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Searchable Attribute-Based Mechanism with

Efficient Data Sharing for Secure Cloud Storage
Kaitai Liang and Willy Susilo∗, Senior Member, IEEE

Abstract—To date, the growth of electronic personal data leads
to a trend that data owners prefer to remotely outsource their
data to clouds for the enjoyment of the high-quality retrieval
and storage service without worrying the burden of local data
management and maintenance. However, secure share and search
for the outsourced data is a formidable task, which may easily
incur the leakage of sensitive personal information. Efficient data
sharing and searching with security is of critical importance. This
paper, for the first time, proposes a searchable attribute-based
proxy re-encryption system. When compared to existing systems
only supporting either searchable attribute-based functionality or
attribute-based proxy re-encryption, our new primitive supports
both abilities and provides flexible keyword update service.
Specifically, the system enables a data owner to efficiently share
his data to a specified group of users matching a sharing policy
and meanwhile, the data will maintain its searchable property
but also the corresponding search keyword(s) can be updated
after the data sharing. The new mechanism is applicable to many
real-world applications, such as electronic health record systems.
It is also proved chosen ciphertext secure in the random oracle
model.

Keywords: Searchable attribute-based encryption, keyword
update, encrypted data sharing.

I. INTRODUCTION

By stepping into the era of big data, Internet users usually

choose to upload their personal data to remote cloud servers

such that they can reduce the cost of local data management

and maintenance. In addition to individuals, many industries

and research institutions also follow the trend to remotely

store commercial and scientific data to clouds to enjoy high-

speed data process and retrieval service. Cloud storage service,

accordingly, reveals its infinite practical and commercial po-

tential. However, it meanwhile unavoidably encounters with

many unpredictable security and privacy challenges.

Motivation. We start with Attribute-Based Encryption

(ABE) with a significant reason that it provides fine-grained

expressiveness in data share and search. After storing data to

a cloud server, the data owner usually needs two necessary

operations: one is data searching, and the other is data

sharing.

Leveraging traditional ABE technology to encrypt data that

guarantees the confidentiality of the data, but it limits data

sharing and searching. Suppose there is a set of genome en-

cryption, (Enc(g1, P1), ..., Enc(gn, Pn), ), which are donated
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by anonymous volunteers for medical research purpose, where

a data gi is encrypted under a policy Pi such that only a group

of researchers matching the policy can acquire the data. The

ciphertexts are stored in a remote server. To naively search a

specific encrypted genomic data, a researcher, say Alice, has to

download all the ciphertexts related to her decryption policy

PA from the server, and next to decrypt them to fulfill the

search task locally. When sharing one of her accessible data

with her colleagues, Alice has to download the encrypted data,

decrypt and further re-encrypt it under the decryption policy of

the colleagues. Another interesting behavior, which might be

done by Alice, is the keyword update for the shared encrypted

data. Consider an encrypted genomic data is with a keyword

tag (“Materials at Lab A”). After its sharing to scientists in

Lab B, Alice may choose to change its tag as (“Shared to Lab

B”). Since traditional ABE cannot support keyword update,

Alice has to modify the tags for all shared ciphertexts on her

own due to protecting the privacy of the keywords.

However, the above naive approaches do not scale well.

Because they bring additional decryption/encryption burden

to Alice who is required to be on-line all the time. The

cost for the data owner will become more cumbersome,

when the number of searching and sharing data is increasing.

Besides, the size of download data yields a challenge for local

data maintenance that definitely downgrades the advantage of

remote data storage.

Alternatively, one may allow a (remote) third party to fulfill

data search task, the re-encryption of data and keyword update

on behalf of Alice. Nevertheless, this requires the party to be

fully trusted as it is granted knowledge of search keyword

(i.e. what Alice wants to search) and given the secret key of

Alice (i.e. knowing the underlying data). The leak of the above

information seriously disgraces the privacy of anonymous

donators because the genomic data may contain sensitive

information, such as illness. Therefore, this approach is also

undesirable due to loss of privacy and confidentiality.

From the above discussions, we can see the importance

of secure searching and sharing for encrypted data in re-

mote cloud storage scenario. Protecting the privacy of search

(including data and keyword) but also supporting efficient

encrypted data sharing in the context of ABE that is an inter-

esting and unsolved problem in the literature. This motivates

our work. We further show some existing primitives cannot

fully solve the open problem.

Attribute-Based Keyword Search (ABKS). To hide search

contents as well as search keywords from cloud server, Boneh

et al. [6] introduced the notion of Public Key Encryption

(PKE) with keyword search, in which a user delivers a special
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token associated with keyword(s) to the server such that the

server can use the token to allocate all encrypted data with the

same keyword(s). The server, however, knows nothing about

the keyword(s) and the data. To explore the notion into the

context of ABE, Zheng, Xu and Ateniese [38] defined ABKS.

Although [38] is the most recent work in the literature of PKE

with keyword search, it fails to support encrypted data sharing

as the only way for a server to convert a given ciphertext

to another one is to obtain the corresponding secret key, i.e.

accessing the underlying data.

Attribute-Based Proxy Re-Encryption (ABPRE). To ef-

ficiently share an encrypted data with others, Mambo and

Okamoto [31] introduced PRE whereby a semi-trusted proxy

can transform an encryption of a message to another en-

cryption of the same message without knowing the message.

To employ the notion into ABE setting, Liang et al. [26]

proposed the notion of ABPRE. Recently, Liang et al. [19],

[20] introduced new types of ABPRE with stronger security.

Nonetheless, these systems cannot achieve our goals as they

do not provide privacy-preserving keyword search.

Gaps Between ABE Keyword Search and Data Share.

Usually, an ABKS supporting keyword search does not si-

multaneously provide decryption service, such as [38]. This

is due to a technical limitation in the construction method of

trapdoor token (used for searching). Specifically, a trapdoor

token consists of a user’s “re-randomized” secret key. By using

this information, the token holder (i.e. a cloud server) can

easily recover the data from a ciphertext encrypted under the

decryption policy matching the key. Although the server may

use the re-randomized secret key to fulfill data sharing, the

confidentiality of the data cannot be guaranteed.

On the other hand, an ABPRE system, e.g., [19], is not

compatible with secure data search. Specifically, if we regard

an attribute as a search keyword, the privacy of the keyword

cannot be achieved as the system is built in the attribute

publicly known model. One might question that if we can

leverage existing anonymous ABE systems, such as [37], to

fill the gaps here. Nonetheless, it is unknown that if we can

employ anonymous ABE technique to yield both data share

and search as well as keyword privacy.

Our paper focuses on tackling the elusive gaps by proposing

a novel ABE system supporting keyword private search and

encrypted data sharing simultaneously.

A. Our Contributions

Technical Roadmap. We choose an ABE system with fast

decryption [16] as a starting point. The reason of employing

ABE is that ABE can provide expressiveness for data share

and keyword search compared to other encryption systems.

To achieve the privacy of keyword search, we first extend

the concrete ABE system [16] into the asymmetric pairings

group. Under the property of asymmetric pairings, one cannot

tell whether a given ciphertext contains a keyword or not

even he can make pairing computations from the ciphertext

components. This principle is similar with the technique of

anonymous Identity-Based Encryption (IBE). We further allow

a token related to a keyword to be constructed via an interac-

tion between Private Key Generator (PKG) and a system user

(who specifies the keyword). The construction of the token is

somewhat similar to that of the secret key of the user. However,

the token (related to a keyword) will not enable its holder (i.e.

a cloud server) to decrypt the ciphertext associated with the

same keyword. This is a necessary requirement for searchable

encryption, i.e. a trapdoor token for a keyword cannot deliver

decryption ability to cloud server.

To achieve encrypted data sharing, we combine the resulting

scheme with the technique of ABPRE. The re-encryption is

tricky in the sense that we mask a secret key of a user with

two random factors in the re-encryption key generation phase.

One random factor is used to mask the partial decryption

value of a ciphertext so that a server cannot obtain knowledge

of data by using this intermediate value and meanwhile, the

random factor is known only by a group of valid delegatess

with appropriate decryption rights. The other random factor is

used to hide the components of the secret key such that its

knowledge will not be leaked to the server.

Our contributions are described as follows.

• We, for the first time, introduce a novel and practical

notion, searchable ABPRE. Our notion guarantees that

the keyword search ability of a ciphertext can be remained

after the sharing of the ciphertext. It is worth mentioning

that all existing public key systems with keyword search

fail to guarantee this property.

• We design a concrete searchable Key-Policy (KP)

ABPRE system satisfying the above notion. We also

prove the scheme chosen ciphertext secure in the Random

Oracle Model (ROM). The scheme is the first of its

type supporting the privacy of keyword search but also

encrypted data sharing.

• As of independent interest, our protocol supports keyword

update so that a ciphertext’s keyword can be further

updated before the ciphertext is shared with others. This

property brings a convenience to data owner (who can

gain access to the data) in the sense that the ciphertext

keyword can be freely modified based on data share

record.

• Our system has better efficiency regarding to keyword

search and decryption phases when compared to existing

systems which only support either data sharing or key-

word search in the context of ABE.

B. Related Work

Sahai and Waters [33] introduced the notion of ABE. After

that, Goyal et al. [15] proposed a KP-ABE system, in which

ciphertexts are associated with attributes, and secret keys are

associated with access policies (over attributes). Later on,

many classic ABE systems and their variants that have been

proposed in the literature, e.g., [36], [18].

Song et al. [34] introduced the first (keyword) Searchable

Encryption (SE) system, in which full text search over en-

crypted data is allowable. Following the notion, many SE

systems have been proposed. The existing systems can be cat-

egorized into two types: searchable symmetric key encryption

(e.g. [10], [35]) and Searchable Public Key Encryption (SPKE)

(e.g. [6]). This paper deals with the latter case.
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Boneh et al. [6] introduced the PKE with single keyword

search. Later on, Golle, Staddon and Waters [14] proposed

an encryption mechanism supporting conjunctive keyword

search. In TCC 2007, Boneh and Waters [7] designed a more

expressive keyword search encryption for not only conjunctive

but also keyword subset/range queries. In CRYPTO 2007,

Bellare, Boldyreva and O’neill [2] proposed an efficient but

deterministic searchable encryption. Some variants of SPKE

have been proposed in the literature, such as authorized key-

word search [17] and verifiable keyword search [3]. Recently,

Zheng, Xu and Ateniese [38] introduced ABKS, in which they

combine the keyword search with ABE technology. Never-

theless, none of the aforementioned SPKE systems supports

encrypted data sharing.

Following the concept of decryption rights delegation [31],

Blaze, Bleumer and Strauss [4] defined PRE. PRE is classified

as: unidirectional and bidirectional PRE, and single-hop and

multi-hop PRE [1]. Our work deals with the single-hop unidi-

rectional case. Since its introduction many works of PRE have

been introduced, e.g., [8], [27], [21], [24], [25], [23], [29].

To combine PRE with ABE, Liang et al. [26] introduced

Ciphertext-Policy (CP) ABPRE, and construed a system on top

of [11]. Luo et al. [30] proposed another system providing pol-

icy with AND gates on multi-valued and negative attributes.

Mizuno and Doi [32] proposed a CP-ABPRE scheme which

is a bridge for ABE and IBE. Later on, Chandran, Chase and

Vaikuntanathan [9] proposed an obfuscation for functional re-

encryption with collusion resistant property. Recently, a new

CP-ABPRE was proposed in [22], in which the scheme is

proven in the ROM. In [20], a CP-ABPRE system was built

and proven secure against Chosen Ciphertext Attack (CCA)

in the standard model. In [19], a more expressive CP-ABPRE

with adaptively CCA security was constructed based on deter-

ministic finite automata. However, the previously introduced

systems cannot provide privacy-preserving keyword search.

We compare this work with the most recent SPKE scheme

and ABPRE system in terms of functionality and security. We

leave the efficiency comparison to Section V. To the best of

our knowledge, our scheme is the first to achieve (privacy-

preserving) keyword search and encrypted data sharing as

well as keyword update. Our system is based on asymmetric

decisional l-BDHE assumption (which will be introduced

later), while [38], [19] rely on decisional linear assumption

and some composite order group assumptions, respectively.

TABLE I
COMPARISON WITH [38], [19]

Sch. Keyword Encrypted Security ROM Pairings
Search Data Sharing

[38] ! # CPA # symmetric

[19] # ! CCA # composite order

Ours ! ! CCA ! asymmetric

II. DEFINITION AND ADVERSARY MODELS

A. System Definition

Definition 1: A Searchable Attribute-Based Proxy Re-

Encryption with Keyword Update (S-ABPRE-KU) scheme

consists of the following algorithms:

1) (mpk,msk)← Setup(1λ, U): on input a security param-

eter λ and a universe of description U , output a master

public key mpk and a master secret key msk. We will

omit mpk in the expression of the following algorithms.

2) skµ ← KeyGen(msk, µ): on input msk, and a descrip-

tion µ ∈ {0, 1}∗, output a secret key skµ.

3) CT ← Enc(m, ν,KW ): on input a message m ∈
{0, 1}λ, a description ν ∈ {0, 1}∗ for the message and a

keyword KW , output an original ciphertext CT which

can be further converted.

4) τKW ← Trapdoor(msk, skµ,KW ): on input msk, skµ
and KW , output a trapdoor token τKW , which is used

to search encrypted data associated with KW .

5) 1/0← Test(CT, τKW ): on input a ciphertext CT under

a keyword KW ′, and a trapdoor token τKW , output 1 if

KW ′ = KW , and 0 otherwise.

6) rk ← RKGen(skµ, ν,KW ): on input a skµ, a new

description ν and a new keyword KW , output a re-

encryption key rk, where µ does not satisfy ν. The rk is

used to convert an original ciphertext under ν′ and KW ′

to a re-encrypted ciphertext of the same message under

ν and KW , where µ satisfies ν′.
7) CT/ ⊥← ReEnc(CT, rk): on input an original ci-

phertext CT , and a re-encryption key rk, output a re-

encrypted ciphertext CT or ⊥.

8) m/ ⊥← Dec(skµ, CT ): on input skµ, and a ciphertext

CT under description ν, output a message m if µ satisfies

ν or ⊥.

B. Threat Models

We define three adversary models below including the

selective chosen ciphertext security for original ciphertext and

re-encrypted ciphertext, and the keyword privacy models.

Definition 2: An S-ABPRE-KU scheme is selective CCA

secure at original ciphertext if no PPT adversary A can win

the game below with non-negligible advantage. In the game,

B is the game challenger.

1) Init. A outputs a challenge description ν∗ ∈ {0, 1}∗.

2) Setup. B runs Setup(1λ, U) and returns mpk to A.

3) Phase 1. A is given access to the following oracles.

a) Osk(µ): given a description µ, output skµ ←
KeyGen(msk, µ).

b) Otoken(µ,KW ): given µ and a keyword KW , output

τKW ← Trapdoor(msk, skµ,KW ), where skµ ←
KeyGen(msk, µ).

c) Otest(CT,KW ): given CT and KW , output 1/0 ←
Test(CT , τKW ), where τKW ← Trapdoor(msk,

skµ, KW ), skµ ← KeyGen(msk,µ).
d) Ork(µ, ν′, KW ′): on input µ, a new description

for ciphertext ν′, and a new keyword KW ′, out-

put rk ← RKGen(skµ, ν′, KW ′), where skµ ←
KeyGen(msk, µ).
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e) Ore(CT , µ, ν′, KW ′): on input an original ciphertext

CT , µ, ν′ and KW ′, output CT ← ReEnc(CT , rk),
where rk ← RKGen(skµ, ν′, KW ′) and skµ ←
KeyGen(msk, µ).

f) Odec(µ,CT ): on input µ and a ciphertext CT ,

output m ← Dec(skµ, CT ), where skµ ←
KeyGen(msk, µ).
In Phase 1, the followings are forbidden:

• Osk(µ) for any µ satisfying ν∗;

• Ork(µ, ν′, KW ′) for any µ satisfying ν∗ and

meanwhile, Osk(µ
′) for any µ′ satisfying ν′.

4) Challenge. WhenA decides the phase 1 is over, it outputs

two equal length messages m∗
0, m∗

1, and a challenge

keyword KW ∗. B outputs a challenge original ciphertext

as CT ∗ = Enc(m∗
b , ν

∗,KW ∗), where b ∈R {0, 1}.
5) Phase 2. Same as in Phase 1 except the followings:

a) Ore(CT , µ, ν′′, KW ′): CT = CT ∗, µ satisfies ν∗,

and Osk(µ
′′) for any µ′′ satisfying ν′′.

b) Odec(µ,CT ): if (ν, CT ) is a derivative of (ν∗, CT ∗).
As of [8], a derivative of (ν∗, CT ∗) is defined as

i. (ν∗, CT ∗) is a derivative of itself.

ii. If A has obtained an rk from Ork on (µ, ν′,
KW ′), and achieved CT ← ReEnc(rk, CT ∗),
(ν′, CT ) is a derivative of (ν∗, CT ∗), where µ
satisfies ν∗.

iii. If A has issued a re-encryption query on (CT ∗,

µ, ν′, KW ′) and obtained CT , (ν′, CT ) is a

derivative of (ν∗, CT ∗).

6) Guess. A outputs a guess b′ ∈ {0, 1}. If b′ = b, A wins.

A’s advantage is AdvsCCA-Or
A (1λ, U) = |Pr[b′ = b]− 1

2 |.
Definition 3: An S-ABPRE-KU scheme is selective

CCA secure at re-encrypted ciphertext if the advantage

AdvsCCA-Re
A (1λ, U) is negligible for any PPT adversary A

in the following experiment. Set an oracle set O1 = {Osk,

Ork, Otest, Otoken, Odec} and the advantage as

|Pr[b = b′ : (ν∗, state1)← A(1
λ, U);

(mpk,msk)← Setup(1λ, U);

(m∗
0,m

∗
1,KW ∗, state2)← AO1(mpk, state1);

b ∈R {0, 1};CT ∗ ← ReEnc(Enc(m∗
b , ν,KW ), rk);

b′ ← AO1(CT ∗, state2)]−
1

2
|,

where state1, state2 are the state information, ν,KW are

chosen by A, Enc(m∗
b , ν,KW ) is generated by B as well

as rk ← RKGen(skµ, ν
∗,KW ∗), µ matches ν. For Osk, if

A issues µ satisfying ν∗, B outputs ⊥. There is no restriction

for re-encryption key queries, namely, A can obtain any re-

encryption key. This is the reason why we ignore re-encryption

oracle here. For decryption query, if the issued ciphertext is

the challenge one, output ⊥.

Remarks. This paper will employ a weaker notion for re-

encrypted ciphertext security. Here, O1 contains Ore, and

furthermore, all oracles work as in Definition 2 except that

there is no restriction on Ore, and for Odec output ⊥ if CT ∗

is the challenge re-encrypted ciphertext.

Definition 4: An S-ABPRE-KU scheme guarantees key-

word privacy if the advantage is negligible for any PPT

adversary A in the following experiment.

AdvKP
A (1λ, U) = |Pr[b = b′ : (ν∗, state1)← A(1

λ, U);

(mpk,msk)← Setup(1λ, U);

(m∗,KW ∗
0 ,KW ∗

1 , state2)← AO1(mpk, state1);

b ∈R {0, 1};CT ∗ ← Enc(m∗, ν∗,KW ∗
b );

b′ ← AO1(CT ∗, state2)]−
1

2
|,

where state1, state2 are the state information, KW ∗
0 , KW ∗

1

are two distinct keywords. The oracles in O1 work as

in Definition 2 except the followings: for Otest(CT,KW )
and Otoken(µ,KW ), if either ν is ν∗ or µ satisfies ν∗,

B outputs ⊥. CT ∗ can be a re-encrypted ciphertext as

CT ∗ ← ReEnc(Enc(m∗, ν∗,KW ), rk), where rk ←
RKGen(skµ, ν,KW ∗

b ), and µ matches ν∗.

Remarks. We make a restriction to the adversary: if he is not

granted a decryption right to a ciphertext, he cannot make any

further keyword search for the ciphertext. To obtain a keyword

search ability, the adversary can query the corresponding secret

key, i.e. the decryption rights to the ciphertext, except for the

challenge one. This is a weaker notion compared to some

existing keyword search definitions. Nonetheless, it is practical

enough for real-world applications. In practice, if one cannot

have any right to gain access to a data, he/she should not know

what the corresponding keyword (associated with the data) is

as the keyword may be related to some information of the

data. Our definition is able to protect the confidentiality of the

data and keyword simultaneously.

III. PRELIMINARIES

A. Asymmetric Pairings

Let BSetup be an algorithm that on input the security

parameter λ, outputs the parameters of a bilinear map as

(q, g, ĝ,G1,G2,GT , e), where G1, G2 and GT are multiplica-

tive cyclic groups of prime order q, where q ∈ Θ(2λ), and

g is a random generator of G1, ĝ is a random generator of

G2. The mapping e : G1 × G2 → GT has three properties:

(1) Bilinearity: for all a, b ∈R Z
∗
q , e(ga, ĝb) = e(g, ĝ)ab; (2)

Non-degeneracy: e(g, ĝ) 6= 1GT
, where 1GT

is the unit of GT ;

(3) Computability: e can be efficiently computed. Note that

G1 and G2 are not the same.

B. Complexity Assumptions

Definition 5: (Symmetric) Decisional Bilinear Diffie-

Hellman Exponent (BDHE) Assumption [5]. The decisional

l-BDHE assumption is that all PPT algorithms A given

the vector ~y = (g, gs, ga, ...., ga
l

, ga
l+2

, ..., ga
2l

), have an

advantage negligible in λ of distinguishing e(g, g)a
l+1s from

a random element R in GT . The advantage of A is defined

as |Pr[A(~y, e(g, g)a
l+1s) = 0]−Pr[A(~y,R) = 0]|, where the

probability is taken over the random choice of a, s ∈R Z
∗
q ,

R ∈R GT , the generator g, the random bits consumed by A.
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By leveraging the same technique introduced in [13], we

extend the decisional l-BDHE assumption to asymmetric bilin-

ear groups by giving (g, gs, ga, ĝ, ĝa, ..., ĝa
l

, ĝa
l+2

, ..., ĝa
2l

) ∈

G
3
1 × Ĝ2

2l−1
as input and asking for e(g, ĝ)a

l+1s ∈ GT .

Definition 6: (Asymmetric) Decisional l-BDHE Assump-

tion. The asymmetric decisional l-BDHE assumption is

that all PPT algorithms A given the vector ~y =
(g, gs, ga, ĝ, ĝa, ...., ĝa

l

, ĝa
l+2

, ..., ĝa
2l

), have an advantage

negligible in λ of distinguishing e(g, ĝ)a
l+1s from a ran-

dom element R in GT . The advantage of A is defined as

|Pr[A(~y, e(g, ĝ)a
l+1s) = 0] − Pr[A(~y,R) = 0]|, where the

probability is taken over the choice of a, s ∈R Z
∗
q , R ∈R GT ,

the generators g, ĝ, the random bits consumed by A.

C. One-time Symmetric Encryption [12]

We let KD be the key space {0, 1}poly(1
λ), and SY be

a symmetric encryption scheme, where poly(1λ) is the fixed

polynomial size (bound) with respect to the security parameter

k. The encryption algorithm S.Enc intakes a key K ∈ KD

and a message M , outputs a ciphertext C. The decryption

algorithm S.Dec intakes K and C, outputs M or a ⊥.

IV. AN S-ABPRE-KU SYSTEM

A. A Basic Construction for Small Universe

We propose an S-ABPRE-KU scheme in the key-policy

attribute-based setting. Secret key is associated with access

policy, and ciphertext is tagged with attribute set. As of [16],

we use an LSSS access structure (M,ρ) to represent a policy,

U to denote an attribute universe whereby |U | is a polynomial

in 1λ. We use KW to denote either a single keyword or a

group of multiple keywords. Since KW is the input of a hash

function, if KW represents a group of multiple keywords, it

indicates that these keywords are with AND gates. We also

note that KW can be arbitrary length.

1) Setup(1λ, U). Run (q, g, ĝ, G1, G2, GT , e) ←
BSetup(1λ). Choose α, α̂, δ, ǫ1, ǫ2, ǫ3, βi, χ ∈R Z

∗
q , set

hi = gβi , ĥi = ĝβi , t = gδ , t̂ = ĝδ , z = gχ, ẑ = ĝχ,

f1 = gǫ1 , f2 = gǫ2 , f3 = gǫ3 , f̂1 = ĝǫ1 , f̂2 = ĝǫ2 ,

f̂3 = ĝǫ3 , i ∈ [1, |U |]. Choose Target Collision Resistant

(TCR) hash functions [12]: H1 : {0, 1}λ×{0, 1}λ → Z
∗
q ,

H2 : GT → {0, 1}2λ, H3 : {0, 1}∗ → Z
∗
q , H4 :

{0, 1}∗ → Z
∗
q , H5 : {0, 1}λ → Z

∗
q and H6 : {0, 1}λ →

{0, 1}poly(1
λ), a CCA-secure one-time symmetric key

encryption SY = (S.Enc, S.Dec). The master secret

key msk = (α, α̂, ẑ, t̂), the master public key mpk = (g,

ĝ, {hi, ĥi}i∈[1,|U |], f1, f2, f3, f̂1, f̂2, f̂3, t, z, e(g, ĝ)α,

e(t, ĝ)α̂, e(z, ĝ)α̂, H1, H2, H3, H4, H5, H6, SY ).
2) KeyGen(msk, (M,ρ)). Let M be an l × n matrix, and

ρ be the function that associates rows of M to attributes.

Choose a random vector (~v) = (α, y2, ..., yn) ∈ Z
∗n
q

which to be used to share α. For i = 1 to l, compute

φi = (~v) ·Mi, where Mi is the vector related to i-th row

of M . Choose r1, ..., rl ∈R Z
∗
q , and set sk(M,ρ) as

Di = ĝφi · ĥri
ρ(i), Ri = ĝri , ∀d ∈ Γ/ρ(i), Qi,d = ĥri

d ,

where i ∈ [1, l], Γ is the set of distinct attributes in M
(i.e. Γ = {d : ∃i ∈ [1, l], ρ(i) = d}), and Γ/y denotes

the set Γ with the element y removed if present. Note

sk(M,ρ) implicitly includes (M,ρ).
3) Enc(m,S,KW ). Set the original ciphertext CT as

A = (m||σ)⊕H2(e(g, ĝ)
αs), B = gs, {Cx = hs

x}x∈S ,

D = e(tH3(KW )z, ĝ)α̂s, E1 = fs
1 ,

E2 = (f
H4(A,B,{Cx}x∈S ,D,E1)
2 f3)

s,

where σ ∈ {0, 1}λ, m ∈ {0, 1}λ and s = H1(m,σ). CT
implicitly contains S.

4) Trapdoor(msk, sk(M,ρ),KW ). The trapdoor is gener-

ated by the collaboration between a secret key holder

and the fully trusted PKG.

• The PKG chooses a random vector ~V =
(α̂, ŷ2, ..., ŷn) ∈ Z

∗n
q which to be used to share α̂.

For i = 1 to l, it sets φ̂i = (~V) ·Mi. It further sends

the following values to the user

τ1,i = (t̂H3(KW )ẑ)φ̂i · ĥr̂i
ρ(i), τ2,i = ĝr̂i ,

∀d ∈ Γ/ρ(i), τ3,i,d = ĥr̂i
d ,

where r̂1, ..., r̂l ∈R Z
∗
q , i ∈ [1, l], Γ is the set of

distinct attributes in M .

• The user re-randomizes the values, and sets the

trapdoor token τKW as

τ1,i = τ1,i · ĥ
ξi
ρ(i), τ2,i = τ2,i · ĝ

ξi ,

∀d ∈ Γ/ρ(i), τ3,i,d = τ3,i,d · ĥ
ξi
d ,

where ξi ∈R Z
∗
q . Note (M,ρ) implicitly includes in

the token.

5) Test(CT, τKW ). Parse CT as (S, A, B, {Cx}x∈S , D,

E1, E2), and τKW as (τ1,i, τ2,i, τ3,i,d). Suppose S
associated with CT satisfies (M,ρ) associated with τKW ,

there exists a set of constants {wi}i∈I ∈ Z
∗
q so that

∀i ∈ I , ρ(i) ∈ S and
∑

i∈I wiMi = (1, 0, ..., 0). Given

an original ciphertext CT associated with a keyword set

KW ′ and a token τKW , one can verify that

e(B,
∏

i∈I(τ1,i
∏

x∈∆/ρ(i) τ3,i,x)
wi)

e(
∏

x∈∆ Cx,
∏

i∈I τ
wi
2,i )

?
= D.

If the equation holds, i.e.

e(B,
∏

i∈I(τ1,i
∏

x∈∆/ρ(i) τ3,i,x)
wi)

e(
∏

x∈∆ Cx,
∏

i∈I τ
wi
2,i )

=
e(gs,

∏
i∈I((t̂

H3(KW ′)ẑ)φ̂i ĥr̂i+ξi
ρ(i)

∏
x∈∆/ρ(i) ĥ

r̂i+ξi
x )wi)

e(
∏

x∈∆ hs
x,
∏

i∈I(ĝ
r̂i+ξi)wi)

= e((tH3(KW )z)α̂s, ĝ),

it indicates that KW = KW ′ so that output 1, and output

0 otherwise. Similarly, if CT is a re-encrypted ciphertext,

verify
e(rk6,

∏
i∈I(τ1,i

∏
x∈∆/ρ(i) τ3,i,x)

wi )

e(
∏

x∈∆ rk7,x,
∏

i∈I τ
wi
2,i )

?
= rk8.
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6) RKGen(sk(M,ρ), S,KW ). Choose γ ∈R Z
∗
q , θ1, θ2 ∈R

{0, 1}λ, and set rk as

rk1,i = D
H5(θ1)
i f̂γ

1 , rk2 = ĝγ , rk3,i = R
H5(θ1)
i ,

rk4,i = ∀d ∈ Γ/ρ(i) (Qi,d)
H5(θ1),

rk5 = (θ1||θ2)⊕H2(e(g, ĝ)
αš), rk6 = gš,

rk7,x = (hš
x)x∈S , rk8 = e(tH3(KW ), ĝ)α̂š,

rk9 = (f
H4(rk5,rk6,rk7,x,rk8)
2 f3)

š,

where sk(M,ρ) = (Di, Ri, ∀d ∈ Γ/ρ(i) Qi,d), i ∈ [1, l],
š = H1(θ1, θ2). Note rk includes (M,ρ) and S.

7) ReEnc(CT, rk). Parse CT as (S, A, B, {Cx}x∈S , D,

E1, E2), rk as ((M,ρ), S′, rk1,i, rk2, rk3,i, rk4,i, rk5,

rk6, {rk7,x}x∈S′ , rk8, rk9), i ∈ [1, l].

i. Check the validity of CT as

e(B, f̂1)
?
= e(E1, ĝ), (1)

e(
∏

x∈S

Cx, ĝ)
?
= e(B,

∏

x∈S

ĥx). (2)

e(B, f̂
H4(A,B,{Cx}x∈S ,D,E1)
2 f̂3)

?
= e(E2, ĝ). (3)

If one of the equations does not hold, output ⊥. Else,

proceed.

ii. If S associated with CT satisfies (M,ρ) associated

with rk, let I ⊂ {1, 2, ..., l} be a set of indices and

{wi}i∈I ∈ Z
∗
q be a set of constants so that ∀i ∈ I ,

ρ(i) ∈ S and
∑

i∈I wiMi = (1, 0, ..., 0), and define

∆ = {x : ∃i ∈ I, ρ(i) = x}. Compute

Ω =
e(B,

∏
i∈I(rk1,i

∏
x∈∆/ρ(i) rk4,x)

wi)

e(E1, rk
∑

i∈I wi

2 )e(
∏

x∈∆ Cx,
∏

i∈I rk
wi
3,i)

=
e(gs,

∏
i∈I ĝ

φi,H5(θ1)wi
∏

x∈∆ ĥ
wiH5(θ1)ri
x f̂γwi

1 )

e(fs
1 , ĝ

γ
∑

i∈I wi)e(
∏

x∈∆ hs
x,
∏

i∈I ĝ
riH5(θ1)wi)

= e(gs, ĝαH5(θ1)).

iii. Compute the re-encrypted ciphertext as T1 =
S.Enc(CT ||Ω, H6(S.Key)), T2 = (rk5, rk6,

{rk7,x}x∈S′ , rk8, rk9), T3 = (T3,1 = (S.Key||θ3)⊕
H2(e(g, ĝ)

αs̃), T3,2 = gs̃, T3,3,x = (hs̃
x)x∈S′ , T3,4 =

(f
H4(T3,1,T3,2,T3,3,x)
2 f3)

s̃), where S.Key, θ3 ∈R
{0, 1}λ, s̃ = H1(S.Key, θ3).

8) Dec(sk(M,ρ), CT ).

(1) If CT is the original ciphertext,

i. Verify Eq. (3). If Eq. (3) does not hold, output

⊥. Otherwise, proceed.

ii. If S associated with CT satisfies (M,ρ) asso-

ciated with sk, there exists a set of constants

{wi}i∈I ∈ Z
∗
q so that ∀i ∈ I , ρ(i) ∈ S and∑

i∈I wiMi = (1, 0, ..., 0). Compute

e(B,
∏

i∈I

(Di

∏

x∈∆/ρ(i)

Qi,x)
wi)/e(

∏

x∈∆

Cx,
∏

i∈I

Rwi
i )

=
e(gs,

∏
i∈I ĝ

φiwi(
∏

x∈∆ ĥx)
riwi)

e(
∏

x∈∆ hs
x,
∏

i∈I ĝ
riwi)

= e(g, ĝ)αs.

iii. Output the message by computing m||σ =
A ⊕ H2(e(g, ĝ)

αs) if B = gH1(m,σ),

E2 = (f
H4(A,B,{Cx}x∈S ,D,E1)
2 f3)

H1(m,σ) and∏
x∈S Cx =

∏
x∈S h

H1(m,σ)
x ; else, output ⊥.

(2) If CT is the re-encrypted ciphertext,

i. Verify

e(T3,2, f̂
H4(T3,1,T3,2,T3,3,x)
2 f̂3)

?
= e(T3,4, ĝ) (4)

If the equation does not hold, output ⊥. Other-

wise, proceed.

ii. Compute

e(T3,2,
∏

i∈I(Di

∏
x∈∆/ρ(i) Qi,x)

wi)

e(
∏

x∈∆ T3,3,x,
∏

i∈I R
wi
i )

= e(g, ĝ)αs̃.

and recover S.Key by computing

S.Key||θ3 = T3,1 ⊕ H2(e(g, ĝ)
αs̃).

Proceed if T3,2 = gH1(S.Key,θ3),

T3,4 = (f
H4(T3,1,T3,2,T3,3,x)
2 f3)

H1(S.Key,θ3)

and
∏

x∈S T3,3,x =
∏

x∈S h
H1(S.Key,θ3)
x ;

otherwise, output ⊥.

iii. Recover θ1 from rk5, rk6, {rk7,x}x∈S , rk8 and

rk9 as above.

iv. Compute CT ||Ω = S.Dec(T1, H6(S.Key)), and

further ΩH5(θ1)
−1

= e(gs, ĝα).
v. If Eq. (3) does not hold, output ⊥. Otherwise,

proceed. Compute m||σ = A ⊕ H2(e(g, ĝ)
αs),

and then output the message m if B = gH1(m,σ)

and E2 = (f
H4(A,B,{Cx}x∈S ,D,E1)
2 f3)

H1(m,σ);

otherwise, output ⊥.

B. Discussions

Trapdoor Generation. In our system, the keyword trapdoor

is generated via the collaboration between a fully trusted PKG

and a secret key holder. When the key holder needs a trapdoor,

he first issues the corresponding request (with keyword(s))

to the PKG, the PKG then returns a related intermediate

component. Finally, the key holder re-randomizes the compo-

nent to become a “real” trapdoor. In our current architecture,

we assume all master secret keys (the one for secret key

generation, and the other one for trapdoor generation) are

known by the PKG only. That is why the secret key holder

needs a interaction with the PKG when generating a trapdoor.

The system can be extended to allow a secret key holder to

generate a trapdoor on his own without any help of PKG. This

requires the secret key holder to know α̂, namely, α̂ is chosen

by the secret key holder as one of his secret information. We

will regard the extension as one of future works.

Large Universe. To support large universe (i.e. U =
{0, 1}∗), we need to choose an additional TCR hash function

H7 : {0, 1}∗ → Z
∗
q , which will be operated as a random

oracle in the simulation. We further set ĥx = ĝβiH7(x) and

hx = gβiH7(x) for any attribute x ∈ {0, 1}∗. We state that the

challenger of the security game can construct the values ĥx

and hx as in the proof of Theorem 1 except for additionally

raising a random value κ7 ∈R Z
∗
q (which is a response to the

query H7 on an attribute x) as an extra exponent to the values.
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C. Proof of the Basic Construction

For simplicity, we suppose {Hi}i∈{1,2,3,4,5,6} are TCR hash

functions (operated as oracles in the simulation), SY is a

CCA-secure one time symmetric encryption.

Theorem 1: Our S-ABPRE-KU scheme for small attribute

universe U is IND-sCCA-Or secure under the asymmetric

decisional |U |-BDHE assumption.

Proof: We assume each of the |U | attributes is a unique

integer between 1 and |U | (like [16]). If there exists a PPT

adversary A can break the IND-sCCA-Or security of our

scheme, we can construct a PPT algorithm B to break the

asymmetric decisional |U |-BDHE assumption. B is given a

problem instance of asymmetric decisional |U |-BDHE: (g, gs,

ga, ĝ, ĝa, ..., ĝa
|U|

, ĝa
|U|+2

, ..., ĝa
2|U|

,T ). In the simulation, B
obtains the following lists which are initially empty.

• Secret key list sklist: record ((M,ρ), sk(M,ρ), ∗), gener-

ated by B in the simulation, where ∗ denotes if the key

has been issued to A (yes: 1; no: 0).

• Re-encryption key list rklist: record ((M,ρ), S, KW ,

rk, θ1, ∗), where ∗ is the wildcard denoting the key is

valid (“1”), random (“0”) or non-generated “⊥”.

1) Init. A outputs a challenge attribute set S∗ to B.

2) Setup. B chooses random α′, α̂, β1, ...,β|U |, δ, χ, ǫ1,

ǫ2, ǫ3 ∈ Z
∗
q , and sets t = gδ , t̂ = ĝδ , z = gχ, ẑ = ĝχ,

f1 = gǫ1 , f2 = gǫ2 , f3 = gǫ3 , f̂1 = ĝǫ1 , f̂2 = ĝǫ2 ,

f̂3 = ĝǫ3 , e(g, ĝ)α = e(g, ĝ)α
′

e(ga, ĝa
|U|

) (i.e. α = α′ +
a|U |+1), e(g, ĝ)δα̂ = e(t, ĝ)α̂, e(g, ĝ)ξα̂ = e(z, ĝ)α̂, for

x ∈ [1, |U |] set ĥx = ĝβx and hx = gβx if x ∈ S∗

otherwise set ĥx = ĝβx ĝa
x

and hx = gβxga
x

. B outputs

mpk as (g, ĝ, {hx, ĥx}x∈[1,|U |], f1, f2, f3, f̂1, f̂2, f̂3, t,
z, e(g, ĝ)α, e(t, ĝ)α̂, e(z, ĝ)α̂, H1, H2, H3, H4, H5, H6,

SY ), where SY is a CCA-secure one-time symmetric key

encryption, and Hi (i ∈ {1, 2, 3, 4, 5, 6}) are the random

oracles operated by B. The msk is (α, α̂, ẑ, t̂) whereby

α is unknown to B.

a) H1(m,σ): if the query exists on H list
1 in a tuple

(m,σ, κ1), return κ1; else, choose κ1 ∈R Z
∗
q , add

(m,σ, κ1) to H list
1 , and return H1(m,σ) = κ1.

b) H2(R): if the query exists on H list
2 in a tuple (R, κ2),

return κ2, where R ∈ GT ; else, choose κ2 ∈R
{0, 1}2λ, add (R, κ2) to H list

2 , and return H2(R) = κ2.

c) H3(KW ): if the query exists on H list
3 in a tuple

(KW,κ3), return κ3; else, choose κ3 ∈R Z
∗
q , add

(KW,κ3) to H list
3 , and return H3(KW ) = κ3.

d) H4(A,B, {Cx}x∈S , D,E1): if the query exists

on H list
4 in a tuple (A,B, {Cx}x∈S , D,E1, κ4),

return κ4; else, choose κ4 ∈R Z
∗
q , add

(A,B, {Cx}x∈S , D,E1, κ4) to H list
4 , and return

H4(A,B, {Cx}x∈S , D,E1) = κ4.

e) H5(θ1): if the query exists on H list
5 in a tuple (θ1, κ5),

return κ5; else, choose κ5 ∈R Z
∗
q , add (θ1, κ5) to

H list
5 , and return H5(θ1) = κ5.

f) H6(S.Key): if the query exists on H list
6 in a tu-

ple (S.Key, κ6), return κ6; else, choose κ6 ∈R
{0, 1}poly(1

λ), add (S.Key, κ6) to H list
6 , and return

H6(S.Key) = κ6.

3) Phase 1. A issues a series of queries.

a) Osk(M,ρ): if there is a tuple ((M,ρ), sk(M,ρ), ∗) in

sklist, B returns sk(M,ρ). Otherwise,

• If either (M,ρ) matches S∗ or (M,ρ) matches a S
where given a rk from (M∗, ρ∗) matching S∗ to S,

B outputs ⊥.

• Otherwise, let K be the set of rows where the

attributes are in S∗ (i.e. i ∈ K, ρ(i) ∈ S∗) and

K ′ be the rows where attributes are not in S∗

(i.e. K ′ = [1, l]/K), define a vector ~v = (v1 =
1, ..., vn) ∈ Z

∗n
q , and for all i ∈ K, ~vMi = 0.

For i ∈ K, B sets Di = Ri = ĝ0; for i ∈ K ′,

B computes ci = ~vMi. Note that we have to let

λi be ~vMiα = ciα = ci(α
′ + a|U |+1). B further

sets Ri = ĝ−cia
|U|+1−ρ(i)

, Di = ĝciα
′

Rβi

i (implicitly

set ri = −cia
|U |+1−ρ(i), where i ∈ [1, |U |]). For

all d ∈ Γ/ρ(i), B sets Qi,d as ĥri
d = ĝβdri =

ĝ−βdcia
|U|+1−ρ(i)

if d ∈ S∗ and ĥri
d = ĝβdri ĝa

dri =

ĝ−βdcia
|U|+1−ρ(i)

ĝ−cia
|U|+1−ρ(i)+x

otherwise.

B will re-randomize the secret key components. B
chooses y2, ..., yn ∈R Z

∗n−1
q to form a vector ~v′ =

(0, y2, ..., yn), and sets λ′
i = ~v′Mi, where i ∈ [1, l].

For all i ∈ [1, l], B sets Di = Diĝ
λ′
i ĥ

r′i
ρ(i), Ri =

Riĝ
r′i , ∀d ∈ Γ/ρ(i), Qi,d = Qi,dĥ

r′i
d , where r′i ∈R

Z
∗
q . Finally, B adds ((M,ρ), sk(M,ρ), 1) to sklist.

b) Otoken((M,ρ),KW ): B knows knowledge of t̂, ẑ and

α̂, and all ĥx can be constructed from given problem

instance. Furthermore, B chooses a random vector ~V
with the first element α̂, and next sets φ̂i = ~V ·Mi. It

chooses ξi, r̂i ∈R Z
∗
q , and next constructs the trapdoor

token τKW as in the real scheme.

c) Otest(CT,KW ): B can always construct a trapdoor

τKW as in Otoken, it next proceeds to the test easily.

If the test holds, B outputs 1 and 0 otherwise.

d) Ork((M , ρ), S, KW ): if there is a tuple ((M,ρ), S,

KW , rk, θ1, 0/1) in rklist, B returns rk. Otherwise,

• If (M,ρ) matches S∗ and meanwhile, there ex-

ists a tuple ((M ′, ρ′), sk(M ′,ρ′), 1) in sklist so that

(M ′, ρ′) matches S, B outputs ⊥.

• If (M,ρ) matches S∗ but there is no sk(M ′,ρ′)

((M ′, ρ′) matching S) issued to A, B chooses Di,

Ri and Qi,d randomly in G2, i ∈ [1, l]. It fur-

ther constructs the re-encryption key as in the real

scheme. B finally returns rk and adds the tuple

((M,ρ), S, KW , rk, θ1, 0) in rklist.
• Otherwise, B first constructs the secret key sk(M,ρ)

as in Osk, and next generates rk as in the real

scheme. B adds ((M,ρ), sk(M,ρ), 0) and ((M,ρ), S,

KW , rk, θ1, 1) to sklist and rklist, respectively.

Note if sk(M,ρ) is already in sklist, B directly uses

it to construct rk.

e) Ore(CT, (M,ρ), S,KW ): if CT is the challenge orig-

inal ciphertext, and sk(M ′,ρ′) ((M ′, ρ′) satisfying S) is

issued to A, output ⊥. Else if Eq. (1), Eq. (2) and Eq.

(3) do not hold, output ⊥. Otherwise, proceed. If there

exists a tuple ((M,ρ), S, KW , rk, θ1, 0/1) in rklist,
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B re-encrypts CT with rk. Otherwise,

• If the first case of step b) does not hold, B can

construct rk as in step b), and next generate the re-

encrypted ciphertext by using the re-encryption key.

Finally, B responds the ciphertext to A and adds

((M,ρ), S, KW , rk, θ1, 0/1) to rklist.
• Otherwise, i.e. for the case (M,ρ) satisfies S∗ and

sk(M ′,ρ′) is in sklist with a symbol tag 1 whereby

(M ′, ρ′) matches S. B checks whether there exist

tuples (m,σ, κ1) and (e(g, ĝ)αs, κ2) in H list
1 and

H list
2 , respectively, such that A = (m||σ) ⊕ κ2

and B = gκ1 . If not, output ⊥. Otherwise, B
sets Ω = e(g, ĝ)ακ1κ5 , where κ5 is the output

of issuing H5 with θ1 ∈R {0, 1}λ. It seals θ1
in rk5, rk6, {rk7,x}x∈S , rk8, rk9 as in the real

scheme. It also chooses a S.Key ∈ {0, 1}λ, and sets

T1 = S.Enc(CT ||Ω, κ6) where κ6 is the output of

issuing H6 with S.Key. B constructs T3 for hiding

S.Key as in the real scheme. B finally returns the

re-encrypted ciphertext T1, T2, T3, and adds a tuple

((M,ρ), S, KW , ⊥, θ1, ⊥) to rklist.

f) Odec((M,ρ), CT ): if CT is either a challenge original

ciphertext or a derivative of the challenge ciphertext,

output ⊥. Otherwise,

• If CT is an original ciphertext, B checks Eq. (1),

Eq. (2) and Eq. (3). If the equations do not hold,

output ⊥. Else, B checks whether there exist tuples

(m,σ, κ1) and (e(g, ĝ)ακ1 , κ2) in H list
1 and H list

2 ,

respectively, such that A = (m||σ) ⊕ κ2 and B =
gκ1 , where s = κ1. If not, output ⊥. Else, output

the message m.

• If CT is a re-encrypted ciphertext, B verifies

Eq. (4). If the equation does not hold, output

⊥. Else, B checks whether there exist tuples

(S.Key, θ3, κ̃1) and (e(g, ĝ)ακ̃1 , κ̃2) in H list
1 and

H list
2 , respectively, such that T3,1 = (S.Key||θ3)⊕

κ̃2 and T3,2 = gκ̃1 . If not, output ⊥. Else, B

checks e(f̂
H4(rk5,rk6,rk7,x,rk8)
2 f̂3, rk6) = e(ĝ, rk9).

If the equation does not hold, output ⊥. Else, B
checks whether there are tuples (θ1, θ2, κ̌1) and

(e(g, ĝ)ακ̌1 , κ̌2) in H list
1 and H list

2 , respectively,

such that rk5 = (θ1||θ2) ⊕ κ̌2 and rk6 = gκ̌1 .

If not, output ⊥. Else, B computes CT ||Ω =
S.Dec(T1, H6(S.Key)). It checks whether there are

tuples (m,σ, κ1) and (e(g, ĝ)ακ1 , κ2) in H list
1 and

H list
2 , respectively, such that A = (m||σ) ⊕ κ2

and B = gκ1 . If not, output ⊥. Else, B checks

Ω = e(g, ĝ)ακ1H5(θ1). If the equation does not hold,

output ⊥; otherwise, output the message m.

4) Challenge. when Phase 1 is ended, A outputs two equal

length messages m0,m1 and a challenge keyword KW ∗

to B. B constructs the challenge original ciphertext as

a) Set B∗ = gs, {C∗
x = (gs)βx}x∈S∗ , and E∗

1 = (gs)ǫ1 .

b) Flip a random coin b ∈ {0, 1}, choose σ∗ ∈
{0, 1}λ and A∗ ∈ {0, 1}2λ, implicitly define H2(T ·
e(gs, ĝ)α

′

) = A∗ ⊕ (mb||σ
∗).

c) Issue an H3 query on (KW ∗) to achieve κ∗
3, and define

D∗ = e(gs, ĝ)α̂(δκ
∗
3+χ).

d) Issue an H4 query on (A∗, B∗, {C∗
x}x∈S∗ , D∗, E∗

1 )
to achieve κ∗

4, and define E∗
2 = (gs)ǫ2κ

∗
4 (gs)ǫ3 .

e) Output the challenge original ciphertext as (S∗, A∗,

B∗, {C∗
x}x∈S∗ , D∗, E∗

1 , E∗
2 ).

If T = e(g, ĝ)a
|U|+1s, the ciphertext is valid. However, if

T ∈R GT , the challenge ciphertext is independent of the

value of the bit b in the view of A.

5) Phase 2. Same as in Phase 1.

6) Guess. A outputs b′. If b = b′, B outputs 1 (guessing

T = e(g, ĝ)a
|U|+1s); else, it outputs 0 (T ∈R GT ).

Probability Analysis. The simulations of the oracles are

perfect except H1 and H2. Let H∗
1 and H∗

2 be the events that

A has queried (mb, σ
∗) to H1 and e(g, ĝ)α·s to H2 before

the challenge phase, respectively. Except for the two cases,

the simulations of H1 and H2 are perfect. We let AdvH∗
1

be

the probability of A in querying (mb, σ
∗) from H1 before the

challenge phase. Similarly, we have AdvH∗
2

. In the simulations

of secret key and test, the responses to A are perfect. In the

simulation of trapdoor token, B can correctly respond any

token query with knowledge of t̂ and α̂. The response is

also perfect. As to the simulation of re-encryption key, the

responses to A are also perfect except for the case where

the re-encryption key is randomly generated. It can be seen

that rk1,i, rk2, rk3,i and rk4,i (generated by B) can take

the form of the corresponding components of the valid re-

encryption key, respectively. The indistinguishability between

the random re-encryption key and the valid one is equal to the

indistinguishability between the encryption (for θ1) generated

by B and the one constructed in the real scheme. If there exists

a A1 can distinguish the encryptions above, B can break the

asymmetric decisional |U |-BDHE problem by using A1. The

simulation given in the challenge phase is also perfect.

In the simulation of re-encryption, the responses to A are

perfect with an exception that A submits a valid original

ciphertext generated without issuing any query to H1. We

denote by Pr[REErr] the probability of the exception. We

have Pr[REErr] ≤ qre
q , where qre is the total number of

re-encryption queries.

In the simulation of decryption, it might be possible that

B cannot provide a decryption for a valid ciphertext. Suppose

A can generate a valid ciphertext without querying e(g, ĝ)αs

to H2, where s = H1(m,σ). Let valid be the event that

the original ciphertext or the re-encrypted ciphertext is valid,

QH1 be the event that A has queried (m,σ) to H1 and

QH2 be the event that A has queried e(g, ĝ)αs to H2.

From the simulation, we have Pr[valid|¬QH2] ≤
qH1

22λ
+ 1

q ,

and similarly we have Pr[valid|¬QH1] ≤
qH2

22λ
+ 1

q , where

qH1 and qH2 are the maximum number of random oracle

queries to H1 and H2. Let Pr[DErr] be the probability

that the event valid|(¬QH1 ∨ ¬QH2) occurs, then we have

Pr[DErr] ≤ (
qH1

+qH2

22λ
+ 2

q ) · qdec, where qdec denotes the

total numbers of decryption queries.

Let Bad denote the event that (H∗
1 |¬H

∗
2 )∨H

∗
2 ∨REErr∨

DErr. We have ǭ = |Pr[b′ = b] − 1
2 | ≤

1
2Pr[Bad] ≤

1
2 (AdvH∗

2
+

qH1
+(qH1

+qH2
)·qdec

22λ
+ 2qdec+qre

q ).
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Therefore, we have AdvsCCA-Or
A ≥ 1

qH2
(AdvH∗

2
) ≥

1
qH2

(2ǭ−
qH1

+(qH1
+qH2

)·qdec
22λ

− 2qdec+qre
q ).

From the simulation, the running time of B is bound by

t′ ≤ t+O(1)(qH1
+ qH2

+ qH3
+ qH4

+ qH5
+ qH6

+ qsk + qrk + qre + qdec + qtest + qtoken)

+ te(O(l)qsk +O(l + |S|)qrk +O(|S|)qre +O(|S|)qdec

+O(l)qtoken + qH1
(qre + qdec)O(1))

+O(1)tp(qre + qdec + qtest),

where qHi denotes the total number of random oracle queries

to Hi (i ∈ {1, 2, 3, 4, 5, 6}), qsk, qrk, qtest and qtoken denote

the total numbers of secret key queries, re-encryption key

queries, test queries and trapdoor queries, te denotes the

running time of an exponentiation in group G1 (resp. G2),

tp denotes the running time of a pairing in group GT , t is the

running time of A, l is the number of rows of matrix, |S| is

the number of attributes in a set S.

Theorem 2: Our S-ABPRE-KU scheme for small attribute

universe U is IND-sCCA-Re secure under the asymmetric

decisional |U |-BDHE assumption.

Proof:

1) Init. A outputs a challenge attribute set S∗.

2) Setup. Same as the proof of Theorem 1.

3) Phase 1.

a) Osk(M,ρ): Same as the proof of Theorem 1.

b) Otoken((M,ρ),KW ): Same as the proof of Theo-

rem 1.

c) Otest(CT,KW ): Same as the proof of Theorem 1.

d) Ork((M , ρ), S, KW ): Same as the proof of Theo-

rem 1.

e) Ore(CT, (M,ρ), S,KW ): Same as the proof of The-

orem 1 except that there is no restriction for query (the

issued ciphertext CT has to be in a valid form) here.

f) Odec((M,ρ), CT ): Same as the proof of Theorem 1

except that CT can be any ciphertext but not the

challenge re-encrypted ciphertext.

4) Challenge. A outputs m0,m1, KW ∗ and (M,ρ) that

does not satisfy S∗. B sets the challenge re-encrypted

ciphertext as follows.

a) Generate a secret key sk(M,ρ) as in Osk, and next

construct a re-encryption key rk∗ = (rk∗1,i, rk
∗
2 , rk∗3,i,

rk∗4,i, rk
∗
5 , rk∗6 , {rk∗7,x}x∈S∗ , rk∗8 , rk∗9) from (M,ρ)

to S∗ under KW ∗ as in the real scheme.

b) Generate an original ciphertext CT as in the real

scheme A∗ = (mb||σ) ⊕ κ2, B∗ = gs
′

, {C∗
x =

hs′

x }x∈S , D∗ = e(g, ĝ)α̂(δκ3+χ)s′ , E∗
1 = fs′

1 , E∗
2 =

(fκ4
2 f3)

s′ , where b ∈ {0, 1}, σ ∈R {0, 1}
λ, s′ =

H1(mb, σ), S is the attribute set satisfying (M,ρ),
κ2, κ3, κ4 are the output of issuing oracles H2, H3,

H4 with e(g, ĝ)αs
′

, KW , (A∗, B∗, {Cx}
∗, D∗, E∗

1 ),
respectively. Note hx, t, f1, f2 and f3 can be con-

structed by B.

c) Re-encrypt CT with rk to obtain Ω∗ as in the real

scheme. Since CT and rk are correctly constructed, Ω∗

is a valid value here. Choose S.Key ∈ {0, 1}poly(1
λ),

compute T ∗
1 = S.Enc(CT ||Ω∗, κ6), where κ6 is the

output of issuing oracle H6 with S.Key.

d) Set T ∗
3,2 = gs and {T ∗

3,3,x = (gs)βx}x∈S∗ .

e) Choose θ∗3 ∈ {0, 1}
λ and T ∗

3,1 ∈ {0, 1}
2λ, implicitly

define H2(T · e(g
s, ĝ)α

′

) = T ∗
3,1 ⊕ (S.Key||θ∗3).

f) Issue an H4 query on (T ∗
3,1, T

∗
3,2, T

∗
3,3,x) to achieve κ∗

4,

and define T ∗
3,4 = (gs)ǫ2κ

∗
4 (gs)ǫ3 .

g) Set T ∗
2 = (rk∗5 , rk∗6 , {rk∗7,x}x∈S∗ , rk∗8 , rk∗9), and

T ∗
3 = (T ∗

3,1, T ∗
3,2, T ∗

3,3,x, T ∗
3,4).

h) Output the challenge ciphertext (S∗, T ∗
1 , T ∗

2 , T ∗
3 ).

If T = e(g, ĝ)a
|U|+1s, the ciphertext is valid by implicitly

letting H1(S.Key, θ∗3) = s. However, if T ∈R GT , the

challenge ciphertext is independent of the value of the bit

b in the view of A.

5) Phase 2. Same as in Phase 1.

6) Guess. A outputs a guess bit b′. If b = b′, B outputs 1

(guessing T = e(g, ĝ)a
|U|+1s); else, it outputs 0 (guessing

T ∈R GT ).

The probability analysis and running time calculation are

identical to that of the proof of Theorem 1.

Theorem 3: Our S-ABPRE-KU scheme for small attribute

universe U is keyword private under the asymmetric decisional

|U |-BDHE assumption.

Proof: If there exists a PPT adversary A can break the

keyword privacy of our scheme, we can construct a PPT

algorithm B to break the asymmetric mDBDH assumption.

B is given a problem instance of the problem: (g, gs, ga, ĝ,

ĝa, ..., ĝa
|U|

, ĝa
|U|+2

, ..., ĝa
2|U|

,T ). In the simulation, B obtains

the following lists which are initially empty.

• List sklist: record ((M,ρ), sk(M,ρ)).
• List rklist: record ((M,ρ), S,KW, rk).

1) Init. A outputs a challenge attribute set S∗.

2) Setup. B chooses random α̂′, α, β1, ...,β|U |, δ, χ, ǫ1,

ǫ2, ǫ3 ∈ Z
∗
q , and sets t = gδ , t̂ = ĝδ , z = gχ, ẑ = ĝχ,

f1 = gǫ1 , f2 = gǫ2 , f3 = gǫ3 , f̂1 = ĝǫ1 , f̂2 = ĝǫ2 ,

f̂3 = ĝǫ3 , e(g, ĝ)α, e(gδ, ĝ)α̂
′

e(gaδ, ĝa
|U|

) = e(t, ĝ)α̂ (i.e.

α̂ = α̂′+a|U |+1), e(gχ, ĝ)α̂
′

e(gaχ, ĝa
|U|

) = e(z, ĝ)α̂, for

x ∈ [1, |U |] set ĥx = ĝβx and hx = gβx if x ∈ S∗

otherwise set ĥx = ĝβx ĝa
x

and hx = gβxga
x

. B outputs

mpk as (g, ĝ, {hx, ĥx}x∈[1,|U |], f1, f2, f3, f̂1, f̂2, f̂3, t,
z, e(g, ĝ)α, e(t, ĝ)α̂, e(z, ĝ)α̂, H1, H2, H3, H4, H5, H6,

SY ), where SY is a CCA-secure one-time symmetric key

encryption, and Hi (i ∈ {1, 2, 3, 4, 5, 6}) are the random

oracles operated by B. The msk is (α, α̂, ẑ, t̂) whereby

α̂ is unknown to B.

3) Phase 1.

a) Osk(M,ρ): since B has knowledge of α and hρ(i), it

can construct secret key corresponding to any (M,ρ),
and next adds the tuple to sklist. When (M,ρ) satisfies

S∗, output ⊥.

b) Otoken((M,ρ),KW ): if (M,ρ) matches S∗, B outputs

⊥. Else, B is able to set τ2,i and τ3,i,d as in Osk of

the proof of Theorem 1 with the exception that ri =
−(δH3(KW )+χ)cia

|U |+1−ρ(i), and further computes

τ1,i as ĝ(δH3(KW )+χ)ciα
′

R
(δH3(KW )+χ)βi

i , where δ, χ
are known to B. B next re-randomizes the elements as
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in the real scheme, and finally outputs τKW .

c) Otest(CT,KW ): if the attribute set S associated with

CT is S∗, B outputs ⊥. Else, B can always compute a

trapdoor τKW as in Otoken, it next proceeds to the test

easily. If the test holds, B outputs 1 and 0 otherwise.

d) Ork((M , ρ), S, KW ): if there is a tuple ((M,ρ), S,

KW , rk) in rklist, B returns rk. Otherwise,

• If (M,ρ) matches S∗ and meanwhile, there exists a

tuple ((M ′, ρ′), sk(M ′,ρ′)) in sklist so that (M ′, ρ′)
matches S, B outputs ⊥.

• Otherwise, B first constructs the secret key sk(M,ρ)

as in Osk, and next generates rk as in the real

scheme. B adds ((M,ρ), S, KW , rk) to sklist and

rklist finally.

e) Ore(CT, (M,ρ), S,KW ): if C is the challenge origi-

nal ciphertext, and sk(M ′,ρ′) ((M ′, ρ′) satisfying S) is

issued to A, output ⊥. Else if Eq. (1), Eq. (2) and Eq.

(3) do not hold, output ⊥. Otherwise, proceed. If there

exists a tuple ((M,ρ), S, KW , rk) in rklist, B re-

encrypts CT with rk. Otherwise, B first generates a re-

encryption key by using the secret key of the delegator

(with knowledge of α), next constructs the re-encrypted

ciphertext as in the real scheme.

f) Odec((M,ρ), CT ): if CT is either a challenge original

ciphertext or a derivative of the challenge ciphertext,

output ⊥. Otherwise, B can uses the knowledge of α
to construct the corresponding secret key to recover m
as in the real scheme.

4) Challenge. A outputs m∗, KW ∗
1 and KW ∗

0 . B sets the

original challenge ciphertext as

a) Set B∗ = gs, {C∗
x = (gs)βx}x∈S∗ , and E∗

1 = (gs)ǫ1 .

b) Choose σ∗ ∈ {0, 1}λ and set A∗ = (m∗||σ∗) ⊕
H2(e(g

s, ĝ)α).
c) Issue an H3 query on (KW ∗

b ) to achieve κ∗
3, flip

a random coin b ∈ {0, 1}, and define D∗ =
e(gs, ĝ)α̂

′(δκ∗
3+χ)T δκ∗

3+χ.

d) Issue an H4 query on (A∗, B∗, {C∗
x}x∈S∗ , D∗, E∗

1 )
to achieve κ∗

4, and define E∗
2 = (gs)ǫ2κ

∗
4 (gs)ǫ3 .

e) Output the challenge original ciphertext as (S∗, A∗,

B∗, {C∗
x}x∈S∗ , D∗, E∗

1 , E∗
2 ).

If T = e(g, ĝ)a
|U|+1s, the ciphertext is valid by implicitly

setting H1(m
∗, σ∗) = s. However, if T ∈R GT , the

challenge ciphertext is independent of the value of the

bit b in the view of A.

We note that the keyword privacy also keeps in the re-

encrypted ciphertext. The construction approach of the

challenge re-encrypted ciphertext is somewhat identical to

the above ciphertext with the exception: B can construct

the original ciphertext CT as in the real scheme as well

as Ω, T1 and T3, it further embeds gs and T into rk5,

rk6, rk7,x, rk8 and rk9.

5) Phase 2. Same as in Phase 1.

6) Guess. A outputs a guess bit b′. If b = b′, B outputs 1

(guessing T = e(g, ĝ)a
|U|+1s); else, it outputs 0 (guessing

T ∈R GT ).

The probability analysis is identical to the previous one.

V. EFFICIENCY COMPARISON

A. Theoretical Analysis

We compare our scheme with an ABKS (the concrete key-

policy ABKS scheme) [38] and an ABPRE [19] in terms

of computation and communication cost. Table II shows the

comparison of computational cost, and Table III shows the

communication comparison.

We now define the notations used in the Tables. Let |G| and

|GT | denote the bit-length of an element in groups G1 (resp.

G2) and GT , |St| denote the number of state in a deterministic

finite automaton, l is the number of row of a matrix, |W |
denote the length of a string, |TL| denote the number of leaf

in an access tree, |S| denote the number of attribute in an

attribute set, λ denote the security parameter and its length |λ|,
p, e(1), e(2) denote the computation cost of a bilinear pairing,

an exponentiation in G1 (resp. G2), and an exponentiation

in GT , respectively. For comparison convenience, we suppose

our scheme is also in symmetric pairings group, i.e. G1 = G2.

Table II shows that our scheme is the most efficient one

in decryption and search (enjoying constant pairings cost),

while [38] and [19] suffer from linearly cost, i.e. O(|S|) and

O(|St|) pairings, respectively. Compared with [19], our system

only requires constant pairings cost in re-encryption phase.

Although our scheme needs O(l2) exponentiations in G in

the generation of trapdoor token, it enjoys better performance

in keyword search, re-encryption and decryption phases.

TABLE III
COMMUNICATION COMPARISON WITH [38], [19]

Sch.
Size/Length

Ciphertext (Or) Token Secret Key

[38] O(|S|)|G| O(|TL|)|G| O(|TL|)|G|

[19] O(1)|GT | + O(|W |)|G| ⊥ O(|St|)|G|

Ours O(|S|)|G| + O(1)|λ| O(l2)|G| O(l2)|G|

Table III shows that our scheme has similar complexity

with [38] in the size of ciphertext though it needs O(l2)
elements in G for the token and secret key.

In conclusion, our scheme achieves more practical function-

alities (including keyword search, data sharing and keyword

update) without requiring a great amount of additional com-

putation and communication cost.

B. Practical Analysis

For the system simulation, we leverage the Java Pairing

Based Cryptography Library [28] to calculate the system

running time shown in Table IV. Our testbed is: Intel(R)

Core(TM)2 Quad CPU Q6600 @ 2.40GHz, 3 GB RAM,

Ubuntu 10.04; pairing type is a with 160-bit group oder

(supersingular curve Y 2 = X3 + X). We also assume all

systems only make one time operation for the (equal length)

keyword update, ciphertext share and search, respectively.

Besides, we suppose the schemes must at least achieve a

security level comparable to a symmetric key cryptosystem

with an 80-bit key. An elliptic curve cryptosystem with 160-

bit keys is needed. Therefore, we set |λ| = 160 bits, |G| = 160
bits and |GT | = 1024 bits, respectively. We further set
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TABLE II
COMPUTATION COMPARISON WITH [38], [19]

Sch.
Computation Cost

Enc Token Gen Search ReEnc Dec (Or) Dec (Re)

[38] O(|S|)e(1) O(|TL|)e(1) O(|S|)p + O(|S|)e(2) ⊥ ⊥ ⊥

[19] O(|W |)e(1) + O(1)e(2) ⊥ ⊥ O(|W |)e(1) + O(1)e(2) + O(|St|)p O(|St|)p O(|St|)p

Ours O(|S|)e(1) + O(1)e(2) O(l2)e(1) O(|S|)e(1) + O(1)p O(1)p O(1)p O(1)p

|S| = |TL| = l = 50, |W | = 50, |St| = 51 and each state

in St can be a successful state. This initialization indicates

that an attribute set shares the same number of attributes in

an access tree, and each row of the Matrix (used to represent

access policy) corresponds to a distinct attribute (where the

total number of attribute is also 50). Table V is the comparison

of concrete communication cost.

TABLE IV
COMPARISON IN SYSTEM RUNNING TIME

Sch.
Algorithms (ms)

Enc Token Search ReEnc Dec Dec
Gen (Or) (Re)

[38] 940.52 1869.92 1494.71 ⊥ ⊥ ⊥

[19] 436.68 ⊥ ⊥ 2708.05 2242.06 4502.71

Ours 153.60 7364.35 958.71 1161.36 1888.11 3778.40

TABLE V
COMPARISON IN COMMUNICATION COST

Sch.
Components Length (bit)

Ciphertext (Or) Token Secret Key

[38] 8480 16320 10600

[19] 17984 ⊥ 26818

Ours 1984 408000 408000

In summary, we can see from Table IV and Table V that our

system enjoys better computational efficiency in each metric

except token generation, and meanwhile, we need a larger

space to store our keyword search token compared to others.

We state that how to reduce the size of keyword token and

its corresponding computational cost is an interesting open

problem, which is regarded as one of our future works.

VI. CONCLUSIONS

We defined a new notion searchable attribute-based proxy

re-encryption with keyword update, and proposed a concrete

construction satisfying the notion. We also proved the new

scheme CCA secure in the ROM. The scheme is the first

of its type to integrate searchable attribute-based encryption

with attribute-based proxy re-encryption, which is applicable

to many real-world applications.

Although the new system enjoys its valuable advantages, it

motivates some interesting open problems, e.g., how to reduce

the size of search token, how to allow a secret key holder to

generate search token individually, and how to provide more

expressive keyword search.

VII. ACKNOWLEDGEMENTS

K. Liang is supported by Privacy-aware retrieval and mod-

elling of genomic data (No. 13283250), Academy of Finland,

Finland. W. Susilo is partially supported by the Australian

Research Council Discovery Project ARC DP130101383.

REFERENCES

[1] G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved proxy
re-encryption schemes with applications to secure distributed storage.
ACM TISSEC, 9(1):1–30, 2006.

[2] M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently
searchable encryption. In A. Menezes, editor, Advances in Cryptology -

CRYPTO 2007, 27th Annual International Cryptology Conference, Santa

Barbara, CA, USA, August 19-23, 2007, Proceedings, volume 4622 of
Lecture Notes in Computer Science, pages 535–552. Springer, 2007.

[3] S. Benabbas, R. Gennaro, and Y. Vahlis. Verifiable delegation of
computation over large datasets. In P. Rogaway, editor, Advances in

Cryptology - CRYPTO 2011 - 31st Annual Cryptology Conference, Santa

Barbara, CA, USA, August 14-18, 2011. Proceedings, volume 6841 of
Lecture Notes in Computer Science, pages 111–131. Springer, 2011.

[4] M. Blaze, G. Bleumer, and M. Strauss. Divertible protocols and atomic
proxy cryptography. In EUROCRYPT ’98, pages 127–144. Springer,
1998.

[5] D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical identity based
encryption with constant size ciphertext. In EUROCRYPT ’05, volume
3494 of LNCS, pages 440–456. Springer, 2005.

[6] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano. Public key
encryption with keyword search. In C. Cachin and J. Camenisch, editors,
Advances in Cryptology - EUROCRYPT 2004, International Conference

on the Theory and Applications of Cryptographic Techniques, Interlaken,

Switzerland, May 2-6, 2004, Proceedings, volume 3027 of Lecture Notes

in Computer Science, pages 506–522. Springer, 2004.
[7] D. Boneh and B. Waters. Conjunctive, subset, and range queries on en-

crypted data. In S. P. Vadhan, editor, Theory of Cryptography, 4th Theory

of Cryptography Conference, TCC 2007, Amsterdam, The Netherlands,

February 21-24, 2007, Proceedings, volume 4392 of Lecture Notes in

Computer Science, pages 535–554. Springer, 2007.
[8] R. Canetti and S. Hohenberger. Chosen-ciphertext secure proxy re-

encryption. In P. Ning, S. D. C. di Vimercati, and P. F. Syverson, editors,
Proceedings of the 2007 ACM Conference on Computer and Communi-

cations Security, CCS 2007, Alexandria, Virginia, USA, October 28-31,

2007, pages 185–194. ACM, 2007.
[9] N. Chandran, M. Chase, and V. Vaikuntanathan. Functional re-

encryption and collusion-resistant obfuscation. In R. Cramer, editor,
TCC, volume 7194 of Lecture Notes in Computer Science, pages 404–
421. Springer, 2012.

[10] M. Chase and S. Kamara. Structured encryption and controlled dis-
closure. In M. Abe, editor, Advances in Cryptology - ASIACRYPT

2010 - 16th International Conference on the Theory and Application of

Cryptology and Information Security, Singapore, December 5-9, 2010.

Proceedings, volume 6477 of Lecture Notes in Computer Science, pages
577–594. Springer, 2010.

[11] L. Cheung and C. C. Newport. Provably secure ciphertext policy ABE.
In P. Ning, S. D. C. di Vimercati, and P. F. Syverson, editors, ACM

Conference on Computer and Communications Security, pages 456–465.
ACM, 2007.

[12] R. Cramer and V. Shoup. Design and analysis of practical public-key
encryption schemes secure against adaptive chosen ciphertext attack.
SIAM J. Comput., 33(1):167–226, January 2004.

[13] L. Ducas. Anonymity from asymmetry: new constructions for anony-
mous HIBE. In CT-RSA’10, volume 5985 of LNCS, pages 148–164.
Springer, 2010.



12

[14] P. Golle, J. Staddon, and B. R. Waters. Secure conjunctive keyword
search over encrypted data. In M. Jakobsson, M. Yung, and J. Zhou,
editors, Applied Cryptography and Network Security, Second Interna-

tional Conference, ACNS 2004, Yellow Mountain, China, June 8-11,

2004, Proceedings, volume 3089 of Lecture Notes in Computer Science,
pages 31–45. Springer, 2004.

[15] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based en-
cryption for fine-grained access control of encrypted data. In A. Juels,
R. N. Wright, and S. D. C. di Vimercati, editors, ACM Conference on

Computer and Communications Security, pages 89–98. ACM, 2006.

[16] S. Hohenberger and B. Waters. Attribute-based encryption with fast
decryption. In K. Kurosawa and G. Hanaoka, editors, Public-Key

Cryptography - PKC 2013 - 16th International Conference on Practice

and Theory in Public-Key Cryptography, Nara, Japan, February 26 -

March 1, 2013. Proceedings, volume 7778 of Lecture Notes in Computer

Science, pages 162–179. Springer, 2013.

[17] Y. Hwang and P. Lee. Public key encryption with conjunctive key-
word search and its extension to a multi-user system. In T. Takagi,
T. Okamoto, E. Okamoto, and T. Okamoto, editors, Pairing-Based

Cryptography Pairing 2007, volume 4575 of Lecture Notes in Computer

Science, pages 2–22. Springer Berlin Heidelberg, 2007.

[18] A. B. Lewko and B. Waters. New proof methods for attribute-based
encryption: Achieving full security through selective techniques. In
R. Safavi-Naini and R. Canetti, editors, CRYPTO, volume 7417 of LNCS,
pages 180–198. Springer, 2012.

[19] K. Liang, M. H. Au, J. K. Liu, W. Susilo, D. S. Wong, G. Yang, T. V. X.
Phuong, and Q. Xie. A dfa-based functional proxy re-encryption scheme
for secure public cloud data sharing. IEEE Transactions on Information

Forensics and Security, 9(10):1667–1680, 2014.

[20] K. Liang, M. H. Au, W. Susilo, D. S. Wong, G. Yang, and Y. Yu.
An adaptively cca-secure ciphertext-policy attribute-based proxy re-
encryption for cloud data sharing. In X. Huang and J. Zhou, editors,
Information Security Practice and Experience - 10th International

Conference, ISPEC 2014, Fuzhou, China, May 5-8, 2014. Proceedings,
volume 8434 of Lecture Notes in Computer Science, pages 448–461.
Springer, 2014.

[21] K. Liang, C. Chu, X. Tan, D. S. Wong, C. Tang, and J. Zhou.
Chosen-ciphertext secure multi-hop identity-based conditional proxy re-
encryption with constant-size ciphertexts. Theor. Comput. Sci., 539:87–
105, 2014.

[22] K. Liang, L. Fang, W. Susilo, and D. S. Wong. A ciphertext-policy
attribute-based proxy re-encryption with chosen-ciphertext security. In
INCoS, pages 552–559. IEEE, 2013.

[23] K. Liang, Q. Huang, R. Schlegel, D. S. Wong, and C. Tang. A
conditional proxy broadcast re-encryption scheme supporting timed-
release. In R. H. Deng and T. Feng, editors, ISPEC, volume 7863 of
Lecture Notes in Computer Science, pages 132–146. Springer, 2013.

[24] K. Liang, J. K. Liu, D. S. Wong, and W. Susilo. An efficient cloud-based
revocable identity-based proxy re-encryption scheme for public clouds
data sharing. In M. Kutylowski and J. Vaidya, editors, Computer Security

- ESORICS 2014 - 19th European Symposium on Research in Computer

Security, Wroclaw, Poland, September 7-11, 2014. Proceedings, Part I,
volume 8712 of Lecture Notes in Computer Science, pages 257–272.
Springer, 2014.

[25] K. Liang, Z. Liu, X. Tan, D. S. Wong, and C. Tang. A CCA-secure
identity-based conditional proxy re-encryption without random oracles.
In T. Kwon, M.-K. Lee, and D. Kwon, editors, ICISC, volume 7839 of
LNCS, pages 231–246. Springer, 2012.

[26] X. Liang, Z. Cao, H. Lin, and J. Shao. Attribute based proxy re-
encryption with delegating capabilities. In W. Li, W. Susilo, U. K.
Tupakula, R. Safavi-Naini, and V. Varadharajan, editors, Proceedings of

the 2009 ACM Symposium on Information, Computer and Communica-

tions Security, ASIACCS 2009, Sydney, Australia, March 10-12, 2009,
pages 276–286. ACM, 2009.

[27] B. Libert and D. Vergnaud. Unidirectional chosen-ciphertext secure
proxy re-encryption. In PKC’08, volume 4939 of PKC’08, pages 360–
379. Springer, 2008.

[28] J. Library. http://gas.dia.unisa.it/projects/jpbc/benchmark.html#
.U5FXwZS1bLd/, 2013. Online; accessed 01-March-2015.

[29] R. Lu, X. Lin, J. Shao, and K. Liang. Rcca-secure multi-use bidirectional
proxy re-encryption with master secret security. In S. S. M. Chow,
J. K. Liu, L. C. K. Hui, and S. Yiu, editors, Provable Security - 8th

International Conference, ProvSec 2014, Hong Kong, China, October

9-10, 2014. Proceedings, volume 8782 of Lecture Notes in Computer

Science, pages 194–205. Springer, 2014.

[30] S. Luo, J. bin Hu, and Z. Chen. Ciphertext policy attribute-based proxy

re-encryption. In M. Soriano, S. Qing, and J. López, editors, ICICS,
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