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S. Gras,50 C. Gray,15 M. Gray,4 J. Greenhalgh,26 A.M. Gretarsson,11 R. Grosso,33 H. Grote,2 S. Grunewald,1

M. Guenther,15 R. Gustafson,42 B. Hage,36 D. Hammer,51 C. Hanna,18 J. Hanson,16 J. Harms,2 G. Harry,17 E. Harstad,43

T. Hayler,26 J. Heefner,14 I. S. Heng,40 A. Heptonstall,40 M. Heurs,2 M. Hewitson,2 S. Hild,36 E. Hirose,31 D. Hoak,16

D. Hosken,37 J. Hough,40 D. Hoyland,38 S. H. Huttner,40 D. Ingram,15 E. Innerhofer,17 M. Ito,43 Y. Itoh,51 A. Ivanov,14

B. Johnson,15 W.W. Johnson,18 D. I. Jones,47 G. Jones,7 R. Jones,40 L. Ju,50 P. Kalmus,10 V. Kalogera,24 D. Kasprzyk,38

E. Katsavounidis,17 K. Kawabe,15 S. Kawamura,23 F. Kawazoe,23 W. Kells,14 D.G. Keppel,14 F.Ya. Khalili,21 C. Kim,24

P. King,14 J. S. Kissel,18 S. Klimenko,39 K. Kokeyama,23 V. Kondrashov,14 R.K. Kopparapu,18 D. Kozak,14 B. Krishnan,1

P. Kwee,36 P.K. Lam,4 M. Landry,15 B. Lantz,30 A. Lazzarini,14 M. Lei,14 J. Leiner,52 V. Leonhardt,23 I. Leonor,43

K. Libbrecht,14 P. Lindquist,14 N.A. Lockerbie,48 M. Longo,45 M. Lormand,16 M. Lubinski,15 H. Lück,36,2

B. Machenschalk,1 M. MacInnis,17 M. Mageswaran,14 K. Mailand,14 M. Malec,36 V. Mandic,14 S. Marano,45 S. Márka,10

J. Markowitz,17 E. Maros,14 I. Martin,40 J. N. Marx,14 K. Mason,17 L. Matone,10 V. Matta,45 N. Mavalvala,17

R. McCarthy,15 D.E. McClelland,4 S. C. McGuire,29 M. McHugh,20 K. McKenzie,4 S. McWilliams,22 T. Meier,36

A. Melissinos,44 G. Mendell,15 R.A. Mercer,39 S. Meshkov,14 E. Messaritaki,14 C. J. Messenger,40 D. Meyers,14

E. Mikhailov,17 S. Mitra,13 V. P. Mitrofanov,21 G. Mitselmakher,39 R. Mittleman,17 O. Miyakawa,14 S. Mohanty,33

G. Moreno,15 K. Mossavi,2 C. MowLowry,4 A. Moylan,4 D. Mudge,37 G. Mueller,39 S. Mukherjee,33 H. Müller-Ebhardt,2

J. Munch,37 P. Murray,40 E. Myers,15 J. Myers,15 T. Nash,14 G. Newton,40 A. Nishizawa,23 K. Numata,22 B. O’Reilly,16

R. O’Shaughnessy,24 D. J. Ottaway,17 H. Overmier,16 B. J. Owen,32 Y. Pan,41 M.A. Papa,1,51 V. Parameshwaraiah,15

P. Patel,14 M. Pedraza,14 S. Penn,12 V. Pierro,46 I.M. Pinto,46 M. Pitkin,40 H. Pletsch,2 M.V. Plissi,40 F. Postiglione,45

R. Prix,1 V. Quetschke,39 F. Raab,15 D. Rabeling,4 H. Radkins,15 R. Rahkola,43 N. Rainer,2 M. Rakhmanov,32

M. Ramsunder,32 S. Ray-Majumder,51 V. Re,38 H. Rehbein,2 S. Reid,40 D.H. Reitze,39 L. Ribichini,2 R. Riesen,16

K. Riles,42 B. Rivera,15 N.A. Robertson,14,40 C. Robinson,7 E. L. Robinson,38 S. Roddy,16 A. Rodriguez,18 A.M. Rogan,52

J. Rollins,10 J. D. Romano,7 J. Romie,16 R. Route,30 S. Rowan,40 A. Rüdiger,2 L. Ruet,17 P. Russell,14 K. Ryan,15
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We report on the methods and results of the first dedicated search for gravitational waves emitted during

the inspiral of compact binaries with spinning component bodies. We analyze 788 hours of data collected

during the third science run (S3) of the LIGO detectors. We searched for binary systems using a detection

template family specially designed to capture the effects of the spin-induced precession of the orbital

plane. We present details of the techniques developed to enable this search for spin-modulated gravita-

tional waves, highlighting the differences between this and other recent searches for binaries with

nonspinning components. The template bank we employed was found to yield high matches with our

spin-modulated target waveform for binaries with masses in the asymmetric range 1:0M� <m1 < 3:0M�

and 12:0M� <m2 < 20:0M� which is where we would expect the spin of the binary’s components to have

a significant effect. We find that our search of S3 LIGO data has good sensitivity to binaries in the Milky

Way and to a small fraction of binaries in M31 and M33 with masses in the range 1:0M� <m1, m2 <

20:0M�. No gravitational wave signals were identified during this search. Assuming a binary population

with spinning components and Gaussian distribution of masses representing a prototypical neutron star–

black hole system with m1 ’ 1:35M� and m2 ’ 5M�, we calculate the 90%-confidence upper limit on the

rate of coalescence of these systems to be 15:9 yr�1L�1
10 , where L10 is 10

10 times the blue light luminosity

of the Sun.

DOI: 10.1103/PhysRevD.78.042002 PACS numbers: 95.85.Sz, 04.80.Nn, 07.05.Kf, 97.80.�d

I. INTRODUCTION

Currently, there is a worldwide network of kilometer

scale interferometric gravitational wave detectors that are

either at or approaching their respective design sensitiv-

ities. The network includes the U.S. Laser Interferometer

Gravitational-wave Observatory (LIGO) [1,2], the British-

German GEO600 [3], and the French-Italian Virgo [4]. The

radiation emitted during the inspiral stage of a stellar mass

compact binary system is thought to be a likely candidate

for the first direct detection of gravitational waves using

these interferometers [5,6]. The initial interferometers will

be able to search for binary neutron star systems as far as

the Virgo cluster, and higher mass binaries which include

black holes as far as the Coma supercluster. The range of

merger rates consistent with present astrophysical under-

standing is summarized in Ref. [7]. When binary formation

in star clusters is taken into account with relatively opti-

mistic assumptions, detection rates could be as high as a

few events per year for initial LIGO [8–10]. Merger rates

derived for binary populations in galactic fields consistent

with observational constraints from the known galactic

neutron star–neutron star systems are highly uncertain

but are likely to lie in the ranges (at 95% confidence)

0:1–15� 10�6 yr�1L�1
10 and 0:15–10� 10�6 yr�1L�1

10

for black hole–black hole and neutron star–black hole

binaries, respectively [11,12]. The LIGO Scientific

Collaboration (LSC) has searched for compact binaries

with nonspinning stellar mass components in data col-

lected during the first, second, third, and fourth science

runs (henceforth S1, S2, S3, and S4, respectively) [7,13],

by employing optimal matched-filtering techniques [14]

wherein detector data are cross correlated with a bank of

‘‘templates’’ which represent the best current knowledge of

the emitted waveforms.

Studies of compact binaries with spinning components

[15–20] have revealed that general-relativistic dynamical

coupling between the spin and orbital angular momenta (so

long as they are not perfectly aligned or antialigned) will

lead to precession of the binary’s orbital plane which in

turn causes a modulation of the observed gravitational

waves’ amplitude and phase. The binary’s orbital angular

momentum L, and therefore its orbital plane, and the spin

angular momenta of the binary’s components S1, S2 will

precess about its near constant total angular momentum

J ¼ Lþ S1 þ S2. The gravitational waves observed from

a binary depend upon the orientation of the binary relative

to the detector and are strongest along the direction of its

orbital angular momentum. The amplitude and phase of the

gravitational waves emitted by the binary that will be

observed at any particular (fixed) location will therefore

be modulated by the precession of the binary’s orbital

plane. This precession of the orbital plane is nicely illus-

trated in Ref. [15] (see Fig. 2 and the Appendix, in par-

ticular). Figure 1 compares the gravitational waveforms we

would expect to observe from two different binary systems,

one consisting of nonspinning bodies and the other con-

sisting of spinning bodies. The precession of the binary’s

orbital plane, which is related to the Lense–Thirring effect

on gyroscopes in curved spacetimes [21], should not be

confused with the in-plane precession of a binary’s perias-

tron which occurs in both spinning and nonspinning sys-

tems. In this search, we consider signals with frequencies

of 70 Hz and above, corresponding to orbital frequencies of

� 35 Hz. We are thus sensitive only to the final stages of
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the binary inspiral. By this point, the binary orbit has been

circularized due to the emission of gravitational waves (see

Fig. 5 of Ref. [22]); so the precession of periastron degen-

erates into a secular term in the evolution of the phase.

The statistical distribution of the spins of black holes in

inspiraling binaries is not well known [23,24], and until

recently the efforts have focused upon developing tech-

niques for the detection of binary systems with nonspin-

ning components (for recent reviews see Refs. [25,26] and

references therein). The presence of amplitude and phase

modulations in the observed waveforms will reduce our

detection efficiency when using matched-filter templates

which do not include spin effects [17–20]. These effects

are small for low-mass binaries or binaries with roughly

equal component masses, but can be significant for high-

mass or asymmetric systems such as neutron star–black

hole binaries.

This paper reports the methods and results of a search for

gravitational waves emitted during the inspiral of binaries

consisting of spinning compact objects. This search uses a

detection template family designed to capture the spin-

induced modulations of the gravitational waveform which

could have resulted in them being missed by other searches

targeted at nonspinning systems. This is the first time

gravitational wave data have been searched for inspiral

signals from binary systems with spinning component

bodies.

LIGO consists of three detectors located at two sites

across the U.S. The LIGO Hanford Observatory (LHO) in

Washington state consists of two colocated interferometers

of arm lengths 4 km and 2 km which are known as H1 and

H2, respectively. The LIGO Livingston Observatory

(LLO) in Louisiana consists of a single 4 km interferome-

ter known as L1. All three detectors were operated

throughout S3 which spanned 70 days (1680 hours) be-

tween October 31, 2003 and January 9, 2004. The gravita-

tional waves emitted by stellar mass compact binaries are

expected to be at frequencies detectable by LIGO during

the final few seconds of the inspiral as well as the merger

and ringdown stages of their evolution. We analyze S3

LIGO data using a detection template family [19] which

efficiently captures the amplitude and phase modulations

of the signal.

In Sec. II we discuss the evolution of spinning binary

systems. In Sec. III we describe the waveforms that are

used to model the emission of the target sources we are

seeking to detect. These target waveforms include modu-

lations to their amplitude and phase in order to simulate the

effects of spin-induced precession of the source. In Sec. IV

we describe the detection template family that we use to

search for these target waveforms, and in Sec. V we

describe the design and testing of the template bank

used. In Sec. VI we describe the S3 data set and summarize

the data analysis pipeline. In Sec. VII we describe various

vetoes which were identified as beneficial to this search. In

Sec. VIII we detail results from this search. In the absence

of a detection wewill calculate an upper limit on the rate of

coalescences using the measured efficiency of our search

and an estimated population model of the distribution of

binary systems in the universe. In Sec. IX we perform an

upper limit calculation based upon the loudest event can-

didate found in our search. Finally, in Sec. X we draw

conclusions. Throughout we shall assume G ¼ c ¼ 1.

FIG. 1. The gravitational waveforms predicted from the late

inspiral phase of two different neutron star–black hole systems,

one consisting of nonspinning bodies (upper plot) and the other

consisting of maximally spinning bodies (lower plot). Both

systems are identical apart from the spin of their component

bodies. Spin-induced precession of the binary’s orbital plane

causes modulation of the gravitational wave signal and can be

clearly seen in the lower plot.

FIG. 2. Moment functions C7ð�Þ (solid line) and S7ð�Þ
(dashed line) for the initial LIGO design noise power spectral

density. For values of � * 200 Hz2=3 we see that these moments

become small and can be neglected—this is what we call the

strong modulation approximation.
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II. EVOLUTION OF SPINNING BINARY SYSTEMS

We briefly review the current literature regarding the

formation and evolution of spinning binary systems. The

literature available focuses mainly on neutron star–black

hole (NS-BH) binaries (rather than BH-BH binaries). Later

we shall show that the template bank used in this search is

most sensitive to binaries with unequal masses such as NS-

BH binaries. It is likely that the formation of BH-BH and

NS-BH (and indeed NS-NS) systems is qualitatively simi-

lar and that the discussion here will be relevant to all cases.

A typical NS-BH evolution would involve two main

sequence stars in binary orbit. As it evolves away from

the main sequence, the more massive star would expand

until it fills its Roche lobe before transferring mass to its

companion. The more massive body would eventually

undergo core collapse to form a BH, and the system as a

whole would become a high-mass x-ray binary. As the

second body expands and evolves, it would eventually fill

its own Roche lobe and the binary would then go through a

common-envelope phase. This common-envelope phase,

characterized by unstable mass transfer, would be highly

dissipative and would probably lead to both contraction

and circularization of the binary’s orbit. Accretion of mass

can allow the BH to spin up. It has been argued that the

common-envelope phase, and associated orbital contrac-

tion, is essential in the formation of a binary which will

coalesce within the Hubble time [23]. Finally, the second-

ary body would undergo core collapse to form a NS (or if

massive enough, a BH). Prior to the supernova associated

with the core collapse of the secondary body, we would

expect the spin of the BH to be aligned with the binary’s

orbital angular momentum [23]. However, the ‘‘kick’’

associated with the supernova of the secondary body could

cause the orbital angular momentum of the post-supernova

binary to become tilted with respect to the orbital angular

momentum of the pre-supernova binary. Since the BH

would have a small cross section with respect to the

supernova kick, we expect any change to the direction of

its spin angular momentum to be negligible and that the

BH spin would be misaligned with respect to the post-

supernova orbital angular momentum [27]. The misalign-

ment between the spin and orbital angular momentum is

expected to be preserved until the system becomes detect-

able to ground-based interferometers.

The magnitude of a compact object’s spin is dependent

upon both its spin at formation (i.e., birth spin) and the spin

it attains through subsequent accretion episodes. The di-

mensionless spin parameter � is given by J=M2 where J is
the total angular momentum of the compact object and M
is its mass. For a maximally spinning compact object we

would have � ¼ 1, and for a nonspinning object � ¼ 0.
Although the estimated birth spins of NSs and BHs are

small, simulations have shown that accretion during a

common-envelope phase can allow objects to achieve con-

siderable or even near maximal spins [24]. Because of

uncertainties in both the estimation of birth spins and

modeling of accretion induced spin-up, predictions of bi-

nary’s spin population are fairly uncertain. The upper

bound on a BH’s spin is expected to be �� 0:998.
Torque caused by radiation emitted from the accretion

disk getting swallowed by the BH counteracts the increase

of spin caused as the BH accretes mass [28]. The upper

bound of a NS’s spin is estimated by calculating the spin

which would cause it to break up using a variety of models

for its equation of state. The upper limit is estimated to be

�� 0:7 [29].

Techniques to measure the spin of accreting black holes

using electromagnetic observations of their accretion disk

are described in Ref. [30]. Using these techniques the spins

of black holes in a handful of x-ray binaries have been

measured; in the case of GRS 1915þ 105 the black hole’s

spin was found to be �> 0:98 [31]. Recent observations of
spin precession through measurement of pulse shapes from

binary radio pulsars demonstrate misalignment between

the orbital and spin angular momenta of these systems;

see, for example, Ref. [32].

For optimal detection of gravitational waves using

matched-filter techniques, we must construct templates

that represent our best predictions of the signal. These

templates must model the spin-induced modulations to

the waveform’s amplitude and phase as accurately as pos-

sible while still resulting in a computationally manageable

number of templates covering the detectable parameter

space. It has been shown previously [17–20] that, if spin

effects are neglected when constructing our templates, our

detection efficiency will decrease and some spinning bi-

nary systems will be missed. Spin effects are more pro-

nounced when the system’s spin angular momentum is

larger than its orbital angular momentum. The Newtonian

expression for the magnitude of the orbital angular mo-

mentum of a binary system is jLNj ¼ �M5=3!�1=3 where

M ¼ m1 þm2 is the total mass of the system, � ¼
m1m2=M

2 is its symmetric mass ratio, and ! is the instan-

taneous orbital frequency of the system. For given values of

M and!, the orbital angular momentum will be largest for

binary systems with equal masses, m1 ¼ m2. For systems

with unequal masses such as NS-BH binaries, the orbital

angular momentum will be smaller and the spin angular

momentum will play a more significant role in the system’s

evolution. It will therefore be more susceptible to the

effects of spin than equal mass systems (see Fig. 3 of

Ref. [16]). For schemes that fail to take into account spin

effects, detection efficiency will be worse for binaries with

(i) unequal mass components, (ii) components with large

spin magnitude and (iii) significant misalignments between

its spin and orbital angular momenta.

III. TARGET WAVEFORMS

In this section we describe the fiducial target waveforms

used to represent the gravitational wave signals expected
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from binary systems of spinning compact objects. We

adopt the post-Newtonian (PN) equations given in

Ref. [19] and based upon Refs. [15,16,33–38] (see

Ref. [19] for a complete list of references to all original

derivations), which model the inspiral of the binary in the

adiabatic limit. In this limit the binary’s components follow

a sequence of shrinking instantaneously circular orbits in a

precessing orbital plane.

The instantaneous orbital frequency ! evolves accord-

ing to Eq. (1) of Ref. [19], which has the structure

_!ðtÞ

!ðtÞ2
¼ F _!ð!ðtÞ; L̂NðtÞ � Ŝ1;2ðtÞ; Ŝ1ðtÞ � Ŝ2ðtÞ;M;�; �1;2Þ;

(1)

with the total mass of the system M, the symmetric mass

ratio �, the magnitudes of the binary’s dimensionless spin

parameters �1;2, the direction of the Newtonian angular

momentum L̂NðtÞ ( / r� v, perpendicular to the bodies’

velocity and the vector joining them), and the directions of

the two spins Ŝ1;2ðtÞ. Orbital PN effects are included up to

3.5 PN order, while spin effects are included up to 2 PN

order.

The two spins and the orbital angular momentum evolve

according to standard general-relativistic precession equa-

tions, which are truncated consistently at the relevant PN

order, and which have the structure

_̂
S1 ¼ F _̂

S1
ð!; L̂N ; Ŝ2;M;�; �2Þ � Ŝ1;

_̂
S2 ¼ F _̂

S2
ð!; L̂N ; Ŝ1;M;�; �1Þ � Ŝ2;

_̂
LN ¼ F _̂

LN
ð!; L̂N � Ŝ1; L̂N � Ŝ2; Ŝ1; Ŝ2;M;�; �1; �2Þ

� L̂N (2)

[see Eqs. (2), (3), and (9) of Ref. [19]].

The gravitational strain perturbation hij is computed

from the leading-order mass-quadrupole term specialized

to circular orbits, following Finn and Chernoff [39] (see

also Sec. II C of Ref. [19]). Since Finn and Chernoff use a

fixed source coordinate system, the twice-differentiated

mass-quadrupole tensor Qij
c is a function of the orbital

phase
R
!dt and of L̂NðtÞ. The response of a ground-based

interferometric detector is obtained by projecting Qij
c onto

a combination of unit vectors along the interferometer

arms, which introduces a dependence on five angles that

describe the relative direction (� and ’, which subsumes

the initial orbital phase of the binary) and orientation (�,�,
and  ) between the detector and the Finn–Chernoff source
frame.

Equations (1) and (2) are integrated numerically in the

time domain until the minimum of the PN orbital energy

E3PNð!; L̂N ; Ŝ1; Ŝ2;M; �; �1; �2Þ [see Eqs. (11) and (12)

of Ref. [19]] is reached or until _! becomes negative. No

attempt is made to describe the waveform beyond this

stopping point, where it is assumed that the adiabatic

approximation must break down. Altogether, the wave-

forms are functions of four mass and spin constants (M,

�, �1, and �2), of six angles describing the orientations of

L̂N , Ŝ1, and Ŝ2 at a fiducial time and frequency, the five

direction and orientation angles, and the distance of the

detector from the source. We note that the angles � and ’
are degenerate with the angles given implicitly when we

define L̂N . In this analysis we assume that the binary’s

orbits have become circularized (see the brief discussion in

Sec. II) and that the orbital eccentricity is zero. Given this

assumption we are able to describe the binary using 15

independent parameters.

IV. DETECTION TEMPLATE FAMILY

As discussed in Sec. II, when the binary components

carry significant spins which are not aligned with the

orbital angular momentum, spin-orbit and spin-spin cou-

plings can induce a strong precession of the orbital plane,

thus causing substantial modulation of the gravitational

waves’ amplitude and phase (see Fig. 1). Detection-

efficient search templates must account for these effects

of spin. A straightforward parametrization of search tem-

plates by the physical parameters that affect precession

results in very large template banks, which is computation-

ally prohibitive. It is then necessary to reduce the number

of waveform parameters while still efficiently covering the

parameter space of target waveforms.

We shall denote by ‘‘detection template family’’ (DTF) a

family of signals that captures the essential features of the

true waveforms, but depend on a smaller number of pa-

rameters, either physical or phenomenological. At their

best, DTFs can reduce computational requirements while

achieving essentially the same detection performance as

true templates. However, DTFs can include nonphysical

signal shapes that may increase the number of noise-

induced triggers, affecting the upper-limit studies.

Moreover, DTFs are also less adequate for parameter esti-

mation, because the mapping between template and binary

parameters is not one-to-one.

In recent years several DTFs for precessing compact

binaries have been proposed [15,17–20,27,40,41]. A DTF

based on the so-called Apostolatos ansatz [15,17] for the

evolution of precession frequency was thoroughly inves-

tigated in Refs. [20,40]. It was found that the computa-

tional requirements of the Apostolatos-type families are

very high, and its signal-matching performances are not

very satisfactory. An improved version using spiky tem-

plates was then proposed in Ref. [27].

After analyzing the physics of spinning binary preces-

sion and waveform generation, the authors of Ref. [19]

showed that the modulational effects can be isolated in the

evolution of the two gravitational wave polarizations (i.e.,

hþ and h�), which, combined with the detector’s antenna
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patterns, yield its response. As a result, the detector’s

response can be written as the product of a carrier signal

and a complex modulation factor, which can be handled

using an extension of the Apostolatos ansatz. More explic-

itly, the modulated DTF in the frequency domain proposed

in Ref. [19] reads

hð NM; t0; �j; fÞ ¼

�
X3

j¼1

ð�j þ i�jþ3ÞhjðfÞ

�

� e2�ift0�ðfcut � fÞ ðfor f > 0Þ

(3)

with hðfÞ ¼ h�ð�fÞ for f < 0. The coefficients �j in

Eq. (3) are six real coefficients encoding the global phase,

the strength of the amplitude modulation, its relative phase

with respect to the leading-order amplitude, and the inter-

nal (complex) phase of the modulations. The coefficient t0
is the time of arrival and �ð. . .Þ is the Heaviside step

function which is zero for all frequencies f > fcut. We

use the parameter fcut to terminate the template waveform

once we believe it is no longer an accurate representation

of the true gravitational waveform (generally due to devia-

tion away from the adiabatic approximation).

In Eq. (3) the functions hjðfÞ ¼ AjðfÞe
i NMðfÞ are the

basis templates where AjðfÞ are the real amplitude func-

tions:

A 1ðfÞ ¼ f�7=6; (4)

A 2ðfÞ ¼ f�7=6 cosðBÞ; (5)

A 3ðfÞ ¼ f�7=6 sinðBÞ; (6)

where B ¼ �f�2=3 and � is related to the frequency of

precession [41] and is used to capture the spin-induced

modulation of the waveform. The function  NMðfÞ repre-
sents the phase of the nonmodulated carrier signal; it

depends on the masses and spins of the binary’s compo-

nents and it can be computed in PN theory. Here, as in

Ref. [19], we express  NM in terms of only two phenome-

nological parameters  0 and  3 [42], i.e.,

 NMðfÞ ¼ f�5=3ð 0 þ  3fÞ: (7)

In the case of single-spin binaries (i.e., only one of the

bodies has spin), it is possible to (analytically) relate the

three phenomenological parameters  0,  3, and � with the

four physical parameters M, �, �1, and �1 [41]. The

physical parameter � is the cosine of the angle between

the direction of the (total) spin and the orbital angular

momentum, and in this case would be �1 � L̂N � Ŝ1.

However, for double-spin binaries—which is the case in-

vestigated in this paper—the mapping is not analytical and

the number of physical parameters is greater than 4, result-

ing in an intractably large template bank. Within the spirit

of DTF and, as a first step in implementing search tem-

plates for spinning, precessing binaries, we proceed here

with the three phenomenological parameters  0,  3, and�.
The DTF described by Eq. (3) generalizes the

Apostolatos ansatz in two ways: it allows a complex phase

offset between (i) the leading-order f�7=6 amplitude term

[Eq. (4)] and the sinusoidal amplitude terms [Eqs. (5) and

(6)] and (ii) the cosine and sine modulation terms. Quite

interestingly, as shown in Ref. [41], by an appropriate

choice of the phenomenological coefficients �1���6, the

DTF also has the ability to generate higher harmonics

which arise in the target signal discussed in Sec. III.

Those higher harmonics are caused by oscillations in the

components of the gravitational wave polarization tensor

and not directly by the precession of the orbital angular

momentum and spins, and should be reproduced by the

search templates in order not to lose efficiency.

Henceforth, we will treat  0,  3, and � as intrinsic

parameters and the �1���6 and t0 as extrinsic parameters.

Intrinsic parameters describe the source itself (e.g., masses,

spins). To maximize the signal-to-noise ratio (SNR) with

respect to the intrinsic parameters, we must construct

templates corresponding to different values of the intrinsic

parameters and measure the SNR obtained by each of these

templates with our detector data. On the other hand, ex-

trinsic parameters describe the observer’s relation to the

source (e.g., distance of the source from the observer, the

amplitude and time of arrival of the gravitational wave at

the observer). Maximization of the SNR with respect to

extrinsic parameters can be performed automatically (e.g.,

measurement of a signal’s time of arrival using a fast

Fourier transform) and is computationally cheaper than

maximization of the SNR with respect to the intrinsic

parameters.

In practice, we set fcut to the frequency of the gravita-

tional wave emission at the last stable orbit (LSO) which

we estimate using

fcut 	 fLSO ¼
M1=2

�r3=2LSO

(8)

where rLSO ¼ 6M is the separation of the binary’s compo-

nents, and the total mass M is estimated from  0 and  3

using approximate relationships between phenomenologi-

cal and physical parameters we introduce in the next

section; see Eqs. (13) and (14).

To assess whether a stretch of detector data contains a

gravitational wave signal, we calculate the SNR which is

the cross correlation of our templates with the data. The

full process of deciding whether a detection has been made

is described in Sec. VI of this paper and more fully in the

companion papers [7,26]. We can simplify the calculation

of SNR by orthonormalization of the amplitude functions

Ak. We obtain the orthonormalized amplitude functions,

denoted Âk, using the Gram-Schmidt procedure which
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leads to the transformations

A1 ! Â1 ¼
A1

jjA1jj
1=2
;

A2 ! Â2 ¼
A2 � hA2;Â1iÂ1

jjA2 � hA2;Â1iÂ1jj
1=2
;

A3 ! Â3 ¼
A3 � hA3;Â1iÂ1 � hA3;Â2iÂ2

jjA3 � hA3;Â1iÂ1 � hA3;Â2iÂ2jj
;

(9)

where we use jjajj to represent the inner product of a

function with itself: jjajj ¼ ha; ai. Throughout, we will

use the real-valued inner product

ha; bi ¼ 4Re
Z 1

0
df

~a�ðfÞ~bðfÞ

ShðfÞ
(10)

where ShðfÞ is an estimate of the noise power spectral

density of the data. The final form of the orthonormalized

amplitude functions is very long and, for that reason, not

reproduced here. The DTF in terms of the orthonormalized

amplitude functions has the exact same form as that shown

in Eq. (3) with h, hj, and �j replaced by ĥ, ĥj, and �̂j,

respectively. Demanding templates normalized so that

hh; hi ¼ hĥ; ĥi ¼ 1 leads to the constraint
P

6
j¼1 �̂

2
j ¼ 1.

Having defined the orthonormalized amplitude functions

Âk, we can calculate the SNR, 	:

	 ¼ max
t0;�j

hx; hðt0; �jÞi ¼ max
t0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X6

j¼1

hx; ĥjðt0Þi
2

v
u
u
u
t ; (11)

where x is the detector data and the orthonormalized basis

templates are given by

ĥ j ¼ ÂjðfÞe
i NMðfÞ for j ¼ 1; 2; 3 and

ĥj ¼ iÂj�3ðfÞe
i NMðfÞ for j ¼ 4; 5; 6:

(12)

Note that we do not explicitly need to calculate �1���6 in

order to calculate the SNR but that they can be found

simply if required: �̂j ¼ hx; ĥjðt0Þi=	.

For Gaussian white noise, 	2 will, in general, have a �2

distribution with 6 degrees of freedom. In the case where

the spin parameter � ¼ 0, we find that Â2 and Â3 both

vanish and that 	2 is described by a �2 distribution with 2

degrees of freedom. To reflect the increased freedom, we

choose a higher SNR threshold, 	� ¼ 12 when � � 0, and
a lower value of 	� 	 11:2 when � ¼ 0. These values

were chosen to give approximately the same number of

triggers when analyzing Gaussian white noise and to en-

sure that the number of triggers produced during the real

search was manageable.

V. TEMPLATE BANK

Since we will not know the parameters describing an

incident gravitational waveform a priori, we must filter our

detector data with a set of templates known as a template

bank. Neglecting the effects of noise, we would expect the

template yielding the largest SNR to be the best represen-

tation of an incoming signal. Because of the discrete nature

of the template bank (it must be discrete since it can only

contain a finite number of templates) we will lose SNR due

to mismatches between the intrinsic parameters of any

gravitational wave signal and the best template. By placing

templates with an appropriate density, we can limit the

maximum mismatch between signal and template intrinsic

parameters and hence limit the loss of SNR caused by the

discreteness of the bank. The spacing of templates in the

intrinsic parameter space required to limit this mismatch

can be found using the metric on the signal manifold

[43,44]. In this section we describe the calculation of the

metric, the template placement algorithm, and compari-

sons with other banks before discussing the testing of the

bank using software-injected simulated signals.

A. Metric calculation

In this search we use a simple metric based on the strong

modulation approximation described below. The rationale

is that systems with waveforms only weakly modulated by

spin-induced precession should be detectable with high

efficiency by a nonspinning binary search, e.g., [7]. Thus

we concentrate on designing a bank that will capture

systems whose waveforms will be strongly modulated.

The metric calculation and template placement (or tiling)

algorithms become much simpler in the strong modulation

limit. More recently, more precise treatments of the full

metric on the DTF parameter space have become available

[41,45] and work is in progress to incorporate them into

future searches.

In the strong modulation approximation, the orbital

plane is assumed to precess many times as the gravitational

wave sweeps through the LIGO band of good sensitivity.

Also, the opening angle between the orbital and spin

angular momenta is assumed to be large, corresponding

to large amplitude modulations of the signal.

Mathematically this corresponds to the statement that the

precession phase B sweeps through many times 2� and

therefore that the basis templates hj are nearly orthonormal

(without need for the Gram-Schmidt procedure). Below we

shall see that this assumption places a condition on the

precession parameter �, which for the initial LIGO design

noise power spectral density [46] corresponds to � *

200 Hz2=3.
We can relate this condition for validity of the strong

modulation approximation to the astrophysical parameters

of the system. Naively we can put the phenomenological

parameters in terms of astrophysical parameters using

 0 ¼
3

128
½�ðm1 þm2Þ


�5=3 ðm1 þm2Þ
2

m1m2

; (13)
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 3 ¼ �
3�

8
½�ðm1 þm2Þ


�2=3 ðm1 þm2Þ
2

m1m2

; (14)

� ¼ 258 Hz2=3
�

1þ
3m2

4m1

�
m1

m2

�

�
M�

m1 þm2

�
2=3
; (15)

acknowledging that, in reality, the true signal manifold and

phenomenological template manifold do not map this sim-

ply. The equations for  0 and  3 can be found by consid-

ering the expansion for the gravitational wave phase  ðfÞ
given in terms of masses [e.g., Eqs. (3.3) and (3.4) of [47]]

and equating the dominant terms of this expansion to those

with the same frequency exponent in the expansion for the

gravitational wave phase given in terms of  0;1;... in

[19,48]. The effects of spin are neglected in these approx-

imations of  0 and  3. The equation for � arises by

recognizing that � is related to the evolution of the rate

of precession; see Eq. (45) of [15,41] for further discussion

[49].

The constraint for validity of the strong modulation

approximation is that the mass ratio must satisfy m2=m1 *

2. Also, we specify that the total mass be less than some

value (here�15M�) so that the waveforms do not begin far

enough into the nonlinear region to require extra phenome-

nological parameters. Thus the parameter-space region of

such a search may be expressed solely in terms of the range

of masses for the lower-mass body. In this search the range

used for m1 was 1:0M� <m1 < 3:0M�, a likely range of

masses for neutron stars, and 6:0M� <m2 < 12:0M� was

used as the range for the more massive body. Thus, astro-

physically this search is directed at NS-BH systems or BH-

BH systems with unequal masses. These mass ranges are

converted into ranges of  0 and  3 using Eqs. (13) and (14)

which define the region of parameter space we populate

with templates. Because of the inexact nature of these

equations, we know that the range of masses for which

the template bank obtains its highest matches may differ

from the range of masses we use to specify the region of

ð 0;  3Þ. We will show in Sec. VC that a template bank

generated using the range of masses just specified yields

high matches (greater than 0.9) for binaries with physical

masses in the asymmetric range 1:0M� <m1 < 3:0M� and

12:0M� <m2 < 20:0M�. We shall also show that this

search is efficient for nonspinning systems as well as for

spinning ones.

We derive the metric components in the manner of

Ref. [43]. Starting from the detection statistic 	2 [the

square of Eq. (11)], let us take our data x to have the

form of a template with parameters slightly perturbed

from those of the template h we filter it with:

~xðfÞ ¼ ð�1 þ i�2Þe
ið NMþd NMÞ þ ð�3 þ i�4Þ

� cosðBþ dBÞeið NMþd NMÞ þ ð�5 þ i�6Þ

� sinðBþ dBÞeið NMþd NMÞ: (16)

Note that only the intrinsic parameters are perturbed, as the

maximization takes care of the extrinsic parameters.

Expanding to second order in the perturbation, we have

~xðfÞ 	 ð1þ id NM � 1
2
d 2

NMÞfð�1 þ i�2Þh1

þ ð�3 þ i�4Þ½ð1�
1
2
dB2Þh2 � dBh3


þ ð�5 þ i�6Þ½ð1�
1
2
dB2Þh3 þ dBh2
g: (17)

Under the approximation that the hj are orthonormal, we

get

hx; h1i ¼ �1½1�
1
2
Fðd 2

NMÞ
 � �2Fðd NMÞ;

hx; h4i ¼ �2½1�
1
2
Fðd 2

NMÞ
 þ �1Fðd NMÞ;

hx; h2i ¼ �3½1�
1
2
Fðd 2

NMÞ �
1
2
FðdB2Þ
 � �4Fðd NMÞ

þ �5FðdBÞ � �6Fðd NMdBÞ;

hx; h5i ¼ �4½1�
1
2
Fðd 2

NMÞ �
1
2
FðdB2Þ
 þ �3Fðd NMÞ

þ �6FðdBÞ þ �5Fðd NMdBÞ;

hx; h3i ¼ �5½1�
1
2
Fðd 2

NMÞ �
1
2
FðdB2Þ
 � �6Fðd NMÞ

� �3FðdBÞ þ �4Fðd NMdBÞ;

hx; h6i ¼ �6½1�
1
2
Fðd 2

NMÞ �
1
2
FðdB2Þ
 þ �5Fðd NMÞ

� �4FðdBÞ � �3Fðd NMdBÞ; (18)

where F is a functional (originally defined in Ref. [43] as

J ) given by

FðaÞ ¼
1

I7

Z fmax=f0

fmin=f0

dx
x�7=3

Shðxf0Þ
aðxÞ (19)

and the noise moment I is itself defined as

Iq �
Z fmax=f0

fmin=f0

dx
x�q=3

Shðxf0Þ
(20)

where fmin and fmax define the range of frequencies we

integrate over. In S3 we used a lower cutoff frequency of

70 Hz, chosen to exclude lower frequencies for which the

detector’s power spectral density was significantly nonsta-

tionary, and an upper frequency corresponding to the

Nyquist frequency, in this case 1024 Hz. Inserting the

relations from Eq. (18) into Eq. (11) and keeping up to

second-order perturbations, we obtain

X6

j¼1

hx; hji
2 ¼

X6

j¼1

�2
j ½1� Fðd 2

NMÞ þ Fðd NMÞ
2


�
X6

j¼3

�2
j ½FðdB

2Þ � FðdBÞ2


� ½2ð�3�6 � �4�5Þ½Fðd NMdBÞ

� Fðd NMÞFðdBÞ

: (21)

To finish computing the perturbed 	2 we must maximize

Eq. (21) over the coalescence time and �j (subject to the
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constraint
P

6
j¼1 �

2
j ¼ 1 since we are dealing with normal-

ized waveforms). Maximization over �j is performed

straightforwardly using Lagrange multipliers. We find

�1 ¼ �2 ¼ 0, �3 ¼ ��6, and �4 ¼ �5, which leads to

max
�j

hx; hji
2 ¼ 1� Fðd 2

NMÞ þ Fðd NMÞ
2 � FðdB2Þ

þ FðdBÞ2 þ Fðd NMdBÞ

� Fðd NMÞFðdBÞ: (22)

We incorporate the time dependence of 	2 into the tem-

plate’s phasing and expand the phase functions in terms of

the phenomenological parameters and coalescence time tc,

d NM ¼ d 0f
�5=3 þ d 3f

�2=3 þ 2�fdtc; (23)

dB ¼ d�f�2=3: (24)

Using the definition of the metric [43] to write

	2 ¼ 1� 2gabd

ad
b; (25)

we obtain the metric components

2gtctc ¼ 4�2ðJ1 � J24Þ;

2gtc 0
¼ 2�ðJ9 � J4J12Þ;

2gtc 3
¼ 2�ðJ6 � J4J9Þ;

2gtc� ¼ ð��=2ÞðJ6 � J4J9Þ;

2g 0 0
¼ J17 � J212;

2g 0 3
¼ J14 � J9J12;

2g 0�
¼ ð�1=2ÞðJ14 � J9J12Þ;

2g 3 3
¼ J11 � J29 ;

2g 3�
¼ ð�1=2ÞðJ11 � J29Þ;

2g�� ¼ J11 � J29

(26)

before projecting out the coalescence time tc. Here we have
used Jq to represent the normalized noise moments given

by [50]

Jq � Iq=I7 (27)

where the noise moment I was defined in Eq. (20). These

moments give us a way of checking when the strong

modulation approximation is valid.

If we had not made the strong modulation approxima-

tion, we would also need the functions

Cpð�Þ ¼
Z 1

0
df½fp=3ShðfÞ


�1 cosBðfÞ=I7; (28)

Spð�Þ ¼
Z 1

0
df½fp=3ShðfÞ


�1 sinBðfÞ=I7; (29)

which we call the cosine and sine moment functions. The

inner products of the basis templates hj with each other

(prior to the Gram-Schmidt procedure) are proportional to

these moment functions, and thus the strong modulation

approximation corresponds to assuming that C7 and S7 are
small compared to unity. For the initial LIGO design noise

power spectral density curve [51], the moment functions

are plotted in Fig. 2. We see that the strong modulation

approximation should hold (to about the 10% level) for

� * 200 Hz2=3. See also Fig. 15 of Ref. [41], discussed

more below, which shows approximately the same

behavior.

After projecting the coalescence time out of Eq. (26) and

dropping  � cross terms (which simplifies the template

placement and changes the volume per template by less

than 3%), we obtain

2g 0 0
¼ J17 � J212 �ðJ9 � J4J12Þ

2=ðJ1 � J24Þ;

2g 0 3
¼ J14 � J9J12 �ðJ6 � J4J9ÞðJ9 � J4J12Þ=ðJ1 � J24Þ;

2g 0�
¼ 0;

2g 3 3
¼ J11 � J29 �ðJ6 � J4J9Þ

2=ðJ1 � J24Þ;

2g 3� ¼ 0;

2g�� ¼ J11 � J29 �ðJ6 � J4J9Þ
2=4ðJ1 � J24Þ:

(30)

B. Template placement algorithm

We set the density of our template bank in terms of the

minimal match (MM), defined to be the lowest match that

can be obtained between a signal and the nearest template

[43]. A template bank designed to have minimal match

MM ¼ 0:95 would therefore suffer no more than a 1�
MM ¼ 5% loss in SNR due to mismatch between the

parameters of a signal and the best possible template in

the bank (assuming that the signal and templates are from

the same family).

The metric components shown in Eq. (30) are constant

in the strong modulation approximation, which enables us

to use a simple template placement algorithm. We use a

body-centered cubic (BCC) lattice which is the most effi-

cient template placement in three dimensions. We first

diagonalize the metric, which leaves the � parameter un-

changed but gives us new ‘‘horizontal’’ parameters  0
0 and

 0
3. Starting on the plane � ¼ 0, we draw a box in the

primed coordinates which encloses the part of that plane to

be searched. Beginning at one corner of this box, we step in

the primed horizontal coordinates by amounts ð4=3Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1�MMÞ=E
p

, where E is the corresponding eigenvalue

of the metric, i.e., g 0
0
 0
0
or g 0

3
 0
3
. At each point we trans-

form to the mass parameters using Eqs. (13) and (14) and

check if we are in the targeted region of physical mass

space. If the point is within that region, we add a template

to the list. Once a plane of constant � is filled, we move

‘‘up’’ a distance in� equal to ð2=3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1�MMÞ=g��
q

, and

lay a horizontal grid which is staggered half a cell (in both

B. ABBOTT PHYSICAL REVIEW D 78, 042002 (2008)

042002-10



primed directions) from the previous one. Thus a BCC

lattice is formed.

Such a simple template placement algorithm is suscep-

tible to the ‘‘ragged edges’’ problem. That is, there will be

some areas near the edge of the targeted region of parame-

ter space that will match the nearest template at a level less

than MM. The problem appears in other template place-

ment algorithms such as those of Refs. [25,44], and some-

times is addressed in a complicated way. Our solution is

simple and practical. In stepping around the ð 0
0;  

0
3Þ plane,

we check to see if we have crossed the edge of the targeted

region. If we find ourselves at a point outside of the

targeted region, we check to see whether the point halfway

between the current position and the previously laid tem-

plate is itself within the targeted region. If so, we add a

template there. Although the edges of the targeted region

are curved, the radius of curvature is many template spac-

ings, meaning that we can treat the edges as fairly straight.

This simple method solves the ragged edges problem while

resulting in a small number of additional templates.

As mentioned earlier, we choose fcut, the frequency at

which we end our template, to be the frequency of gravi-

tational wave emission at the last stable orbit. However, we

compute metric components by effectively taking fcut to

infinity, which gains us simplicity at the cost of a small

overcoverage.

We can compare the simplified template bank used here

to those proposed in the literature, particularly in

Refs. [41,45]. Although neither of those articles actually

constructs a template bank or gives explicit metric compo-

nents, we can find a point of comparison. Figure 15 of

Ref. [41] plots the coordinate volume per template as a

function of �, assuming a simple cubic lattice withMM ¼
0:97 and an analytical approximation to the initial LIGO

noise curve. In the high-� (strong modulation) limit, their

volume tends to�5� 106 Hz3. For the sameMM, lattice,

and noise curve, our volume per template is �6:4�
106 Hz3. Thus, our grid is slightly sparser than that of

Ref. [41]. Most of the difference is because they define

their final metric (on the space of intrinsic parameters only)

in terms of a ‘‘minimax’’ overlap, which is more restrictive

than the metric described here. The issue is that the spacing

on the intrinsic parameter space, in general, depends on the

extrinsic parameters, and there are multiple ways to re-

move this dependence. The minimax criterion of Ref. [41]

assumes the worst case (in terms of extrinsic parameters) or

tightest spacing for each point in parameter space, and thus

is tighter (lower template volume) than it needs to be. Spin-

FIG. 3 (color online). A template bank generated with minimal match ¼ 0:95 using 2048 seconds of H1 data taken during S3. The

crosses show the positions of individual templates in the ð 0;  3; �Þ parameter space. For each template a value for the cutoff

frequency fcut is estimated using Eq. (8). This bank requires a three-dimensional template placement scheme in order to place

templates in the ð 0;  3; �Þ parameter space. Previous searches for nonspinning systems have used two-dimensional placement

schemes.
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induced precession of the orbital plane will cause side-

bands on either side of the carrier frequency. The metric we

describe is constructed implicitly assuming that there is

always nonzero power at the carrier frequency and both

precession sidebands, which eliminates a set of measure

zero of worst-case points in the extrinsic parameter space.

The template bank tests described below verify that the

loss of efficiency due to neglecting the worst-case extrinsic

parameters is no more than a few percent.

For the real S3 noise spectra which were used to con-

struct the template banks in this search, template numbers

were typically 2–6� 103 in H1 and L1 when prescribing a
minimal match of 0.95. The number of templates was

larger in H2 compared to the other detectors and also

increased with time to �1:6� 104 towards the end of S3

due to a flattening of the noise power spectrum in H2.

Although a minimal match of 0.95 was prescribed, the

effective minimal match of the template banks generated

was reduced to �0:93 due to a small calculation error.

Figure 3 shows a template bank generated using 2048

seconds of H1 data and with a prescribed minimal match

of 0.95.

C. Testing the template bank

The template bank was tested using a series of simulated

signals constructed using the equations of the target wave-

forms described in Sec. III. We considered a variety of spin

configurations including systems where neither, one, or

both bodies were spinning. We also considered masses

outside the range we expected the template bank to have

good coverage in order to fully evaluate the range of

masses for which it could be used. For each spin configu-

ration we created a series of signals corresponding to every

mass combination: 1:0M� <m1, m2 < 20:0M�. Using the

initial LIGO design sensitivity we then measured the best

match that could be obtained for every signal using our

template bank. Figure 4 shows a sample of the results from

the tests of the template bank. As expected, we found that

our template bank achieved the highest matches for non-

spinning (and therefore nonprecessing) binaries. Per-

formance degrades as spin-precessional effects become

more pronounced, i.e., when both bodies are spinning

maximally with spins misaligned from the orbital angular

momenta. The template achieved matches>0:9 for a mass

FIG. 4. Plots showing the best match achieved by filtering a series of simulated signals through the template bank described in this

section. The values on the x and y axes correspond to the component masses of the binary source to which the simulated signal

corresponds. The shade of gray in the plots shows the best match achieved for a given simulated signal; lighter shades of gray indicate

that a higher match was achieved. The four subplots correspond to four different spin configurations of the binary source. The top-left

subplot shows results for a nonspinning binary system. The top-right subplot shows results for a system consisting of one nonspinning

object and one maximally spinning object with its spin slightly misaligned with the orbital angular momentum. We would expect this

system to precess. The bottom two subplots show results for two generic precessing systems consisting of two maximally spinning

bodies with spins and orbital angular momentum all misaligned with each other. We see that the region of the mass plane for which we

obtain matches>0:9 is largest for the nonspinning system and tends to be concentrated in the asymmetric mass region loosely bounded

by 1:0M� <m1 < 3:0M� and 12:0M� <m2 < 20:0M�.
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range 1:0M� <m1 < 3:0M� and 12:0M� <m2 < 20:0M�

(and equivalent systems with m1 and m2 swapped). The

detection template family (described in Sec. IV) is capable

of obtaining high matches for comparable mass systems;

the lower matches obtained for comparable mass systems

are a result of targeting our template bank on asymmetric

mass ratio systems (which are more susceptible to

spin effects and conform to the strong modulation

approximation).

Matches below the specified minimal match of 0.95 in

the bank’s region of good coverage are a consequence of

(small) differences between the DTF and the target wave-

forms, meaning that the DTF cannot perfectly match the

target waveforms. The fitting factor (FF) measures the

reduction of SNR due to differences between the DTF

and the target waveform [17] (and should not be confused

with the minimal match which measures the loss of SNR

due to discreteness of the template bank [43]). The DTF

performance is evaluated and its fitting factor is measured

in Sec. VI of Ref. [19]; for NS-BH systems an average FF

of 	 0:93 was measured [52].

VI. SEARCH PIPELINE

The pipeline used for this search is the same as that used

in the other S3 searches for binary inspirals [7] and is

described fully in a set of companion papers [26,53].

This pipeline has been significantly updated since the S2

analysis, and a brief summary is now given.

In Sec. VIAwe discuss the S3 data set. In Sec. VI B we

describe how we decide whether triggers measured in

different detectors could be associated with the same

gravitational wave event. In Sec. VI C we introduce the

statistic which we use to assign SNRs to the events found in

coincidence between two or more detectors. In Sec. VID

we describe how we estimate the expected rate of acciden-

tal coincidences.

A. Data sample

To begin with, we construct a list of times for which two

or more of the detectors are operating nominally, in what is

referred to as science mode. By demanding that a gravita-

tional wave be detected in coincidence between two or

more detectors, we simultaneously decrease the probability

of inferring a detection when no true signal is present (a

false alarm) and improve the confidence we have in a

detection of a true signal. Data collected by the LHO

detectors were only analyzed when both detectors were

in science mode. This was due to concerns that since both

of these detectors share the same vacuum system, the laser

beam of a detector in anything but science mode might

interfere with the other detector.

We denote periods of time when all three detectors are in

science mode as H1-H2-L1 times and periods when only

the Hanford detectors are in science mode as H1-H2 times.

A coincident trigger consisting of a trigger in the H1

detector and the L1 detector will be referred to as an H1-

L1 coincident trigger, and similarly for other combinations

of detectors.

In this search we analyze 184 hours of H1-H2-L1 data

and 604 hours of H1-H2 data (see Table I). During these

times we construct template banks for each detector and

subsequently produce a list of triggers whose SNR ex-

ceeded our threshold.

Around 9% of the data is specified as playground data

and is used to tune the various parameters (e.g., SNR

thresholds and coincidence windows) used in the full

search. Playground data are not included in the upper limit

calculation but are still searched for possible detections.

We also construct lists of veto times during which the data

we analyze had poor data quality due to short stretches of

instrumental or environmental noise [53,54]. All coinci-

dent data are analyzed, but gravitational wave candidates

found during veto times will be subjected to greater scru-

tiny than those found during other times.

TABLE I. Summary of the amount of data analyzed in our

various data sets. In S3 we only analyze data from the LHO

detectors when both H1 and H2 are in science mode. Around 9%

of the data is classified as playground data and is used to tune the

parameters of the search.

Data type Total analyzed (hours) Nonplayground (hours)

H1-H2 604 548

H1-H2-L1 184 167

FIG. 5 (color online). Distance to which an optimally oriented

nonspinning ð2; 16ÞM� binary can be detected with SNR ¼ 8
throughout S3. For systems with spinning components, the

horizon distance would be equal to or less than what is shown

in this figure since any spin-induced precession would cause the

system to become less than optimally oriented and therefore

reduce the measured amplitude of its emission. We see a large

improvement in the sensitivity of H1 during this science run.
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We can compare the sensitivities of the LIGO detectors

by measuring the horizon distance of a particular source—

this is the distance to which an optimally oriented source

can be observed with SNR ¼ 8. In Fig. 5 we plot the

horizon distance of a ð2; 16ÞM� binary. This choice of

component mass reflects that the template bank used for

this search (see Sec. V) achieves the highest matches for

asymmetric binaries. In Fig. 1 of [7] the horizon distance

for a range of symmetric binaries is shown.

B. Coincident analysis

To minimize the false alarm probability we demand that

a gravitational wave signal be observed by two or more

detectors with similar parameters. In order to determine

whether a trigger measured by one particular detector

should be considered as coincident with a trigger in another

detector, we define a set of coincidence windows. In this

search we demand that, for triggers from different detec-

tors to be considered as coincident, they must satisfy the

following conditions:

jt1 � t2j< �t1 þ �t2 þ T1;2; (31)

j 0;1 �  0;2j< � 0;1 þ � 0;2; (32)

j 3;1 �  3;2j< � 3;1 þ � 3;2; (33)

where ti,  0;i, and  3;i are the times of coalescence and

phenomenological mass parameters measured using our

template bank in detector i; �ti, � 0;i, and � 3;i are our

coincidence windows in detector i; and Ti;j is the light

travel time between detector locations i and j. The light

travel time between LHO and LLO is �10 ms.
We tune our coincidence windows on the playground

data in order to recover as many of our simulated signals as

possible while trying to minimize the false alarm rate. The

use of playground data allows us to tune our search pa-

rameters without biasing the results of our full analysis.

The tuning method used for this and the nonspinning

search on S3=S4 data is described fully in [53]. Using

this tuning method we find our coincidence windows to

be equal for each detector with values �t ¼ 100 ms,

� 0 ¼ 40 000 Hz5=3, and � 3 ¼ 600 Hz2=3. The value

of �t used in this search is 4 times larger than the 25 ms

value used in the S3 search for nonspinning binary black

holes [7], indicating that the estimation of arrival time of a

gravitational waveform is less well determined in this

search than in the nonspinning search.

C. Combined SNR

For coincident triggers we use a combined signal-to-

noise ratio 	c statistic based upon the individual signal-to-

noise ratios 	i measured by each detector:

	2
c ¼ min

�
X

i

	2
i ; ða	i � bÞ2

�

: (34)

In practice, the parameters a and b are tuned so that the

contours of false alarm generated using Eq. (34) separate

triggers generated by software injection of simulated sig-

nals and background triggers as cleanly as possible [53]

(see the next subsection for details of how we estimate the

background). In this search we used values a ¼ b ¼ 3 for

all detectors. For coincident triggers found in all three

detectors, we use

	2
c ¼

X

i

	2
i : (35)

D. Background estimation

We estimate the rate of accidental coincidences, other-

wise known as the background or false alarm rate, for this

search through analysis of time-shifted data. We time-shift

the triggers obtained from each detector relative to each

other and then repeat our analysis, searching for triggers

that occur in coincidence between 2 or more of the detec-

tors. By choosing our time shifts to be suitably large

( � 10 ms light travel time between LHO and LLO), we

ensure that none of the coincident triggers identified in our

time-shift analysis could be caused by a true gravitational

wave signal, and can therefore be used as an estimate of the

rate of accidental coincidences. In practice, we leave H1

data unshifted and time-shift H2 and L1 by increments of

10 and 5 s, respectively. In this search, we analyzed 100

sets of time-shifted data (50 forward shifts and 50 back-

ward shifts). For clarity we will use the term in-time to

mean triggers which have not been time-shifted.

VII. VETOES

A. Instrument-based vetoes

We are able to veto some background triggers by ob-

serving correlation between the gravitational wave channel

(AS_Q) of a particular detector and one or more of its

auxiliary channels which monitor the local physical envi-

ronment. Since we would not expect a true gravitational

wave signal to excite the auxiliary channels, we will treat

as suspicious any excitation in the gravitational wave

channel that is coincident in time with excitations in the

auxiliary channels. A list of auxiliary channels found to

effectively veto spurious (nongravitational wave coinci-

dent triggers) were identified and used for all S3 searches

[54]. Additional vetoes based upon other auxiliary chan-

nels were considered but were subsequently abandoned

because the total amount of data these channels would

have discounted, known as the dead time, was unaccept-

ably large.
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B. Signal-based vetoes

We can use the fact that the Hanford detectors are

colocated to veto coincident triggers whose measured am-

plitude is not consistent between H1 and H2. We check for

consistency between the SNR values measured using H1

and H2 data for triggers found in coincidence. Since H1 is

the more sensitive instrument, we simply required that the

SNR measured in H1 be greater than that measured in H2

for an event to survive this veto. Since data from H1 and

H2 were only analyzed when both were in science mode,

this veto means that there will be no H2-L1 coincident

triggers since this would indicate that H2 had detected a

trigger which H1 was unable to detect.

The �2 veto used for the primordial black hole and

binary neutron star searches [7] has not been investigated

for use in searches using detection template families (i.e.,

this search and the S2-S4 searches for nonspinning binary

black holes [7,13]).

VIII. RESULTS

In the search of the S3 LIGO data described in this

paper, no triple-coincident event candidates (exceeding

our predetermined SNR threshold and satisfying the coin-

cidence requirements described in Sec. VI B) were found

in triple-time (H1-H2-L1) data. Many double-coincident

event candidates were found in both triple-time and

double-time (H1-H2) data.

A cumulative histogram of combined SNR for in-time

and background coincident triggers is shown in Fig. 6. We

see that, at the SNR threshold (i.e., the leftmost points on

this figure), the number of in-time double-coincident trig-

gers is consistent with the number of coincident triggers

yielded by the time-shift analysis. The small excess in the

number of in-time H1-H2 coincident triggers at higher

SNRs indicates that there is some correlation between the

LHO detectors. The coincident triggers contributing to this

excess have been investigated and are not believed to be

caused by gravitational waves. Seismic activity at the

Hanford site has been recorded throughout S3 and can

cause data to become noisy simultaneously in H1 and

H2. Coincident triggers caused by seismic noise will pre-

dominantly cause only in-time coincidences (although

time-shift coincidences caused by two seismic events sepa-

rated in time but shifted together can occur) leading to an

excess of in-time coincident triggers as we have observed

in Fig. 6. As mentioned previously, there were no coinci-

dent triggers observed by all three detectors.

A scatter plot of the SNRs measured for coincident

triggers in H1-H2 times is shown in Fig. 7. The distribution

of our in-time triggers is consistent with our estimation of

the background. This is also true for the double-coincident

triggers measured in H1-H2-L1 times.

The loudest in-time coincident trigger was observed in

H1-H2 when only the Hanford detectors were in science

mode. This event candidate is measured to have SNRs of

119.3 in H1, 20.4 in H2, and a combined SNR of 58.3. The

loudest coincident triggers are subjected to systematic

follow-up investigations in which a variety of information

(e.g., data quality at time of triggers, correlation between

FIG. 6 (color online). Cumulative histogram of the combined

SNR, 	c, for in-time coincident triggers (triangles) and our

background (crosses with one-sigma deviation shown) for all

H1-H2 and H1-H2-L1 times within S3. We see a small excess in

the number of in-time coincident triggers with combined SNR

�45. This excess was investigated and was caused by an excess

of H1-H2 coincident triggers. Since H1 and H2 are colocated,

both detectors are affected by the same local disturbances (e.g.,

seismic activity) which contributes to the number of in-time

coincidences but which is under-represented in time-shift esti-

mates of the background.

FIG. 7 (color online). Scatter plot of SNR for coincident

triggers in H1-H2 times. The black circles represent in-time

coincident triggers, and the light-colored (red) pluses represent

time-shift coincident triggers that we use to estimate the back-

ground. Note that due to our signal-based veto on H1=H2 SNR,

we see no coincident triggers with 	H1 < 	H2.
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the detector’s auxiliary channels and the gravitational wave

channel) is used to assess whether the coincident triggers

could be confidently claimed as detection of gravitational

wave events. This event is found at a time flagged for

‘‘conditional’’ vetoing. This means that during these times

some of the detectors’ auxiliary channels exhibited corre-

lation with the gravitational wave channel (AS_Q) and that

we should be careful in how we treat event candidates

found in these times. For this particular coincident trigger

an auxiliary channel indicated an increased numbers of

dust particles passing through the dark port beam of the

interferometer [54]. Upon further investigation it was

found that this coincident trigger occurred during a period

of seismic activity at the Hanford site and we subsequently

discounted this candidate as a potential gravitational wave

event. Time-frequency images of the gravitational wave

channel around the time of this candidate were inconsistent

with expectations of what an inspiral signal should look

like, further reducing the plausibility of this candidate

being a true gravitational wave event. It is interesting, but

unsurprising, to note that during the search for nonspinning

binary black holes that also used S3 LIGO data, high-SNR

triggers associated with this seismic activity were also

detected [7]. Furthermore, the 20 next loudest event can-

didates were also investigated and none were found to be

plausible gravitational wave event candidates. Work is in

progress to automate the follow-up investigative procedure

and to include new techniques including null-stream and

Markov chain Monte Carlo analyses for assessing the

plausibility of coincident triggers as gravitational wave

events.

IX. UPPER LIMITS

Given the absence of plausible detection candidates

within the search described above, we have calculated an

upper limit on the rate of spinning compact object coales-

cence in the universe. We quote the upper limit rate in units

of yr�1L�1
10 where L10 ¼ 1010L�;B is 1010 times the blue

light luminosity of the Sun.

The absorption-corrected blue light luminosity of a gal-

axy infers its massive star formation rate which we assume

scales with the rate of compact binary coalescence within it

[55]. This assumption is well justified when the galaxies

reached by the detector are dominated by spiral galaxies

with ongoing star formation (e.g., the Milky Way).

Previous papers reporting on S1 and S2 [13,56,57] have

quoted the upper limit in units of Milky Way Equivalent

Galaxy (MWEG), which is equivalent to about 1:7 L10.

Upper limits on the rate of coalescences calculated during

other searches using S3 and S4 LIGO are given in units of

L10 [7].

The upper limit calculations are based on the loudest

event statistic [58,59], which uses both the detection effi-

ciency at the combined SNR of the loudest event candidate

and the associated background probability. The in-time

nonplayground data set (which we use to set the upper

limit) is blinded in the sense that all analysis parameters are

tuned (as described in Sec. VI) prior to its analysis.

The Bayesian upper limit at a confidence level �, as-
suming a uniform prior on the rate R, is given by [59]

1� � ¼ e�RTCLð	c;maxÞ

�

1þ

�
�

1þ�

�

RTCLð	c;maxÞ

�

(36)

where CLð	c;maxÞ is the cumulative blue light luminosity to

which we are sensitive at a given value of combined SNR

	c;max, T is the observation time, and � is a measure of the

likelihood that the loudest event is consistent with being a

signal and inconsistent with background (as estimated

using time shifts). We evaluate the cumulative luminosity

CL at the combined SNR of the loudest coincident trigger

seen in this search, 	c;max ¼ 58:3 (see Sec. VIII for a

discussion of this coincident trigger). The expression for

� is

� ¼
jC0Lð	c;maxÞj

P0
Bð	c;maxÞ

�
CLð	c;maxÞ

PBð	c;maxÞ

�
�1

; (37)

where the derivatives are with respect to 	c. PBð	Þ is the
probability that all background coincident triggers (as

estimated using time shifts) have a combined SNR less

than 	. For the loudest event candidate in this search we

find PB ¼ 0:23 and � ¼ 0:05. In the case where the loud-

est event candidate is most likely due to the background,

� ! 0 and the upper limit becomes

R90% ¼
2:3

TCLð	c;maxÞ
: (38)

In the limit of zero background, i.e., the event is definitely

not background, � ! 1 and the numerator in Eq. (39)

becomes 3.9. The observation time T is taken from Table I,

where we use the analyzed time not in the playground. This

is consistent with our blind analysis strategy.

In searches for systems consisting of nonspinning

bodies, efficiency is typically found as a function of its

effective distance and chirp mass [60]. For a system con-

sisting of nonspinning bodies, effective distance can be

calculated using the distance to the source, its inclination

with respect to the detector, and the detector’s antenna

response functions [see Eq. (2) of [5,7]]. For a system

consisting of spinning bodies, its inclination with respect

to a detector will evolve during the course of the inspiral,

making the calculation of effective distance complicated.

Instead, in this search we find efficiency and predicted

source luminosity as a function of the inverse of the

expected SNR of a source. The expected SNR is defined

as the SNR that would be obtained for a given simulated

source assuming we use a template that perfectly matches

the emitted gravitational waveform and a detector whose

noise power spectrum we can estimate accurately. By

taking the inverse of the expected SNR, we obtain a

quantity which behaves similarly to the effective distance
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by taking larger values for signals which are nearer and/or

optimally oriented to the detector and thus more easily

detectable, and by taking smaller values as the signals

become less detectable.

Following the tests of the template bank (Sec. VC) we

also know that the efficiency at which we are able to detect

sources will depend on their spins as well as their effective

distance and component masses. In this upper limit calcu-

lation we assess the efficiency of the search using software

injection of simulated signals representing a population of

sources with spins randomized so that (i) the spin magni-

tude of each of the compact objects is distributed uniformly

in the range 0<�< 1 and (ii) the direction of the compact

object’s spin is uniformly distributed on the surface of a

sphere. The distances of the simulated sources are chosen

uniformly on a logarithmic scale. The sky positions and

initial polarization and inclination angles of the simulated

sources are all chosen randomly and to be uniformly

distributed on the surface of a sphere. We evaluated the

efficiency of this search for masses in the range 1:0M� <
m1, m2 < 20:0M�. During S3, LIGO’s efficiency was

dominated by sources within the Milky Way for which

detection efficiency was high across the entire mass range

investigated due to the proximity of these sources to Earth.

We also had some detection efficiency for binaries in M31

and M33.

The cumulative luminosity CLð	cÞ can be obtained by

generating a population of simulated signals using infor-

mation on the observed distribution of sources from stan-

dard astronomy catalogs. We use a model based on [61] for

the distribution of blue light luminosity throughout the

nearby universe. We use software injection of simulated

signals (the target waveforms described in Sec. III) to

evaluate the efficiency E for observing an event with

combined SNR greater than 	c, as a function of the

source’s expected SNR. We then integrate E times the

predicted source luminosity L as a function of expected

SNR and mass. Since a binary system will generally have

slightly different orientations with respect to the two LIGO

observatory sites, the detectors at the two sites will both

measure slightly different expected SNRs. The source’s

luminosity and the efficiency with which it is detected

are functions of both expected SNRs, and the integration

needed is two dimensional:

CLð	cÞ

¼
Z 1

0

Z 1

0
EðD	;H; D	;L; 	ÞLðD	;H; dD	;LÞdD	;LdD	;H

(39)

where D	 is the distance measure equal to the inverse of

the expected SNR, at LHO (H) or LLO (L). As mentioned

earlier, we evaluate CL at 	c;max ¼ 58:3. The cumulative

luminosity was measured to be �1:9L10 and is dominated

by the Milky Way (1:7L10) with the remainder made up by

M31 and M33.

We calculate the upper limit on the rate of coalescence

for prototypical NS-BH binaries with masses m1 �
1:35M� and m2 � 5M�. These values correspond to a

population of NS-BH binaries with component masses

similar to those used to assess the NS-NS and BH-BH

upper limits in [7]. To calculate this upper limit we evalu-

ate the efficiency of our search using binaries with a

Gaussian mass distribution with means m1 ¼ 1:35M�

and m2 ¼ 5M� with standard deviations �1 ¼ 0:04M�

and �2 ¼ 1M�. These efficiencies are measured with si-

mulated injected signals, using the same pipeline we used

to find our candidates, counting the number of injections

detected with SNR above 	c;max, and the number missed.

Assuming a Gaussian distribution of masses, we obtain an

upper limit of R90% ¼ 15:8 yr�1L�1
10 . The upper limit

calculation takes into account the possible systematic un-

certainties which arise in this search, which are described

in some detail in [60], and we will follow the analysis

presented there to calculate the systematic errors for the

above result. The most significant effects are due to the

possible calibration inaccuracies of the detectors (esti-

mated using hardware injections of simulated signals)

and the finite number of Monte Carlo injections performed.

FIG. 8. Upper limits on the spinning binary coalescence rate

per L10 as a function of the total mass of the binary. For this

calculation, we have evaluated the efficiency of the search using

a population of binary systems with m1 ¼ 1:35M� and m2

uniformly distributed between 2M� and 20M�. The darker

area on the plot shows the region excluded after marginalization

over the estimated systematic errors, whereas the lighter region

shows the region excluded if these systematic errors are ignored.

The effect of marginalization is typically small (< 1%). The

initial decrease in the upper limit corresponds to the increasing

amplitude of the signals as total mass increases. The subsequent

increase in the upper limit is due to the countereffect that as the

total mass increases the signals become shorter and have fewer

cycles in LIGO’s frequency band of good sensitivity.
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We must also evaluate the systematic errors associated

with the chosen astrophysical model of potential sources

within the galaxy. We obtain upper limits on the rate after

marginalization over the estimated systematic errors, as

described in [59,60]. After marginalization over these er-

rors we obtain an upper limit of R90% ¼ 15:9 yr�1L�1
10 .

We also calculate upper limits for a range of binary

systems with m1 ¼ 1:35M� and m2 uniformly distributed

between 2M� and 20M�. These upper limits, both before

and after marginalization, are shown in Fig. 8.

X. CONCLUSIONS

In this paper we have described the first search for

gravitational waves emitted during the inspiral of compact

binaries with spinning component bodies, which was car-

ried out using data taken during the third LIGO science

run. Interaction between the binary’s orbital angular mo-

mentum and the spin angular momenta of its components

will cause precession of its orbital plane resulting in the

modulation of the observed gravitational wave.

This search uses a detection template family specially

designed to capture the spin-induced modulations of the

gravitational waveform which could have resulted in them

being missed by other searches targeted at nonspinning

systems. The search pipeline used to carry out this and the

other recent inspiral searches has been significantly im-

proved since S2 and is fully described in a companion

paper [7].

There were no plausible gravitational wave event can-

didates detected within the 788 hours of S3 data analyzed.

The upper limit on the rate of coalescence for prototypical

NS-BH binaries with spinning component bodies was cal-

culated to be R90% ¼ 15:9 yr�1L�1
10 once errors had been

marginalized over.

The S5 LIGO data are greatly improved in sensitivity

and observation time compared to previous data sets. There

is considerable work in progress to further improve the

techniques used to search for binaries with spinning com-

ponent bodies using the S5 data. This includes develop-

ment of an improved parameter-space metric which does

not depend on the strong modulation approximation and

allows us to search a larger region of parameter space,

including binaries with comparable masses. Preparation

for another search for binaries with spinning component

bodies using a template family described by physical

(rather than phenomenological) parameters [45] is also

underway.
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