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auction model, encounters trading partners through costly sequential search. The main objective
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form of winner’s curse that is present in the search scenario. This understanding is a central

qualitative insight of this paper, which is likely to have implications beyond the narrow confines

of our model. We also look at the efficiency perspective and examine the relations between
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1 Introduction

This paper analyzes a search model with asymmetric information of the common value variety.

The basic features of this environment resemble those of a common value (procurement) auction,

except that the searcher in our model, who is the counterpart of the auctioneer in the auction

model, encounters trading partners through costly sequential search.

The main objective of this paper is to understand how the combination of search activity and

information asymmetry affects prices and welfare. We specifically inquire about the extent of

information aggregation by the price –how close the equilibrium prices are to the full information

prices–when the search frictions are small. Roughly speaking, we conclude that information is

aggregated less well in the search environment than it is in the corresponding auction environment.

We trace this to a stronger form of the winner’s curse that is present in the search scenario. This

understanding is a central qualitative insight of this paper, which is likely to have implications

beyond the narrow confines of our model. We also look at the efficiency perspective and examine

the relations between total surplus and the informativeness of the signal technology available to

the uninformed. We conclude that total surplus is not monotone in the quality of the signals.

The searching agent–the buyer–samples sequentially alternative trading partners–sellers–

for a potential transaction that involves information asymmetry. To have a concrete story in mind,

one can think of a simple procurement scenario in which a homeowner (the buyer) needs a repair

service and searches among potential providers (the sellers)1. The buyer has private information

that determines the cost to sellers. We assume that the buyer can be one of two types, L and H,

which stand for low and high, respectively. A seller’s cost of providing the service, cw, is the same

for all sellers and it depends on the buyer’s type w ∈ {L,H} with cH > cL. Upon being sampled,

a seller observes a noisy signal of the cost. Then the buyer and that seller bargain over the price.

In the main model the bargaining takes the form of a take-it-or-leave-it price offer by the buyer,

but later in the paper we consider other forms as well. If sellers had complete information, search

would end immediately with a transaction at a price equal to the true cost. Under incomplete

information, however, the prices that a seller accepts depend on his belief about the type of the

buyer conditional on being sampled and conditional on the observed signal. Since the signal is noisy,

different sellers observe different realizations of the signal and, therefore, have different beliefs. The

buyer has an incentive to search for sellers who receive a favorable signal in order to trade at a lower

price, but this incentive and hence the search intensity might vary across the different types of the

buyer. Sellers cannot observe the buyer’s search history, but they understand the buyer’s search

behavior and take it into account when interpreting their signals. This effect of the anticipated

search behavior on sellers’ beliefs and hence on the price distinguishes the information aggregation

1Alternatively, one may reverse the roles of what we call buyer and sellers to obtain an alternative story of sale of
an object of uncertain quality by an informed seller.
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in the search environment from that in the corresponding auction environment.

The equilibrium concept is Perfect Bayesian supplemented by a refinement that restricts the

beliefs following moves off the path. Equilibrium prices aggregate the information perfectly if they

are equal to the true cost. We show that when the sampling cost is small, the extent of information

aggregation by equilibrium prices depends on the informativeness of the signal technology in the

following way.

Let Fw denote the distribution of the signal x on a common support [x, x] when the buyer is

of type w. Low realizations of the signal indicate a higher likelihood of the low cost type, that

is, the likelihood ratio fL/fH is decreasing. Subject to a regularity condition, we show that the

equilibrium outcome is determined by the tail properties of the distribution of the likelihood ra-

tios. The equilibrium is revealing if and only if the following two conditions hold. First, there

are values in the support of the signal distributions that are arbitrarily informative about L, i.e.,

fL(x)/fH(x) −→x→x ∞. Second, conditional on the buyer being of the low cost type, the proba-
bility of “exceedingly informative” signals is sufficiently high. Specifically, the distribution of the

likelihood ratios must have a “thick tail” in a sense that will be made precise later in the paper.

If these conditions fail, the limit equilibrium prices do not aggregate the information perfectly. It

might be completely pooling, in the sense that both of the buyer types end up trading at the same

price, or semi-pooling in the sense that the different types end up trading at different expected

prices which do not coincide with the expected costs. This is caused by excessive search of the bad

type of the buyer, which diminishes the informative value of signals.

In our base model, welfare coincides with (the negative of) the accumulated search costs (the

buyer always buys while the price is just a transfer). We evaluate welfare in the limit as the sam-

pling cost goes to zero. This limit is not monotone in the informativeness of the signal technology.

The limit outcome is nearly efficient when the signal technology is very informative or very uninfor-

mative and it is inefficient for intermediate levels of informativeness. The efficiency losses are more

significant when the signal technology is of intermediate quality, since this is the case in which the

high cost type invests the most effort in trying to mimic the low cost type. In contrast, when the

signals are very uninformative, both types do not search much, and when they are very informative,

only the low cost type who is the more efficient searcher undertakes significant search.

We compare our results to their counterparts in a setting in which a buyer can commit to a

procurement auction (with the same signal structure) and we look at the case in which the number

of bidders is large. As shown by Milgrom (1979) and Wilson (1977), the equilibrium winning bid

in the limit auction (as the number of bidders increases indefinitely) aggregates the information

perfectly if and only if there exist arbitrarily informative signals, i.e., fL(x)/fH(x) −→x→x ∞. In
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contrast, as mentioned above, nearly perfect information aggregation in the search model requires an

additional condition guaranteeing that exceedingly informative signals are sufficiently likely. Indeed,

in our search model, the outcome can involve complete pooling even when there are arbitrarily

informative signals (i.e., the condition fL(x)/fH(x) −→x→x ∞ holds). Furthermore, the limit

auction equilibrium outcome never involves complete pooling, even when the most informative

signals are of bounded strength (i.e., limx→x fL(x)/fH(x) <∞), whereas in our search model these
situations will necessarily involve complete pooling. These are the senses in which the search model

aggregates information more poorly than the corresponding auction model. The reason for this

difference is that, in the auction model, the buyer commits to consider only the bids of a given

number of sellers, even when their signals are not favorable. In the search model, the buyer may

continue to sample sellers until encountering one with sufficiently favorable signal. This exacerbates

the winner’s curse in the search model relative to its counterpart in the corresponding auction model

and impedes the aggregation of information by prices.

This paper is related to two bodies of work. One deals with the question of information aggre-

gation in the interaction of a large group of players. We have already mentioned Milgrom (1979)

and Wilson (1977) who addressed this question in the context of a single unit auction. Feddersen

and Pesendorfer (1997) and Duggan and Martinelli (2001) consider information aggregation in the

context of voting model, Smith and Sorenson (2000) consider it in the context of social learning,

Pesendorfer and Swinkels (1997) consider it in the context of a multi-unit auction.

Another related body of work deals with search with adverse selection, e.g., Inderst (2005),

Moreno and Wooders (2010), Guerrieri, Shimer and Wright (2010), and Hörner and Vieille (2009).

While these papers are not directly related to ours in terms of the model and questions, they

do have in common with our paper the idea that, in a search model, the distribution of types is

determined endogenously. For example, in Inderst (2005) the distribution of types adjusts to sustain

the Rothschild-Stiglitz best separating outcome as an equilibrium (which would not necessarily be

the case for an arbitrary exogenous distribution of types).

There are a few papers in the intersection of these literatures. Wolinsky (1990) and Blouin and

Serrano (2001) show that, in a two sided search model with binary signals and actions, information

is not aggregated perfectly even as the frictions are made negligible. Duffie and Manso (2007) and

Duffie, Malamud and Manso (2009) characterize information percolation in markets where agents

truthfully exchange their information with each other whenever they are matched.

2 The Model

We present a lean version of the model without apologies and relegate discussion of possible varia-

tions and extensions to Section 8 below.
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A buyer samples sequentially from a continuum of identical sellers in search for a single transac-

tion, incurring a cost s > 0 (“search cost”) for each seller sampled. The set of sellers is an interval

and the buyer’s draws from this set are independent and uniformly distributed.

To have a concrete story in mind, one may think of a procurement scenario in which the buyer

needs a repair service and samples providers sequentially to select one to perform it.2

A seller’s cost of providing the service, cw, is the same for all sellers and depends on the buyer’s

type w ∈ {L,H} with cH > cL. The prior probabilities of L and H are gL and gH respectively

(gL + gH = 1). The type w is known to the buyer but not to the sellers.

Upon meeting the buyer, the seller obtains a signal x ∈ X = [x, x] from a distribution Fw,

w = L,H, with continuously differentiable density fw strictly positive on (x, x). A lower value of

the signal indicates a higher likelihood of L and Fw has the monotone likelihood ratio property,

i.e., fL (x) /fH (x) is strictly decreasing in x on (x, x). The signal is observed by the buyer as well.

Conditional on the state, the signals are independent across sellers.

After a seller was sampled and the signal wass observed, the buyer and this seller have an

opportunity to agree whether to transact and at what price. A transaction means that the seller

provides the buyer with a service of known value u independent of the buyer’s type. In our base

model, we assume that the buyer makes a take-it-or-leave-it price offer to the seller who then either

accepts or rejects.

The buyer’s payoff from transacting at a price p after sampling n sellers is

u− p− ns.

The seller’s payoff is (
p− cw if transacts,

0 otherwise.

We assume that u is sufficiently larger than cH + s, so that the buyer of either type would like

to participate.

The buyer observes the entire search history. But sellers observe only what occurs in their own

encounters with the buyer: being sampled, the signal and the price offer. In particular, a seller

does not know how many other sellers were sampled by the buyer prior to being contacted.

2Alternatively, one may reverse the roles of what we call buyer and sellers to obtain an even more standard story
of sale of an object of uncertain quality w.
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The buyer’s behavior is described by a (Markovian pure3) strategy P = (PL, PH), where Pw(x) ∈
[0, u] is the price4 offered by w after signal x.

The seller’s strategy prescribes an acceptance probability A (p, x) ∈ [0, 1] of price p after signal
x.

Consider a symmetric situation in which the buyer employs the Markovian offer strategy P and

the sellers employ the acceptance strategy A. Let Vw (P,A) denote the expected payoffs of buyer

w = L,H, given P and A. It is defined recursively by

Vw =

Z x̄

x
[A (Pw (x) , x) (u− Pw (x)) + (1−A (Pw (x) , x))Vw] dFw (x)− s.

Let en(P,A) denote the random number of sellers sampled by the buyer until a trade takes place,

and let nw(P,A) = E(en(P,A) | w) be the expected number of sellers sampled by buyer type w
until a trade takes place.

Let βI (x, P,A) denote the interim belief that w = H held by a seller with signal xwho is sampled

by the buyer (but has not yet received a price offer), given that the buyer employs strategy P and

all sellers employ strategy A. Here and later on the subscript “I” indicates the interim stage (after

the signal x was realized but before the price was offered). In the appendix we derive the following

expression for x ∈ (x, x)

βI (x, P,A) =
gHfH (x)nH(P,A)

gHfH (x)nH(P,A) + gLfL (x)nL(P,A)
=

1

1 + gL
gH

fL(x)
fH(x)

nL(P,A)
nH(P,A)

. (1)

and we set βI (x, P,A) = limx→x+ βI (x, P,A) and βI (x̄, P,A) = limx→x̄− βI (x, P,A).

To understand this expression intuitively, suppose momentarily that there is a finite number

N of sellers and that the strategies and uniform sampling are as above. Let ρw be the probability

that an encounter between buyer type w and a seller ends with disagreement, i.e., ρw = Pr{x :
A(Pw(x), x) = 0}. Observe that, when sampling without replacement, Pr{seller i is sampled| w} is
equal to

3Since the buyer does not learn anything from the history and sellers do not observe it, the restriction to Markovian
does not seem to exclude anything of interest. The restriction to pure strategies does not matter for the qualitative
insights of the paper and it simplifies the refinement arguments we present later. We will return to discuss it in more
detail in Section 7 below.

4Note that the strategy does not include a "quit" option. Nothing would change if we include such an option and
associate the payoff (−ns) with quitting after sampling n sellers. Since u > cH + s quitting would never occur in
equilibrium anyway.
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1

N
+ (1− 1

N
)ρw

1

N − 1 + (1−
1

N
)(1− 1

N − 1)ρ
2
w

1

N − 2 + ...+ (1− 1

N
)(1− 1

N − 1)...(1−
1

2
)ρN−1w

=
1

N
(1 + ρw + ρ2w + ...+ ρN−1w ) =

1

N

1− ρNw
1− ρw

.

Therefore, Pr{H |seller i is sampled, x} is equal to

gHfH(x)
1−ρNH
1−ρH

gHfH(x)
1−ρNH
1−ρH

+ gLfL(x)
1−ρNL
1−ρL

−→
N→∞

gHfH (x)nH(P,A)

gHfH (x)nH(P,A) + gLfL (x)nL(P,A)
,

which coincides with RHS(1). In our model the set of sellers is not finite, so this calculation does not

apply directly. The appendix presents the appropriate derivation for the infinite case. It involves a

small subtlety, since owing to the continuum of sellers, it relies on probabilities that are conditional

on the zero probability event of a particular seller being sampled.

Notice that βI depends on (P,A) only through the ratio
nL(P,A)
nH(P,A)

. This ratio will play a central

role in the analysis and the accompanying intuition. It captures the effect of the differential sampling

behavior of the two buyer’s types on the sellers’ beliefs.

An equilibrium is a Markovian offer strategy P = (PL, PH), an acceptance strategy A (p, x)

and beliefs β(p, x) s.t.

(i) Pw (x) ∈ Argmaxp0{A(p0, x)(u− p0) + (1−A(p0, x))Vw (P,A)}.
(ii) p ≷ β (p, x) cH + (1− β (p, x)) cL implies A(p, x) = 1 and 0 respectively.

(iii) β(Pw (x) , x) is Bayesian updating of βI (x, P,A).

Obviously, the equilibrium is not unique: the freedom in choosing beliefs off the path allows

to sustain a large set of equilibria. We will focus on a specific type of equilibrium which we call

“undefeated” equilibrium.

2.1 “Undefeated” Equilibria

Given the values Vw (P,A), the interaction between the buyer and any seller after signal x is a simple

take-it-or-leave-it bargaining game with asymmetric information. An overall equilibrium induces

a sequential equilibrium in the individual bargaining component after any x. There are two kinds

of pure sequential equilibrium outcomes: pooling and separating. In a pooling equilibrium, both

types trade at a common price. In the separating equilibrium, L offers cL and H offers cH , and

acceptance may be probabilistic.5

5The fact that the equilibrium separating prices coincide with cL and cH will be proven below.
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We would like to confine attention to equilibria of this bargaining component that do not rely

on “non-credible” beliefs. We do so by confining attention to a set of equilibria in which, after

any x, type L’s payoff is at least as high as the payoff in the pooling outcome. The intuitive

idea is that it is L who is generally interested in revealing itself, while it is H who wishes to

masquerade as L. So, when L prefers to pool, separation could be forced only by an “unnatural”

belief that we would like to avoid. In Section 7.1 we present two alternative formal arguments

that support this selection: (i) it coincides with the known Sequential Equilibrium refinement of

Undefeated Equilibrium (Mailath, Okuno, Postlewaite (1993)); (ii) it contains the set of equilibria

that will arise if we let the uniformed sellers make the offers (which will completely bypass the

belief formation issue but will require that two or more sellers offer simultaneously to avoid the

"Diamond Paradox"). We also discuss in that section other known equilibrium refinements.

We name the selected equilibria “undefeated” where the quotation marks are a reminder that our

equilibrium concept is defined for the whole process rather than just for the bargaining component

for which the original undefeated refinement is defined.

To avoid a detour, the "undefeated"equilibrium is defined here directly in terms of a simple

condition stated below and, as promised, we will return later to present the arguments that justify

this selection. Formally, let EI [c|x, P,A] denote the (interim) expected cost of a seller

EI [c|x, P,A] = βI (x, P,A) cH + (1− βI (x, P,A)) cL . (2)

Since βI depends on (P,A) only through the ratio nL(P,A)/nH(P,A), so does EI [c|x, P,A]. The
buyer’s pooling payoff is u−EI [c|x, P,A].

Definition: An “undefeated” equilibrium (P,A) is such that, for any x,

A(PL(x), x)(u− PL(x)) + [1−A(PL(x), x)]VL(P,A) ≥ u−EI [c|x, P,A] . (3)

3 "Undefeated" Equilibria: Characterization and Existence

To streamline the notation we will write nw, Vw, EI [c|x] and βI (x), omitting the arguments (P,A)
though these magnitudes depend of course on (P,A). But our arguments never go across different

equilibria so this simplification should create no confusion.

Let ā = ā (P,A) be the maximal probability a ∈ [0, 1] satisfying

a (u− cL) + (1− a)VH ≤ max {u− cH , VH} . (4)
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This is the maximal probability with which the price offer cL can be accepted in any separating

equilibrium of the bargaining component, since any higher probability would induce H to also offer

cL.

Define the cutoff point x∗ = x∗ (P,A) as the solution to the equation

ā (u− cL) + (1− ā)VL = u−EI [c|x∗] , (5)

if it exists. Otherwise, let x∗ = x if the LHS is always larger and let x∗ = x if the LHS is always

smaller. That is, at x∗ type L is indifferent between trading at the expected interim cost, EI [c|x∗],
and taking the lottery that with probability ā results in trade at price cL and with (1− ā) results

in continued search.

Define the cutoff x∗∗ = x∗∗ (P,A) by the solution to

VL = u−EI [c|x∗∗] , (6)

if such cutoff exists. Otherwise, let x∗∗ = x if the LHS is always larger and let x∗∗ = x if the LHS is

always smaller. That is, at x∗∗ type L is indifferent between trading at the expected interim cost,

EI [c|x∗∗], and just continuing the search.
Since obviously VL < u − cL in equilibrium and EI [c|x] is monotonically increasing in x, it

follows that x∗ ≤ x∗∗. Also, if ā = 0, then x∗ = x∗∗.

Again, to keep the notation simple, we follow the convention we have adopted for other equi-

librium magnitudes and write ā, x∗ and x∗∗ omitting the arguments (P,A) though of course these

magnitudes are dependent on the strategies being played.

Claim 1 : If (P,A) is an “undefeated” equilibrium, then VL > VH and (up to irrelevant differ-

ences6) its outcome satisfies the following.

• After x ≤ x∗, both types of the buyer pool on price = EI [c|x, P,A] and the price is accepted,

PL (x) = PH (x) = EI [c|x] and A (EI [c|x]) = 1.

• After x > x∗∗, the buyer types separate

PL (x) = cL, PH (x) = cH ,

6These “irrelevant differences” concern zero probability events and the description of situations in which both
buyer types disagree with the seller. We describe those situations as separating with zero acceptance probabilities,
but they can also be described in equivalent ways, e.g., as pooling on a price below cost.
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and the acceptance probabilities satisfy

(u−EI [c|x])− VL
(u− cL)− VL

≤ A (cL, x) ≤ max{0,
(u− cH)− VH
(u− cL)− VH

} (7)

A (cH , x) =

(
0 if VH > u− cH ,

1 if VH < u− cH .
(8)

• After x ∈ (x∗, x∗∗), the two types either pool or separate as above.

Conversely, if an equilibrium (P,A) satisfies the above for every x, it is “undefeated”.

The proof is relegated to the appendix. But let us comment briefly on some of the main steps.

The observations on A (cw, x) summarized by (7) and (8) are derived from

A (cL, x) (u− cL) + (1−A (cL, x))VL ≥ u−EI [c|x] (Undomination by pooling)

A (cL, x) (u− cL) + (1−A (cL, x))VH ≤ max {u− cH , VH} (H’s IC)

A (cH , x) (u− cH) + (1−A (cH , x))VH ≥ max {u− cH , VH} (H’s IR).

Notice also that (7) and (8) imply A(cL, x) ≤ A(cH , x).

After x < x∗, type L prefers pooling to separating (by the definition of x∗), hence the equilibrium

must involve pooling. After x > x∗, type L prefers separating to pooling (as implied by the LHS

of (7), but nevertheless after x ∈ (x∗, x∗∗) the equilibrium may be pooling. Only after x > x∗∗, the

equilibrium is necessarily separating (since by the definition of x∗∗ type L prefers even continued

search to pooling).

Claim 1 provides the complete characterization of the “undefeated” equilibria. For example, if

there is an “undefeated” equilibrium with VH ≥ u− cH (which will turn out to always be the case

when s is small enough), it follows from the claim and from (5) that L will search till it generates

a signal below the threshold x∗ > x and that H will either do the same (if VH > u − cH) or will

just be indifferent (if VH = u − cH) between doing the same or settling immediately for the price

cH . Therefore, the equilibrium payoffs are

VL = u−
Z x∗

x
EI [c|x]

dFL (x)

FL (x∗)
− s

FL (x∗)
, (9)

VH = u−
Z x∗

x
EI [c|x]

dFH (x)

FH (x∗)
− s

FH (x∗)
. (10)
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The expected search durations are nL = 1
FL(x∗)

and nH ∈ [1, 1
FH(x∗)

], where nH = 1
FH(x∗)

if

VH > u− cH , while nH may assume any value in the interval if VH = u− cH . Thus,

FH (x
∗)

FL (x∗)
≤ nL

nH
≤ 1

FL (x∗)
; (11)

These outcomes can be sustained by beliefs off the equilibrium path that place all the weight on

type H, i.e., β (p, x) = 1 for p 6= Pw (x), so only p ≥ cH are accepted off path.

Finally, for completeness observe that the “undefeated” equilibrium exists.

Claim 2 : An “undefeated” equilibrium exists.

The (routine) proof is outlined in the appendix. Since from now on attention will be confined

almost exclusively to “undefeated” equilibria (except for parts of the discussion section that explic-

itly discuss other equilibria), we will omit most of the time the word “undefeated” and refer to it

simply as an equilibrium.

4 Information Aggregation

The question is to what extent information is aggregated into the equilibrium prices when s is small.

Aggregation is maximal if the prices that types L and H pay are close to cL and cH , respectively.

Aggregation is minimal when the two buyer types pay the same price(s).

Recall that the literature on auctions considered a related question. It inquired to what extent

the equilibrium price in a common value auction reflects the correct information when the number of

bidders is made arbitrarily large (Wilson (1977) and Milgrom (1979)). Milgrom’s result translated

to an auction version of our model is that the price approaches the true value iff limx→x
fL(x)
fH(x)

=∞.
That is, when there are signals that are exceedingly more likely when the true state is L than when

it is H. In our model the number of “bidders” is endogenously determined through the sampling,

and the counterpart of increasing the number of bidders is reduction of the sampling cost s.

Formally, consider a sequence sk → 0 and a sequence of equilibria (Pk, Ak) associated with it.

Let x∗k, x
∗∗
k , āk, Vwk, etc. denote magnitudes associated with the equilibrium (Pk, Ak). Let pwk

denote the expected price paid by type w in equilibrium (Pk, Ak) and let Swk denote the expected

search costs incurred by type w in equilibrium (Pk, Ak). For example, if in the equilibrium x∗∗k = x∗k
and āk = 0, then pwk = EI [c|x ≤ x∗k, w] and Swk = sk/Fw(x

∗
k). Let

pw = lim
k→∞

pwk and Sw = lim
k→∞

Swk,
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if these limits exist. The following analysis will investigate pw and Sw. In particular, it will inquire

about the extent to which pw aggregates the information and total welfare.

4.1 Preliminaries and the Main Result

The following claim collects some observations about limits that will be used repeatedly in the

subsequent analysis.

Claim 3 : (i) x∗k → x; (ii) lim āk = 0 and limx∗∗k = x; (iii) x∗k > x for all k; (iv) lim sk/FL (x
∗
k) =

0 and lim āk/FL (x
∗
k) = 0; (v) SL = 0.

Besides its usefulness for the coming analysis, this claim also exposes some central features of

the “undefeated” equilibria. The range of pooling signals shrinks to the bottom of the support.

Type L bears negligible search costs while essentially searching till it gets a signal below x∗k.

Consider the expression Z x∗

x

µ
fL (x)

fH (x)
− fL (x

∗)

fH (x∗)

¶
fL (x)

FL (x∗)
dx, (12)

which measures by how much signals x < x∗ are more informative (on average ) than x∗. In a

sense, this is the rate at which the informativeness of signals improves as they decrease. Obviously,

it is related to d
dx

³
fL(x)
fH(x)

´
— other things equal, the steeper is

³
fL(x)
fH(x)

´
over (x∗, x), the larger (12)

will be. Assume that limx∗→x(12) exists and let

λ , lim
x∗→x

Z x∗

x

µ
fL (x)

fH (x)
− fL (x

∗)

fH (x∗)

¶
fL (x)

FL (x∗)
dx (13)

which can take the value∞ as well (the case in which this limit does not exist is taken up later). A

large λ means that the informativeness of lower signals increases sharply as x approaches x. When

the informativeness of the signals is bounded, i.e., limx→x
fL(x)
fH(x)

<∞, then λ = 0. The parameter

λ will have a prominent role in the characterization results that follow.

Proposition 1 : Suppose that the limit λ exists and consider a sequence sk → 0 and a sequence

(Pk, Ak) of corresponding equilibria. Then the limit prices exist and are

p̄L =

(
(1− 1

λ)cL +
1
λcH if λ ∈ [ 1gH ,∞],

gLcL + gHcH if λ ≤ 1
gH

,

p̄H =

(
1
λ
gL
gH

cL + (1− 1
λ
gL
gH
)cH if λ ∈ [ 1gH ,∞],

gLcL + gHcH if λ ≤ 1
gH

.

11



The proof is relegated to the appendix, but a shorter outline of it is provided in subsection 4.3

below. If λ is small enough, there is complete pooling in the unique limit outcome: both types end

up paying the same expected price gLcL + gHcH which is the ex-ante expected cost. This includes

of course the case in which the informativeness of the signals is bounded, i.e., limx→x
fL(x)
fH(x)

< ∞,
since then λ = 0. For larger values of λ the pooling is partial:

p̄L = (1−
1

λ
)cL +

1

λ
cH < gLcL + gHcH <

1

λ

gL
gH

cL + (1−
1

λ

gL
gH
)cH = p̄H .

The two types end up paying different expected prices but these prices are away from the respective

true costs. In the extreme, when λ is very large, these prices are close to the respective costs and

hence nearly aggregate all the information.

It is useful to understand the form of the equilibria that are associated with different values of

λ. If λ < 1
gH
, then far enough in the sequence the equilibria are such that both types search till

they generate a signal below x∗k and trade at the corresponding interim expected cost. To make it

worthwhile for typeH this requires that the cutoff x∗k does not converge to x too quickly. What keeps

x∗k from converging too quickly to x is the credibility requirement of the “undefeated” equilibrium

which prevents sellers from rejecting pooling offers that are profitable for both L and H and the

relatively poor informativeness of the signals (captured by a small λ). Since both L and H end up

transacting, the overall expected cost must be the ex-ante expected cost gHcH + gLcL. Therefore,

since in the limit both types end up transacting at the same price, and since the “undefeated”

equilibrium leaves the sellers with zero profit, the common expected price must be equal to that

expected cost.

When λ ∈ (1/gH ,∞), type L is still “essentially” searching for a signal below x∗k as above to

trade at the interim expected cost, which in this case is not converging to gLcL + gHcH . Type

H is just indifferent between mimicking L’s behavior or settling immediately at cH . Type H

“mixes”: with probability 1
(λ−1)

gL
gH
it ends up mimicking L and paying p̄L; with the complementary

probability it ends up settling on cH . This “mixing” exactly brings p̄L to the level that maintains

H’s indifference. We say “mixing” since H is using a pure strategy, so the “mixing” is purified by

having a set of signal realizations after which H offers cH , which is accepted, and another set after

which H offers a price just below (or equal to) cH which is then rejected. In the extreme, when

λ is close to ∞, the probability with which H mimics L is near 0 and the equilibrium outcome is

nearly separating.

12



4.2 More about λ

The central role of λ calls for better understanding of its meaning. Recall that λ measures the rate

at which informativeness of the signals improves as x approaches x. In fact, this statement can be

formalized as follows.

Claim 4 : If

lim
x→x+

− d
dx

³
fL(x)
fH(x)

´
fL(x)
FL(x)

(14)

exists, then it is equal to λ as defined by (13).

The proof of this claim is relegated to the appendix. Thus, λ is the rate at which fL(x)
fH(x)

increases

as x approaches x, corrected by fL(x)
FL(x)

. This correction captures the fact that the smaller is fL(x)
FL(x)

the larger is the relative weight on smaller values of x and hence the more significant is the effect

of the increase in fL(x)
fH(x)

. This perhaps further clarifies the sense in which a larger λ corresponds to

a more informative signal structure. Viewing λ as a measure of informativeness, the proposition

then establishes that the extent of information revealed by the equilibrium prices increases in the

informativeness of the signal in this sense. Observe that, if the signals are boundedly informative,

i.e.,

lim
x→x

fL (x)

fH (x)
<∞,

then λ = 0 and the unique limit outcome is complete pooling. If λ =∞, the limit prices aggregate
the information perfectly. This requires limx→x

fL(x)
fH(x)

= ∞ but the unbounded likelihood ratio is

not sufficient for full revelation. All values of λ in (0,∞) are associated with limx→x
fL(x)
fH(x)

= ∞,
though they give rise to full pooling or partial revelation depending on the magnitude of λ.

In subsection 10.3 of the appendix we will present yet another way to think about λ by relating

it to the properties of the distribution of the likelihood ratios.

Finally, let us turn to the case in which the limit denoted by λ does not exist. To extend the

results of Proposition 1 to this case, let

λ = lim
x∗→x

sup

Z x∗

x

µ
fL (x)

fH (x)
− fL (x

∗)

fH (x∗)

¶
fL (x)

FL (x∗)
dx,

and let λ denote the lim inf.
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Proposition 2 :(i) Consider a sequence sk → 0 and a sequence (Pk, Ak) of corresponding equilibria

such that p̄L = lim pkL exists. Then p̄H = lim pkH exists and there exists a λ ∈
£
λ, λ

¤
such that

p̄L =

(
(1− 1

λ)cL +
1
λcH if λ ∈ ( 1gH ,∞],

gLcL + gHcH if λ ≤ 1
gH

,

p̄H =

(
1
λ
gL
gH

cL + (1− 1
λ
gL
gH
)cH if λ ∈ ( 1gH ,∞],

gLcL + gHcH if λ ≤ 1
gH

.

(ii) For any λ ∈
£
λ, λ

¤
, there exists a sequence sk → 0 and a sequence (Pk, Ak) of corresponding

equilibria such that p̄L = lim pkL and p̄H = lim pkH exist and are of the above form.

Thus, if λ 6= λ, there are multiple equilibrium limit points. This does NOT imply that there

are multiple equilibria for the same sk, though it might be the case. The proof is in the appendix.

We provide two parametrized examples to further illustrate λ in Section 4.4. As explained

before, every signal distribution for which the likelihood ratios have bounded support has λ = 0.

The examples consider families of distributions for which the likelihood ratios are unbounded.

4.3 Outline of the Proof of Proposition 1

The main steps of the proof of Proposition 1 for the case of λ <∞ are as follows.

First, when sk is sufficiently small, L transacts at equilibrium only after generating signal

x ≤ x∗k. So the equilibrium is described by (9)-(11). Second, the "undefeatedness" refinement

prevents rejection of pooling offers profitable for both types. Therefore, x∗k is determined by L’s

indifference between trading at x∗k and continuing to search

sk
FL
¡
x∗k
¢ = (EI [c|x∗k]−EI [c|x ≤ x∗k, L]) .

H’s cost of mimicking L’s behavior, sk
FH(x∗k)

, is obtained by multiplying both sides by
FL(x∗k)
FH(x∗k)

sk
FH

¡
x∗k
¢ = FL (x

∗
k)

FH
¡
x∗k
¢ (EI [c|x∗k]−EI [c|x ≤ x∗k, L]) . (15)

Let

ηk(x) ,
gL
gH

fL (x)

fH (x)

nLk
nHk

—the effective likelihood ratio7 for a seller who observes signal x, in the equilibrium (Pk, Ak)—and

7It augments the likelihood ratio based on the signal distributions alone, fL(x)
fH(x)

, with the likelihood of being
sampled by the different types.
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use it together with (2) and (1) to write the interim expected cost EI [c|x]

EI [c|x] =
cH +

gL
gH

fL(x)
fH(x)

nLk
nHk

cL

1 + gL
gH

fL(x)
fH(x)

nLk
nHk

≡ cH + ηk(x)cL
1 + ηk(x)

. (16)

(15) can be written as

sk
FH

¡
x∗k
¢ = (cH − cL)

fH (x
∗
k)

fL
¡
x∗k
¢ FL (x∗k)
FH

¡
x∗k
¢ηk(x∗k)Z x∗k

x

fL(x)
fH(x)

− fL(x∗k)
fH(x∗k)¡

1 + ηk(x
∗
k)
¢
(1 + ηk(x))

fL (x)

FL
¡
x∗k
¢dx.

To obtain the limit form of this equation it is shown in the proof that lim
fH(x∗k)
fL(x∗k)

FL(x∗k)
FH(x∗k)

= 1 which

together with the definition of λ yields

lim
sk

FH
¡
x∗k
¢ = (cH − cL)

lim η(x∗k)

[1 + lim η(x∗k)]
2
λ. (17)

Ignoring costs, H’s benefit from searching to x ≤ x∗k (rather than settle on cH) is

cH −EI [c|x ≤ x∗k,H] .

Hence, H decides whether to search or settle immediately according to whether

sk
FH

¡
x∗k
¢ ≶ cH −EI [c|x ≤ x∗k,H] . (18)

With λ < ∞ it may not be that at (or near) the limit H prefers to settle immediately. If H

were to settle immediately, then nH = 1. This would imply that lim η(x∗k) = ∞, since η(x∗k) ≡
gL
gH

fL(x∗k)
fH(x∗k)

nLk
nHk

,
fL(x∗k)
fH(x∗k)

→ ∞, and nLk → ∞. This would further imply via (17) that lim sk
FH(x∗k)

=

0, and via (18) that H would actually prefer searching rather than settling, contradicting the

hypothesis that H prefers to settle. Therefore, at (or near) the limit, equation (18) holds with "≤".
Now, if λ is sufficiently small so that

lim
sk

FH
¡
x∗k
¢ < cH − (gHcH + gLcL),

then at (or near) the limit H mimics L, transactions take place only after x ≤ x∗k at a price near

gHcH + gLcL which as evident from the above inequality compensates H for the search cost.

If λ is larger so that

lim
sk

FH
¡
x∗k
¢ > cH − (gHcH + gLcL),
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then near the limit we may not have complete pooling since then H would prefer to settle im-

mediately for cH rather than search for the complete pooling price gHcH + gLcL. In this case the

equilibrium involves partial pooling. H settles after some signal realizations above x∗k and continues

searching after other. EI [c|x ≤ x∗k,H] adjusts to achieve equality in (18) which keeps H indifferent

between these two options. Since EI [c|x ≤ x∗k,H] is increasing in the probability with which H

searches in equilibrium and since lim sk
FH(x∗k)

is increasing in λ, it follows that smaller values of λ

in the partial pooling range are associated with more search by H.

4.4 Examples of Families of Signal Distributions

This subsection presents two specific families of signal distribution that for different parameter val-

ues exhibit different cases with respect to information aggregation. The purpose is just to illustrate

how the extent of information aggregation is related to the parameters of concrete distributions.

The reader may skip this part as it is unimportant for the subsequent analysis and discussion.

Example I. The parameters of the following family of signal distributions are α > 0 and μ > 0,

such that (α, μ) ∈ [1,∞) × (0,∞) ∪ (0, 1) × [1,∞). Given α and μ, let r ≥ 0 be the solution to
μ
R −r
−∞ (−t)

−α et+rdt = 1 and define

FL(x) =

(
ex+r if x ≤ −r,
1 if x > −r,

FH(x) =

(
μ
R −x
−∞ (−t)

−α et+rdt if x ≤ −r,
1 if x > −r.

The restriction on μ and the definition of r ensure that FL and FH are proper distribution func-

tions8.

The likelihood ratio is given by fL(x)
fH(x)

= 1
μ (−x)

α. Using Claim (4) the parameter λ defined by

(13) is

λ =

⎧⎪⎨⎪⎩
∞ if α > 1,
1
μ if α = 1,

0 if α < 1.

Thus, Proposition 1 implies that prices perfectly aggregate the information if α > 1, there will

be perfect pooling if α < 1 and there will be partial aggregation if α = 1. In contrast, since

limx→x
fL(x)
fH(x)

= ∞, for all α > 0, the limit outcome of the corresponding auction setting always

exhibits complete information aggregation.

8An alternative to the restriction on μ when α < 1 would be to allow for an atom of FH at x = −r.
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Example II: Consider the family of distributions

FL (x) =

⎧⎪⎪⎨⎪⎪⎩
1 for x ≥ r (λ) ,

e
− 1
λ

gH
gL
( 1x−

1
r ) for 0 ≤ x ≤ r (λ) ,

0 for x = 0,

(19)

and

FH (x) =

⎧⎪⎨⎪⎩
1 for x ≥ r (λ) ,

gL
gH

R x
0

τ
1−τ fL(τ)dτ for 0 ≤ x ≤ r (λ) ,

0 for x = 0,

which is parameterized by λ ∈ (0,∞). The number r (λ) ∈ (gH , 1) is the r solution to gL
gH

R r
0

x
1−xfL(x)dx =

1. The choice of r (λ) guarantees that FH is a proper distribution function on the same support.

Notice that this example is such that the value of the signal coincides with the posterior probability

conditional on that value,

x =
fH (x) gH

fH (x) gH + fL (x) gL
. (20)

It is fairly straightforward to verify that the λ parameter of these distributions is the λ defined by

(13). So depending on the choice of the parameter λ, this family exhibits limit outcomes that range

from complete pooling to arbitrarily close to perfect aggregation. Since for this family fL(x)
fH(x)

= gH
gL

1−x
x

(see (20) above) and x = 0, limx→x
fL(x)
fH(x)

= ∞ and hence the limit outcome of the corresponding

auction setting always exhibits complete information aggregation.

5 Welfare

Since trade is always beneficial and always takes place in this model, the expected surplus is

fully determined by the expected search cost incurred by the buyer. The following proposition

characterizes the expected search costs Sw, w = L,H, arising in the equilibria in the limit as s

becomes negligible.

Proposition 3 : (i) SL = 0 in all cases; (ii) If limx→x
fL(x)
fH(x)

< ∞, then SH = 0; (iii) If

limx→x
fL(x)
fH(x)

=∞, then

SH =

(
(cH − cL)

1
λ
gL
gH

if λ ∈ [ 1gH ,∞],
(cH − cL)gHgLλ if λ < 1

gH
.

(21)
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Proof: (i) Proved in Claim 3-(V). (ii)+(iii) By definition, VHk = u − pHk − SHk and hence

SH = u− p̄H − limVHk. From the proof of Proposition 1,

limVHk =

⎧⎨⎩ u− p̄H − lim sk
FH(x∗k)

iff λ < 1
gH

,

u− cH iff λ ∈ [ 1gH∞].
(22)

Hence, using the characterization of p̄H and (35),

SH = u− p̄H − limVHk =

(
(cH − cL) gLgHλ if λ < 1

gH
,

1
λ
gL
gH
(cH − cL) if λ ≥ 1

gH
.

¥

The limit of a sequence (Pk, Ak) of equilibria (corresponding to a sequence sk → 0) is efficient
if Sw = 0, for w = L,H. The limit is ε-efficient if Sw < ε.

Thus, in the limit as sk −→ 0, the equilibrium is efficient when λ = 0, e.g., when limx→x
fL(x)
fH(x)

<

∞. When limx→x
fL(x)
fH(x)

=∞ it is nearly efficient if λ is sufficiently small or sufficiently large (i.e.,

for any ε > 0, the limit is ε-efficient for sufficiently small and sufficiently large λ’s).

As we have already pointed out, the parameter λ is a measure of the informativeness of the

signal technology, with lower values corresponding to lower informativeness. Proposition 3 shows

that welfare in not monotone in the informativeness of the signal technology and welfare. If, for

example λ ≤ 1/gH , a more informative signal technology decreases welfare.

Proposition 3 can be used to construct examples of signal distributions for which a lower search

cost results in lower welfare.

Example: Let [x, x] = [−∞,−r̂] where r̂ ≥ 0 satisfies
R −r̂
−∞ (−x) ex+r̂dx < 1 and consider the

distribution functions

FL(x) = ex+r̂,

FH (x) =

( R −x
−∞

1
−te

t+r̂dt if x < r̂,

1 if x = r̂.

Thus, FH has an atom at −r̂ ( dFH(−br)), while FL is atomless. For a given s > 0, consider the

following behavior: after signal x < −br, both H and L offer the pooling price EI [c|x] =
cH+x

gL
gH

cL

1+x
gL
gH

,

which sellers accept; after signal −br, type H offers cH , which is accepted, while type L offers cL,

which is rejected. Thus, both H and L transact with the first seller they sample (L continues the

search after x = −r̂ which occurs with 0-probability with FL).
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For this behavior to constitute the path of an equilibrium it has to be that: (i) After x < −br,
type L prefers transacting at EI [c|x] to continued search, a sufficient condition for which is

cH + br gLgH cL
1 + br gLgH ≤ cL + s,

and (ii) after x = −br, H prefers settling for cH to continued search, a sufficient condition for

which is

cH ≤ cL +
s

1− dFH(−br) .
Observe that, for any s, there is a sufficiently large r̂ such that both conditions hold. Therefore,

for such r̂ (and the associated Fw’s), there is an equilibrium with this path. In this equilibrium the

ex ante expected search cost is s. In contrast, since in this case λ(FL, FH) = 1 (see Section 4.4

above), when we look at a sequence {sk}∞k=1 that converges to 0 and any sequence of corresponding
equilibria {Pk, Ak}, the ex-ante expected search cost in the limit is gLSL+ gHSH = (cH − cL)g

2
HgL

(from (21) and SL = 0).Thus, if s is chosen so that s < (cH − cL)g
2
HgL = gLSL + gHSH , then

welfare is higher with s than with negligible search costs.¥

When s is not too low, the signal is sufficiently informative to generate the equilibrium partial

pooling outcome that is better for both types than continued search. therefore, no search takes

place and welfare is at the efficient level, u − gLcL − gHcH − s. But at the same time the signal

is not highly informative at very low realizations (as capture by λ = 1). Therefore, when s is

small, the equilibrium involves complete pooling which means wasteful search by H. Owing to

the externalities present in a search model, it is not entirely surprising that the extent of wasteful

search might increase when the search cost becomes smaller. Still this example is interesting since

it is rarely the case in the search literature that the welfare decreases when the absolute level of

search costs vanishes altogether (see, for example, Gale (1987) or Lauermann (2011)).

As noted above, the basic assumptions guarantee that trade is always beneficial and always takes

place in equilibrium, so welfare is fully determined by the expected search cost. However, it is fairly

straightforward to modify the basic model in a way that will introduce efficiency considerations

regarding the volume of trade as well. Suppose that the model is as above except that u ∈
(gLcL + gHcH , cH) and the buyer has the option to quit searching. Quitting after n samples yields

the payoff −ns.
The analysis will remain essentially the same: those cases in which in type H settles for cH

with positive probability will be translated in the present version to type H quitting the search

with the same probability. Thus, for sufficiently large u, the limiting equilibrium will be completely

pooling (with type H searching with certainty) and hence the volume of trade will be inefficient.

The nearly separating equilibrium will be nearly efficient since type H would essentially not trade.
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Thus, in this version, the near efficiency associated with small λ in our basic model will be replaced

with (possibly substantial) inefficiency. The expected search costs incurred by H would still be

low, but excessive trading will take place.

6 Intuition: Sampling Curse vs Winner’s Curse

This section brings a more substantive discussion of the results. Some modeling issues will be

discussed in the following section.

6.1 Intuitive Explanation

The basic consideration behind the aggregation of information is how costly it is for H to mimic

L’s search for a favorable signal. The case of limx→x
fL(x)
fH(x)

<∞ is simple. If the limit were (nearly)

separating, type L would trade (nearly) at cL while type H would trade (nearly) at cH . Since

SL = 0 (Claim 3), L would find prices close to cL at almost no cost. The separation implies that

the search cost that H would incur by mimicking L must be large enough to prevent H from strictly

preferring this option to trading at cH . But since L is just at most limx→x
fL(x)
fH(x)

<∞ times more

likely than H to generate a signal near x that would get a price near cL, the expected length of

search by H to secure such price is at most that many times longer than the expected length of the

search by L. This translates to a negligible cost for H to mimic L. So any (even partial) separation

cannot survive with limx→x
fL(x)
fH(x)

<∞.
In the case of limx→x

fL(x)
fH(x)

= ∞ there is no bound on the informativeness of signals, so the

above argument does not apply. Here the nature of information aggregation depends on the speed

with which fL(x)
fH(x)

is increasing (when x approaches x) which is captured by λ. A relatively smaller

λ means that L’s incentive to search is relatively weaker. This is because the incentive to search

after a given signal realization x is higher the more significant is the decrease in the expected

interim costs (and hence prices) associated with still lower signals. The latter depends on the rate

at which fL(x)
fH(x)

is increasing (when x is decreasing), which is captured by λ. Now, a relatively

weaker incentive to search translates to a relatively higher cutoff x∗ (i.e., x∗k goes to 0 more slowly

when sk goes to 0) which makes it easier for H to pool. In the extreme, when λ is very small, the

convergence of x∗k to 0 is so slow that the cost for H of pooling is nearly 0. Notice that, since in

this case fL(x
∗
k)

fH(x
∗
k)
→ ∞, type H’s expected search duration grows without a bound relative to type

L’s expected search duration when H tries to mimic L. Yet it still grows slowly relative to the rate

at which sk decreases. Therefore, the total expected search cost that H incurs in mimicking L goes

to 0 and precludes separation.

Conversely, a relatively large λ means that L has a stronger incentive to search which translates

to a lower x∗k (or rather faster convergence of x
∗
k to 0). This makes it too costly for H to pool

20



when the reward to search is the pooling price. Therefore, in the equilibrium H searches only

with a certain probability. As a result the expected price obtained by a searcher is lower than the

complete pooling price and is just sufficiently low to make H indifferent between searching and

not. In the extreme when λ is very large, type H is almost not searching so the expected price

paid by a searcher is near cL. In this case the expected search cost borne by type H in the event it

searches is relatively high (close to cH − cL) but H’s search takes place only with small probability

and hence the overall expected search cost is low.

6.2 Information Aggregation: Search vs. Auction–Enhanced Winner’s Curse

We have already mentioned that the literature on auctions addressed a closely related question

concerning the extent to which the equilibrium price in a common value auction reflects the correct

information when the number of bidders is made arbitrarily large (Wilson (1977) and Milgrom

(1979)). In the auction version of our model, instead of searching, the buyer assembles n sellers for

an (procurement) auction. Each of the sellers gets a signal from the same distribution as above.

They submit bids simultaneously and the lowest bidder is selected for the transaction. Milgrom’s

result translated to an auction version of our model is that the equilibrium price of the auction

approaches the true cost when n→∞, iff limx→x
fL(x)
fH(x)

=∞. That is, when there are signals that
are exceedingly more likely when the true state is L than when it is H.

In our model the number of “bidders” is endogenously determined through the sampling. If we

think of reduction of the sampling cost s in our model as the counterpart of increasing the number

of bidders n in the auction, then our results concerning information aggregation via search differ

from those in the auction literature. When limx→x
fL(x)
fH(x)

= ∞ the search equilibrium price is not

always near the true cost when s→ 0, but only when a further condition on the informativeness of

the signals—that the parameter λ is large—is met.

Thus, information aggregation is more difficult in the search environment than in the auction

environment. One way to explain this difference is from the perspective of the winner’s curse. In

the auction a bidder who gets a good signal x sheds its bid appropriately to defend against the

winner’s curse. Let Pr(H |winning, x) be the probability that such bidder assigns to type H,

conditional on signal x and being the winner in a monotone equilibrium

Pr(H | winning, x) = gHfH (x) [1− FH(x)]
n−1

gHfH (x) [1− FH(x)]n−1 + gLfL (x) [1− FL(x)]n−1
=

gH

gH + gL
fL(x)
fH(x)

[1−FL(x)]n−1
[1−FH(x)]n−1

.

Observe that Pr(H |winning, x) is jointly determined by the “signal effect”, fL(x)fH(x)
, and the “winner’s

curse effect”, [1−FL(x)]
n−1

[1−FH(x)]n−1 . The signal effect goes to ∞ as x → x; the magnitude of the winner’s

curse effect depends on the rate at which x → x as n → ∞. If we focus on a sequence of signals
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xn at which the probability of winning in a monotone equilibrium, [1− FL(xn)]
n−1, exceeds some

ε > 0, then the winner’s curse effect is bounded away from 0 and the signal effect overwhelms

it, limn→∞
fL(xn)
fH(xn)

[1−FL(xn)]n−1
[1−FH(xn)]n−1 = ∞. It follows that, for large n, Pr(H |winning auction, xn)≈ 0.

That is, after allowing for the winner’s curse, the winner is almost certain that the buyer is of type

L.

In the search environment the mere fact of being sampled already implies a form of a winner’s

curse. The probability of the buyer being type H held by a seller just conditional on being sampled,

and before the signal x is observed, is gHnH
gHnH+gLnL

. In an equilibrium in which H mimics L with

high probability, H’s search duration nH could be significantly larger than L’s search duration nL.

Therefore, this probability might be substantially higher than the prior. After signal x is observed,

the probability of type H becomes

β(x;P,A) =
gHfH (x)nH

gHfH (x)nH + gLfL (x)nL
=

gH

gH + gL
fL(x)
fH(x)

nL
nH

.

That is, it is determined jointly by a “signal effect” fL(x)
fH(x)

and a “winner’s curse effect” nL
nH
. In

contrast to the auction scenario in which the signal effect prevails, here the winner’s curse effect
nL
nH

might offset the signal effect fL(x)
fH(x)

even when limx→0
fL(x)
fH(x)

= ∞. For example, if both H

and L search till they generate a signal below x∗, then nL
nH

= FH(x
∗)

FL(x∗)
so that limx∗→x

fL(x
∗)

fH(x∗)
nL
nH

=

limx∗→x
fL(x

∗)
fH(x∗)

FH(x
∗)

FL(x∗)
= 1 and β(x;P,A)→ gH . Thus, the probability of H remains significant and

hence the expected cost in the eyes of a seller remains well above cL even when x is very informative.

In both the search and auction models, revelation of the information requires signals that make

L exceedingly more likely to counteract the winner’s curse. But the more substantial winner’s

curse in the search model requires that there are signals that separate L from H even in a more

pronounced way than in the large auction model.

Observe that the extent of information aggregation differs across these two scenarios also in the

case of boundedly informative signals, limx→x
fL(x)
fH(x)

<∞. The equilibrium of search model exhibits
complete pooling, whereas in the corresponding auction model the equilibrium outcome exhibits

only partial pooling.

Notice that, while in the search process the number of “bidders” depends on the buyer’s type,

the auction to which it is compared above has n bidders independently of the type. One may

think of an alternative auction environment in which the buyer decides on the number of bidders

(bearing a cost per bidder) which the bidders do not observe. Such an auction model will be

closer to the search model in the sense that a bidder learns some information from the mere fact

of being selected (in fact, it can be thought of as a simultaneous search model). In a companion

paper, Lauermann and Wolinsky (2010), we consider this scenario. Preliminary results suggest that

partial separation is possible in equilibrium even when signals are boundedly informative. Thus,
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in terms of information aggregation, this model with a small search cost behaves somewhat similar

to the auction with a large commonly known n considered in the discussion above rather than like

the search model with negligible costs.

7 Discussion–Equilibrium Selection

One difficulty that many search models have to deal with is avoidance of the familiar Diamond

Paradox (Diamond (1971)). Roughly speaking, if the searcher incurs the search cost before ob-

serving a price offer, then the monopoly price emerges in equilibrium regardless of how small the

search cost is. While it is useful to understand this effect, it is also useful to note that in richer

environments it is mitigated by a number of factors. So a frequent challenge in search models is

how to keep the model simple enough without getting bogged down with Diamond’s paradox. In

our model, the Diamond effect is avoided by letting the buyer make the offers. But since the buyer

has private information, this gives rise to multiplicity through the freedom of selecting off path

beliefs in perfect Bayesian equilibria. Thus, to avoid one modeling problem we have to deal with

another.

Below, we first explain the multiplicity and then discuss our refinement. We also show that a

similar selection is implied by a modification of the bargaining component.

7.1 Equilibrium Multiplicity

We have already noted that this model has many equilibria. This subsection explains this statement

in more detail. First, there is always a trivial pooling equilibrium in which both of the buyer’s types

offer cH , which sellers accept, and lower prices trigger a belief that the offerer is type H resulting

in a rejection. Second, when the sampling cost is sufficiently small, there are always equilibria

that exhibit nearly perfect separation regardless of the magnitude of λ. To construct a sequence

of equilibria of the latter type, consider the strategies defined by a threshold level bxk as follows.
Type L searches till it generates signal x ≤ bxk, while type H settles in the first visit be it at a price

EI [c|x] if x ≤ bxk or at the price cH if x > bxk. With these strategies nLk = 1/FL (bxk), nHk = 1.

Formally

for x ≤ bxk, PL (x) = PH (x) = EI [c|x] and A (EI [c|x]) = 1;
for x > bxk, PL (x) = 0; PH (x) = cH and A (p, x) = 1 iff p ≥ cH ,

where

EI [c|x] =
cH +

gL
gH

fL(x)
fH(x)

1
FL(xk)

cL

1 + gL
gH

fL(x)
fH(x)

1
FL(xk)

.
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These strategies are just like the “undefeated” strategies in the case āk = 0 with bxk in the role of
x∗k. Let bxk be chosen to satisfy sk/FH (bxk) = cH − EI [c|x ≤ bxk,H], which obviously exists. Then
the above strategies constitute an equilibrium (when off path beliefs are chosen appropriately).

When sk → 0, the cutoff bxk → x and this sequence of equilibria approaches full separation. That

is, the expected price paid by Type L, EI [c|x ≤ bxk, L]→ cL, the expected price paid by TypeH ap-

proaches cH . If
fL(x)
fH(x)

is sufficiently large, the total search costs of both types are close to zero as well

(Type L’s expected search cost approaches lim sk/FL (bxk) = lim(FH (bxk) /FL (bxk))(sk/FH (bxk)) =
(cH − cL) limxk→x

fH(xk)
fL(xk)

. If limxk→x
fH(x)
fL(x)

= 0, the limit is equal to zero; if fH(x)
fL(x)

is bounded but

sufficiently small, the limit is positive, but close to zero, too).

This construction and hence the full separation are independent of the magnitude of λ. But

these equilibria rely on “unattractive” beliefs off the path. At signals x just above bxk, the seller is
supposed to reject any price below cH , though there might be a price that would be beneficial for

both types of the buyer and for the seller if its beliefs remain at βI (x).

In the light of this multiplicity and the fact that there are always equilibria that aggregate the

information well, one may wonder why we focus on the “undefeated” equilibria and their perfor-

mance with regard to information aggregation. The answer is that we are interested in information

aggregation under “natural” trading conditions. For example, in the related environment of an

auction with common values, it is not difficult to construct mechanisms that will aggregate the

information very well. Yet we are interested in the extent of information aggregation under natural

trading/bidding conditions. What we mean here by the term “natural” is an equilibrium that

does not use off-path beliefs to introduce an artificial wedge between prices and expected costs. In

other words, we do not want the seller to reject a price offer that is beneficial for both buyer types

(relative to the putative equilibrium) and profitable for the seller (at the interim expected cost)

because the very act of offering it triggers an unfavorable belief.

Following are two more formal arguments that single out an “undefeated” equilibrium.

7.2 A Modified Bargaining Component

Consider a variation of the model that differs in its bargaining component. Now, in each period

the buyer samples K ≥ 2 sellers who observe the same signal and simultaneously offer prices. The
buyer then either trades with the seller who offered the lower price (or chooses at random in case

of a tie) or continues to search. All other details of the model remain the same, so the only change

is in the bargaining component.

The main implication of this change is that, since the uninformed sellers are the ones who make

the offers, out of equilibrium beliefs play no role and do not generate the multiplicity noted above.

Since the two sellers observe the same signal, they play a one-shot Bertrand game, which drives

the prices to the expected costs conditional on the buyer’s acceptance decision. It is easy to see
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that the unique equilibrium outcome in this version is an “undefeated” outcome with pooling for

all x ≤ x∗∗ and no trade with L at higher x’s. That is, for x ≤ x∗∗ the price will be the interim

expected cost conditional on x, EI [c|x], and, for x > x∗∗, the price will be cH , which type L would

reject and continue searching.

In a sense this version of the model gives the results in a cleaner way. Its drawback is the

somewhat artificial assumption ofK ≥ 2 sellers who observe the same signal and bid simultaneously.

7.3 The Equilibrium Refinement

Consider an equilibrium (P,A). Given the equilibrium values Vw (P,A) and beliefs βI (x, P,A), the

bargaining game between the buyer and a seller after each realization x can be viewed in isolation,

and the overall equilibrium induces a sequential equilibrium in each of them. Notice that the

isolated bargaining game in our model is a special sort of signaling game in which the messages–

the price offers–do not entail up-front costs (like the cost of education in Spence’s model) and the

types differ only in their payoffs following a rejection (in case VL (P,A) 6= VH (P,A)). This is not

a cheap talk game either, since in the event of acceptance the buyer’s payoff depends on the price

offer, but in this event the payoffs of both types are identical.

This implies immediately that the trivial pooling equilibrium in which both types offer cH
after any x cannot be eliminated by any of the forward induction refinements (e.g., Cho and

Kreps (1987)’s Intuitive-Criterion and D1, and Banks and Sobel (1987)’s Divinity) since in it

VL (P,A) = VH (P,A). Furthermore, even if we are willing to restrict attention to equilibria in which

VL (P,A) > VH (P,A), the Intuitive-Criterion and Divinity would not have a bite since any offer

that for some best responses benefits type L also benefits type H for a non-empty subset of those

responses. The D1 refinement will not help either since it is inconsistent with VL (P,A) > VH (P,A).

This is because, if VL (P,A) > VH (P,A), then D1 would select the same separating equilibrium in

every bargaining game, independently of x. But the payoffs’ independence of the distribution of x

is inconsistent with VL (P,A) > VH (P,A)
9.

Thus, we need a refinement that respects the forward induction logic but also prevents a seller

from adopting pessimistic beliefs in the face of an offer that is preferred by both of the buyer’s types.

This combination is featured by the undefeated equilibrium refinement (Mailath, Okuno-Fujiwara

and Postlewaite (1993)).

A sequential equilibrium in the bargaining game is defeated if: (i) there is an out-of-equilibrium

offer p that is used in an alternative sequential equilibrium by a subset K of buyer’s types; (ii) the

payoffs of all types in K after offering p in the alternative equilibrium are larger than their payoff

at the considered equilibrium with a strict inequality for at least one type; (iii) the beliefs after p

9Thus, the only equilibria consistent with D1 are such that VL (P,A) ≤ VH (P,A), like the trivial pooling on cH
equilibrium.
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in the alternative equilibrium differ from the beliefs after p in the considered equilibrium (in the

alternative equilibrium they coincide with the sellers’ interim belief conditional on the buyer’s type

being in K).

A sequential equilibrium of the bargaining game is undefeated if it is not defeated.

It turns out that the selection of “undefeated” equilibria in our model is equivalent to the

selection achieved by imposing the undefeated equilibrium refinement (Mailath, Okuno-Fujiwara

and Postlewaite (1993)) on the sequential equilibria of the bargaining games. The following claim

(proved in the appendix) establishes this equivalence.

Claim 5 : (i) If an equilibrium (P,A) induces an undefeated sequential equilibrium in the bargain-

ing games after each x, then (P,A) is “undefeated”. (ii) Conversely, if (P,A) is an “undefeated”

equilibrium, then in each of the bargaining games there is an undefeated sequential equilibrium that

yields the same outcome.

8 Discussion–Variations on the Model

This section collects brief remarks about possible variations and extensions. Some of these remarks

are backed by actual analysis and some are more conjectural. We try to make this distinction

clearly.

BUYER OFFERS MECHANISM

The model remains as above except for the bargaining component. Now, instead of a price the

buyer offers a direct mechanism m = [pL, qL; pH , qH ], which the seller either accepts or rejects. If m

is accepted, the buyer reports his type r ∈ {L,H} and trade takes place at price pr with probability
qr. If eitherm is rejected or it prescribes no trade, the search continues just like following a rejection

in the original model.

The main reason for considering this variation is to assure the reader that the simple take-or-

leave-it price in the role of the bargaining component does not eliminate equilibria that do not

support our results. In principle, of course, the more general setting of a mechanism offer might

be expected to give rise to additional equilibrium outcomes (satisfying the same refinement) which

might not support our results concerning information aggregation.

Without loss of generality (Myerson (1983)), attention may be restricted to equilibria that

involve truthful reporting, are inscrutable (i.e., the same mechanismm is offered by both types), and

sure acceptance of equilibrium offers by sellers. An “undefeated” equilibrium for this environment
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is such that, for any signal x, the offered mechanism yields higher payoffs for L than any other

admissible mechanism given the seller’s belief.10

It turns out that the set of “undefeated” equilibrium outcomes in this version is contained in

the set of undefeated outcomes arising in the take-it-or-leave-it price offer game. More formally,

the counterpart of Claim 5 above is

Claim11. In an “undefeated” equilibrium, VL > VH and the offered mechanism m satisfies:

(i) After x < x∗, m = [EI [c|x] , 1, EI [c|x] , 1]; (ii) After x > x∗, m = [cL, aL, cH , aH ], where

aL = max{0, (u−cH)−VH(u−cL)−VH } and VH ≷ u− cH implies aH = 0 and 1, respectively.

Conversely, if an equilibrium satisfies (i) and (ii) for every x, it is “undefeated”.

The important conclusion is that our decision to focus on a take-or-leave-it bargaining game

does not eliminate equilibria that do not support our results concerning information aggregation.

MORE THAN TWO COST TYPES

While we have analyzed only the case of two buyer types, it seems that the generalization to

any finite number of types would follow along similar lines. Suppose that the buyer has three

types {L,M,H}, where cL < cM < cH . The sellers’ interim belief in type w would be βwI (x) =
gwfw(x)nw(P,A)

gHfH(x)nH(P,A)+gMfM (x)nM (P,A)+gLfL(x)nL(P,A)
. The natural conjecture is that an equilibrium with

(partial) separation would be characterized by two cutoff signals, x∗L and x
∗
M . After x ≤ x∗L all three

types would trade at the interim expected cost, after x ∈ (x∗L,x∗M ] only typesM and H would trade

at the interim expected cost conditional on M and H, and after x > x∗M only type H might trade.

Information aggregation would require conditions on the relative informativeness of the signals for

any two adjacent types. A natural conjecture is that defining λ(FL, FM) and λ(FM , FH) in the same

way λ was defined by (13) for FL vs FH would give rise to analogous conditions concerning the

separation of adjacent types in the limit of outcome of the search equilibrium. However, without

actually performing this analysis, it is difficult to say how demanding it would be. But conceptually

the case of a larger than two but finite number of types does not seem different than the case of

two.

BUYER DOES NOT OBSERVE SIGNAL

We have been assuming that the buyer observes the realization of the signal in each encounter.

In an alternative specification, the buyer does not observe the signal. We have not analyzed this

alternative in detail, but we conjecture that the results concerning information aggregation would

be qualitatively similar. Since the buyer does not observe the signal, price offers would be a

function of the type alone. At equilibrium, there will be at most two offers PL and PH = cH . Type

L would offer PL; Type H would mix between the two prices. Sellers would accept PL provided

the signal is below a threshold x∗ (the counterpart of that threshold in the above analysis). In a

10We forgo here the full formal presentation of strategies and equilibrium as we are just outlining this variation.
11We do not provide the proof in this paper since it is fairly long and requires further development of the notation.
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pooling equilibrium both types offer PL. In a partially separating equilibrium, type H is indifferent

between offering PL and settling for cH . The probability with which type H offers PL is such

that the expected interim cost after x∗ is exactly equal to PL. Again, we have not performed this

analysis, but from the outset this variation does not seem to lead to qualitatively different insights.

BUYER DOES NOT KNOW OWN TYPE

In another possible variation the buyer does not observe its own type but does observe the

realization of the signals (as the model currently assumes). We have not analyzed this variation, but

we conjecture that the results concerning information aggregation would be qualitatively similar.

When the search costs are small, the buyer could learn fairly quickly its type with high probability

and the subsequent behavior should resemble what it is in the present version. Of course, we cannot

claim this as a result in the absence of the analysis, but it is hard to imagine that this variation

would modify the basic insights. Generally, if the buyer did not know its own type, the sampling

behavior of the two types would become more similar to each other. This suggests that separation

is even more difficult in this case. The assumption that the buyer is better informed than the sellers

about the cost does not seem crucial for our results. The critical assumptions are that the costs

are correlated across sellers and that sellers observe different signals.

DISCOUNTING.

In the present model there is no discounting. The only time cost is the sampling cost s. We

conjecture that discounting would not change our results. Intuitively, with discounting, the type

with the lower expected continuation payoff has a stronger incentive to search. Since it will be

the H type who has lower continuation payoffs, one might expect the H type would search even

more with discounting than without, thus strengthening the insight concerning the search induced

winner’s curse.

OBSERVABLE HISTORY

The sellers’ inability to observe the buyer’s history is a key feature of the model and the

environments it represents. It is crucial for generating the search induced winner’s curse and the

main qualitative insights of this paper. Obviously there are interesting environments in which the

searcher’s history (or a significant feature of it) is observable. Such might be the case in labor

markets where the duration of unemployment is often observable. The present model does not

cover these situations.

MIXED STRATEGIES

The model restricted attention to pure buyer strategies. This simplifies the refinement argu-

ments and characterization of equilibrium. With mixed strategies, the analysis is more complicated.

There are mixed equilibria with full support (in some or even all subgames), which are naturally

immune against any refinement since no out-of-equilibrium prices are left to deviate to.
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One way to deal with these difficulties is to introduce a small cost for making offers (which

eliminates fully mixed equilibria in certain subgames in which the seller rejects all the offers) and

to restrict attention to equilibria in which VL > VH (which eliminates fully mixed equilibria in all

subgames). Subject to these modifications, we verified that our results continue to hold for the

case x > 0. We believe that the results also continue to hold for the case x = 0, but we have not

performed the analysis for this case. The bottom line is that we believe that our results would

survive the admission of mixed strategies, but this would be at the cost of a messier analysis as

outlined above.

HETEROGENEOUS VALUATIONS

We have been assuming that the buyer’s valuation u is known and independent of the cost type.

This is done primarily for convenience and we conjecture that allowing for a two dimensional buyer’s

type that captures heterogeneity with respect to the valuation as well would not alter our insights

in a significant way, though it might add some new ones. As we explain in the end of Section 3,

efficiency considerations with respect to the volume of trade can already be generated in the present

model by considering the case of u < cH . The introduction of heterogeneity of valuations would

facilitate further insights of this type. We have conducted formal analysis of certain subcases of a

version with two valuation types. This might be a worthwhile extension which we decided not to

pursue in this paper.

9 Conclusion

In a search model with adverse selection, information is not always aggregated perfectly, in the

sense that the prices do not always coincide with the full information prices. This is the case even

when the search cost is negligible and even when there are exceedingly informative signals. The

prices aggregate the information nearly perfectly if and only if the signals of the uninformed can

be arbitrarily informative and, in addition, the rate at which the informativeness of these signals

increases (as they become more informative) is large.

In the corresponding auction environment, the availability of exceedingly informative signals

would translate to nearly perfect aggregation when the number of bidders is large, without the

further condition mentioned above. The source of the difference is a stronger winner’s curse in the

search model that owes to the longer search duration of the bad types. When the search history

is unobservable, being sampled is bad news, potentially overwhelming the informative content of

signals.

Imperfect information aggregation has welfare consequences through wasteful search activities,

which may be significant even when the one time sampling cost is negligible. And, in a variation on

the basic model, imperfect information aggregation can generate inefficiently low volume of trade.
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10 Appendix

10.1 Derivation of Beliefs

In what follows we derive the formula for the interim beliefs

βI (x, P,A) =
gHfH (x)nH(P,A)

gHfH (x)nH(P,A) + gLfL (x)nL(P,A)
=

1

1 + gL
gH

fL(x)
fH(x)

nL(P,A)
nH(P,A)

.

In the main body we have suppressed some formalities of the extensive form game. To derive be-

liefs, we introduce additional notation: The set of histories is denoted byH and consists of sequences
of the form (w, z1, ..., zt), (w, z1, ..., zt, it+1), (w, z1, ..., zt, it+1, xt+1) or (w, z1, ..., zt, it+1, xt+1, pt+1),

where zt = (it, xt, pt, at) describes the outcome of an encounter between the buyer and seller i:

xt ∈ [x, x] is the realization of the signal, pt is a price offer at =“acceptance” or “rejection” of the
price pt by seller it. H also includes the infinite sequences (w, {zt}∞t=1). Notice that we consider
here sequences whose elements are generated by this process even after a price was accepted. Any

strategy profile (P,A) induces a probability distribution Ψ (P,A) on H: First, w ∈ {L,H} is de-
termined by a chance move, where w = L with probability gL and w = H with probability gH .

Then, for each t, it is determined by a chance move that draws some seller i ∈ [0, 1] from a uniform

distribution and xt is determined by a chance move that draws signal xt ∈ [x, x] from Fw. The

price p is chosen according to Pw, and at is chosen according to A (xt, pt).

Let en(z) denote the stopping time associated with the history z ∈ H, i.e., the en(z) is the first
t such that at = “acceptance” (where ñ (z) = ∞ if at =“rejection” for all t). Let en−i(z) be the
stopping time when z0ts containing i are omitted. Let (Z(P,A))i or Zi for short be the subset of

infinite histories such that i is sampled before the stopping time, i.e., Zi = {(w, z1, z2, ..) | it = i for

some t ≤ en(z)}. Let hZi, xi be the set of finite histories that are the first segments of histories from
Zi where i is sample for the first time and observes signal realization x; A typical element of hZi, xi
is (w, z1, z2, ., zt−1, it, xt) with it = i and xt = x. The set hZi, xi is the collection of information
sets of seller i who is sampled for the first time and who has observed signal x, where the collection

is taken over all price offers. The probability of w = H conditional on that set corresponds to the

interim belief of a seller, before the seller observes the price offer:

βI (x, (P,A)) = Pr(w | hZi, xi).

Since hZi, xi is a zero probability event, what we mean by Pr(w | Zi, x) is limε→0 Pr(w | hZj , xi :
j ∈ [i, i+ ε]) (if i = 1, let j ∈ [1− ε, 1]).12

12Note that our approach is analogous to the conventional approach to conditioning on a particular realization of a
signal from the real line. Indeed, implicitly we consider limε→0 Pr(w | hZj , x0i : j ∈ [i, i+ε], x0 ∈ [x, x+ ε]). However,
the conditioning on a signal from the real line is standard and unlikely to cause confusion; we therefore suppress it
here.
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Conditioning on hZi, xi is equivalent to conditioning on a realization from the set of infinite

histories Zi and requiring that the first occurrence of i is accompanied with the signal realization

x. Thus,

Pr(w | hZj , xi) = lim
ε→0

Ψ({Zj : j ∈ [i, i+ ε]} | w)fw(x)gw
Ψ({Zj : j ∈ [i, i+ ε]} | H)fH(x)gH +Ψ({Zj : j ∈ [i, i+ ε]} | L)fL(x)gL

.

Notice that

Ψ({Zj : j ∈ [i, i+ ε]} | w) =
X
n≥1
Ψ({Zj : j ∈ [i, i+ ε]} | en(z) = n,w) Pr(en(z) = n | w) =

Ψ({Zj : j ∈ [i, i+ ε]} | en(z) = 1, w)X
n≥1

Ψ({Zj : j ∈ [i, i+ ε], w} | en(z) = n,w)

Ψ({Zj : j ∈ [i, i+ ε], w} | en(z) = 1, w) Pr(en(z) = n | w).

Now,

lim
ε→0
Ψ({Zj : j ∈ [i, i+ ε]} | en(z) = n,w)

Ψ({Zj : j ∈ [i, i+ ε]} | en(z) = 1, w) = limε→0 1− (1− ε)n

ε
= n.

Therefore,

Pr(w | hZj , xi) =
P

n≥1 nPr(en−i(z) = n | w)fw(x)gwP
n≥1 nPr(en−i(z) = n | H)fH(x)gH +

P
n≥1 nPr(en−i(z) = n | L)fL(x)gL

=
nw(P,A)fw(x)gw

nH(P,A)fH(x)gH + nL(P,A)fL(x)gL
.

This completes the derivation.

10.2 Proofs of Results

Claim 1: If (P,A) is an “undefeated” equilibrium, then VL > VH and (up to irrelevant differences13)

its outcome satisfies the following.

• After x ≤ x∗, both types of the buyer pool on price p = EI [c|x, P,A] and the price is accepted,

PL (x) = PH (x) = EI [c|x] and A (EI [c|x]) = 1.

• After x > x∗∗, the buyer types separate

PL (x) = cL, PH (x) = cH ,

13These “irrelevant differences” concern zero probability events and the description of situations in which both
buyer types disagree with the seller. We describe those situations as separating with zero acceptance probabilities,
but they can also be described in equivalent ways, e.g., as pooling on a price below cost.
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and the acceptance probabilities satisfy

(u−EI [c|x])− VL
(u− cL)− VL

≤ A (cL, x) ≤ max{0,
(u− cH)− VH
(u− cL)− VH

},

A (cH , x) =

(
0 if VH > u− cH ,

1 if VH < u− cH .

• After x ∈ (x∗, x∗∗), the two types either pool or separate as above.

• Conversely, if an equilibrium (P,A) satisfies the above for every x, it is “undefeated”.

Proof of 1 If (P,A) is an “undefeated” equilibrium, it determines the values VH , VL and induces a
sequential equilibrium in the bargaining game following any signal x. A pure sequential equilibrium

outcome can be either pooling or separating, and it can either involve trade with positive or zero

probability. Without any loss, we will assume that if (P,A) induces a no-trade equilibrium after

x, then it is separating with Pw(x) = cw and A(cw, x) = 0. But of course many other choices of

Pw(x) could yield the same result.

Step 1: If the bargaining equilibrium induced by (P,A) after x is pooling (with trade), then

x ≤ x∗∗, PH(x) = PL(x) = EI [c|x, P,A] and A(EI [c|x, P,A] , x) = 1 for any x < x∗∗.

Proof of Step 1: Clearly, a pooling equilibrium (with trade) exists only if u−EI [c|x, P,A] ≥
VL, i.e., only if x ≤ x∗∗. It may not be of course that PH(x) = PL(x) < EI [c|x, P,A] for this
would mean losses for the seller and the definition of “undefeated” equilibrium rules out the reverse

inequality or rejection. Therefore, PH(x) = PL(x) = EI [c|x, P,A] and also A(EI [c|x,P,A] , x) = 1
for any x < x∗∗.

Step 2: VL > VH in every undefeated equilibrium.

Proof of Step 2:
Let ex = sup{x : A (PH (x)) > 0}. The following observations are immediate:
(i) By definition Vw =

R x̄
x [A (Pw (x)) (u− Pw (x)) + (1−A (Pw (x)))Vw] dFw (x)− s.

(ii) A (Pw (x)) > 0 implies u− Pw (x) ≥ Vw

(iii) A (PH (x)) > 0 implies PH (x) ≥ EI [c|x,P,A] since this is so regardless of whether the
equilibrium after x is pooling or separating.

(iv) u − EI [c|x, P,A] > VH for all x < ex, since by the definition of ex, ∃x0 ∈ (x, ex] such
that A (PH (x0)) > 0 and hence observation (ii) and (iii) above and the strict monotonicity of

EI [c|x, P,A] in x imply u−EI [c|x,P,A] > u−EI [c|x0, P,A] ≥ u− PH (x
0) ≥ VH .

From observations (i) and (ii) above and the characterization of “undefeated” equilibrium (3)
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VL =

Z x̄

x
A (PL (x)) (u− PL (x)) + (1−A (PL (x)))VLdFL (x)− s

≥
Z x

x
[u−EI [c|x, P,A]]dFL (x) + [1− FL (ex)]VL − s.

Therefore,

VL ≥ u−
Z x

x
EI [c|x, P,A]

dFL (x)

FL (ex) − s

FL (ex)
> u−

Z x

x
EI [c|x, P,A]

dFH (x)

FH (ex) − s

FH (ex)
=

1

FH (ex)
ÃZ x

x
(u−EI [c|x, P,A]) dFH (x)− s

!

≥ 1

FH (ex)
ÃZ x

x
(A (PH (x)) (u− PH (x)) + (1−A (PH (x)))VH) dFH (x)− s

!

=
1

FH (ex)
µZ x̄

x
(A (PH (x)) (u− PH (x)) + (1−A (PH (x)))VH) dFH (x)− [1− FH (ex)]VH − s

¶
=

1

FH (ex) (VH − [1− FH (ex)]VH) = VH ,

where the one before last equality follows from observation (i); the prior equality from the definition

of ex; the prior inequality from observations (iii) and (iv); the preceding strict inequality from the

monotone likelihood property and from FH (ex) < FL (ex).
Step 3: If the bargaining equilibrium induced by (P,A) after x is separating (with trade),

then x ≥ x∗, PL(x) = cL, PH(x) = cH ,
(u−EI [c|x,P,A])−VL

(u−cL)−VL ≤ A (cL, x) ≤ max
n
u−cH−VH
u−cL−VH , 0

o
and

A(cH , x) = 0 if u − cH < VH and A(cH , x) = 1 if u − cH > VH (Hence, A(cL, x) ≤ A(cH , x),

A(cL, x) ≤ ā)

Proof of Step 3: If PL(x) > cL in a separating equilibrium, then A(PL(x), x) = 1 and

u− PL(x) ≥ max{VL, A(PH(x), x)(u− PH(x)) + (1−A(PH(x), x))VL}. But this implies that

u− PL(x) > max{VH , u− PH(x)},

since VL > VH and u − PL(x) ≥ u − PH(x) while PL(x) 6= PH(x). Therefore, H prefers offering

PL(x) to PH(x), in contradiction to the separating equilibrium. Hence, PL(x) = cL.

In a separating equilibrium with trade, it may not be of course that PH(x) < cH . Since A(p, x) =

1 for any p > cH , it must be (in a separating equilibrium with trade) that PH(x) = cH . And if

33



u− cH > VH it must be that A(cH , x) = 1, for otherwise the buyer would benefit from deviating to

a slightly higher price. If u− cH < VH , type H does not trade in a separating equilibrium, so the

outcome is equivalent to PH(x) = cH and A(cH , x) = 0. The left inequality of
(u−EI [c|x,P,A])−VL

(u−cL)−VL ≤
A (cL, x) ≤ max

n
u−cH−VH
u−cL−VH , 0

o
follows from the equilibrium being “undefeated”; the right inequality

follows from the IC constraint for type H, which must hold in a separating equilibrium. It follows

that A(cL, x) ≤ A(cH , x), A(cL, x) ≤ ā.

By the definition of x∗, for x < x∗, (u−cL)ā+VL(1− ā) = u−EI [c|x∗, P,A] < u−EI [c|x, P,A].
Therefore, an “undefeated” equilibrium may not be separating after x < x∗.

Step 4: If an equilibrium (P,A) satisfies the conditions stated in the claim for every x, it is

“undefeated”.

Proof of Step 4: Suppose that (P,A) satisfies the conditions in the claim. It is clear that
(P,A) is a (Markovian) equilibrium. To verify that it is “undefeated”, we have to establish that,

for all x, A(PL(x), x)(u−PL(x)) + [1−A(PL(x), x)]VL ≥ u−EI [c|x, P,A]. This is clearly true for
x ≤ x∗, x ≥ x∗∗ and those x ∈ (x∗, x∗∗) after which the equilibrium is pooling. For x ∈ (x∗, x∗∗)
after which the equilibrium is separating (u−EI [c|x,P,A])−VL

(u−cL)−VL ≤ A (cL, x) which means that L’s payoff

A (cL, x) (u− cL)+ (1−A (cL, x))VL ≥ u−EI [c|x, P,A]. Therefore, after any value of x, L’s payoff
exceeds the payoff from the pooling outcome implying that the equilibrium is “undefeated”.

This completes the proof of the claim. ¥

Claim 2: An “undefeated” equilibrium exists.

Proof of 2: The proof is standard fixed point argument and is brought just for completeness.
If s ≥ cH − cL, then there exists a simple undefeated equilibrium in which both types trade

immediately at interim expected costs. So, suppose s < cH − cL. Let ε > 0 be uniquely defined

as the solution to s
FL(x+ε)

= cH − cL. Define a correspondence from [x + ε, x] × [0, 1] to itself as
follows. For each pair (y1, y2) in this set, let the strategies P and A satisfy

for x ≤ y1 PL(x) = PH(x) = EI [c|x, P,A] A(EI [c|x,P,A] , x) = 1;
for x > y1 PL(x) = cL; PH(x) = cH A(cL, x) = 0; A(cH , x) = y2.

Compute the continuation payoffs Vw = Vw(P,A) that correspond to these strategies. Let

y01 =

⎧⎪⎨⎪⎩
x if VL < u−EI [c|x, P,A] for all x ∈ [x+ ε, x],

x+ ε if VL > u−EI [c|x, P,A] for all x ∈ [x+ ε, x],

unique x s.t. VL = u−EI [c|x, P,A] .
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Let

y02 =

⎧⎪⎨⎪⎩
0 if VH − (u− cH) > 0,

[0, 1] if VH − (u− cH) = 0,

1 if VH − (u− cH) < 0.

The correspondence that maps (y1, y2) to (y01, y
0
2) is upper hemi-continuous and has a fixed point

(x∗, a) by Kakutani’s theorem. The fixed point cannot be at x∗ = x + ε: If y1 = x + ε, then the

induced payoff VL (P,A) ≤ u − cL − s
FL(x+ε)

≤ u − cH , which implies y01 = x. Thus, any fixed

point of the correspondence above describes the path of an “undefeated” equilibrium, which can

be completed by specifying pessimistic beliefs and rejection after all p < cH off the path.¥

Claim 3. (i) x∗k → x; (ii) lim āk = 0 and limx∗∗k = x; (iii) x∗k > x for all k; (iv) lim sk/FL (x
∗
k) = 0

and lim āk/FL (x
∗
k) = 0; (v) SL = 0.

Proof of Claim 3: As a preliminary step observe that the equilibrium conditions imply the

following key conditions

FL (x
∗∗
k ) (EI [c|x∗∗k ]−EI [c|x ≤ x∗∗k , L]) ≤ sk (23)

≤ FL (x
∗
k) [EI [c|x∗k]−EI [c|x ≤ x∗k, L]] +

āk
1− āk

[EI [c|x∗k]− cL] ,

FH (x
∗
k)

FL
¡
x∗∗k
¢
+
¡
1− FL

¡
x∗∗k
¢¢
ā
≤ nLk

nHk
≤ 1

FL
¡
x∗k
¢ , (24)

āk = max{
u− cH − VHk

u− cL − VHk
, 0}. (25)

To see this, recall that the equilibrium payoff of type L is at most the payoff of pooling for

x ≤ x∗k and separating with A(cL, x) = āk (i.e., the maximum acceptance probability) for x > x∗k.

This follows from the definition of x∗k and the fact that the payoff from pooling is strictly decreasing

in x while the payoff from separating is constant in x. Thus,

VLk ≤ u− FL (x
∗
k)EI [c|x ≤ x∗k, L] + (1− FL (x

∗
k)) ākcL

FL
¡
x∗k
¢
+
¡
1− FL

¡
x∗k
¢¢
āk

− sk
FL
¡
x∗k
¢
+
¡
1− FL

¡
x∗k
¢¢
āk

. (26)

On the other hand, L’s equilibrium payoff is at least the payoff of pooling after x ≤ x∗∗k and

continuing the search after x > x∗∗k

VLk ≥ u−EI [c|x ≤ x∗∗k , L]− sk
FL
¡
x∗∗k
¢ . (27)

Using (26) to substitute out VLk in (5) and rearranging the resulting inequality yields the RHS of

(23). Similarly, using (27) and (6) we get the LHS of (23).
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The ex-ante probability that type L will end up transacting with a sampled seller is at least

FL (x
∗
k) and at most FL (x

∗
k)+(1− FL (x

∗
k)) āk. Similarly, typeH’s ex-ante probability of transacting

is at least FH (x∗k) and at most 1. It follows that 1/ [FL (x
∗
k) + (1− FL (x

∗
k)) āk] ≤ nL ≤ 1/FL (x∗k)

and 1 ≤ nH ≤ 1/FH (x∗k) implying (24).
Finally (25) follows from the definition of ā in (4).¥

(i) Suppose to the contrary that x∗k is bounded away from x. Then (24) implies that nLk
nHk

is

bounded away from 0 and∞. By definition, x∗∗k ≥ x∗k. Hence, using (2) and (1) to express Ei[c | x],
we have for all x ∈ (x, x∗∗k ),

EI [c|x] ≡
cH +

gL
gH

fL(x)
fH(x)

nLk
nHk

cL

1 + gL
gH

fL(x)
fH(x)

nLk
nHk

<
cH +

gL
gH

fL(x∗∗k )
fH(x∗∗k )

nLk
nHk

cL

1 + gL
gH

fL(x∗∗k )
fH(x∗∗k )

nLk
nHk

≡ EI [c|x∗∗k ] .

So, if x∗k is bounded away from x, (EI [c|x∗∗k ]−EI [c|x ≤ x∗∗k , L]) and, hence, the LHS of (23) is

bounded away from zero in contradiction to sk → 0.

(ii) If āk > 0, then, by definition, āk (u− cL) + (1− āk)VHk = u − cH , which together with

VHk ≥ u − cH − sk implies
sk

cH−cL ≥
āk
1−āk and hence lim āk = 0. Given this, limx∗∗k = limx∗k = x

follows immediately from (5) and (6) and (i).

(iii) Suppose to the contrary that x∗k = x. Hence, āk > 0 and VLk ≤ u − cL − sk
āk
. Since,

sk
cH−cL ≥

āk
1−āk (see (ii) above) this implies VLk ≤ u − cL − cH−cL

1−āk . From definition of āk and

(25), (1− āk) =
cH−cL

u−cL−VHk
, and so u − cL − cH−cL

1−āk = VHk. Thus, x∗k = x implies VLk ≤ VHk in

contradiction to the characterization of payoffs in Claim 1.

(iv) Divide (23) through by FL (x∗k) and take limits of both sides of the RHS inequality of (23)

lim
sk

FL
¡
x∗k
¢ ≤ lim [EI [c|x∗k]−EI [c|x ≤ x∗k, L]] + lim

āk
(1− āk)FL

¡
x∗k
¢ [EI [c|x∗]− cL] . (28)

We will use ηk(x) as a shorthand for the effective likelihood ratio for a seller who observes signal

x, in the equilibrium (Pk, Ak)

ηk(x) ,
gL
gH

fL (x)

fH (x)

nLk
nHk

and use it together with (2) and (1) to express the interim expected cost

EI [c|x] =
cH +

gL
gH

fL(x)
fH(x)

nLk
nHk

cL

1 + gL
gH

fL(x)
fH(x)

nLk
nHk

≡ cH + ηk(x)cL
1 + ηk(x)
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Consider now the first term on the RHS of (28). If fL(x)
fH(x)

<∞ or if limx∗k→x ηk(x
∗
k) =∞, then

lim
x∗k→x

EI [c|x∗k] = lim
x∗k→x

cH + ηk(x
∗
k)cL

1 + ηk(x
∗
k)

nLk
nHk

= lim
x∗k→x

Z x∗k

x

cH + ηk(x)cL
1 + ηk(x)

fL (x)

FL
¡
x∗k
¢dx (29)

= lim
x∗k→x

EI [c|x ≤ x∗k, L] ,

since, when fL(x)
fH(x)

<∞, limx∗k→x ηk(x
∗
k) =

gL
gH

fL(x)
fH(x)

lim nLk
nHk

hence limx∗k→xEI [c|x∗k] = limx∗k→xEI [c|x ≤ x∗k, L] =

cH+
gL
gH

fL(x)

fH (x)
lim

nLk
nHk

cL

1+
gL
gH

fL(x)

fH (x)
lim

nLk
nHk

and, when limx∗k→x ηk(x
∗
k) =∞ then limx∗k→xEI [c|x∗k] = limx∗k→xEI [c|x ≤ x∗k, L] =

cL.

Now, if (far enough) āk = 0, for all k, then obviously lim āk/FL (x
∗
k) = 0. In this case,

if fL(x)
fH(x)

< ∞ or limx∗k→x ηk(x
∗
k) = ∞, then from (29) and (28) lim sk

FL(x∗k)
= 0. If instead

limx→x
fL(x)
fH(x)

= ∞ and limx∗k→x ηk(x
∗
k) < ∞, then lim

nLk
nHk

= 0. And since SH = limnHksk =

lim(nHk
nLk

nLksk) = lim(nHk
nLk

sk
FL(x∗k)

), it follows that lim sk
FL(x∗k)

> 0 would imply SH = ∞ hence

limVkH = −∞ contradicting VHk ≥ u− cH − sk. Therefore, lim
sk

FL(x∗k)
= 0.

Suppose next that there is a subsequence over which āk > 0. It then follows from (25) that

VHk < u − cH hence nHk = 1 and nLk
nHk

= 1
FL(x∗∗k )+(1−FL(x∗∗k ))ā

which together with (ii) implies

lim nLk
nHk

= ∞. This in turn implies lim ηk(x
∗
k) ≡ limx∗k→x

µ
gL
gH

fL(x∗k)
fH(x∗k)

nLk
nHk

¶
= ∞, which as shown

above implies lim [EI [c|x∗] = limEI [c|x ≤ x∗, L]] = cL. Now,
sk

cH−cL ≥
āk
1−āk (see (ii) above) implies

āk
(1−āk)FL(x∗k)

[EI [c|x∗]− cL] ≤ sk
FL(x∗k)

EI [c|x∗]−cL
cH−cL . Substituting this and lim [EI [c|x∗] = limEI [c|x ≤ x∗, L]] =

cL into (28) we get upon rearranging lim
sk

FL(x∗k)
≤ 0. Since sk

cH−cL ≥ āk it follows that lim
āk

FL(x∗k)
= 0

as well.

(v) Clearly SLk ≤ sk
FL(x∗k)

. Therefore, SL ≡ limSLk = 0 follows from (iv)¥

Proposition 1 : Suppose that the limit λ exists and consider a sequence sk → 0 and a sequence

(Pk, Ak) of corresponding equilibria. Then the limit prices exist and are

p̄L =

(
(1− 1

λ)cL +
1
λcH if λ ∈ [ 1gH ,∞],

gLcL + gHcH if λ ≤ 1
gH

,

p̄H =

(
1
λ
gL
gH

cL + (1− 1
λ
gL
gH
)cH if λ ∈ [ 1gH ,∞],

gLcL + gHcH if λ ≤ 1
gH

.

Proof of Proposition 1: (The main arguments of the proof are sketched in Section 4.3 and here
is the complete version). Consider a subsequence of k → ∞ such that the limit p̄L = limk→∞ pLk

exists. Throughout the proof all limits are taken with respect to k →∞ over this subsequence and

we will therefore suppress the k →∞ and will not mention this repeatedly.
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Consider first the case of λ < ∞ (the case of λ = ∞ will be taken up only towards the end of

the proof). The following two claims are used throughout the proof.

Claim 6 : If λ <∞, then limx∗k→x
fL(x∗k)
fH(x∗k)

FH(x∗k)
FL(x∗k)

= 1.

Claim 7 : If λ <∞, then for large enough k

VkH ≥ u− cH .

The proofs of these claims follow this proof. We recommend to the reader to go first over

the body of the proof below and only then turn to the proofs of these claims. The benefit of

establishing VkH ≥ u− cH is that we can use (9) and (11) to express the equilibrium conditions in

a relatively simple form, which make it easier to follow the proof. Indeed, from VkH ≥ u− cH and

(9), VL = u−EI [c|x ≤ x∗k, L]−
sk

FL(x∗k)
, which together with (5) yields

sk
FL
¡
x∗k
¢ = (EI [c|x∗k]−EI [c|x ≤ x∗k, L]) . (30)

i.e., L must be indifferent between trading with a seller with signal x∗k and continuing search.

Step 1: Since by Claim 3-(iv) lim sk
FL(x∗k)

= 0 it follows that

limEI [c|x ≤ x∗k, L] = limEI [c|x∗k] ¥. (31)

Let ηk(x) denote the effective likelihood ratio for a seller who observes signal x, in the equilibrium

(Pk, Ak)

ηk(x) ,
gL
gH

fL (x)

fH (x)

nLk
nHk

and η̄ , lim ηk(x
∗
k)

and use it together with (2) and (1) to write

EI [c|x] ≡
cH + ηk(x)cL
1 + ηk(x)

and limEI [c|x∗k] =
cH + η̄cL
1 + η̄

(32)

Step 2:
lim

sk
FH

¡
x∗k
¢ = (cH − cL)

η̄

(1 + η̄)2
λ. (33)
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To see this multiply both sides of (30) by
FL(x∗k)
FH(x∗k)

to get

sk
FH

¡
x∗k
¢ = FL (x

∗
k)

FH
¡
x∗k
¢ (EI [c|x∗k]−EI [c|x ≤ x∗k, L]) .

Substituting

EI [c|x∗k]−EI [c|x ≤ x∗k, L] = (cH − cL)
gL
gH

nLk
nHk

Z x∗k

x

fL(x)
fH(x)

− fL(x∗k)
fH(x∗k)¡

1 + η(x∗k)
¢
(1 + ηk(x))

fL (x)

FL
¡
x∗k
¢dx, (34)

into the previous equation we get

sk
FH

¡
x∗k
¢ = (cH − cL)

FL (x
∗
k)

FH
¡
x∗k
¢ gL
gH

nLk
nHk

Z x∗k

x

µ
fL(x)
fH(x)

− fL(x∗k)
fH(x∗k)

¶
¡
1 + ηk(x

∗
k)
¢
(1 + ηk(x))

fL (x)

FL
¡
x∗k
¢dx. (35)

It follows from Step 1 that limEI [c|x∗k] = limEI [c|αx∗k] for any α ∈ (0, 1) and then from (32) and

(16) that
cH + η̄cL
1 + η̄

= limEI [c|x∗k] = limEI [c|αx∗k] =
cH + lim ηk(αx

∗
k)cL

1 + lim ηk(αx
∗
k)

Therefore, lim ηk(αx
∗
k) = η̄, for any α ∈ (0, 1), and since the integral on the RHS of (35) is

bounded (owing to λ <∞), it follows that the integral converges to λ/ (1 + η̄)2. Using Lemma 6,

lim
FL(x∗k)
FH(x∗k)

gL
gH

nLk
nHk

= lim
fL(x∗k)
fH(x∗k)

gL
gH

nLk
nHk

= η̄. Using these observations to take the limits of (35) yields

(33).¥

Step 3: limVHk exists and

limVHk = u− cH + η̄cL
1 + η̄

− (cH − cL)
η̄

(1 + η̄)2
λ (36)

This is established by recalling from (10) that VHk = u−EI [c|x ≤ x∗k,H]−
sk

FH(x∗k)
. Since EI [c|x∗k] ≥

EI [c|x ≤ x∗k,H] ≥ EI [c|x ≤ x∗k, L], it follows from Step 2 and (32) that

limEI [c|x ≤ x∗k,H] =
cL + η̄cH
1 + η̄

which together with (33) yields (36).¥

Claim 7 implies limVHk ≥ u− cH . Using (36) this can be rewritten as

η̄

1 + η̄
(cH − cL)

µ
1− 1

1 + η̄
λ

¶
≥ 0. (37)
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which is equivalent to

(1 + η̄) ≥ λ

This inequality can be used to express η̄ in terms of the parameters.

Step 4: If λ ≤ 1
gH
, then η̄ = gL

gH
.

This is so since Lemma 6 and (11) together imply that η̄ ≥ gL
gH
. It may not be that η̄ > gL

gH
, since

then (1 + η̄) > λ and hence VHk > u − cH sufficiently far in the sequence. But this means that

both L and H search until they find a seller with x ≤ x∗k, implying

η̄ = lim η(x∗k) ≡ lim
gL
gH

fL (x
∗
k)

fH
¡
x∗k
¢ nkL
nkH

= lim
gL
gH

fL (x
∗
k)

fH
¡
x∗k
¢ FH (x∗k)
FL
¡
x∗k
¢ = gL

gH
.

where the last equality follows from Lemma 6. Thus, assuming η̄ > gL
gH

implies η̄ = gL
gH

and

contradiction. So, η̄ = gL
gH
.¥

Step 5: If 1
gH

< λ <∞, then η̄ = λ− 1.
This is established by eliminating the possibility of (1 + η̄) > λ, since the argument in the proof of

Step 4 would imply η̄ = gL
gH
and hence 1+η̄

λ < gH + gH
gL
gH

< 1. Therefore, (1 + η̄) = λ which yields

the result.¥

Step 6: For any λ ≤ ∞, p̄L is described in the statement of the proposition.
For λ <∞, this follows from substituting η̄ from Steps 4 and 5 into p̄L =

cH+η̄cL
1+η̄ .

Consider λ = ∞ (so far we focused on λ < ∞ and now we include λ = ∞). If η̄ = ∞, then
p̄L = limEI [c|x∗k] = lim

cH+ηk(x
∗
k)cL

1+ηk(x
∗
k)

= cL as required. Observe that it may not be that η̄ < ∞. If
limVkH < u− cH then far enough in the sequence nkH = 1 implying η̄ =∞. If limVkH ≥ u− cH ,

then (11) implies
FL(x∗k)
FH(x∗k)

nLk
nHk
≥ 1, for all k. Hence, it follows from (35) that lim sk

FH(x∗k)
=∞, which

together with (10) contradicts limVkH ≥ u− cH . ¥

Step 7: For any λ ≤ ∞, p̄H is described in the statement of the proposition.

To see this let Pr(H|p̄L) ≡ Pr(type H| trade at p̄L), Pr(p̄L|H) ≡ Pr(trade at p̄L| type H). Observe
that

p̄L = E(c|trade at p̄L) = Pr(H|p̄L)cH +Pr(L|p̄L)cL

Therefore,

Pr(H|p̄L) =
(

1
λ if λ ∈ [ 1gH ,∞]
gH if λ < 1

gH

Plugging this into Bayes formula

Pr(H|p̄L) =
Pr(p̄L|H)gH

gL[1− Pr(p̄L|H)] + Pr(p̄L|H)gH
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and solving yields

Pr(p̄L|H) =
(

gL
gH

1
λ−1 if λ ∈ [ 1gH ,∞]
1 if λ < 1

gH

The result now follows from substituting from above into

p̄H = Pr(p̄L|H)p̄L + (1− Pr(p̄L|H)) cH

¥
This completes the proof of the proposition. QED

Claim 6 For λ <∞, limx∗k→x
fL(x∗k)
fH(x∗k)

FH(x∗k)
FL(x∗k)

= 1.

Proof of Claim 6
The claim is immediate if lim

fL(x∗k)
fH(x∗k)

is bounded. So, suppose
fL(x∗k)
fH(x∗k)

→∞. Note that

fL (x
∗
k)

fH
¡
x∗k
¢ FH (x∗k)
FL
¡
x∗k
¢ = fL (x

∗
k)

fH
¡
x∗k
¢ Z x∗k

x

fH (x)

fL (x)

fL (x)

FL
¡
x∗k
¢dx ≤ fL (x

∗
k)

fH
¡
x∗k
¢ Z x∗k

x

fH (x
∗
k)

fL
¡
x∗k
¢ fL (x)

FL
¡
x∗k
¢dx = 1.

where the inequality owes to fH(x)
fL(x)

<
fH(x∗k)
fL(x∗k)

by MLRP.

By λ <∞, for every ε > 0, there exists T (ε) > 0 such that for all k large enough,

fL (x)

fH (x)
− fL (x

∗
k)

fH
¡
x∗k
¢ ≥ T (ε)⇒ FL (x)

FL
¡
x∗k
¢ ≤ ε. (38)

Otherwise, for some ε > 0, there is a sequence of k’s and Tk →∞ such that

Z x∗k

x

Ã
fL (x)

fH (x)
− fL (x

∗
k)

fH
¡
x∗k
¢! fL (x)

FL
¡
x∗k
¢dx ≥ Tkε

contradicting λ <∞. Hence, is equal to

fL (x
∗
k)

fH
¡
x∗k
¢ FH (x∗k)
FL
¡
x∗k
¢ =

fL (x
∗
k)

fH
¡
x∗k
¢ Z x∗k

x

fH (x)

fL (x)

fL (x)

FL
¡
x∗k
¢dx ≥ fL (x

∗
k)

fH
¡
x∗k
¢ Z

x| fL(x)
fH (x)

−
fL(x∗k)
fH(x∗k)

≤T (ε)

fH (x)

fL (x)

fL (x)

FL
¡
x∗k
¢dx

≥ fL (x
∗
k)

fH
¡
x∗k
¢ 1
fL(x∗k)
fH(x∗k)

+ T (ε)
(1− ε) (39)
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where the last inequality owes to fH(x)
fL(x)

≥ 1/
µ

fL(x∗k)
fH(x∗k)

+ T (ε)

¶
over the range

½
x| fL(x)fH(x)

− fL(x∗k)
fH(x∗k)

≤ T (ε)

¾
,

and the previous inequality owes to Pr
µ½

x| fL(x)fH(x)
− fL(x∗k)

fH(x∗k)
≤ T (ε)

¾
|L
¶
≥ 1−ε, which follows from

(38). Now, for any ε > 0, (39) approaches 1−ε as fL(x∗k)
fH(x∗k)

→∞. Therefore, limx∗k→x
fL(x∗k)
fH(x∗k)

FH(x∗k)
FL(x∗k)

≥
1. ¥

Claim 7. Suppose λ <∞. Then VkH ≥ u− cH for sufficiently large k.

Proof of Claim 7: Suppose to the contrary that there is a subsequence over which VkH < u− cH

and confine attention to this subsequence. Let us use the shorthand ηk(x) for the effective likelihood

ratio for a seller who observes signal x, in the equilibrium (Pk, Ak)

ηk(x) ,
gL
gH

fL (x)

fH (x)

nLk
nHk

and use it together with (2) and (1) to write

EI [c|x] ≡
cH + ηk(x)cL
1 + ηk(x)

Observe that VHk < u − cH implies nHk = 1. Hence,
nLk
nHk

= 1
FL(x∗∗k )+(1−FL(x∗∗k ))ā

which together

with (3)-(ii) implies lim nLk
nHk

= ∞. This in turn implies lim ηk(x
∗
k) ≡ lim

µ
gL
gH

fL(x∗k)
fH(x∗k)

nLk
nHk

¶
= ∞.

Hence, for any x ≤ x∗k, limEI [c|x] ≡ cH+ηk(x)cL
1+ηk(x)

= cL and hence limEI [c|x∗k] = limEI [c|x ≤ x∗k, L] =

cL

We now use these observations to show that lim s
FH(x∗k)

= 0.

Dividing the RHS of (23) by FH (x∗),

s

FH (x∗)
≤ FL (x

∗)

FH (x∗)
[EI [c|x∗]−EI [c|x ≤ x∗, L]] +

FL (x
∗)

FH (x∗)

āk
1− āk

1

FL (x∗)
[EI [c|x∗]− cL] . (40)

To evaluate the limit of the RHS, let us start with the second term. Substituting EI [c|x∗k] =
cH+ηk(x

∗
k)cL

1+ηk(x
∗
k)

into the 2nd term, it can be rewritten as

2nd term on RHS = lim
FL (x

∗)

FH (x∗)

āk
1− āk

1

FL (x∗)

cH − cL
1 + ηk(x

∗
k)

Now,

42



lim
FL (x

∗)

FH (x∗)

1

1 + ηk(x
∗
k)
≤ lim 1

FH(x∗)
FL(x∗)

gL
gH

fL(x∗k)
fH(x∗k)

nLk
nHk

=
1

gL
gH
lim

µ
FH(x∗)
FL(x∗)

fL(x∗k)
fH(x∗k)

¶
lim nLk

nHk

= 0

since lim nLk
nHk

= ∞ (argued above) and lim FH(x
∗)

FL(x∗)
fL(x∗k)
fH(x∗k)

= 1 (by Claim 6). Since āk/FL (x∗k) → 0

as well, the 2nd term converges to zero.

For the limit of the first term on RHS(40), rewrite

FL (x
∗
k)

FH
¡
x∗k
¢ (EI [c|x∗k]−EI [c|x ≤ x∗k, L])

= (cH − cL)
FL (x

∗
k)

FH
¡
x∗k
¢ gL
gH

nLk
nHk

Z x∗k

x

µ
fL(x)
fH(x)

− fL(x∗k)
fH(x∗k)

¶
µ
1 + gL

gH

fL(x∗k)
fH(x∗k)

nLk
nHk

¶³
1 + gL

gH

fL(x)
fH(x)

nLk
nHk

´ fL (x)

FL
¡
x∗k
¢dx

≤ FL (x
∗
k)

FH
¡
x∗k
¢ gL
gH

nLk
nHk

(cH − cL)¡
1 + ηk(x

∗
k)
¢2 Z x∗k

x

Ã
fL (x)

fH (x)
− fL (x

∗
k)

fH
¡
x∗k
¢! fL (x)

FL
¡
x∗k
¢dx

But the last expression converges to zero, since (i) ηk(x
∗
k) → ∞ implies that the terms preceding

the integral vanish to zero and (ii) the integral is bounded because λ <∞.

Since H can search for x ≤ x∗k, VHk ≥ u− EI [c|x ≤ x∗k,H]− sk/FH (x
∗
k). It was shown above

that limEI [c|x ≤ x∗k,H] = cL and by (3)-(iv) lim (sk/FH (x∗k)) = 0. Therefore, limVHk ≥ u − cL.

This contradicts the hypothesis VkH < u− cH . Hence, for sufficiently large k, VkH ≥ u− cH . ¥.

Claim 4: If

lim
x→x

− d
dx

³
fL(x)
fH(x)

´
fL(x)
FL(x)

exists, then it is equal to λ as defined by (13).

Proof of Claim 4: Suppose that the limit in the claim exists and is equal to γ. Define

t (x, x∗) =
fL (x)

fH (x)
− fL (x

∗)

fH (x∗)

and let x (t, x∗) be its inverse. Of course, x (0, x∗) = x∗. We have to show that

lim
x→x

Z x∗

x

µ
fL (x)

fH (x)
− fL (x

∗)

fH (x∗)

¶
fL (x)

FL (x∗)
dx ≡ lim

x→x

Z x∗

x
t (x, x∗)

fL (x)

FL (x∗)
dx = γ
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Define the distribution function Fx∗ with support on [0,∞] by

Fx∗ (t) ≡ 1−
FL (x (t, x

∗))

FL (x∗)
.

Observe thatZ x∗

x
t (ξ, x∗)

fL (ξ)

FL (x∗)
dξ =

Z t(x∗,x∗)

t(x,x∗)
t (x (τ , x∗) , x∗) (−1) dFx

∗ (τ)

dτ
dτ =

Z ∞

0
τdFx∗ (τ) (41)

The first equality owes to a standard change of integration variable ξ = x (τ , x∗), since dFx∗ (τ)
dτ =

−fL(x(τ,x
∗))

FL(x∗)
dx(τ,x∗)

dτ and x (t (x, x∗)) = x. The second equality follows from t (x (τ , x∗) , x∗) = τ ,

t (x∗, x∗) = 0 and t (x, x∗) =∞.
Thus, to establish the claim we have to show that

lim
x∗→x

Z ∞

0
τdFx∗ (τ) = γ, (42)

which will be done by the following two steps.

Step 1. If γ = 0, then limx∗→x
FL(x(t,x

∗))
FL(x(0,x∗))

= 0 for all t. If γ > 0, then

lim
x∗→x

FL (x (t, x
∗))

FL (x (0, x∗))
= e−

t
γ . (43)

To see this, observe that by the mean value theorem

ln
FL (x (t, x

∗))

FL (x (0, x∗))
= lnFL (x (t, x

∗))− lnFL (x (0, x∗)) (44)

= t
d

dτ
lnFL (x (τ , x

∗))
¯̄
τ=τ∈(0,t) = t

fL(x(τ,x
∗))

FL(x(τ,x∗))

d
dx

³
fL(x(τ,x∗))
fH(x(τ,x∗))

´
This implies immediately that, for γ = 0, limx∗→x

FL(x(t,x
∗))

FL(x(0,x∗))
= 0. Next observe that it follows from

the statement of the claim that, for any ε > 0, there is some X (ε) > 0 such that for all x∗ ≤ X (ε)

and all z,

1

γ
− ε ≤ −

fL(x(z,x
∗))

FL(x(z,x∗))

d
dx

³
fL(x(z,x∗))
fH(x(z,x∗))

´ ≤ 1

γ
+ ε. (45)

This is true because x (z, x∗) ≤ x (0, x∗) ≡ x∗.

Observe that from (45) and (44) we have that for x∗ < X (ε)

e
−t 1

γ
+ε ≤ FL (x (t, x

∗))

FL (x (0, x∗))
≤ e

−t 1
γ
−ε

(46)
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Since ε can be arbitrarily small, (43) follows.¥

Step 2:

lim
x∗→x

Z ∞

0
tdFx∗ (t) = γ

where γ may be ∞ as well.

To see this observe that, for γ ∈ (0,∞), by the definition of Fx∗ , (43), the Dominated Conver-
gence Theorem and Helley’s convergence theorem

lim
x∗→x

Z T

0
tdFx∗ (t) =

Z T

0

t

γ
e−

t
γ dt,

for any T < ∞. Moreover, since by (46) Fx∗ is stochastically dominated by 1 − e−(
1
γ
−ε)t for

x∗ < X(ε) Z ∞

T
tdFx∗ (t) ≤

Z ∞

T
t(
1

γ
− ε)e−(

1
γ
−ε)t = (T +

1
1
γ − ε

)e−(
1
γ
−ε)T .

Thus, the remainder of the integral on [T,∞] is uniformly bounded and, for T → ∞, the bound
vanishes to zero. Therefore, for γ ∈ (0,∞),

lim
x∗→x

Z ∞

0
tdFx∗ (t) =

Z ∞

0

t

γ
e
− t
γ dt = γ

For γ = 0, it follows from Step 1 that Fx∗ (t) converges to mass 1 at 0, which implies the result.

For γ =∞, it follows from Step 1 that Fx∗ (t)→ 0 for all t, which means that limx∗→x

R∞
0 tdFx∗ (t) =

∞ as required.¥

Step 2 completes the proof. QED

Proposition 2: (i) Consider a sequence sk → 0 and a sequence (Pk, Ak) of corresponding equilibria

such that p̄L = lim pkL exists. Then p̄H = lim pkH exists and there exists a λ ∈
£
λ, λ

¤
such that

p̄L =

(
(1− 1

λ)cL +
1
λcH if λ ∈ ( 1gH ,∞],

gLcL + gHcH if λ ≤ 1
gH

,

p̄H =

(
1
λ
gL
gH

cL + (1− 1
λ
gL
gH
)cH if λ ∈ ( 1gH ,∞],

gLcL + gHcH if λ ≤ 1
gH

.

(ii) For any λ ∈
£
λ, λ

¤
, there exists a sequence sk → 0 and a sequence (Pk, Ak) of corresponding

equilibria such that p̄L = lim pkL and p̄H = lim pkH exist and are of the above form.

Proof of Proposition 2:
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(i) Consider a sequence sk → 0 and a sequence (Pk, Ak) of corresponding equilibria such that

p̄L = lim pkL exists. Consider a subsequence of these equilibria and corresponding cutoffs x∗k such

that there is some λ ∈ [0,∞] for which

λ = lim

Z x∗k

x

Ã
fL (x)

fH (x)
− fL (x

∗
k)

fH
¡
x∗k
¢! fL (x)

FL
¡
x∗k
¢dx.

From the proof of Proposition 1, x∗k → x. Hence, λ ∈
£
λ, λ

¤
, as desired. The claim now follows

from repeating the steps in the proof of Proposition 1.

(ii). For any λ ∈
£
λ, λ

¤
, there exists some sequence x∗k →x such that

λ = lim

Z x∗k

x

Ã
fL (x)

fH (x)
− fL (x

∗
k)

fH
¡
x∗k
¢! fL (x)

FL
¡
x∗k
¢dx.

This follows from the continuity of the above integral in x∗k and the intermediate value theorem.

For each x∗k and β ∈ [0, 1], define sk (β) as follows. Let nLk ≡ 1
FL(x∗k)

and let

nHk (β) ≡
1

FH
¡
x∗k
¢
+ β

¡
1− FH

¡
x∗k
¢¢ .

Now, let EI [c|x, nHk (β) , nLk] denote the expected interim cost for a seller conditional on being

sample and observing signal x when the expected search durations of the two buyer types are

nHk (β) and nLk respectively.

EI [c|x, nHk (β) , nLk] =
cH +

gL
gH

fL(x)
fH(x)

nLk
nHk(β)

cL

1 + gL
gH

fL(x)
fH(x)

nLk
nHk(β)

and let

EI [c|x ≤ x∗k, nHk (β) , nLk, w] =

Z x∗k

x
EI [c|x, nHk (β) , nLk]

fw (x)

Fw
¡
x∗k
¢dx

Let

sk (β) ≡ FL (x
∗
k) [EI [c|x ≤ x∗k, nHk (β) , nLk, L]−EI [c|x∗k, nHk (β) , nLk]] ,

and

∆k (β) ≡ (u− cH)− [EI [c|x ≤ x∗k, nHk (β) , nLk,H]−EI [c|x∗k, nHk (β) , nLk]]−
sk (β)

FH
¡
x∗k
¢ .

The function ∆k (β) is continuous.
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Define β∗k as a solution for ∆ (β
∗
k) = 0 if such exists. Otherwise, if ∆k (β) > 0 for all β ∈ [0, 1],

let β∗k = 1; if ∆k (β) < 0 for all β ∈ [0, 1], let β∗k = 1. Set sk = sk (β
∗
k). Then the following strategies

constitute an equilibrium. Type L offers EI [c|x, nHk (β) , nLk] after x ≤ x∗k and cL after x > x∗k.

trades at EI [c|x, nHk (β) , nLk]. Type H trades after x ≤ x∗k at EI [c|x, nHk (β) , nLk] and offers cH
to sellers with x > x∗k, which is accepted with probability Ak (cH , x) = β∗. By construction of sk,

H is indifferent between searching and trading at cH ; L is exactly indifferent between trading at

x∗k and continued search, as required. Therefore, these strategies constitute an equilibrium.

Thus, there exists a sequence of search costs {sk} such that x∗k is the sequence of equilibrium
cutoffs. But now Part I implies that the limit outcome must have the desired form. QED.

Claim 5: (i) If an equilibrium (P,A) induces an undefeated sequential equilibrium in the bargaining

games after each x, then (P,A) is “undefeated”. (ii) Conversely, if (P,A) is an “undefeated”

equilibrium, then in each of the bargaining games there is an undefeated sequential equilibrium

that yields the same outcome.

Proof of Claim 5: (i) Consider an equilibrium (P,A). Given the associated values Vw (P,A)

and beliefs βI (x, P,A), the bargaining game after any signal realization x is well defined. Let

σx = σx(P,A) be the sequential equilibrium induced by (P,A) in the bargaining game after x, and

suppose that σx(P,A) is undefeated for all x.

Step 1. If σx(P,A) is pooling with trade, i.e., PL(x) = PH(x) = p and A(p, x) > 0, then

p = EI [c|x, P,A] and A(p, x) = 1.

Proof of Step 1: It may not be that p < EI [c|x, P,A] and A(p, x) > 0, or else the seller

will incur a loss. If p > EI [c|x,P,A], choose p0 ∈ (EI [c|x, P,A] , p) and construct a sequential
equilibrium σ0 in the bargaining game following x in which both buyers pool at p0 and the seller

accepts (it can be supported by beliefs that assign probability 1 to H after all p 6= p0). Clearly,

both L and H prefer σ0 to σx(P,A), and it is easy to check that σ0 defeats σx(P,A).

Step 2. VL (P,A) ≥ VH (P,A).

Proof of Step 2: Suppose to the contrary that VH (P,A) > VL (P,A). It follows that

VH (P,A) > u− cH − s. Therefore there is no separating equilibrium with trade after any x since

in such a case the price H pays would be cH . Thus, the only trade takes place at pooling equilibria

with trade after some x’s. From Step 1 such trade takes place at EI [c|x, P,A] with probability 1.
The set of those x’s is an interval that contains the bottom of the support x, since otherwise there

would be x1 and x2 such that x1 < x2, after x2 trade takes place at EI [c|x2, P,A] while after x1 no
trade takes place. This implies that Vw (P,A) ≤ u− EI [c|x2, P,A] < u−EI [c|x1, P,A]. But then
the no trade equilibrium after x1 is defeated by a pooling equilibrium at which trade takes place at

price p ∈ (EI [c|x1, P,A] , EI [c|x2, P,A]). But since the distribution of x conditional on H stochas-

tically dominates that of x conditional on L, it follows immediately that VH (P,A) < VL (P,A) –
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contradiction.

Step 3. (P,A) is “undefeated”, i.e., A(PL(x), x)(u − PL(x)) + [1 − A(PL(x), x)]VL ≥ u −
EI [c|x, P,A].

Proof of Step 3: Suppose to the contrary that there is an x such that A(PL(x), x)(u−PL(x))+
[1 − A(PL(x), x)]VL < u − EI [c|x, P,A]. Take a p0 /∈ {PL(x), PH(x)} such that p0 > EI [c|x, P,A]
and A(PL(x), x)(u− PL(x)) + [1− A(PL(x), x)]VL < u− p0 (which obviously exists.) Construct a

sequential equilibrium σ0 in the bargaining game following x in which both buyers pool at p0 and

the seller accepts (it can be supported by beliefs that assign probability 1 to H after all p 6= p0). By

construction L prefers σ0 to the σx(P,A). Step 1 implies that σx(P,A) is not pooling with trade.

If σx(P,A) is with no trade, then H prefers σ0 as well since u− p0 > VL (P,A) ≥ VH (P,A), where

the last inequality is by Step 2. If σx(P,A) is separating with trade, then PH(x) = cH and

A(cH , x)(u− cH) + [1−A(cH , x)]VH ≤ A(cH , x)(u− cH) + [1−A(cH , x)]VL

≤ A(PL(x), x)(u− PL(x)) + [1−A(PL(x), x)]VL < u− p0,

where the first inequality follows from VL (P,A) ≥ VH (P,A) and the second from L’s IC condition.

The conclusion is that in this case too H prefers σ0. Given that both types prefer σ0, it is easy to

check that σ0 defeats σx(P,A).

(ii) Let (P,A) be an “undefeated” equilibrium and σx(P,A) be the sequential equilibrium in-

duced by (P,A) in the bargaining game after x.

If σx(P,A) is pooling, then x ≤ x∗∗. Consider a sequential equilibrium eσ in the bargaining game
after x that coincides with σx(P,A) everywhere except perhaps that the belief after a price offer cL
is that the seller is type L. It is to verify that eσ is indeed a sequential equilibrium with the same

outcome as σx(P,A). Observe that eσ cannot be defeated by any other pooling equilibrium since the
price is already EI [c|x, P,A]. It also may not be defeated by a separating equilibrium with trade,

since in such an equilibrium L offers cL after which the seller believes in type L with probability 1

which coincides with the belief in eσ. Therefore, by definition, the separating equilibrium does not

defeat eσ.
If σx(P,A) is separating then x ≥ x∗. We may assume that Pw(x) = cw (since otherwise

there is a sequential equilibrium with the same outcome in which type w offers cw). Consider a

sequential equilibrium eσ in the bargaining game after x that coincides with σx(P,A) everywhere

except perhaps that the belief after the off equilibrium price EI [c|x, P,A] is the interim belief

βI (x, P,A). Obviously, eσ has the same outcome as σx(P,A). Observe that eσ cannot be defeated
by a pooling equilibrium with pooling price p > EI [c|x, P,A], since owing to eσ’s “undefeated”
status L’s payoff is at least as high as u−EI [c|x, P,A] > u− p. It cannot be defeated by a pooling

equilibrium with pooling price p = EI [c|x, P,A], since by construction the belief after EI [c|x, P,A]
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coincides with the interim belief and hence condition (iii) in the definition of a defeating equilibrium

is not satisfied. Observe that eσ cannot be defeated by a separating equilibrium with trade, since

in any separating equilibrium with trade the prices are cw, which are already used in eσ. It cannot
be defeated by an equilibrium with no trade, since such an equilibrium cannot strictly increase the

payoff of either of the types. ¥

10.3 λ and the distribution of the likelihood ratio

Further insights into the meaning of λ are obtained by relating it to the properties of the distribution

of the likelihood ratios. Specifically, the inverse of the expression (14) is equal to the hazard rate

of the distribution of the likelihood ratios in the low state. To see this, let F̃L (l) be the cumulative

distribution of the likelihood ratios conditional on w = L, that is, F̃L (l) = Prob[ fL(x)fH(x)
≤ l|w = L].

Then
d
dl F̃L (l)

1− F̃ (l)
= − fL (x)

FL (x)

Á
d

dx

µ
fL (x)

fH (x)

¶
,

at l = fL(x)
FL(x)

.

The distribution of the likelihood ratios captures all the properties of the signal that are relevant

for the model. Any two signal distributions that induce the same distribution of likelihood ratios

will have the same set of equilibrium outcomes. Claim 4 and Proposition 1 together imply that

the limit outcome can be uniquely characterized by the limiting hazard rate of the distribution

of likelihood ratios, if the limit exists. The smaller the hazard rate of the distribution, the more

weight is put on large realizations of the likelihood ratios. In particular, if the limiting hazard rate

exists, information is aggregated if and only if the hazard rate vanishes to zero, that is, if and only

if the distribution of the likelihood ratio is heavy-tailed (the right tail of the distribution is heavier

than those of any exponential distribution).

We illustrate this further using two parametric examples in Section 4.4. In example 4.4

FL(x) =

(
ex+r if x ≤ −r
1 if x > −r

FH(x) =

(
μ
R −x
−∞ (−t)

−α et+rdt if x ≤ −r
1 if x > −r

and the likelihood ratio is given by fL(x)
fH(x)

= 1
μ (−x)

α. The distribution of the likelihood ratio in the

low state is

Prob

∙
fL (x)

fH (x)
≤ l|w = L

¸
= 1− e−(μl)

1
α+r,

that is, the distribution of the likelihood ratio follows a Weibull distribution with scale parameter
1
μ and (inverse) shape parameter α. The parameter α determines the weight of the tail: If α is

larger than one, the distribution is heavy-tailed and the hazard rate vanishes to zero. If α is equal

to one, the likelihood ratio is exponentially distributed with a constant hazard rate μ; if α is less
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than one, the distribution is light-tailed and the hazard rate diverges to infinity.

In example 4.4 where

FL (x) =

⎧⎪⎪⎨⎪⎪⎩
1 for x ≥ r (λ) ,

e
− 1
λ

gH
gL
( 1x−

1
r ) for 0 ≤ x ≤ r (λ)

0 for x = 0,

the λ parameter is exactly equal to the expression in ( 14) and hence is the λ defined by (13).

Conditional on w = L, the likelihood ratios are exponentially distributed with hazard rate λ−1.

The hazard rate determines the limit outcome uniquely.

11 References

Banks, Jeffrey and Joel Sobel (1987): “Equilibrium Selection in Signaling Games,” Econometrica,

647-61.

Blouin, Max and Roberto Serrano (2001), “A Decentralized Market with Common Values Uncer-

tainty: Non-Steady States,” Review of Economic Studies, 323-346.

Cho, In-Koo and David Kreps (1987) “Signaling games and stable equilibria,” Quarterly Journal

of Economics, 179-221

Diamond, Peter (1971), “A model of price adjustment,” Journal of Economic Theory, 156-168.

Duffie, Darrell and Gustavo Manso (2007): “Information Percolation in Large Markets,” American

Economic Review 97 (2), 203-209.

Duffie, Darrell, Semyon Malamud, and Gustavo Manso (2009): “Information Percolation With

Equilibrium Search Dynamics,” Econometrica, 1513—1574.

Duggan, John and Cesar Martinelli (2001), “A Bayesian Model of Voting in Juries,” Games and

Economic Behavior, 259-294.

Feddersen, Timothy and Wolfgang Pesendorfer (1997): “Voting Behavior and Information Aggre-

gation in Elections with Private Information,” Econometrica, 1029-1058.

Gale, Douglas (1987), “Limit Theorems for Markets with Sequential Bargaining,” Journal of Eco-

nomic Theory, 20-54.

Guerrieri, Veronica, Robert Shimer, and Randall Wright (2010): “Adverse Selection in Competitive

Search Equilibrium,” Econometrica, 1823-1862.

Hörner, Johannes and Nicolas Vieille, (2009): “Public vs. Private Offers in the Market for Lemons,”

Econometrica, 29—69.

50



Inderst, Roman (2005), “Matching markets with Adverse Selection,” Journal of Economic Theory,

145—166.

Lauermann, Stephan (2011), “Dynamic Matching and Bargaining Games: A General Approach,”

Working paper University of Michigan.

Lauermann, Stephan and Asher Wolinsky (2011), “Common Values Procurement Auctions with

Endogenous Biddership” in preparation.

Mailath, George, Okuno-Fujiwara, Masahiro and Andrew Postlewaite (1993), “On Belief Based

Refinements in Signaling Games,” Journal of Economic Theory, 241-276.

Milgrom, Paul (1979), “A Convergence Theorem for Competitive Bidding with Differential Infor-

mation,” Econometrica, 670-688.

Moreno, Diego and John Wooders (2010): “Decentralized Trade Mitigates the Lemons Problem,”

International Economic Review, 383—399.

Myerson, Roger (1983), “Mechanism Design by an Informed Principal,” Econometrica, 1767—1797.

Pesendorfer, Wolfgang and Jeroen Swinkels (1997): “The Loser’s Curse and Information Aggrega-

tion in Common Value Auctions,” Econometrica, 1247—1281.

Smith, Lones and Peter Sorenson (2000), “Pathological Outcomes of Observational Learning,”

Econometrica, 371-398.

Wilson, Robert (1977), “A Bidding Model of Perfect Competition,” Review of Economic Studies,

511-518.

Wolinsky, Asher (1990), “Information Revelation in a Market with Pairwise Meetings,” Economet-

rica, 1-23.

51


