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Abstract We introduce and describe the Multiple Gravity Assist problem, a global
optimisation problem that is of great interest in the design of spacecraft and their tra-
jectories. We discuss its formalization and we show, in one particular problem instance,
the performance of selected state of the art heuristic global optimisation algorithms.
A deterministic search space pruning algorithm is then developed and its polynomial
time and space complexity derived. The algorithm is shown to achieve search space
reductions of greater than six orders of magnitude, thus reducing significantly the
complexity of the subsequent optimisation.

Keywords Multiple gravity assist · Space pruning · Constraint propagation ·
Differential evolution · Particle swarm · Genetic algorithm · GASP · Global
trajectory optimisation

1 Introduction

Many interplanetary trajectory design problems can be stated as optimisation
problems [1, 2], where one of the fundamental goals is the maximisation of the space-
craft mass available for the payload, equivalent to a minimisation of the propellant
necessary on board. Consideration is usually given also to mission duration, launch
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and arrival window, velocity constraints etc. Two main typologies of trajectory opti-
misation problems arise in relation to interplanetary mission design depending on
the type of the thruster considered for the mission. The first one appears in con-
nection with spacecraft equipped with engines capable of thrusting for long periods
of time, typically having a modest level of thrust and a high efficiency in terms of
mass consumption. The problem, commonly dubbed low-thrust, is then to find the
optimal control law for the thrust vector so that the mission requirements are fulfilled
and some main objective is optimised. This type of problem has traditionally been
approached using local search methods inherited from the well developed theory of
optimal control as described for example in Bryson and Ho [3]. The second type of
problem arises when the spacecraft thrust has a shorter duration with a much higher
magnitude and may therefore be modelled as a sudden change in the spacecraft
velocity. In this case the optimisation aims at finding the values of a finite number of
parameters describing the number and the magnitude of the velocity changes and the
time instant in which they are applied. In both cases, to help the spacecraft obtain the
necessary momentum, it is common to exploit the gravitational pull of other celestial
bodies in what is commonly referred to as a gravity assist manouvre, a swingby or a
planetary kick. Such a manouvre is based on the simple fact that when a spacecraft
interacts mainly with another celestial object, a small amount of the object’s orbital
momentum can be transferred to the spacecraft [4]. This manoeuvre was used for the
first time in the 1970’s, when the spacecraft Voyager used multiple gravity assist flybys
of Jupiter, Saturn, Uranus and Neptune, to propel itself beyond these planets. Gravity
assist manoeuvres are frequently used to reduce propellant requirements and mission
duration and may or may not require some added propellant consumption.

In recent times aerospace engineers have realised the benefits of approaching
trajectory designs problems from a global optimisation point of view (see for example
[5] or [6]). Mainly because of the complicated relative motion between the planets the
landscape of the objective function exhibits a large number of clustered minima that
cause local gradient based methods to converge to solutions corresponding to local
minima. We here discuss a particular formalization of an interplanetary trajectory
optimisation problem that we refer to as multiple gravity assist (MGA) problem, we
apply to it standard implementations of some known global optimisation solvers and
we introduce a space pruning technique that may be conveniently used to improve
their performances. The remainder of the paper is as follows. In Sect. 2 we describe the
mathematical formalization of the MGA problem touching upon the astrodynamical
principles behind its definition. In Sect. 3 we introduce a simplified version of the
MGA problem more suitable for an easy integration with existing global optimisation
algorithms. We then proceed in testing some population based global optimisation
stochastic algorithms. The algorithms and test conditions are described in Sect. 4. In
Sect. 5 we describe a pruning technique developed specifically for the MGA problem
and we evaluate, in Sect. 6, that the technique has polynomial complexity in time and
space. We then perform the tests exploiting the space pruning technique and show, in
Sect. 7, the great advantages introduced by its use.

2 The MGA problem formalisation

Let us consider a sequence of N + 2 planets starting with the Earth and ending with
the celestial body we want to transfer the spacecraft to. We introduce the vector
x = [t0, T1, T2, . . . , TN+1] where N is the number of planets we want to exploit in a
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gravity assist manouvre, t0 is the departure epoch and Ti are the durations needed
to travel along the conic arc joining two consecutive planets. Given these definitions
we introduce, in the framework of the patched conics approximation [4], the MGA
problem in the following form:

find: x ∈ I
to maximise: maxj mj(x)

(1)

where I = I0 × I1 × · · · × IN+1 is an hyperrectangle in R
N+2. As explained later,

more than one trajectory may be associated to a given decision vector and we have
therefore introduced mj as the final spacecraft mass evaluated along the jth trajectory
compatible with x and fulfilling the constraints:

�V0(x) ≤ �Vmax
0

rp(x) ≥ rpmin

(2)

where the vector rpmin contains the minimum values of the pericenter radii of the
various hyperbolae that define the swingbys and �Vmax

0 is the maximum Earth escape
velocity allowed for the spacecraft. In order to complete the mathematical description
of the problem we must now define the expressions mj(x), rp(x), �V0(x).

From the decision vector to the compatible trajectories: Consider a generic x ∈ I,
then the position of the n-th planet of the sequence at the spacecraft rendezvous is
equal to its ephemeris at epoch tn−1 = t0 + T1 + · · · + Tn−1 whenever n>1 and to
t0 whenever the planet considered is the departure planet. Each trajectory arc join-
ing two consecutive planets needs therefore to be a solution to the boundary value
problem: {

r̈ − r
r3 = 0

r(tn−1) = rn−1, r(tn) = rn
n = 1..N + 1 (3)

where rn−1, rn are the position vectors of two consecutive planets in the considered
sequence, where units are any L for length and

√
µ/L for velocities and where we

have introduced µ as the gravitational constant of the Sun. The problem stated above
is commonly referred to as Lambert’s problem (see Battin [7] for a first introduction).
Excluding the singular cases in which rn−1×rn=0, this boundary value problem admits
2(1+2Mn−1) solutions where Mn−1 ∈ [0, ∞] is an integer whose value depends on the
boundary conditions. The solutions corresponding to Mn−1 �=0 are called multi-revo-
lution solutions. All the solutions to the problem stated in Eq. (3) may be located by
algorithms such as that recently proposed by Prussing [8]. The whole interplanetary
trajectory will be made of N + 1 branches, where each branch is a solution to the cor-
responding Lambert’s problem so that at the end Nsol=2N+1 ∏N

i=0(1 + 2Mi) different
trajectories associated with the same decision vector x are possible: these trajectories
are said to be compatible with x. Due to the patching of the various arcs, at the times
ti, i = 1..N the velocity vector will be discontinuous having a left and a right value that
we will indicate with vin

i and vout
i . Between the trajectories compatible with x we first

locate the feasible ones (superscript j), in the sense of satisfying Eq. (2), and we then
evaluate the objective function maxj mj(x).

Feasibility of the compatible trajectories: Consider one particular trajectory
compatible with x. We may determine its departure velocity using the simple defi-
nition �V0 = ∥∥VEarth − vout

0

∥∥ where VEarth is the heliocentric velocity of the Earth
at t0 and vout

0 is the heliocentric velocity of the spacecraft at t0. We remain with the
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problem of evaluating the vector rp containing the pericenter radii of the planeto-
centric trajectories that links together consecutive arcs. With reference to Fig. 1 we
consider the i-th gravity assist manouvre. The values vin

i and vout
i are known from the

Lambert’s problem solution. These are respectively the heliocentric velocity at the
end of the trajectory arc preceding the flyby and at the beginning of the following
arc. The heliocentric velocity Vi of the planet (at ti) is also known. Trivially the left
and right value of the spacecraft velocity at ti relative to the planet may be obtained
by simple application of the galilean transformation (velocities relative to the planet
are indicated with the tilde) obtaining the quantities ṽin

i and ṽout
i . Following a patched

conic approach [4], the problem is then to find a planetocentric trajectory that has ṽin
i

and ṽout
i as asymptotic velocities. Such a trajectory, in the limit of the patched conic

approximation, would instantly transfer the spacecraft between two subsequent legs
of the heliocentric trajectory. We make the assumption that the spacecraft will provide
one single impulse and that the planetocentric trajectory is therefore made by two
arcs of hyperbola patched together. We also make the hypothesis that the impulse is
given at the pericenter of the incoming hyperbola arc and in a direction tangential to
the trajectory itself [9]. In this case simple astrodynamic calculations show that taking
as length unit any L and as velocity unit

√
µpla/L (where µpla is the gravitational

parameter of the planet considered), the angle between ṽin
i and ṽout

i is given by:

αi = arcsin
ain

i

ain
i + rpi

+ arcsin
aout

i

aout
i + rpi

(4)

where ain
i = 1/(ṽin

i · ṽin
i ) and aout

i = 1/(ṽout
i · ṽout

i ). This equation allows, given a tra-
jectory compatible with x, us to evaluate the components rpi of the vector rp at the
computational cost of performing Newton–Raphson iterations.

Evaluation of the objective function: Consider a feasible trajectory compatible with
x. At the ith gravity assist manouvre, under the hypothesis introduced in the previous
paragraph, the spacecraft engines will have to provide a velocity increment which in
turn will result in some propellant consumption and therefore mass decrease. The var-
ious velocity changes during the gravity assists are given by the simple relation (non
dimensional units are any L and

√
µi/L, where we have introduced the gravitational

constant µi of the planet considered):

Fig. 1 Powered flyby
geometry
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�Vi =
∣∣∣∣
√

(1/ain
i + 2/rpi) −

√
(1/aout

i + 2/rpi))

∣∣∣∣ , i = 1..N

Also at the final planet the spacecraft has to provide an additional velocity change
in order to rendezvous with it: �VN+1 = ‖Vpla − vin

N+1‖ where Vpla is the helio-
centric velocity of the arrival planet. This last contribution to the total �V budget
may be also written in different forms according to the level of detail one wants to
describe the spacecraft operations at the planet. The relation between the various
velocity increments and the final spacecraft mass is then given by the rocket equation
mf = m0 exp[−∑

�Vi/(Ispg0)], where Isp is the specific impulse of the engine and
g0 is the Earth gravitational constant at sea level and the sum is extended to all the
velocity increments. Once the final spacecraft mass is evaluated along all the feasible
trajectories compatible with x, the objective function is simply the maximum value
that we denoted with maxj mj. The evaluation of a given point x ∈ I is therefore made
by the following steps:

1. Decide x
2. Solve N + 1 Lambert’s problems and locate the Nsol = 2N+1 ∏N

i=0(1 + 2Mi)

trajectories compatible with x
3. Check the feasibility of the compatible trajectories
4. Evaluate the final spacecraft mass in all the feasible and compatible cases and

choose the maximum possible value

3 Simplifying the problem

The general definition of the MGA problem given in the previous section is compli-
cated essentially by the fact that there is more than one trajectory compatible with
each x ∈ I. Consequently the final spacecraft mass is not a single-valued function
of the decision vector. We may simplify the problem description associating uniquely
only one compatible trajectory to each point in the search space I. This can be done by
using some problem knowledge and at the risk of pruning out some interesting zones
of the search space. One possibility is, for example, that of not considering multiple
revolution solutions and retrograde trajectories (these are trajectories with an angu-
lar momentum h such that h · hEarth<0). Under these hypotheses there always exists
one unique solution to Lambert’s problem, consequently the single valued function
m(x) may be defined. Taking into account that the functional dependence between
the spacecraft mass and the sum of the different velocity increments is monotone, we
rewrite the MGA problem definition in the following form:

find: x ∈ I
to minimise: J(x) = ∑N

i=1 �Vi(x) + �VN+1(x)

subject to: �V0(x) ≤ �Vmax
0

rp(x) ≥ rpmin

(5)

A study on the complexity of the problem stated above can be found in the reports of
two studies [1,2] performed by the European Space Agency, and in particular by its
Advanced Concepts Team, in cooperation with the Universities of Reading (school
of Systems Engineering) and Glasgow (department of Aerospace Engineering).

An example: the case of 99942 Apophis: We here take as an example the asteroid
99942 Apophis and we consider a direct transfer to it (no gravity assist manouvres).
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In this case the problem has only two dimensions and a graphical representation
of the objective function is possible. We take as constraint �Vmax

0 =3.5 km/s and as
search space I = [3600, 4800] × [51, 500] (the departure epoch t0 is measured using
the modified Julian date 2000 (MJD 2000) and the transfer duration T1 is measured
in days). In Fig. 2 the set I5.5 = {x ∈ I|J(x) ≤ 5.5} is plotted. Note that units for the
objective function are km/s. The plot reveals a quite irregular landscape also in this
low-dimensional case.

4 Preliminary tests of selected global optimisers

The problem described by Eq. (5) has been coded in Matlab and C++ and a particular
instance of it has been made available to the scientific community in form of a blackbox
function. The problem instance made available corresponds to the planetary sequence
Earth–Venus–Venus–Earth–Jupiter–Saturn used during the Cassini/Huygens mission
and may be downloaded from the web site of the European Space Agency following
the link from the page http://www.esa.int/gsp/ACT/mission_analysis. In this particular
implementation the last velocity increment �VN+1 is evaluated by considering the
spacecraft insertion into a highly elliptic orbit. Also, �V0 is not constrained and is
included in the sum of the velocity increments that defines the objective function.

We report some preliminary results on the performances of common implemen-
tations of stochastic global optimisation algorithms. The algorithms selected have a
similar computational complexity and the number of objective function evaluations
has been used as a stopping criteria. We first describe briefly the various algorithms
used and then how the test was performed.

Differential Evolution—DE: Differential evolution [10] is a novel probabilistic
global optimiser which was the highest ranked Genetic-type algorithm in the First

Fig. 2 Visualization of the set
I5.5 = {x ∈ I|J(x) ≤ 5.5}. The
search space I is comprised
between the two oblique lines.
The existence of different
irregularly located valleys is
evident
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International Contest on Evolutionary Computation. In their paper, Rainer and Storn,
considered two different crossover schemes, DE1 and DE2. Scheme DE1 will be used
as the crossover operator as it was shown to perform the best on the most complex test
function they examined, which was an 8 dimensional Chebychev polynomial fitting
problem. The parameters used for this optimiser were: population size = 20, crossover
probability CR = 0.5, stepsize F = 0.8.

Particle Swarm Optimisation—PSO: Particle swarm optimisation [11] was origi-
nally designed as a simulation of flocking behaviour in birds, although its potential for
optimisation was recognised shortly afterwards. Each particle has a position within
the search space and a velocity, both of which are initialised randomly. As iterations
progress, each particle keeps tracks of the position of the best solution it has so far
encountered, and also knows the globally best solution found by the entire population.
The velocity is updated by two main components: the cognitive component, which
attracts the particle towards its own best solution, and the social component, which
attracts the particle to the best known solution. Each particle moves in the search
space according to the following equation:

xi = xi + vi
vi = ωvi + η1r1(x∗

p − xi) + η2r2(x∗
g − xi)

where x∗
p is the personal best solution of the i-th particle, x∗

g is the globally best known
solution, and r1, r2 are uniform random numbers in the interval [0, 1]. The parameters
used for this optimiser where: population = 20, ω = 0.65, η1 = 2.0, η2 = 2.0.

Multiple Particle Swarm Optimisation—MPSO: Multiple particle swarm optimisa-
tion is a novel technique based on that investigated by Blackwell [12], which showed
significantly improved performance over the basic algorithm. MPSO includes aspects
of niching genetic algorithms, in that each swarm evolves separately, for the main part.
However, every 5 iterations the swarm membership of two randomly chosen particles
is exchanged, effectively introducing new information into those swarms as to the
position of other minima. The parameters used for this optimiser where: population =
20, number of swarms = 3, ω = 0.65, η1 = 2.0, η2 = 2.0.

Genetic Algorithm—GA: The name genetic algorithm often generate confusion as
it is associated to a wide class of global optimisation algorithms. In this test we used
a basic version of the algorithm with real encoding using only a single-point cross-
over and uniform mutation. Every n iterations the best individual found so far was
reinserted in the population. An outline of the algorithm follows:

1. Initialize randomly the population of NP individuals in I
2. Repeat
3. Select NP individuals to be mated based on their fitness
4. Apply single-point crossover operator with probability CR
5. Apply mutation operator with probability MU
6. Every n iterations re-insert the best individual found so far
7. Until convergence

The parameters used for this optimiser where: NP = 20, n = 5, CR= 0.65, MU= 0.1.
For DE the choice made are standard except for the population size, for PSO, MPSO

and GA more arbitrary choice had to be made based on our personal experience with
this problem. In all cases the boundary conditions were enforced by randomly placing
the unfeasible components in the feasible interval.
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Test Case Description: The search space considered in the test case was: I =
[−1000, 0] × [30, 400] × [100, 470] × [30, 400] × [400, 2000] × [100, 6000], where the
modified Julian date 2000 is used to express the different epochs. The number of func-
tion evaluations allowed for each algorithm was 20000 after which the simulations
were stopped. Each algorithm was run a total of 40 times and the best result was
recorded together with the worst result, the average and the standard deviation. The
results are shown in Table 1. For this case further experimentation has shown that the
global optimum in this problem is less than 5 km/s, and hence it is certain that none
of the algorithms have converged to the global optimum within the given number of
objective function evaluations allowed.

5 GASP—gravity assist space pruning

Consider once again the MGA problem as stated in Eq. (5). Introduce the map:

f : x = [t0, T1, . . . , TN+1] → X = [t0, t1, . . . , tN , tN+1]
defined by the simple relation ti = t0 + ∑i

j=1 Tj, i = 0, · · · , N + 1. Applying the same
transformation to the search space I we obtain a new search space that we denote
with I∗ = f (I). We may now consider a new statement of the MGA problem:

find: X ∈ I∗
to minimise: J(X) = ∑N

i=1 �Vi(X) + �VN+1(X)

subject to: �V0(X) ≤ �Vmax
0

rp(X) ≥ rpmin

(6)

At the cost of dealing with a search space that is not hyper rectangular, we have
formulated the MGA problem in terms of absolute times which brings the advantage
of simplifying the relation between the planets positions and the decision vector (the
planet positions depend now on only one component of X). Besides, this formulation
improves the chances of crossover operations in genetic strategies to generate good
individuals. The optimisation method we here investigate in detail is grid sampling.
Grid sampling is usually a very inefficient optimiser, particularly in high dimensionali-
ties. However, for only 1 and 2 dimensions grid sampling is computationally tractable,
as long as the objective function is reasonably smooth and the exact optimum is
not required. Therefore, the objective function for a single interplanetary transfer
may be grid sampled at an appropriate resolution in the departure time vs arrival
time domain efficiently, although in this case most other optimisation methods would
yield better results in terms of objective function evaluations. However, the grid sam-
pled version will require many less ephemeris calculations, as the same positions/
velocities need not be recalculated for a given departure or arrival time. If the

Table 1 Results of the preliminary test on a particular MGA problem instance

Algorithm Minimum Maximum Average Standard deviation

DE 5.012 16.8957 10.270 3.51
PSO 5.596 22.127 11.916 4.43
MPSO 5.549 18.933 9.843 3.67
GA 5.755 21.199 8.679 2.96

About 20000 function evaluations have been allowed, units are in km/s
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2D search space was discretised into k cells in each dimension, only 2k ephemeris
calculations are required for the entire sampling, and k2 Lambert problem solutions.
By comparison, two ephemeris calculations are required by each objective function
evaluation in a standard optimiser. Clearly as soon as gravity assists are involved the
increased dimension of the problem makes grid sampling appear to be unfeasible.
Fortunately, the particular structure of the MGA problem allows to consider grid
sampling also for higher dimensions as we will now show.

Consider the MGA problem formalization given by Eq. (6) and focus the attention
on the functional dependence of the objective function and of the constraints upon
the decision vector X. The function �V0(X) depends only on the first two compo-
nents of the decision vector: �V0(X) = �V0(t0, t1), a two-dimensional sampling of
f (I0 ×I1) therefore allows us to evaluate this constraint. The first gravity assist veloc-
ity increment �V1 depends on the incoming and outcoming spacecraft velocities. But
the incoming velocity is known from the previous two dimensional sampling, and a
further two dimensional sampling of f (I1 × I2) allows us to evaluate �V1. The same
applies for rp1 . We arrive at the final planet where �VN+1 only depends on the
incoming velocity already sampled to evaluate �VN . This particular structure of the
problem allows us to sample the objective function in a cascade of N + 1 two-dimen-
sional spaces rather than in a single N + 2 dimensional space. Consider the space
I = I0 × I1 × · · · × IN+1 defined in terms of the decision vector x. Grid sampling the
spaces f (I0 × I1), f (I1 × I2), …, f (IN × IN+1) still allow to explore the whole f (I).
In these two dimensional spaces pruning can be done very effectively. Consider as
an example an Earth–Mars transfer with I = [−1200, 600] × [25, 515]. Grid sampling
with a resolution of 10 days the space f (I) reveals that only 12.5% of this search space
has a �V0 of less than 5 km/s. As a consequence, in gravity assist and multiple gravity
assist cases starting with an Earth–Mars transfer in these bounds, at least 87.5% of
the overall search space corresponds to unfeasible solutions if �Vmax

0 = 5 km/s. Even
allowing an enormous �Vmax

0 of 10 km/s, only 33% of the search space becomes valid.
Based on these simple ideas we present an algorithm called GASP (gravity assist

space pruning) and designed to efficiently detect and prune infeasible parts of the
space, leaving several sets of box bounds with vastly smaller volume. These reduced
box bounds may then be searched efficiently using a standard global optimisation
method. We will now list a number of criteria that allow us to prune the space exploit-
ing the problem structure outlined above.

Departure �V0 constraining: The maximum allowable �V0 is the first main pruning
criterion of the GASP algorithm. It works on the sampled space f (I0 × I1) pruning
out all those points corresponding to trajectories having unfeasible departure �V0.

Forward constraining: Applying the �V0 constraining alone significantly reduces
the search space volume in an MGA problem. As a consequence many values of the
arrival time t1 in f (I0 × I1) become not feasible departure times in f (I1 × I2). This
observation is the key principle on which the GASP algorithm is based: if no feasible
trajectories arrive at a planet on a given date because they have been pruned according
to the various criteria introduced, then there will be no departures from that planet on
that date and all the corresponding points will also be pruned. Consider as an exam-
ple the MGA problem Earth–Venus–Earth in I0 = [3600, 5400], I1 = [14, 284], I2 =
[14, 284]. In Fig. 3 the two-dimensional spaces corresponding to the Earth–Venus
phase f (I0 × I1) and to the Venus–Earth phase f (I1 × I2) are shown together with an
example of pruning caused by the forward propagation of a departure �V constraint
of 10 km/s.
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Fig. 3 Pruning of the space f (I0 × I1) and forward propagation to the space f (I1 × I2). The effects
of the breaking manouvre constraint is also shown in the 2nd phase

Gravity assist maximum thrust constraint: The gravity assist thrust constraint prunes
out the trajectories having a difference between incoming and outgoing velocities dur-
ing a gravity assist larger than some threshold, Av. This threshold is set separately for
each gravity assist. The following is then performed for every arrival time at a planet:

1. Calculate the bounds on the possible incoming velocity, vi
min and vi

max.
2. Invalidate any outgoing trajectories that do not have outgoing velocities in the

range [vi
min − Av − Lv, vi

max + Av + Lv], where Lv is an appropriate tolerance
based on the Lipschitzian constant of the current phase plot (the tolerance may
be chosen heuristically and it does not have a major influence on the results).

3. Calculate the modified bounds on outgoing velocity, vf
min and vf

max.

4. Invalidate any incoming trajectories with velocities outside the range [vf
min −Av −

Lv, vf
max + Av + Lv].

Gravity assist angular constraint: The gravity assist angular constraint prunes infea-
sible swingbys from the search space on the basis of them being associated with a
hyperbolic periapse under the minimum safe distance for the given gravity assist
body. This is determined over every arrival date at a planet as follows, assuming i
valid incoming trajectories and j valid outgoing trajectories:

1. For all i incoming trajectories
2. For all j incoming trajectories
3. If the swingby is valid for the current incoming
4. and outgoing trajectory, mark both incoming and

outgoing trajectory as valid.
5. End
6. End
7. Invalidate all trajectories not marked as valid

The swingby angle of each sampled manouvre is decreased by an appropriate
Lipschitzian tolerance θL, in order to compensate for the effects of the grid sam-
pling of the search space.
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Breaking Manouvre Constraint: As well as the departure �V0 constraint, it is log-
ical to add a constraint on the maximum braking manoeuvre that a spacecraft can
perform and prune out trajectories with an exceedingly high propellant demand.

Backward Constraining: Clearly if a departure date in f (Ii × Ii+1) becomes unfea-
sible because of pruning, also the relative arrival date in f (Ii−1 × Ii) has to be pruned
out.

All in all GASP algorithm may be summarized by the following steps:
1. Perform grid sampling of the spaces f (Ii × Ii+1)

2. Apply departure �V0 constraint
3. Forward constraining through all phases
4. For each phase
5. Invalidate infeasible departure dates
6. Apply gravity assist maximum thrust constraint to the next phase
7. Apply gravity assist angular constraint to the next phase
8. End
9. Apply breaking manouvre constrain

10. Backward constraining through all phases
11. For each phase
12. Invalidate arrival dates based on departure dates.
13. End

6 Time and space complexity of the space pruning

This section determines the time and space complexity of the GASP algorithm, that is
the number of operations necessary to complete the algorithm and its memory needs.
It will be shown that GASP scales quadratically in space and quartically in time. For
simplicity, the following analysis assumed that the initial launch window and all phase
times are the same.

6.1 Space complexity

Consider a launch window discretised into k bins and a mission phase time also
discretised into k bins. For the first phase k2 Lambert problems must be sampled.
The next phase will need to sample (k + k)k = 2k2, as the number of possible
times that the planet may be arrived at is doubled (minimum launch date, minimum
phase time to maximum launch date, maximum phase time). The third phase will
require 3k2 Lambert function evaluations, and the nth phase nk2. This gives the series
O(n) = k2 + 2k2 + 3k2 + · · · + nk2 O(n) = k2(1 + 2 + 3 + · · · + n) O(n) = k2 n(1+n)

2 .
Therefore, the amount of space required for n phases is only of the order O(n2), rather
than O(kn) for full grid sampling.

Similarly, it is clear that the space complexity with respect to the resolution k, is
also of the order O(k2).

6.2 Time complexity

The memory space required is directly proportional to the maximum number of
Lambert problems that must be solved, and hence the time complexity of the sam-
pling portion of the GASP algorithm must also be of the order O(n2).
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Departure velocity �V0 constraint complexity: The launch energy constraint is only
applied in the first phase, and hence is independent of the number of swingbys. The
time complexity is O(k2) with respect to resolution.

Gravity assist thrust constraint complexity: The time complexity of applying the
gravity assist thrust constraint is O(n2) with respect to dimensionality (number of
phases), due to the inevitable increase in size of later phase plots to encompass all
possible arrival dates. The first phase requires of the order of 2k × (k + 3k) opera-
tions in order to perform the constraining of outgoing velocity from incoming velocity
(the back constraining may be ignored at this point). The second phase requires of
the order of 3k × (2k + 4k) operations. In general, the nth phase requires of the
order of 2n2k3 operations. Therefore, the total number of operations over all phases
is 2k2[22 + 32 + 42 + . . . + n2] = 2k2 n(n+1)(2n+1)

3 . Therefore, applying this constraint
yields cubic time complexity in dimensionality and quadratic complexity in resolution.

Gravity assist angular constraint complexity: The maximum number of swingby
models that must be calculated for the first phase is close to k × 2k × 3k = 6k3. For
the second swingby, this is 2k × 3k × 4k = 24k3. In general, for n phases, the upper
bound on the number of swingby calculations, α, is

α = 3 × 2 × 1 × k3 + 4 × 3 × 2 × k3

+ 5 × 4 × 3 × k3 + · · · + (n + 2)(n + 1)nk3

The total number of these operations must therefore be α = k3 ∑n
j=1(j + 2)(j + 1)j =

k3 n(n+1)(n+2)(n+3)
4 . Therefore, the overall time complexity with respect to resolution is

O(k3), while the time complexity with respect to dimensionality is O(n4). Therefore,
the gravity assist angular constraint is the most computationally expensive and hence
is applied after GA thrust constraint in order to minimise the number of swingby
models that must be calculated.

Overall time complexity: The overall time complexity, taken from the most complex
part of the algorithm (the gravity assist angular constraint), is cubic with respect to
resolution and quartic with respect to dimensionality.

7 Testing GASP

Consider the same problem instance we have studied in Sect. 4. We performed again
the same tests taking as individuals for the initial populations f −1(Xi) where the Xi are
randomly sampled in the best window located by GASP (in terms of sampled objec-
tive function). Running GASP in this case took less than one second on a Pentium IV
2.8 Ghz personal computer and brought a search space reduction of a factor 139,000
with the following pruning parameters considered �Vmax

0 = 8 km/s, the Av = 1 km/s
(equal for all gravity assists) and �Varr < 8 km/s. Grid sampling was performed with
an interval of ten days on each of the variables and 23915 swingby calculation were
performed in the process. Table 2 reports the outcome of 40 tests performed on each
of the considered optimisation techniques. Note that GASP is not run before each of
the optimisation, but just once at the beginning of the tests. The benefits of having
applied the space pruning are clear by comparing this with Table 1. Not only GASP
improved drastically the convergence of all the optimisers, but it also allowed Differ-
ential Evolution to locate a new optimum. For completeness the best trajectory, using
a 2/1 resonant Venus fly-by, is visualized in Fig. 4.
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Table 2 Results of the preliminary test on the MGA problem instance initializing the populations in
the best window located by GASP

Algorithm Minimum Maximum Average Standard deviation

DE 4.944 5.372 5.302 0.06
PSO 5.305 6.089 5.403 0.13
MPSO 5.303 5.347 5.310 0.0099
GA 5.401 6.074 5.693 0.14

About 20000 function evaluations have been allowed, units are in km/s

Fig. 4 Visualization of the best found optima for the test case

8 Conclusions

We have formally introduced the Multiple Gravity Assist global optimisation problem
and shown how the structure of its objective function and of its constraints allows to
consider the multidimensional search space as a cascade of two-dimensional spaces.
Based on this observation we introduced a space pruning algorithm GASP that dras-
tically improves the performances of subsequent global optimisation techniques. The
complexity of the pruning algorithm is polynomial both in time and in space. In the test
performed GASP allowed search space reductions of several orders of magnitudes
and was able to locate efficiently all the interesting parts of the search space.
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