of all the cells that comprise the
automaton, C ∈ SZ . The lattice Z is the infinite cyclic group of
integers {. . . , −1, 0, 1, 2, . . . }. The position of each cell in the lattice is
described by the index position x ∈ Z. Configurations are commonly
written as sequences of characters, such as

C = . . . c−1c0c1c2 . . . (1)

The finite global state is a finite configuration C ∈ SZ , where Z is
a finite lattice, indexed with 0, 1, 2, 3 . . . n − 1 integers,

C = c1c2 . . . cxcx+1 . . . cn−2cn−1 (2)

Complex Systems, volume (year) 1–1+
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N t
x

f(N t
x
)

000 0
001 1
010 1
011 1
100 1
101 0
110 1
111 0

Table 2. Local transition function of R94 as a truth table.

2.2 Neighborhood and local transition function

The set of neighborhood indices A of size m = |A| is defined by the set
of relative positions within the configuration, such that

A = a0, a1, . . . , am−2, am−1 (3)

Nx is the neighborhood of the observed cell cx that includes the set
A of indices, and is defined as

Nx = cx+a0
cx+a1

. . . cx+am−2
cx + am−1 (4)

this describes the neighborhood as a character string that includes
the cells that are considered neighbors of the observed cell x. A com-
pact representation of the neighborhood value Nx is a unique integer,
defined as an m−digits, k−based number [2]

Nx =

m−1∑

i=0

km−1−icx+ai
= cx+a0

km−1 + · · · + cx+am−1kk0 (5)

The local transition function f yields the value of cx at t + 1 from
the neighborhood of the cell observed at present time t is expressed by

f(N t

x
) = ct+1

x
(6)

where N t
x

specifies the states of the neighboring cells to the cell x at
time t. The transition table defines the local transition function, listing
an output value for each input configuration. Table 2 is a sample tran-
sition table for an elementary cellular automaton with a neighborhood
of radius 1, wherein adjacent neighboring cells of cx are cx−1 and cx+1,
forming a tuple {cx−1, cx, cx+1}, S ∈ {0, 1}.

2.3 Global transition function

The global dynamics of the cellular automaton are described by the
global transition function F

F : SN → SN (7)

Complex Systems, volume (year) 1–1+



Search of Complex CA Using Behavioral Metrics 5

F is the transition between the current global configuration Ct and
the next global configuration Ct+1

Ct+1 = F (Ct) (8)

The global transition function F is defined by the local transition
function f as

F (Cx) = . . . f(Nx−1)f(Nx)f(Nx+1) . . . (9)

3. Transformation of the cellular space

We redefine the local transition function to incorporate behavioral
knowledge of the automaton’s evolution, given an input/output pair.
This redefined function is applied to all cells of the automaton at a
given evolution step t to quantify its overall behavior.

3.1 Redefined local transition function

The redefined local transition function g calculates the behavioral met-
ric of a single cell cx evaluating the local transition function f on its
neighborhood N t

x
. Through the local transition function g, we define

the transformation dt+1
x

that yields the next step of the evolution of
cell cx as

dt+1
x

= g(f, N t

x
) (10)

This transformation is necessary to calculate the measure of dy-
namic behavior during the automaton’s evolution, and we propose the
inclusion of a metric characterizing the cell behavior obtained after
evaluating a particular input. Input for the Boolean operators consid-
ered may be of the form

Input1 < operator > Input2 = Output (11)

where < operator > ∈ {OR, AND, XOR} The behaviors associated
with each binary Boolean operator and its possible inputs and outputs
are shown in Table 3.

The behaviors associated with unary patterns are shown in Table 4.

< operator > Input = Output (12)

where < operator > ∈ {NOT , NOP}
where NOP stands for “no operator”. To characterize the automa-

ton’s behavior, we expand the state space

g : {SN , f} → M, (13)

Complex Systems, volume (year) 1–1+
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Input1 Input2 Output Behavior OR AND XOR

0 0 0 Stability X X
1 0 0 Decrease X
0 1 0 Decrease X
1 1 0 Chaoticity X
0 0 1 Chaoticity X
1 0 1 Growth X
0 1 1 Growth X
1 1 1 Stability X X

Table 3. Behaviors associated to binary Boolean patterns

Input Output Behavior NOT NOP

1 1 Stability X
0 0 Stability X
1 0 Stability X
0 1 Stability X

Table 4. Behavior associated to unary Boolean patterns

where

M = {0, 1, 2, 3, 4, 5} (14)

The different values of M abbreviate the duples of state and behavior
shown in Table 5. Each tuple is obtained from the result of the local
transition function g applied to a particular configuration of the cell x

and its neighborhood N .

M {St+1
x

, behavior}
0 {0, stable}
1 {0, decreasing}
2 {0, chaotic}
3 {1, chaotic}
4 {1, growing}
5 {1, stable}

Table 5. M code, abbreviation of duples of cell state and behavior obtained

when applying the local transition function g.

The M code eases the implementation of an algorithmic search for
cellular automata with interesting behavior using the proposed metrics.
According to the M code, chaotic and stable behaviors may generate
1 or 0 as output from 1 or 0 as input, growing behavior may only
generate 1 as output from 0 as input, and decreasing behavior may
only generate 0 as output from 1 as input.

Complex Systems, volume (year) 1–1+
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3.2 Global transition function

The global behavioral metric of the cellular automaton is characterized
as

G : {SN , f} → MN (15)

G represents the transition between the current global configuration
Ct and the next global configuration Ct+1. We set D0 = (0, f) and
express the automaton’s global behavioral metric as

Dt+1 = G(Ct, f) (16)

for example, from the initial state,

C0(initial state)

C1 = F (C0) → D1 = G(C0, f)

C2 = F (C1) → D2 = G(C1, f)

C3 = F (C2) → D3 = G(C2, f)

C4 = F (C3) → D4 = G(C3, f)

...

The redefined global transition function G is expressed as the con-
catenated string obtained when the redefined local transition function
g is applied to all of the automaton’s cells ci

G(. . . cx−1cxcx+1, f) = . . . g(nx−1, f)g(nx, f)g(nx+1, f) . . . (17)

3.3 Implementation of g(f, N t

x
)

The g function incorporates heuristic information that enables the mea-
surement of behaviors in the automaton’s lattice. The g function per-
forms the following steps, given a pattern N t

x
and the transition func-

tion f :

1. The local transition function f is simplified to its minimal Boolean
expression.

2. f is expressed as a binary execution tree.

3. N t
x is evaluated on the binary execution tree obtained in 2.

In Table 1 we mentioned the behavioral characterization correspond-
ing to cellular automata whose minimal expression correspond to a sin-
gle Boolean operator. This characterization needs to be extended to
describe cellular automata whose minimal forms have several distinct

Complex Systems, volume (year) 1–1+
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Boolean operators. To tackle this problem, we express a cellular au-
tomaton’s transition function in a binary evaluation tree and propose
a set of evaluation rules for its nodes based on heuristic criteria.

We write the transition function of the minimal expression of the
automaton’s rule in a tree graph. We assign to each node of the tree
a Boolean operation. The transition function is evaluated, with input
placed at the tree’s leaves, according to heuristic rules. The result of
the evaluation is obtained at the root node. The heuristics considered
are crafted to fit criteria derived from the characteristic behaviors of
several elementary cellular automata.

The proposed heuristic H consists of rules for evaluation of the nodes
in the binary tree. These tree evaluation rules are defined for

term < OPERATOR > term

and
< OPERATOR > term

where < OPERATOR > ∈ {AND, OR, XOR, NOT} and term cor-
responds to the set M = {0, 1, 2, 3, 4, 5}

Figure 1 shows the heuristic precedence rules defined for each logical
operator. Figure 2 shows the elementary cellular automata used to
define the heuristic characterization criteria, alongside their minimal
Boolean forms.

AND OR

XOR NOT

Figure 1. Tree Evaluation rules H, squares correspond to inputs and circles

to outputs. White corresponds to M = 0 = {0, stable}; yellow corresponds

to M = 1 = {0, decrease}; green corresponds to M = 2 = {0, chaotic};

red corresponds to M = 3 = {1 , chaotic}; blue corresponds to M = 4 =

{1, growth}; black corresponds to M = 5 = {1 , stable}.

Complex Systems, volume (year) 1–1+



Search of Complex CA Using Behavioral Metrics 9

R90 = p XOR r R128 = p AND q AND r R150 = p XOR q XOR r

R160 = p AND r R204 = q R250 = p OR r

R254 = p OR q OR r

Figure 2. Elementary cellular automata used to define the criteria in H.

Criterion 1 - In the leaf nodes, S = 0 must be equivalent to M =
0 = {0, stable} and S = 1 must be equivalent to M = 5 = {1, stable}.

Criterion 2 - Chaoticity measured in R150 = p XOR q XOR r must
be greater than chaoticity measured in R90 = p XOR r.
The proposed heuristic H produces the following behavioral metrics
in these automata:

R150 chaoticity = 0.375

R90 chaoticity = 0.25

Criterion 3 - Chaoticity measured in R90 = p XOR r must be greater
than chaoticity measured in R204 = q.
The proposed heuristic H produces the following behavioral metrics
in these automata:

R90 chaoticity = 0.25

R204 chaoticity = 0

Criterion 4 - Decrease measured in R128 = p AND q AND r must be
greater than decrease measured in R160 = p AND r.
The proposed heuristic H produces the following behavioral metrics
in these automata:

R128 decrease = 0.75

R160 decrease = 0.5

Complex Systems, volume (year) 1–1+
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Criterion 5 - Decrease measured in R128 = p AND q AND r must be
greater than decrease measured in R160 = p AND r.
The proposed heuristic H produces the following behavioral metrics
in these automata:

R160 decrease = 0.5

R204 decrease = 0

Criterion 6 - Growth measured in R254 = p OR q OR r must be
greater than growth measured in R250 = p OR r

The proposed heuristic H produces the following behavioral metrics
in these automata:

R254 growth = 0.75

R250 growth = 0.5

Figure 3 shows percentage of measured behaviors, using the pro-
posed set of evaluation rules H, in the elementary cellular automata
considered in the criteria.

Figure 3. Behavioral percentages in elementary cellular automata considered

as criteria for evaluating the proposed heuristic

Complex Systems, volume (year) 1–1+
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Figure 4. Evaluation of the input pattern 101 in R94 with the proposed rules.

3.4 Evaluation example with R94

The minimal Boolean expression of R94, f = (q AND (NOT p)) OR

(p XOR r), is placed in a binary evaluation tree, as shown in Figure 4.
Each node in the tree is evaluated using the rules shown in Figure 1.
This process is demonstrated in the Steps 1-5 listed below.

Step 1. In the leaf nodes, the values N t=0

q are {p = 1, q = 0, r = 1},

are transformed, using the M code mentioned in Section 3.1 as follows:

SM (p) = {1, stable} = 5

SM (q) = {0, stable} = 0

SM (r) = {1, stable} = 5

thus, the input tuple {p = 1, q = 0, r = 1} is converted into {p =
5, q = 0, r = 5}.

Step 2. Leaf p = 5 is evaluated at the NOT node, producing output
0 = {0, stable}

Step 3. Leaf q = 0 and the result of step 2 are evaluated at the AND

node, producing output 0 = {0, stable}.

Step 4. Leaves p = 5 and r = 5 are evaluated at the XOR node
producing output 2 = {0, chaotic}.

Complex Systems, volume (year) 1–1+



12 Juan López-González, Antonio Rueda-Toicen

N t
x

f(N t
x
) g(Nx, f)

000 0 M = 1
001 1 M = 4
010 1 M = 4
011 1 M = 4
100 1 M = 4
101 0 M = 2
110 1 M = 4
111 0 M = 2

Table 6. Truth table of R94, with associated M code

Step 5. The output of step 4 and the output of step 5 are evaluated
at the OR node, producing as final output 2 = {0, chaotic}. The cell
q gets assigned to state 0 in t + 1, and a counter for the occurrence of
chaotic behavior in the states of R94 would get incremented by one.

4. Behavioral characterization

To characterize the overall behavior of a cellular automaton with the
proposed metrics, we consider the correlation between two measures:

1) A static measure, which is the counted occurrence of behaviors
associated to the code M , in the output of the truth table of the min-
imal Boolean expression of the cellular automaton.

2) A dynamic measure, which is the median occurrence of behaviors
associated to the code M in n executions of the cellular automaton,
starting from n random initial states.

4.1 Static measure of behavior

The local transition function transition f is expressed as a truth table,
which is converted to g when we include behavioral information. To
calculate the static measure of behavior, we count the occurrence of
behaviors associated with the values of M in the output of the truth
table. This static measure is a vector, with the percentages of chaotic-
ity, stability, growth and decrease measured in the cellular automaton.
This static measure is represented as a vector, with the percentages
of chaoticity, stability, growth and decrease measured in the cellular
automaton.

For example, in R94 the rule is characterized using the M code as
shown in Table 6.

To obtain the static measure of R94, we count the occurrences of
M . The static measure of the rule is the percentage of behavioral
occurrence in the automaton, as shown in Table 7.

Complex Systems, volume (year) 1–1+
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Stability Decrease Growth Chaoticity
M = {0, 5} M = 1 M = 4 M = {2, 3}

0% 12.5% 62.5% 25%

Table 7. Behavioral percentages in R94, static measure

Figure 5. Evolution of R94 from a random initial configuration, yellow coloring

for M = 1, green coloring for M = 2 and blue coloring for M = 4. The code

M was applied to cells in t ≥ 1. The percentage of cells with M = 1

(decreasing behavior) is 18.658%, cells with M = 2 (stable behavior) are

32.467% and cells with M = 4 (chaotic behavior) occupy 48.874% of the

lattice.

We express this measure as a vector of percentages.

ME = {stability %, decrease %, growth %, chaoticity %} (18)

For R94, the static measure of behavior is

ME = {0, 12.5, 62.5, 25}

4.2 Dynamic measure of behavior

To estimate the dynamic measure of behavior MD, we execute the cel-
lular automaton n times, from n random initial configurations Ct=0

i
|i ∈

n. We sample occurrences of M in the cell space up to the k-th evolu-
tion step, where k is an integer > 0, obtained from a uniform distribu-
tion.

MD(g) = lim
x→∞

(M t=k

D
(g, ct=0

i
))

n
(19)

We exclude cells at t = 0 from the sampling. The percentages of
behavioral occurrences are calculated from the mean of samples. Figure
5 shows the sampling of R94 in k = t = 20.

Complex Systems, volume (year) 1–1+
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ME MD

Chaoticity 67.96 13.38
Decrease 4.68 75.23
Growth 27.34 11.37
Stability 0 0

Table 8. Static and dynamic measures in the Game of Life, their correlation

is -0.29

5. Analysis of the Game of Life

The Game of Life is a complex cellular automaton, class IV accord-
ing to the classification proposed by Wolfram [1, 3]. In this cellular
automaton, there is a negative correlation between the static measure
of behavior and the dynamic measure of behavior. Table 11 shows
this negative correlation and the absolute difference between the static
measure and the dynamic measure in the Game of Life.

Some observations pertinent to the measured behavior in the Game
of Life:

Static measure: chaotic behavior predominates, an important charac-
teristic of class III automata.

Dynamic measure: decreasing behavior predominates, an important
characteristic of class I automata.

Looking at the transition function f of The Game of Life, one can
find patterns such as

(. . . )

NOT x0 AND NOT x1 AND NOT x2 AND x8

AND (x3 XOR x4) AND (x5 XOR x6) OR

NOT x0 AND NOT x1 AND NOT x3 AND x8

AND (x2 XOR x4) AND (x5 XOR x6) OR

(. . . )

It is our hypothesis that the emergence of complex behavior in the
Game of Life is determined by the appearance of islands of chaotic
behavior, surrounded by decreasing patterns. Taking a close look at
the boolean expression of f in the Game of Life, one can observe chaotic
sub-expressions like (x3 XOR x4) being "restricted" with AND-ing by
decreasing sub-expressions such as (AND NOT x2 AND x8).

In Figure 6, yellow cells have value M = 1 (decreasing behavior),
and blue cells have value M = 4 (growth behavior). Green cells cells

Complex Systems, volume (year) 1–1+



Search of Complex CA Using Behavioral Metrics 15

Figure 6. The Game of Life, colored according to behavior

have M = 2, exhibiting chaotic behavior. Note that in Figure 6, de-
creasing cells (M = 1) cover the largest proportion of the lattice, which
corresponds with the dynamic measure of measure of decrease shown
in Table 8. One can also appreciate how the isolated patterns exhibit
a combination of growth (M = 4) and chaoticity (M = 2).

6. Search of complex binary cellular automata in two dimensions

The proposed behavioral metrics were crafted using heuristic criteria
from one-dimensional binary cellular automata, yet are applicable to
characterize binary cellular automata with different neighborhoods in
lattices of higher dimensions. To demonstrate this, we developed a
genetic search algorithm [17] of non-totalistic 2D cellular automata in
the Moore neighborhood with radius equal to one. This algorithm
searches for automata with behavioral measures similar to those in the
Game of Life in a space of size 2512. The genetic algorithm uses a cost
function to evaluates each cellular automaton in the population, with
this cost being the Euclidean distance between the behavioral measures
of each cellular automaton with the behavioral measures of the Game
of Life. Another selection condition was added: like the Game of Life,
the selected cellular automaton must have stability = 0 in both its
static and dynamic measures. We found a large number of cellular

Complex Systems, volume (year) 1–1+



16 Juan López-González, Antonio Rueda-Toicen

automata with interesting complex behaviors, like gliders, blinkers and
self-replicating patterns.

6.1 Tests and results

The proposed genetic search algorithm evolved an initial population of
20 individuals through 5000 generations, each individual being a cellu-
lar automaton with a randomly generated transition function f . Each
cellular automaton’s transition function is represented in the popula-
tion as a chromosome of 512 Boolean values. One point crossover and
random mutation (with probability 0.01) were applied at each evolu-
tion step[18]. The sampling used to measure dynamic behavior was
taken at random intervals at least 10 times for each cellular automaton
in the population. In a space of 2512 possible cellular automata, we
generated about 10000 different cellular automata through crossover
and mutation, and selected the 1000 closest to the behavioral mea-
sures of the Game of Life. These automata were qualitatively eval-
uated. We found 300 cellular automata in which one can appreciate
gliders, blinkers, and other interesting complex behaviors. Among the
cellular automata with complex behavior found, we identified a self-
replicating cellular automaton, corresponding to Wolfram rule number
168956220003150428540506549680417619769424995409487733442556
339612333081717128579374366701058219674682166161189003344417
08509286446343520818184926824448. In this automaton, we can ap-
preciate a pattern that is replicated twice after 91 steps, as shown in
Figure 7. Curiously, this complex cellular automaton is more distant
from the behavioral measures of the Game of Life than other CA found
using the proposed methodology. However, one characteristic is preva-
lent in this and the other found CA: a negative correlation between
their static and dynamic behavioral measures.

Complex Systems, volume (year) 1–1+



Search of Complex CA Using Behavioral Metrics 17

(a) t = 0

(b) Replication of the initial state at t = 91

(c) Persistence of the pattern and its copy at t = 307

Figure 7. Self replication in cellular automaton with behavioral metrics similar

to the Game of Life, the feature vector of behavioral metrics used to find it

is shown below.

ME MD

Chaoticity 61.72 5.61
Decrease 3.32 90.63
Growth 34.96 3.77
Stability 0 0

Table 8. Euclidean distance to the feature vector of behavioral metrics of

the Game of Life is 21.31. The correlation between measures of static and

dynamic behavior in this cellular automaton is -0.45

Complex Systems, volume (year) 1–1+



18 Juan López-González, Antonio Rueda-Toicen

This self-replicative pattern is a particular kind of localized structure
that moves across the cellular automaton’s lattice. These localized
structures, or "gliders" (which aren’t always self-replicative) can be seen
as streaks in averaged spacetime slices that depict the evolution of the
cellular automaton from random initial conditions. Figure 8 shows the
spacetime slices depicting gliders on the found self replicative CA and
on the Game of Life, as comparison.

Found Self-Replicative CA Game of Life

Figure 8. Averaged spacetime evolutions, showing gliders as streaks.

We present examples of complex cellular automata found with the
proposed search method1. Mean spacetime visualizations of the evolv-
ing state of the automaton are provided for each; the lower rows of
the lattice being the latter time steps. A list of 277 selected com-
plex binary cellular automata can be found in the Bitbucket repository
at http://bit.ly/complexbinaryca. A Java implementation of the
genetic search algorithm based on behavioral metrics is available at
http://discoverer.cellular-automata.com/.

1One can execute these cellular automata in Mathematica replacing <Rule>

with the corresponding rule number
ListAnimate[ArrayPlot[#]&/@CellularAutomaton[

<Rule>,2,1,1, RandomInteger[1,100,100],0,100]]

Complex Systems, volume (year) 1–1+
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Search of Complex CA Using Behavioral Metrics 19

Rule: 354830437430697307314658045280649922899653607237
152783088733395073850801752918249535088820853655864680729
189540963997737594766246170112169867440686203456

ME MD

Chaoticity 62.11 12.06
Decrease 4.88 78.88
Growth 33.01 9.06
Stability 0 0

Table 9. Euclidean distance to the feature vector of behavioral metrics of

the Game of Life is 9.32. The correlation between measures of static and

dynamic behavior in this cellular automaton is -0.34

Averaged spacetime evolution

Identified gliders

Complex Systems, volume (year) 1–1+



20 Juan López-González, Antonio Rueda-Toicen

Rule: 196928112803567351078509513317947776313717639009629
19233419392303723364585678060118178225231534916460395002491
6004629851769274774088586292232688540354568

ME MD

Chaoticity 64.45 9.28
Decrease 2.54 84.80
Growth 33.01 5.92
Stability 0 0

Table 10. Euclidean distance to the feature vector of behavioral metrics of

the Game of Life is 13.68. The correlation between measures of static and

dynamic behavior in this cellular automaton is -0.40

Averaged spacetime evolution

Identified gliders

Complex Systems, volume (year) 1–1+



Search of Complex CA Using Behavioral Metrics 21

Rule: 25369628583304459989446065099150613536215022807637650
13218910019118617632623181726351808015804669971129335990123
389394577484439270322287946219773078676008

ME MD

Chaoticity 65.63 5.53
Decrease 3.91 90.54
Growth 30.47 4.00
Stability 0 0

Table 11. Euclidean distance to the feature vector of behavioral metrics of

the Game of Life is 19.13. The correlation between measures of static and

dynamic behavior in this cellular automaton is -0.42.

Averaged spacetime evolution

Identified glider

Complex Systems, volume (year) 1–1+
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