
J. Cryptol. (2008) 21: 350–391
DOI: 10.1007/s00145-007-9006-6

Searchable Encryption Revisited: Consistency Properties,
Relation to Anonymous IBE, and Extensions∗

Michel Abdalla
Departement d’Informatique, École Normale Supérieure & CNRS, 45 Rue d’Ulm, 75230 Paris Cedex 05,

France
Michel.Abdalla@ens.fr

Mihir Bellare
Department of Computer Science & Engineering, University of California San Diego, 9500 Gilman Drive,

La Jolla, CA 92093, USA
mihir@cs.ucsd.edu

Dario Catalano
Dipartimento di Matematica e Informatica, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy

catalano@dmi.unict.it

Eike Kiltz
CWI Amsterdam, P.O. Box 94079, 1090 GB, Amsterdam, The Netherlands

kiltz@cwi.nl

Tadayoshi Kohno
Department of Computer Science and Engineering, University of Washington, P.O. Box 352350 Seattle,

WA 98195-2350, USA
yoshi@cs.washington.edu

Tanja Lange
Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513,

5600 MB Eindhoven, The Netherlands
tanja@hyperelliptic.org

John Malone-Lee
EMB Consultancy LLP, Bristol, UK

malone@compsci.bristol.ac.uk

Gregory Neven
Department of Electrical Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10,

3001 Heverlee-Leuven, Belgium
Gregory.Neven@esat.kuleuven.be

Pascal Paillier
Cryptography & Innovation, Security Labs, Gemalto, 6, Rue de la Verrerie, 92197 Meudon Cedex, France

Pascal.Paillier@gemalto.com

© International Association for Cryptologic Research 2007

Searchable Encryption Revisited: Consistency Properties, Relation to Anonymous IBE 351

Haixia Shi
NVIDIA Corporation, 2701 San Tomas Expressway, Santa Clara, CA 95050, USA

hshi@nvidia.com

Communicated by Arjen K. Lenstra

Received 1 September 2005 and revised 8 February 2007
Online publication 14 September 2007

Abstract. We identify and fill some gaps with regard to consistency (the extent to
which false positives are produced) for public-key encryption with keyword search
(PEKS). We define computational and statistical relaxations of the existing notion of
perfect consistency, show that the scheme of Boneh et al. (Advances in Cryptology—
EUROCRYPT 2004, ed. by C. Cachin, J. Camenisch, pp. 506–522, 2004) is computa-
tionally consistent, and provide a new scheme that is statistically consistent. We also
provide a transform of an anonymous identity-based encryption (IBE) scheme to a se-
cure PEKS scheme that, unlike the previous one, guarantees consistency. Finally, we
suggest three extensions of the basic notions considered here, namely anonymous hi-
erarchical identity-based encryption, public-key encryption with temporary keyword
search, and identity-based encryption with keyword search.

Key words. Foundations, Random-oracle model, Anonymity, Identity-based encryp-
tion, Searchable encryption

1. Introduction

There has recently been interest in various forms of “searchable encryption” [8,16,18,
24,26]. In this paper, we further explore one of the variants of this goal, namely public-
key encryption with keyword search (PEKS) as introduced by Boneh, Di Crescenzo,
Ostrovsky and Persiano [8].

The killer application envisaged by Boneh et al. is that of intelligent email routing.
We consider emails as consisting of some header information, a body, and a list of
keywords. Imagine Alice uses different electronic devices to read her email, including
a pager, a PDA, and a desktop computer. Alice may prefer emails to be routed to her
devices depending on the associated keywords. For example, she may like to receive
emails with the keyword “urgent” on her pager, emails with the keyword “agenda” on
her PDA, and all other emails on her desktop computer.

Existing mail server software could be updated to provide this type of service for
plain, unencrypted email. When Bob sends an email to Alice encrypted under her public
key, however, routing becomes much harder. One option would be for Bob to leave the
list of keywords unencrypted; if Bob is a colleague of Alice however, he may not like
the gateway to know that he is exchanging emails with her with the keyword “personal”.
Alice is probably not willing to hand her decryption key to the gateway either. Rather,
she would like to give the gateway some piece of trapdoor information that allows it
to test whether the keyword “urgent” is among those in the list, without revealing any
other information about the email to the gateway. This is exactly the type of functionality

∗ An extended abstract of this paper appears in Advances in Cryptology—CRYPTO 2005, ed. by V. Shoup,
Santa Barbara, California, August 14–18, 2005, Lecture Notes in Computer Science, vol. 3621 (Springer,
Berlin, 2005), pp. 205–222. This is the full version.

352 M. Abdalla et al.

provided by a PEKS scheme. Bob can then use a standard public-key encryption scheme
to encrypt the body of the email, and a PEKS scheme to separately encrypt each of the
keywords.

The routing configuration of the email gateway need not be static. Alternatively, Alice
could send the trapdoors for the keywords that she wants to receive at the time of login.
This could be useful for checking email over a low-bandwidth connection: when Alice
is at a conference, for example, she may want to download to her laptop only those
emails tagged with keyword “urgent”.

As another application, Waters et al. [26] show how PEKS schemes can be used to let
an untrusted logging device maintain an encrypted audit log of privacy-sensitive data
(e.g. user actions on a computer system) that is efficiently searchable by authorized au-
ditors only. The entries in the audit log are encrypted under the public key of a PEKS
scheme, of which the corresponding secret key is unknown to the logging device. If the
device is ever confiscated, or if the logbook leaks, privacy of users and their actions
is maintained. The secret key is known only to a trusted audit escrow agent, who pro-
vides (less trusted) authorized investigators with trapdoors for the keywords they want
to search for.

In this paper, we investigate some consistency-related issues and results of PEKS
schemes, then consider the connection to anonymous identity-based encryption (IBE),
and finally discuss some new extensions.

1.1. Consistency in PEKS

Any cryptographic primitive must meet two conditions. One is of course a security
condition. The other, which we will here call a consistency condition, ensures that the
primitive fulfills its function. For example, for public-key encryption, the security con-
dition is privacy. (This could be formalized in many ways, e.g. IND-CPA or IND-CCA.)
The consistency condition is that decryption reverses encryption, meaning that if M is
encrypted under public key pk to result in ciphertext C, then decrypting C under the
secret key corresponding to pk results in M being returned.

PEKS In a PEKS scheme, Alice can provide a gateway with a trapdoor tw (computed
as a function of her secret key) for any keyword w of her choice. A sender encrypts a
keyword w′ under Alice’s public key pk to obtain a ciphertext C that is sent to the gate-
way. The latter can apply a test function Test to tw,C to get back 0 or 1. The consistency
condition as per [8] is that if w = w′ then Test(tw,C) returns 1 and if w �= w′ it returns 0.
The security condition is that the gateway learn nothing about w′ beyond whether or not
it equals w. (The corresponding formal notion will be denoted PEKS-IND-CPA.) The
application setting is that C can be attached to an email (ordinarily encrypted for Alice
under a different public key), allowing the gateway to route the email to different loca-
tions (e.g. Alice’s desktop, laptop or pager) based on w while preserving privacy of the
latter to the largest extent possible.

Consistency of BDOP -PEKS It is easy to see (cf. Proposition 3.1) that the main con-
struction of [8] (a random oracle (RO) model, bilinear Diffie–Hellman (BDH) based

Searchable Encryption Revisited: Consistency Properties, Relation to Anonymous IBE 353

PEKS-IND-CPA secure PEKS scheme that we call BDOP -PEKS) fails to meet the con-
sistency condition defined in [8] and stated above. (Specifically, there are distinct key-
words w,w′ such that Test(tw,C) = 1 for any C that encrypts w′.) The potential problem
this raises in practice is that email will be incorrectly routed.

New Notions of Consistency It is natural to ask if BDOP -PEKS meets some consis-
tency condition that is weaker than theirs but still adequate in practice. To answer this,
we provide some new definitions. Somewhat unusually for a consistency condition, we
formulate consistency more like a security condition, via an experiment involving an
adversary. The difference is that this adversary is not very “adversarial”: it is supposed
to reflect some kind of worst case but not malicious behavior. However this turns out to
be a difficult line to draw, definitionally, so that some subtle issues arise. One outcome
of this approach is that it naturally gives rise to a hierarchy of notions of consistency,
namely perfect, statistical and computational. The first asks that the advantage of any
(even computationally unbounded) adversary be zero; the second that the advantage of
any (even computationally unbounded) adversary be negligible; the third that the advan-
tage of any polynomial-time adversary be negligible. We note that perfect consistency
as per our definition coincides with consistency as per [8], and so our notions can be
viewed as natural weakenings of theirs.

An Analogy There is a natural notion of decryption error for encryption schemes [17,
Sect. 5.1.2]. A perfectly consistent PEKS is the analog of an encryption scheme with
zero decryption error (the usual requirement). A statistically consistent PEKS is the ana-
log of an encryption scheme with negligible decryption error (a less common but still
often used condition [2,13]). However, computational consistency is a non-standard re-
laxation, for consistency conditions are typically not computational. This is not because
one cannot define them that way (one could certainly define a computational consistency
requirement for encryption) but rather because there has never been any motivation to
do so. What makes PEKS different, as emerges from the results below, is that computa-
tional consistency is relevant and arises naturally.

Consistency of BDOP -PEKS , Revisited The counter-example (cf. Proposition 3.1)
showing that BDOP -PEKS is not perfectly consistent extends to show that it is not sta-
tistically consistent either. However, we show (cf. Theorem 3.3) that BDOP -PEKS is
computationally consistent. In the random-oracle model, this is not under any computa-
tional assumption: the limitation on the running time of the adversary is relevant because
it limits the number of queries the adversary can make to the random oracle. When the
random oracle is instantiated via a hash function, we would need to assume collision-
resistance of the hash function. The implication of this result is that BDOP -PEKS is
probably fine to use in practice, in that incorrect routing of email, while possible in
principle, is unlikely to actually happen.

A Statistically Consistent PEKS Scheme We provide the first construction of a PEKS
scheme that is statistically consistent. The scheme is in the random oracle model, and
is also PEKS-IND-CPA secure assuming the BDH problem is hard. The motivation for
the new scheme was largely theoretical. From a foundational perspective, we wanted to

354 M. Abdalla et al.

know whether PEKS was an anomaly in the sense that only computational consistency
is possible, or whether, like other primitives, statistical consistency could be achieved.
However, it is also true that while computational consistency is arguably enough in an
application, statistical might be preferable because the guarantee is unconditional.

1.2. PEKS and Anonymous IBE

BDOP -PEKS is based on the Boneh–Franklin IBE (BF -IBE) scheme [9]. It is natural
to ask whether one might, more generally, build PEKS schemes from IBE schemes in
some blackbox way. To this end, a transform of an IBE scheme into a PEKS scheme
is suggested in [8]. Interestingly, they note that the property of the IBE scheme that
appears necessary to provide PEKS-IND-CPA of the PEKS scheme is not the usual
IBE-IND-CPA but rather anonymity. (An IBE scheme is anonymous if a ciphertext does
not reveal the identity of the recipient [3].) While [8] stops short of stating and prov-
ing a formal result here, it is not hard to verify that their intuition is correct. Namely
one can show that if the starting IBE scheme IBE meets an appropriate formal no-
tion of anonymity (IBE-ANO-CPA, cf. Section 4.1) then PEKS = ibe-2-peks(IBE) is
PEKS-IND-CPA, where ibe-2-peks denotes the transform suggested in [8].

Consistency in ibe-2-peks Unfortunately, we show (cf. Theorem 4.1) that there are
IBE schemes for which the PEKS scheme outputted by ibe-2-peks is not even computa-
tionally consistent. This means that ibe-2-peks is not in general a suitable way to turn an
IBE scheme into a PEKS scheme. (Although it might be in some cases, and in particular
is when the starting IBE scheme is BF -IBE , for in that case the resulting PEKS scheme
is BDOP -PEKS .)

new-ibe-2-peks We propose a randomized variant of the ibe-2-peks transform that
we call new-ibe-2-peks, and prove that if an IBE scheme IBE is IBE-ANO-CPA and
IBE-IND-CPA then the PEKS scheme new-ibe-2-peks(IBE) is PEKS-IND-CPA and
computationally consistent (cf. Sect. 4.3). We do not know of a transform where the
resulting PEKS scheme is statistically or perfectly consistent.

Anonymous IBE Schemes The above motivates finding anonymous IBE schemes. To-
wards this, we begin by extending Halevi’s condition for anonymity [19] to the IBE set-
ting (cf. Sect. 4.4). Based on this, we are able to give a simple proof that the (random-
oracle model) BF -IBE scheme [9] is IBE-ANO-CPA assuming the BDH problem is
hard (cf. Theorem 4.4). (We clarify that a proof of this result is implicit in the proof
of security of the BF -IBE based BDOP -PEKS scheme given in [8]. Our contribution
is to have stated the formal definition of anonymity and provided a simpler proof via
the extension of Halevi’s condition.) Towards answering the question of whether there
exist anonymous IBE schemes in the standard (as opposed to random oracle) model,
we present in Appendix A.1 an attack to show that Water’s IBE scheme [25] is not
IBE-ANO-CPA.

1.3. Extensions

Anonymous HIBE We provide definitions of anonymity for hierarchical IBE (HIBE)
schemes. Our definition can be parameterized by a level, so that we can talk of a HIBE

Searchable Encryption Revisited: Consistency Properties, Relation to Anonymous IBE 355

that is anonymous at level l. We note that the HIBE schemes of [7,15] are not anony-
mous, even at level 1. (That of [20] appears to be anonymous at both levels 1 and 2
but is very limited in nature and thus turns out not to be useful for our applications.)
We modify the construction of Gentry and Silverberg [15] to obtain a HIBE that is
(HIBE-IND-CPA and) anonymous at level 1. The construction is in the random oracle
model and assumes BDH is hard.

PETKS In a PEKS scheme, once the gateway has the trapdoor for a certain keyword, it
can test whether this keyword was present in any past ciphertexts or future ciphertexts. It
may be useful to limit the period in which the trapdoor can be used. Here we propose an
extension of PEKS that we call public-key encryption with temporary keyword search
(PETKS) that allows this. A trapdoor here is created for a time interval [s, e] and will
only allow the gateway to test whether ciphertexts created in this time interval contain
the keyword. We provide definitions of privacy and consistency for PETKS, and then
show how to implement it with overhead that is only logarithmic in the total number of
time periods. Our construction can use any HIBE that is anonymous at level 1. Using the
above-mentioned HIBE we get a particular instantiation that is secure in the random-
oracle model if BDH is hard.

IBEKS We define the notion of an identity-based encryption with keyword search
scheme. This is just like a PEKS scheme except that encryption is performed given
only the identity of the receiver and a master public-key, just like in an IBE scheme.
We show how to implement IBEKS given any level-2 anonymous HIBE scheme. The
first suitable implementation of the latter primitive was proposed in subsequent work by
Boyen and Waters [11].

1.4. Remarks

peks-2-ibe Boneh et al. [8] showed how to transform a PEKS-IND-CPA PEKS
scheme into an IBE-IND-CPA IBE scheme. We remark that their transform requires
the starting PEKS scheme to be perfectly consistent. Unfortunately, no perfectly con-
sistent PEKS schemes are known to date. If it is only statistically or computationally
consistent, the resulting IBE scheme will only meet a corresponding statistical or com-
putational relaxation of the consistency condition for IBE schemes. Thus, the resulting
scheme will not be an IBE scheme as per the standard definition of the latter [9].

Limited PEKS Schemes Boneh et al. [8] also present a couple of PEKS schemes that
avoid the RO model but are what they call limited. Both use a standard public-key
encryption scheme as a building block. In the first scheme, the public key has size poly-
nomial in the number of keywords that can be used. In the second scheme, the key and
ciphertext have size polynomial in the number of trapdoors that can be securely issued to
the gateway. Although these schemes are not very interesting due to their limited nature,
one could ask about their consistency. In [1], we extend our definitions of consistency
to this limited setting. Interestingly, we show that based on only a computational as-
sumption about the underlying standard public-key encryption scheme (namely, that it
is IND-CPA, or even just one-way), the first scheme is statistically consistent. We also
show that the second scheme is computationally consistent under the same assumption

356 M. Abdalla et al.

on the standard public-key encryption scheme, and present a variant that is statistically
consistent.

Consistency of Other Searchable Encryption Schemes Of the other papers on search-
able encryption of which we are aware [16,18,24,26], none formally define or rigorously
address the notion of consistency for their respective types of searchable encryption
schemes. Goh [16] and Golle, Staddon, and Waters [18] define consistency conditions
analogous to BDOP’s “perfect consistency” condition, but none of the constructions
in [16,18] satisfy their respective perfect consistency condition. Song, Wagner, and Per-
rig [24] and Waters et al. [26] do not formally state and prove consistency conditions
for their respective searchable encryption schemes, but they, as well as Goh [16], do
acknowledge and informally bound the non-zero probability of a false positive.

Subsequent Work In a preliminary version of our work, we raised various open prob-
lems that have subsequently been solved. The first one of these problems was to find
a construction of an (IBE-IND-CPA and) IBE-ANO-CPA IBE scheme with a proof of
security in the standard model (i.e., without random oracles). This problem was solved
independently by Gentry [14] and by Boyen and Waters [11]. As a result, one can also
obtain a PEKS-IND-CPA and computationally consistent PEKS scheme in the standard
model due to Theorem 4.2.

Another interesting question that we raised was to find a HIBE scheme providing
anonymity at the second level, even in the RO model. This open problem was solved by
Boyen and Waters [11], who proposed a fully anonymous HIBE scheme in the standard
model.

Finally, we raised the issue of building a searchable encryption scheme that allows
for more advanced searching tools such as searches for simple boolean formulas on
keywords (say w1 ∧ w2 ∨ w3). First steps in this direction have been taken [10,18,22]
by schemes that allow for conjunctive combinations of keywords, range queries, and
subset queries.

2. Some Definitions

Notation and Conventions If x is a string then |x| denotes its length, and if S is a set
then |S| denotes its size. The empty string is denoted ε. Constructs in the RO model
[5] might use multiple random oracles, but since one can always obtain these from
a single one [5], formal definitions will assume just one RO. Unless otherwise indi-
cated, an algorithm may be randomized. “PT” stands for polynomial time and “PTA”
for polynomial-time algorithm or adversary. We denote by N the set of positive integers,
and by k ∈ N the security parameter. A function ν : N → [0,1] is said to be negligible
if for every c ∈ N there exists a kc ∈ N such that ν(k) ≤ k−c for all k > kc, and it is said
to be overwhelming if the function |1 − ν(k)| is negligible. A message space MsgSp is
a map, assigning to every k ∈ N a set of strings, such that {0,1}k ⊆ MsgSp(k) ⊆ {0,1}∗
for all k ∈ N and the following conditions hold: first, there is a PTA that on input 1k,M
returns 1 if M ∈ MsgSp(k) and 0 otherwise; second, {0,1}|M| ⊆ MsgSp(k) for all k ∈ N

and M ∈ MsgSp(k).

Searchable Encryption Revisited: Consistency Properties, Relation to Anonymous IBE 357

PEKS A public key encryption with keyword search (PEKS) scheme [8] PEKS =
(KG,PEKS,Td,Test) consists of PTAs. Via (pk, sk)

$← KG(1k), where k ∈ N is the
security parameter and KG is the randomized key-generation algorithm, the receiver

produces its keys; via C
$← PEKSH (pk,w) a sender encrypts a keyword w to get a ci-

phertext; via tw
$← TdH (sk,w) the receiver computes a trapdoor tw for keyword w and

provides it to the gateway; via b ← TestH (tw,C) the gateway tests whether C encrypts
w, where b is a bit with 1 meaning “accept” or “yes” and 0 meaning “reject” or “no”.
Here H is a random oracle whose domain and/or range might depend on k and pk.

Consistency The requirement of [8] can be divided into two parts. The first, which we
call right keyword consistency, is that Test(tw,C) always accepts when C encrypts w.
More formally, for all k ∈ N and all w ∈ {0,1}∗,

Pr
[

TestH
(
TdH (sk,w),PEKSH (pk,w)

) = 1
] = 1,

where the probability is taken over the choice of (pk, sk)
$← KG(1k), the random choice

of H , and the coins of all the algorithms in the expression above. Since we will always
require this, it is convenient henceforth to take it as an integral part of the PEKS notion
and not mention it again, reserving the term “consistency” to only refer to what happens
when the ciphertext encrypts a keyword different from the one for which the gateway is
testing. In this regard, the requirement of [8], which we will call perfect consistency, is
that Test(tw′ ,C) always reject when C doesn’t encrypt w′. More formally, for all k ∈ N

and all distinct w,w′ ∈ {0,1}∗,

Pr
[

TestH
(
TdH (sk,w′),PEKSH (pk,w)

) = 1
] = 0,

where the probability is taken over the choice of (pk, sk)
$← KG(1k), the random choice

of H , and the coins of all the algorithms in the expression above. (We note that [8]
provide informal rather than formal statements, but it is hard to interpret them in any
way other than what we have done.)

Privacy Privacy for a PEKS scheme [8] asks that an adversary should not be able to
distinguish between the encryption of two challenge keywords of its choice, even if it is
allowed to obtain trapdoors for any non-challenge keywords. Formally, we associate to
an adversary A and a bit b ∈ {0,1} the following experiment:

Experiment Exppeks-ind-cpa-b
PEKS,A (k)

WSet ← ∅ ; (pk, sk)
$← KG(1k)

pick random oracle H

(w0,w1, state)
$←ATRAPD(·),H (find,pk)

C
$← PEKSH (pk,wb)

b′ $←ATRAPD(·),H (guess,C, state)
if {w0,w1} ∩ WSet = ∅ then return b′ else return 0

Oracle TRAPD(w)

WSet ← WSet ∪ {w}
tw

$← TdH (sk,w)

return tw

358 M. Abdalla et al.

The PEKS-IND-CPA-advantage of A is defined as

Advpeks-ind-cpa
PEKS,A (k) = Pr

[
Exppeks-ind-cpa-1

PEKS,A (k) = 1
] − Pr

[
Exppeks-ind-cpa-0

PEKS,A (k) = 1
]
.

A scheme PEKS is said to be PEKS-IND-CPA-secure if the above advantage is a negli-
gible function in k for all PTAs A.

Parameter Generation Algorithms and the BDH Problem All pairing based schemes
will be parameterized by a pairing parameter generator. This is a PTA G that on input 1k

returns the description of an additive cyclic group G1 of prime order p, where 2k < p <

2k+1, the description of a multiplicative cyclic group G2 of the same order, and a non-
degenerate bilinear pairing e: G1 ×G1 → G2. See [9] for a description of the properties
of such pairings. We use G

∗
1 to denote G1 \ {0}, i.e. the set of all group elements except

the neutral element. We define the advantage of an adversary A in solving the bilinear
Diffie–Hellman (BDH) problem relative to a pairing parameter generator G as

Advbdh
G,A(k) = Pr

[
A

(
1k, (G1,G2,p, e),P, aP,bP, cP

)

= e(P,P)abc:
(G1,G2,p, e)

$← G(1k) ;
P

$← G
∗
1 ; a, b, c

$← Z
∗
p

]
.

We say that the BDH problem is hard relative to this generator if Advbdh
G,A is a negligible

function in k for all PTAs A.

3. Consistency in PEKS

We show that the BDOP -PEKS scheme is not perfectly consistent, introduce new no-
tions of statistical and computational consistency, and show that although BDOP -PEKS
continues to fail the former it does meet the latter. We then provide a new PEKS scheme
that is statistically consistent.

3.1. Perfect Consistency of BDOP -PEKS

Figure 1 presents the BDOP -PEKS scheme. It is based on a pairing parameter genera-
tor G.

Proposition 3.1. The BDOP -PEKS scheme is not perfectly consistent.

Proof. Since the number of possible keywords is infinite, there will certainly exist
distinct keywords w,w′ ∈ {0,1}∗ such that H1(w) = H1(w′). The trapdoors for such
keywords will be the same, and so TestH1,H2(Td(sk,w),PEKSH1,H2(pk,w′)) will always
return 1. �

It is tempting to say that, since H1 is a random oracle, the probability of a collision is
small, and thus the above really does not matter. Whether or not this is true depends on
how one wants to define consistency, which is the issue we explore next.

Searchable Encryption Revisited: Consistency Properties, Relation to Anonymous IBE 359

KG(1k)

(G1,G2,p, e)
$← G(1k) ; P

$← G
∗
1 ; s

$← Z
∗
p

pk ← (G1,G2,p, e,P, sP) ; sk ← (pk, s)
return (pk, sk)

PEKSH1,H2(pk,w)

parse pk as (G1,G2,p, e,P, sP)

r
$← Z

∗
p ; T ← e(H1(w), sP)r

C ← (rP,H2(T)) ; return C

TdH1(sk,w)

parse sk as (pk = (G1,G2,p, e,P, sP), s)

tw ← (pk, sH1(w)) ; return tw

TestH1,H2(tw,C)

parse tw as ((G1,G2,p, e,P, sP),X)

parse C as (U,V) ; T ← e(X,U)

if V = H2(T) then return 1
else return 0

Fig. 1. Algorithms constituting the BDOP -PEKS scheme. G is a pairing parameter generator and
H1 : {0,1}∗ → G1 and H2 : G2 → {0,1}k are random oracles.

3.2. New Notions of Consistency

We consider a possible relaxation of perfect consistency and argue that it is inadequate
because it is too weak. We then motivate and present our approach and definitions.

A Possible Relaxation of Perfect Consistency One way to obtain a relaxed definition
of perfect consistency is by analogy with the definition of encryption with negligible
decryption error [17, Sect. 5.1.2]. This results in asking that there exist a negligible
function ν(·) such that for all k and all distinct keywords w,w′,

∀w �= w′: Pr
[
TestH

(
pk,TdH (sk,w′),PEKSH (pk,w)

) = 1
] ≤ ν(k), (1)

where the probability is taken over the choice of (pk, sk)
$← KG(1k), the random choice

of H , and the coins of all the algorithms in the expression above. Now, since we are
fixing w,w′ before taking the probability, and the latter includes the choice of H1 in the
BDOP -PEKS scheme, the probability that H1(w) = H1(w′) is at most 2−k . Our “attack”
of Proposition 3.1 therefore no longer applies. And in fact (using the techniques of
our proof of Theorem 3.3) one can show that the BDOP scheme does meet the above
condition. However, (1) is in our view an incorrect definition of consistency because
it does not allow w,w′ to depend on public quantities related to the receiver, such as
its public key, the hash functions being used, or queries to them if they are random
oracles. Our claim is that, as a result, the condition is too weak to guarantee that email
is correctly routed by the gateway.

Our Definitions To define consistency, we take a different approach. Namely, we
imagine the existence of an adversary U that wants to make consistency fail. More
precisely, let PEKS = (KG,PEKS,Td,Test) be a PEKS scheme. We associate to an ad-
versary U the following experiment:

Experiment Exppeks-consist
PEKS,U (k)

(pk, sk)
$← KG(1k) ; pick random oracle H

(w,w′) $← UH (pk) ; C
$← PEKSH (pk,w) ; tw′

$← TdH (sk,w′)
if w �= w′ and TestH (tw′,C) = 1 then return 1 else return 0.

360 M. Abdalla et al.

We define the advantage of U as

Advpeks-consist
PEKS,U (k) = Pr

[
Exppeks-consist

PEKS,U (k) = 1
]
,

where the probability is taken over all possible coin flips of all the algorithms involved,
and over all possible choices of random oracle H . The scheme is said to be perfectly
consistent if this advantage is 0 for all (computationally unrestricted) adversaries U ,
statistically consistent if it is negligible for all (computationally unrestricted) adver-
saries U , and computationally consistent if it is negligible for all PTAs U . We remark
that we have purposely re-used the term perfect consistency, for in fact the above notion
of perfect consistency coincides with the one from [8] recalled above.

Stronger Notions? In giving the adversary U the public key and access to the random
oracle, our definition is already quite liberal. One could however, consider an even more
liberal (i.e. stronger) definition in which the adversary gets a trapdoor oracle and/or a
test oracle under trapdoors for keywords of its choice. To be able to tell whether or not
this would be appropriate, we must ask whether in “real-life” there could be an occasion
in which the keywords chosen by a sender could depend on information provided by
these oracles. Given that the answer is not cut-and-dry and since we believe that our
current definition is already quite strong, we opted here not to consider these stronger
variants of our definition.

3.3. Statistical and Computational Consistency of BDOP -PEKS

Having formally defined the statistical and computational consistency requirements for
PEKS schemes, we return to evaluating the consistency of BDOP -PEKS . We first ob-
serve that Proposition 3.1 extends to show:

Proposition 3.2. The BDOP -PEKS scheme is not statistically consistent.

Proof. Recall that in the proof of Proposition 3.1 we show that there exist two distinct
keywords w,w′ ∈ {0,1}∗ such that H1(w) = H1(w′), and that, for these two keywords,
Test(Td(sk,w′),PEKS(pk,w)) will always return 1. A computationally unbounded ad-
versary can find two such keywords by exhaustive search. �

On the positive side, the following means that BDOP -PEKS is probably fine in practice:

Theorem 3.3. The BDOP -PEKS scheme is computationally consistent.

Proof. Let U be a PTA. Let (w,w′) denote the pair of keywords that U returns in the
consistency experiment, and assume without loss of generality that w �= w′. Let r ∈ Z

∗
p

denote the value chosen at random by PEKSH1,H2(pk,w). Let T = e(H1(w), sP)r and
let T ′ = e(H1(w′), sP)r . Note that U wins exactly when w �= w′ and H2(T) = H2(T

′).
Let w1, . . . ,wq1 be the queries of U to H1 and let WSet = {w1, . . . ,wq1(k)} ∪ {w,w′}.
Let T1, . . . , Tq2(k) be the queries of U to H2 and let TSet = {T1, . . . , Tq2(k)} ∪ {T ,T ′}.
Let E1 be the event that there exist distinct v, v′ ∈ WSet such that H1(v) = H1(v

′), and

Searchable Encryption Revisited: Consistency Properties, Relation to Anonymous IBE 361

let E2 be the event that there exist distinct x, x′ ∈ TSet such that H2(x) = H2(x
′). If [·]

denotes the probability in the consistency experiment, then

Advpeks-consist
PEKS,U (k) ≤ Pr[E1] + Pr[E2] + Pr

[
Exppeks-consist

BDOP-PEKS,U (k) = 1 ∧ E1 ∧ E2
]
. (2)

Our definition of G required that |G1| > 2k , and hence the first and second terms are
respectively upper bounded via (q1 + 2)2/|G1| < (q1 + 2)2/2k and (q2 + 2)2/2k . Now
we claim that if H1(w) �= H1(w′), then T �= T ′. Under this claim, the last term of (2)
is 0, since if E1 occurs, then H1(w) �= H1(w′) and T �= T ′, and if E2 also occurs,
then H2(T) �= H2(T

′). To justify our claim above, note that if H1(w) �= H1(w′), then
H1(w) = αP and H1(w′) = α′P for some distinct α,α′ ∈ Zp . Setting g = e(P,P)rs ,
we can rewrite T ,T ′ as T = gα and T ′ = gα′

. Since e(P,P) is a generator of G2, since
G2 is of prime order p, and since p does not divide rs, g must also be a generator of
G2. Thus T �= T ′. �

3.4. A Statistically Consistent PEKS Scheme

We present the first PEKS scheme that is (PEKS-IND-CPA and) statistically consistent.
To define the scheme, we first introduce the function f (k) = klg(k). (Any function that
is super-polynomial but sub-exponential would suffice. This choice is made for con-
creteness.) The algorithms constituting our scheme PEKS -STAT are then depicted in
Fig. 2.

The scheme uses ideas from the BDOP -PEKS scheme [8] as well as from the BF -IBE
scheme [9], but adds some new elements. Note that the encryption algorithm is trivial,
returning the keyword as the ciphertext, when the keyword has length more than f (k). If
not, the processing is more complex, depending on some random choices and numerous
random oracles. In particular the random choice of “session” key K , and the fact that
the random oracle H2 is length-increasing, are important.

The first thing we stress about the scheme is that the algorithms are PT. This is be-
cause PT means in the length of the inputs, and the input of (say) the encryption algo-
rithm includes w as well as 1k , so it can test whether |w| ≥ f (k) in polynomial time.
Now the following says that the scheme is private:

Proposition 3.4. The PEKS -STAT scheme is PEKS-IND-CPA-secure assuming that
the BDH problem is hard relative to generator G.

Before providing the proof, let us give some intuition. While sending w in the clear looks
at first glance like it violates privacy, the reason it does not is that this only happens when
w has length at least f (k), and the privacy adversary is poly(k) time and thus cannot
even write down such a keyword in order to query it to its challenge oracle. (This is
where we use the fact that f (k) is super-polynomial. We will use the fact that it is
sub-exponential in the proof of statistical consistency.) The privacy adversary is thus
effectively restricted to attacking the scheme only on keywords of size at most f (k).
Here, privacy can be reduced to solving the BDH problem using techniques used to
prove IBE-IND-CPA of the BF -IBE scheme [9] and to prove anonymity of the same
scheme (cf. Theorem 4.4).

362 M. Abdalla et al.

KG(1k)

(G1,G2,p, e)
$← G(1k) ; P

$← G
∗
1

s
$← Z

∗
p ; pk ← (1k,P, sP,G1,G2,p, e)

sk ← (pk, s) ; return (pk, sk)

PEKSH1,H2,H3,H4(pk,w)

parse pk as (1k,P, sP,G1,G2,p, e)

if |w| ≥ f (k) then return w

r
$← Z

∗
p ; T ← e(sP,H1(w))r

K1 ← H4(T) ; K2 ← H2(T)

K
$← {0,1}k ; c ← K1 ⊕ K

t ← H3(K||w)

return (rP, c, t,K2)

TdH1 (sk,w)

parse sk as (pk = (1k,P, sP,G1,G2,p, e), s)

tw ← (pk, sH1(w),w)

return tw

TestH1,H2,H3,H4(tw,C)

parse tw as ((1k,P, sP,G1,G2,p, e), sH1(w),w)

if |w| ≥ f (k) then
if C = w then return 1 else return 0

if C cannot be parsed as (rP, c, t,K2)

then return 0
T ← e(rP, sH1(w))

K ← c ⊕ H4(T)

if K2 �= H2(T) then return 0
if t = H3(K||w) then return 1 else return 0

Fig. 2. Algorithms constituting the PEKS scheme PEKS -STAT . Here f (k) = klg(k) , G is a pairing parameter
generator and H1 : {0,1}∗ → G1, H2 : G2 → {0,1}3k , H3 : {0,1}∗ → {0,1}k , and H4 : {0,1}∗ → {0,1}k are
random oracles.

Proof of Proposition 3.4. Let B be a PTA attacking the PEKS-IND-CPA security
PEKS -STAT = (KG,PEKS,Td,Test). Say it makes at most q queries to its TRAPD(·, ·)
oracle and at most qi queries to Hi for i = 1,2,3. (These are actually functions of k, but
we drop the argument to simplify notation.) We construct a PTA A attacking the BDH
relative to G such that

Advbdh
G,A(k) ≥ 1

e(1 + q) · (q2 + q4)
·
(

1

2
· Advpeks-ind-cpa

PEKS,B (k) − q3

2k

)
. (3)

Our adversary A is shown in Fig. 3. We show that A outputs the correct answer T =
e(P,P)rsα with probability at least the quantity on the right-hand-side of (3).

Let t (k) be a polynomial which bounds the running time of B. So there is an integer
N such that t (k) < f (k) for all k ≥ N . Notice that the PEKS algorithm of the PEKS
scheme in Fig. 2 returns w in the clear when |w| ≥ f (k). However, the keywords output
by B in the find stage have length at most t (k), so if k ≥ N , the encryption is done
by the code for the case |w| < f (k) shown in PEKS. Since it suffices to prove (3) for
all k ≥ N , we assume that the encryption is done by the code for the case |w| < f (k)

shown in PEKS.
Let Pr1[·] denote the probability over the experiment for Advbdh

G,A(k) as defined in
Sect. 2. Let E1 denote the event in this experiment that A aborts in simulating the
trapdoor oracle. Let E2 denote the event that d[wb] = 0 (which also causes A to abort).
Let E3 denote the event that Q = ∅ (which also causes A to abort). Let E4 denote
the event that B issues a query H2(e(rP, sH1(wb))) or H4(e(rP, sH1(wb))). Let Pr2[·]
denote the probability over Exppeks-ind-cpa-b

PEKS,B for a random choice for b ∈ {0,1}, and let
b′ denote the output of B in this experiment. Let E5 be the event that B issues a query
H2(e(rP, sH1(wb))) or H4(e(rP, sH1(wb))) to its oracles in this experiment. Let E6

denote the event that B issues a query K‖wb to its oracle H3, where K is the random

Searchable Encryption Revisited: Consistency Properties, Relation to Anonymous IBE 363

Adversary A(1k, (G1,G2,p, e),P, sP, rP,αP)

pk ← (1k,P, sP,p,G1,G2, e) ; Q ← ∅
(w0,w1, state)

$← BTRAPD(·),H1,H2,H3,H4(find,pk)

b
$← {0,1} ; h ← H1(wb)

if d[wb] = 0 then abort

K1
$← {0,1}k ; K2

$← {0,1}3k

K
$← {0,1}k ; c ← K1⊕K ; t ← H3(K‖wb)

C ← (rP, c, t,K2)

b′ $← BTRAPD(·),H1,H2,H3,H4(guess,C, state)

if Q �= ∅ then T
$← Q else abort

return T x[wb]−1

Oracle TRAPD(w)

h ← H1(w)

if d[w] = 1 then abort
tw ← (x[w] · sP,w)

return tw

Oracle H1(w)

if h1[w] is not defined then
flip biased coin d[w] ∈ {0,1} such that Pr[d[w] = 1] = δ

x[w] $← Zp

if d[w] = 0 then define h1[w] ← x[w] · P
else define h1[w] ← x[w] · αP

return h1[w]

Oracle H2(T)

if h2[T] is not defined then

define h2[T] $← {0,1}3k

Q ←Q∪ {T }
return h2[T]

Oracle H3(X)

if h3[X] is not defined then

define h3[X] $← {0,1}k
return h3[X]

Oracle H4(T)

if h4[T] is not defined then

define h4[T] $← {0,1}k
Q ←Q∪ {T }

return h4[T]

Fig. 3. Adversary A attacking the BDH problem.

k-bit string that Exppeks-ind-cpa-b
PEKS,B used in PEKS when replying B’s challenge after the

find stage. Equation (3) follows from the following claims. �

Claim 1. Advbdh
G,A(k) ≥ Pr1[¬E1 ∧ ¬E2 ∧ ¬E3 ∧ E4]/(q2 + q4).

Proof. In the above simulation if none of the events E1, E2 and E3 happens, then A
will randomly choose an element T

$← Q and return T x[wb]−1
. However, by definition

of event E4, one of the elements in Q is equal to e(P,P)srα·x[wb], thus A has at least the
probability of 1/|Q| ≥ 1/(q2 + q4) to give the correct answer to the BDH problem. �

Claim 2. Pr[¬E1 ∧ ¬E2 ∧ ¬E3 ∧ E4] = Pr[E4|¬E1 ∧ ¬E2] · Pr[¬E1 ∧ ¬E2].

Proof. Notice that when event E4 happens, the set Q must contain at least one el-
ement, thus E3 is always false. Therefore we have Pr1[¬E1 ∧ ¬E2 ∧ ¬E3 ∧ E4] =
Pr1[¬E1 ∧ ¬E2 ∧ E4]. The claim follows by conditioning off of the event ¬E1 ∧
¬E2. �

Claim 3. Pr1[E4 | ¬E1 ∧ ¬E2] = Pr2[E5].

364 M. Abdalla et al.

Proof. Under the condition that A does not abort, the simulation is perfect, i.e. all A’s
answers to the simulated oracles TRAPD(sk, ·), H1(·) . . .H4(·) have exactly the same
distribution as those in the real PEKS-IND-CPA experiment. �

Claim 4. Pr2[E5] ≥ 1/2 · Advpeks-ind-cpa
PEKS,B (k) − q3 · 2−k .

Proof. First observe that

Pr2[b = b′]
= Pr2[b = b′ ∧ E5] + Pr2[b = b′ ∧ ¬E5 ∧ E6] + Pr2[b = b′ ∧ ¬E5 ∧ ¬E6]
≤ Pr2[E5] + Pr2[E6] + Pr2[b = b′ | ¬E5 ∧ ¬E6] · Pr2[¬E5 ∧ ¬E6]
≤ Pr2[E5] + q3 · 2−k + Pr2[b = b′ | ¬E5 ∧ ¬E6] · Pr2[¬E5 ∧ ¬E6] (4)

≤ Pr2[E5] + q3 · 2−k + 1/2. (5)

Equation (4) comes from the fact that, by assumption, B makes at most q3 queries to H3.
Equation (5) comes from the fact that, if E5 and E6 both do not occur, B learns no
information from the ciphertext. Rearranging gives

Pr2[E5] ≥ Pr2[b = b′] − 1/2 − q3 · 2−k = 1/2 · Advpeks-ind-cpa
PEKS,B (k) − q3 · 2−k.

The last equality follows from the standard result that Advpeks-ind-cpa
PEKS,B (k) = 2 ·

Pr2[b = b′] − 1. �

Claim 5. Pr[¬E1 ∧ ¬E2] ≥ 1/(e(q + 1)) for δ = 1/(q + 1).

Proof. Since for every keyword w the biased coin d[w] is flipped independently, and
Pr[d[w] = 1] = δ for all w, let QT be the set of queries issued by B to the TRAPD(sk, ·)
oracle, then

Pr[¬E1 ∧ ¬E2] = δ ·
∏

w∈QT

(1 − δ) = δ · (1 − δ)|QT | ≥ δ · (1 − δ)q .

The last quantity is maximized at δ = 1/(q + 1) with value at least 1/e(q + 1). �

Let us move to the more interesting claim, namely consistency:

Proposition 3.5. The PEKS -STAT scheme is statistically consistent.

Before providing the proof, let us give some intuition. The main issue is that the com-
putationally unbounded consistency adversary U can easily find any collisions that exist
for the random-oracle hash functions. Let w,w′ denote the keywords output by the ad-
versary U . We proceed via a case analysis. One can show that if either w or w′ have
length at least f (k) then Test will not be wrong. The interesting case is when w,w′ both
have length at most f (k). Let (rP, c, t,K2) denote the challenge ciphertext formed by

Searchable Encryption Revisited: Consistency Properties, Relation to Anonymous IBE 365

encrypting w. Let T = e(rP,H1(w)) and let K = c⊕H4(T) be the underlying session
key. Let T ′ = e(rP,H1(w′)) and let K ′ = c⊕H4(T

′). Now consider two cases.
The first case is that H1(w) �= H1(w′). Properties of pairings imply T �= T ′. Now we

claim that this means K2 = H2(T) �= H2(T
′) with high probability, and thus Test will

correctly reject, meaning U does not win. This is not merely because H2 is random,
for remember the adversary is not computationally bounded and can search for, and
find, any collisions that exist. The reason is that H2 is with high probability an injective
function and collisions for it simply do not exist. The reason for this is that its domain
is G2 which has size p < 2k+1 (our definition of a pairing parameter generator required
this) but H2 outputs 3k bits, and thus a union bound can be used to show that H2 is
injective except with probability 4 · 2−k .

The second case, which is the harder one, is that H1(w) = H1(w′) (again, we cannot
prevent U from finding collisions in H1), and this is where we will use the fact that f (k)

is sub-exponential. Here the idea is that at the time it chooses w,w′, adversary U does
not know the value of the session key K that is randomly chosen later. We divide pairs
(V ,V ′) of strings of length at most f (k) (candidate keywords) into two classes. A pair
is heavy if there are “lots” of session keys L such that H3(L‖V) = H3(L‖V ′), and
light otherwise, where “lots” is defined as 2k/2. Now we again consider two cases. If
(w,w′) is light then the randomly chosen K has only a 2−k/2 chance of being a session
key for which H3(K ‖w) = H3(K ‖w′) and thus Test will most likely reject, so U does
not win. Next we use an occupancy problem based counting argument to show that
the probability (over H3) that a particular pair (V ,V ′) of keywords is heavy is double
exponentially small in k. But the number of choices of keyword pairs is 2O(f (k)) which
is sub-double-exponentially small by choice of f (k), and thus a union bound allows us
to conclude that (w,w′) is not likely to be heavy.

Proof of Proposition 3.5. Let U be a computationally unbounded adversary algo-
rithm. We show that there is a constant c > 0 such that

Advpeks-consist
PEKS,U (k) ≤ O(2−ck).

Consider the experiment Exppeks-consist
PEKS,U (k). Let w,w′ denote the keywords output

by U and assume they are distinct, since otherwise U does not win. Let WIN be
the event that the experiment outputs 1. Let r,K be the random choices made by
PEKSH1,H2,H3,H4(pk,w) in the experiment. Then we let

T = e(rP, sH1(w)), T′ = e(rP, sH1(w′)),
c = K⊕H4(T), K′ = c ⊕ H4(T′),

K2 = H2(T), K′
2 = H2(T′),

t = H3(K‖w), t′ = H3(K′ ‖w′).

The random choices of H1,H2,H3,H4, r and K determine all these random variables.
Let BAD be the event that Test(tw′, (C, c, t,K2)) = 1. Let BIG be the event that either
w or w′ has length greater than or equal to f (k). Then

Advpeks-consist
PEKS,U (k) = Pr[BAD] ≤ Pr[BAD ∧ BIG] + Pr[BAD ∧ ¬BIG]

≤ Pr[BAD | BIG] + Pr[BAD ∧ ¬BIG].

366 M. Abdalla et al.

Suppose BIG holds. If |w′| ≥ f (k) then Test(tw′ ,C) will return 1 only if C = w′. But
this will not be the case because either |w| ≥ f (k) and C = w �= w′, or |w| < f (k) and,
for large enough k, |C| < f (k) ≤ |w′|. On the other hand if |w| ≥ f (k) and |w′| < f (k)

then C = w and the latter cannot be parsed as an appropriate 4-tuple (rP, c, t,K2), so
Test will return 0. We conclude that Pr[BAD | BIG] = 0 for all large enough k. We now
want to bound

Pr[BAD ∧ ¬BIG] = Pr
[

BAD ∧ ¬BIG ∧ H1(w) �= H1(w
′)

]

︸ ︷︷ ︸
p1

+ Pr
[

BAD ∧ ¬BIG ∧ H1(w) = H1(w
′)

]

︸ ︷︷ ︸
p2

.

We bound p1,p2 in turn. We let S be the set of all distinct pairs (g, g′) of elements in
G1. So p1 is at most the sum, over all (g, g′) ∈ S, of the product terms

Pr
[
H2(e(rP,g)) = H2(e(rP,g′)) | (H1(w),H1(w

′)) = (g, g′)
]

× Pr
[
(H1(w),H1(w

′)) = (g, g′)
]
.

Properties of pairings tell us that g �= g′ implies e(rP,g) �= e(rP,g′). So due to the
randomness of H2, the first term of each product above is 2−3k . However, there are at
most p2 choices for the pair (g, g′), and we know that p < 2k+1. Thus we have

p1 ≤ p2 · 2−3k ≤ 22k+2−3k = 4 · 2−k.

(As we discussed above, the intuition here is that with probability at least 1−4 ·2−k the
function H2 is injective.) We now proceed to bound p2. In this argument, we regard H1
as fixed. (Formally, imagine that we condition on a particular choice of H1. This suffices
since what follows holds for all values of this choice.) Let U be the set of all pairs
(V ,V ′) of distinct keywords of length at most f (k) each such that H1(V) = H1(V

′).
For any (V ,V ′) ∈ U we let

Keys(V ,V ′) = {
A ∈ {0,1}k: H3(A‖V) = H3(A‖V ′)

}
.

We say that (V ,V ′) is heavy if |Keys(V ,V ′)| ≥ 2k/2, and light otherwise. We let
Lt(V ,V ′) denote the event that (V ,V ′) is light and Hw(V ,V ′) the event that (V ,V ′)
is heavy, where the probability is over the choice of H3 only. Then p2 ≤ pL + pH

where

pL =
∑

(V ,V ′)∈U

Pr
[

BAD ∧ (w,w′) = (V ,V ′) ∧ Lt(V ,V ′)
]
,

pH =
∑

(V ,V ′)∈U

Pr
[

BAD ∧ (w,w′) = (V ,V ′) ∧ Hw(V ,V ′)
]
.

We bound these in turn. We have

pL =
∑

(V ,V ′)∈U

Pr
[
BAD | (w,w′) = (V ,V ′) ∧ Lt(V ,V ′)

]

Searchable Encryption Revisited: Consistency Properties, Relation to Anonymous IBE 367

× Pr
[
(w,w′) = (V ,V ′) ∧ Lt(V ,V ′)

]

≤
∑

(V ,V ′)∈U

2k/2

2k
· Pr

[
(w,w′) = (V ,V ′) ∧ Lt(V ,V ′)

]

= 2−k/2 ·
∑

(V ,V ′)∈U

Pr
[
(w,w′) = (V ,V ′) ∧ Lt(V ,V ′)

]

≤ 2−k/2. (6)

Equation (6) is justified by the definition of the Test, the fact that K is chosen at random
from {0,1}k and the fact that (V ,V ′) is light. Now we turn to bounding pH . �

Claim. For any (V ,V ′) ∈ U ,

Pr
[

Hw(V ,V ′)
] ≤ O(2−2k/2

),

where the probability is only over the choice of H3.
Note the bound of the claim is double-exponentially small. We prove the claim later.

Using it we can conclude via the union bound:

pH =
∑

(V ,V ′)∈U

Pr
[

BAD ∧ (w,w′) = (V ,V ′) ∧ Hw(V ,V ′)
]

≤
∑

(V ,V ′)∈U

Pr
[

Hw(V ,V ′)
] ≤ 22+2f (k) · O(2−2k/2

) ≤ O(2−g(k)),

where g(k) = 2k/2 − 2 − 2f (k) = �(2k/2). So certainly 2−g(k) is O(2−k).

Proof of Claim. We use an occupancy problem approach:

Pr
[

Hw(V ,V ′)
] =

2k∑

i=2k/2

(
2k

i

)
· (2−k)i · (1 − 2−k)2k−i ≤

2k∑

i=2k/2

(
2k

i

)
· (2−k)i

≤
2k∑

i=2k/2

(
2k · e

i

)i

· (2−k)i ≤
2k∑

i=2k/2

(
e

i

)i

≤
∞∑

i=2k/2

(
e

i

)i

.

Let x = e2−k/2. For k ≥ 6, we have x ≤ 1/2. So the above is at most

∞∑

i=2k/2

xi = x2k/2 ·
∞∑

i=0

xi = x2k/2 1

1 − x
≤ 2

22k/2 ,

as desired. �

368 M. Abdalla et al.

4. PEKS and Anonymous IBE

We formally define anonymity of IBE schemes and investigate the relation between
PEKS and anonymous IBE.

4.1. Definitions

IBE Schemes An identity-based encryption (IBE) scheme [9,23] IBE = (Setup,

KeyDer,Enc,Dec) consists of four PTAs. Via (pk,msk)
$← Setup(1k) the master gen-

erates master keys for security parameter k ∈ N; via usk[id] $← KeyDerH (msk, id) the

master computes the secret key for identity id; via C
$← EncH (pk, id,M) a sender en-

crypts a message M to identity id to get a ciphertext; via M ← DecH (usk,C) the pos-
sessor of secret key usk decrypts ciphertext C to get back a message. Here H is a
random oracle with domain and range possibly depending on k and pk. Associated to
the scheme is a message space MsgSp obeying the conventions discussed in Sect. 2. For
consistency, we require that for all k ∈ N, all identities id and messages M ∈ MsgSp(k)

we have Pr[DecH (KeyDerH (msk, id),EncH (pk, id,M)) = M] = 1, where the probabil-

ity is taken over the choice of (pk,msk)
$← Setup(1k), the random choice of H , and the

coins of all the algorithms in the expression above.

Privacy and Anonymity Privacy (IBE-IND-CPA) follows [9] while anonymity
(IBE-ANO-CPA) is a straightforward adaptation of [3] to IBE schemes. Let IBE =
(Setup,KeyDer,Enc,Dec) be an IBE scheme with associated message space MsgSp.
To an adversary A and bit b ∈ {0,1}, we associate the following experiments:

Experiment Expibe-ind-cpa-b
IBE,A (k)

IDSet ← ∅ ; (pk,msk)
$← Setup(1k)

pick random oracle H

(id,M0,M1, state)
$← AKEYDER(·),H (find,pk)

if {M0,M1} �⊆ MsgSp(k) then return 0

C
$← EncH (pk, id,Mb)

b′ $←AKEYDER(·),H (guess,C, state)
if id �∈ IDSet and |M0| = |M1|
then return b′ else return 0

Experiment Expibe-ano-cpa-b
IBE,A (k)

IDSet ← ∅ ; (pk,msk)
$← Setup(1k)

pick random oracle H

(id0, id1,M, state)
$← AKEYDER,H (find,pk)

if M �∈ MsgSp(k) then return 0

C
$← EncH (pk, idb,M)

b′ $← AKEYDER,H (guess,C, state)
if {id0, id1} ∩ IDSet = ∅
then return b′ else return 0

where the oracle KEYDER(id) is defined as

IDSet ← IDSet ∪ {id} ; usk[id] $← KeyDerH (msk, id) ; Return usk[id].
For prop ∈ {ind, ano}, we define the advantage of A in the corresponding experiment as

Advibe-prop-cpa
IBE,A (k) = Pr

[
Expibe-prop-cpa-1

IBE,A (k) = 1
] − Pr

[
Expibe-prop-cpa-0

IBE,A (k) = 1
]
.

IBE scheme IBE is said to be IBE-IND-CPA-secure (resp., IBE-ANO-CPA-secure) if
the respective advantage function is negligible for all PTAs A.

Searchable Encryption Revisited: Consistency Properties, Relation to Anonymous IBE 369

Setup(1k)

(pk,msk)
$← Setup(1k)

R
$← {0,1}k

pk ← (pk,R) ; msk ← (msk,R)

return (pk,msk)

KeyDer(msk, id)

parse msk as (msk,R)

usk
$← KeyDer(msk, id)

usk ← (usk,R)

return usk

Enc(pk, id,M)

parse pk as (pk,R)

C
$← Enc(pk, id,M‖R)

return C

Dec(usk,C)

parse usk as (usk,R)

X ← Dec(usk,C)

parse X as M‖R′ where |R′| = k

if R′ = R then return M
else return 0k

Fig. 4. IBE scheme for proof of Theorem 4.1.

4.2. The ibe-2-peks Transform

The ibe-2-peks transform suggested in [8] takes input an IBE scheme IBE = (Setup,

KeyDer,Enc,Dec) and returns a PEKS scheme PEKS = (KG,Td,PEKS,Test) as fol-
lows. The public key pk and secret key sk of the receiver in the PEKS scheme are the
master public and secret keys, respectively, of the IBE scheme (i.e., KG = Setup). The
trapdoor tw associated to keyword w is the secret key that the IBE scheme would assign
to the identity w (i.e., Td(sk,w) = KeyDer(sk,w)). A keyword w is PEKS-encrypted by
IBE-encrypting the message 0k for the identity w (i.e., PEKS(pk,w) = Enc(pk,w,0k)).
Finally, testing is done by checking that the ciphertext decrypts to 0k (i.e., Test(tw,C)

returns 1 iff Dec(tw,C) = 0k).
We know that BF -IBE is anonymous (Theorem 4.4), that BDOP -PEKS =

ibe-2-peks(BF -IBE), and that BDOP -PEKS is not statistically consistent (Proposi-
tion 3.2). Thus, we can conclude that the ibe-2-peks transform does not necessarily yield
a statistically consistent PEKS scheme. Unfortunately, as the following theorem shows,
the ibe-2-peks transform does not necessarily yield a computationally consistent PEKS
scheme either (under the minimal assumption of the existence of some IBE-IND-CPA-
and IBE-ANO-CPA-secure IBE scheme). As a result, ibe-2-peks is not in general a
suitable way to obtain a PEKS scheme.

Theorem 4.1. Assume there exist IBE-ANO-CPA-secure and IBE-IND-CPA-secure
IBE schemes. Then there exists a IBE-ANO-CPA-secure and IBE-IND-CPA-secure IBE
scheme IBE such that the PEKS scheme PEKS derived from IBE via ibe-2-peks is not
computationally consistent.

Proof (Sketch). The proof of Theorem 4.1 is quite simple and its details are omit-
ted here. Instead, we only provide the general intuition behind it. In order to show
that ibe-2-peks does not necessarily yield a computationally consistent PEKS scheme,
we first assume the existence of a IBE-IND-CPA- and IBE-ANO-CPA-secure IBE
scheme IBE = (Setup,KeyDer,Enc,Dec) and then build an IBE scheme IBE =
(Setup,KeyDer,Enc,Dec) as shown in Fig. 4. It is easy to see that the IBE-IND-CPA-

370 M. Abdalla et al.

and IBE-ANO-CPA-security of IBE follows from simple reductions from the security
of IBE . Now, let PEKS denote the PEKS scheme outputted by ibe-2-peks on input IBE .
Clearly, PEKS is not computationally consistent as its test algorithm outputs 1 with
overwhelming probability, when given the trapdoor for the wrong keyword. The only
case in which it outputs 0 when given the wrong trapdoor is when the last k bits of
the decryption of the ciphertext C with the wrong trapdoor matches the random value
R in the public key pk, but this only happens with negligible probability due to the
IBE-IND-CPA security of the IBE scheme IBE . �

4.3. The new-ibe-2-peks Transform

The negative result in Theorem 4.1 raises the question: Does the existence of IBE
schemes imply the existence of computationally consistent PEKS schemes? We an-
swer that in the affirmative by presenting a revision of the ibe-2-peks transform, called
new-ibe-2-peks, that transforms any IBE-IND-CPA- and IBE-ANO-CPA-secure IBE
scheme into a PEKS-IND-CPA-secure and computationally consistent PEKS scheme. It
is similar to ibe-2-peks except that instead of always using 0k as the message encrypted,
the PEKS-encryption algorithm chooses and encrypts a random message R and appends
R in the clear to the ciphertext. In more detail, the new-ibe-2-peks transform takes input
an IBE scheme IBE = (Setup,KeyDer,Enc,Dec) and returns a PEKS scheme PEKS =
(KG,Td,PEKS,Test) as follows. The public key pk and secret key sk of the receiver
in the PEKS scheme are the master public and secret keys, respectively, of the IBE
scheme. (I.e. KG = Setup.) The trapdoor associated to keyword w is the secret key
that the IBE scheme would assign to the identity w. (I.e. Td(sk,w) = KeyDer(sk,w).)

PEKS-encryption of keyword w is done as follows: PEKS(pk,w) picks R
$← {0,1}k ,

lets C
$← Enc(pk,w,R), and returns (C,R) as the ciphertext. Finally, Test(tw, (C,R))

returns 1 iff Dec(tw,C) = R.
Intuitively, this construction avoids the problem of oddly-behaving Dec algorithms

by making sure that the only way to ruin the consistency of the PEKS scheme is by
correctly guessing the value encrypted by a ciphertext, using the secret key of a different
identity, which should not be possible for an IBE-IND-CPA-secure IBE scheme. Hence,
the consistency of the resulting PEKS scheme is due to the data privacy property of
the IBE scheme, while the data privacy property of the PEKS scheme comes from the
anonymity of the IBE scheme. The formal result statement and proof follow.

Theorem 4.2. Let IBE be an IBE scheme and let PEKS be the PEKS scheme de-
rived from IBE via new-ibe-2-peks. If IBE is IBE-IND-CPA-secure, then PEKS is
computationally consistent. Further, if IBE is IBE-ANO-CPA-secure, then PEKS is
PEKS-IND-CPA-secure.

Proof. Let U be any PTA attacking the computational consistency of PEKS , and con-
sider the following PTA A attacking the IBE-IND-CPA-security of IBE . In its find
stage, given master public key pk, adversary A runs U(pk) to get keywords w,w′. It

returns w as the challenge identity and R0,R1
$← {0,1}k as the challenge messages. In

the guess stage, given challenge ciphertext C (that encrypts Rb under identity w for

Searchable Encryption Revisited: Consistency Properties, Relation to Anonymous IBE 371

challenge bit b ∈ {0,1}), A uses its key-derivation oracle to obtain a trapdoor tw′ for w′.
If Dec(tw′ ,C) = R1 then it returns 1 else it returns 0. It is easy to see that

Pr
[

Expibe-ind-cpa-1
IBE,A (k) = 1

] ≥ Pr
[

Exppeks-consist
PEKS,U (k) = 1

]
,

Pr
[

Expibe-ind-cpa-0
IBE,A (k) = 1

] ≤ 2−k.

Thus Advpeks-consist
PEKS,U (k) ≤ Advibe-ind-cpa

IBE,A (k)+2−k , proving the first claim of the theorem.
Let B be any PTA attacking the PEKS-IND-CPA-security of PEKS , and consider

the following PTA A attacking the IBE-ANO-CPA-security of IBE . In its find stage,
given master public key pk, adversary A runs B(find,pk) to get challenge keywords

w0,w1, which it returns along with a message R
$← {0,1}k . In the guess stage, given

challenge ciphertext C (that encrypts R under identity wb for challenge bit b ∈ {0,1}),
A runs B, in its guess stage, with challenge ciphertext (C,R), to get its guess bit b′,
which A returns. In both stages, A answers any trapdoor-oracle queries of B via its
key-derivation oracle. It is easy to see that for b = 0,1,

Pr
[

Expibe-ano-cpa-b
IBE,A (k) = 1

] = Pr
[

Exppeks-ind-cpa-b
PEKS,B (k) = 1

]
.

Thus Advpeks-ind-cpa
PEKS,B (k) ≤ Advibe-ano-cpa

IBE,A (k), proving the second claim of the theo-
rem. �

4.4. A Sufficient Condition for Anonymity

Halevi [19] provides a simple sufficient condition for an IND-CPA public-key encryp-
tion scheme to meet the notion of anonymity (a.k.a. key-privacy) of [3]. The condition
is that even a computationally unbounded adversary, given public keys pk0,pk1 and the
encryption of a random message under pkb , have only a negligible advantage in deter-
mining the random challenge bit b. Towards finding anonymous IBE schemes (a task
motivated by Theorem 4.2) we extend Halevi’s condition to identity-based encryption.
In the process we also extend it in two other ways: first to handle the random ora-
cle model (the standard model is a special case) and second to weaken the statistical
(i.e. information-theoretic) requirement of [19] to a computational one. (The applica-
tion of this paper does not need the last extension, but it may be useful in other con-
texts.)

We begin by defining a relevant (new) notion of security that we call IBE-ANO-RE-
CPA. Let IBE = (Setup,KeyDer,Enc,Dec) be an IBE scheme with associated message
space MsgSp. We associate to an adversary A and bit b ∈ {0,1} the following experi-
ment:

372 M. Abdalla et al.

Experiment Expibe-ano-re-b
IBE,A (k)

IDSet ← ∅ ; (pk,msk)
$← Setup(1k)

pick random oracle H

(id0, id1,M, state)
$←AKEYDER(·),H (find,pk)

if M �∈ MsgSp(k) then return 0

R
$← {0,1}|M| ; C

$← EncH (pk, idb,R)

b′ $←AKEYDER(·),H (guess,C, state)
if {id0, id1} ∩ IDSet = ∅ then return b′
else return 0

Oracle KEYDER(id)

IDSet ← IDSet ∪ {id}
usk[id] $← KeyDerH (msk, id)

return usk[id]

The IBE-ANO-RE-CPA-advantage of an adversary A in violating the anonymity of the
scheme IBE is defined as

Advibe-ano-re
IBE,A (k) = Pr

[
Expibe-ano-re-1

IBE,A (k) = 1
] − Pr

[
Expibe-ano-re-0

IBE,A (k) = 1
]
.

A scheme IBE is said to be IBE-ANO-RE-CPA-secure if the above advantage is a
negligible function in k for all PTAs A.

Lemma 4.3. Let IBE be an IBE scheme that is IBE-IND-CPA and IBE-ANO-RE-
CPA-secure. Then it is also IBE-ANO-CPA-secure.

Proof of Lemma 4.3. The proof is a simple hybrid argument. Let A be a PTA at-
tacking the IBE-ANO-CPA-security of IBE . It is easy to construct PTAs A1,A3 attack-
ing the IBE-IND-CPA-security of IBE , and PTA A2 attacking the IBE-ANO-RE-CPA-
security of IBE , such that

Pr
[

Expibe-ano-cpa-1
IBE,A (k) = 1

] − Pr
[

Expibe-ano-re-1
IBE,A (k) = 1

] ≤ Advibe-ind-cpa
IBE,A1

(k),

Pr
[

Expibe-ano-re-1
IBE,A (k) = 1

] − Pr
[

Expibe-ano-re-0
IBE,A (k) = 1

] ≤ Advibe-ano-re
IBE,A2

(k),

Pr
[

Expibe-ano-re-0
IBE,A (k) = 1

] − Pr
[

Expibe-ano-cpa-0
IBE,A (k) = 1

] ≤ Advibe-ind-cpa
IBE,A3

(k).

Summing concludes the proof. We omit the details, save to remark that we use here the
second convention about message spaces noted in Sect. 2. �

4.5. Anonymity of BF -IBE

The Boneh–Franklin BasicIdent IBE scheme [9] is shown in Fig. 5. We apply
Lemma 4.3 to give a simple proof that it is IBE-ANO-CPA.

Theorem 4.4. The BF -IBE scheme is IBE-ANO-CPA-secure assuming that the BDH
is hard relative to generator G.

Proof. Given Lemma 4.3, and given that the BF -IBE scheme is IBE-IND-CPA-secure
[9], it suffices to show that the scheme is IBE-ANO-RE-CPA-secure. Notice that the ci-
phertext C in Fig. 5 has two parts, namely U = rP and V = M ⊕ H2(T). The value

Searchable Encryption Revisited: Consistency Properties, Relation to Anonymous IBE 373

Setup(1k)

(G1,G2,p, e)
$← G(1k)

P
$← G

∗
1 ; s

$← Z
∗
p

pk ← (G1,G2,p, e,P, sP) ; msk ← s

return (pk,msk)

KeyDerH1(msk, id)

sk[id] ← sH1(id)

return sk[id]

EncH1,H2(pk, id,M)

r
$← Z

∗
p ; T ← e(H1(id), sP)r

C ← (rP,M⊕H2(T))

return C

DecH2(sk[id],C)

parse C as (U,V)

T ← e(sk[id],U) ; M ← V ⊕H2(T)

return M

Fig. 5. Algorithms of the IBE scheme BF -IBE = (Setup,KeyDer,Enc,Dec). Here G is a pairing parameter
generator and H1 : {0,1}∗ → G

∗
1 and H2 : G2 → {0,1}k are random oracles. The message space is defined by

MsgSp(k) = {0,1}k for all k ∈ N.

U is chosen uniformly at random from G
∗
1 by the encryption algorithm. If the mes-

sage M is chosen uniformly at random from {0,1}k , then V is also uniformly distrib-
uted in {0,1}k and independent of the H2(T). Thus in both the 0- and 1-worlds of
the IBE-ANO-RE-CPA-security game, the challenge ciphertext C has exactly the same
distribution. Therefore any adversary against IBE-ANO-RE-CPA-security will have 0
advantage. �

5. Anonymous HIBE

5.1. Definitions

HIBE Schemes A hierarchical identity-based encryption (HIBE) scheme [7,15,20]
is a generalization of an IBE scheme in which an identity is a vector of strings
id = (id1, . . . , idl) with the understanding that when l = 0 this is the empty vector ().
The number of components in this vector is called the level of the identity and is de-
noted |id|. If 0 ≤ i ≤ l then id|i = (id1, . . . , idi) denotes the vector containing the first i

components of id. If |id′| ≥ l + 1 (l ≥ 0) and id′|l = id then we say that id is an ancestor
of id′, or equivalently, that id′ is a descendant of id. If the level of id′ is l + 1 then id
is a parent of id′, or, equivalently, id′ is a child of id. For any id with |id| ≥ 1 we let
par(id) = id||id|−1 denote its parent. Two nodes id = (id1, . . . , idl) and id′ = (id′

1, . . . ,

id′
l) at level l are said to be siblings iff id|l−1 = id′|l−1. Moreover, if idl < id′

l in lexico-
graphic order, then id is a left sibling of id′ and id′ is a right sibling of id. An identity
at level one or more can be issued a secret key by its parent. (And thus an identity can
issue keys for any of its descendants if necessary.)

Formally a HIBE scheme HIBE = (Setup,KeyDer,Enc,Dec) consists of four PTAs.

Via (pk,msk = usk[()]) $← Setup(1k), where k ∈ N is a security parameter, the root
generates master keys, with the secret key being associated to the (unique) identity ()

at level 0. Via usk[id] $← KeyDerH (usk[par(id)], id) the parent of an identity id with
|id| ≥ 1 can compute a secret key for id. Note that by iteratively applying the KeyDer

374 M. Abdalla et al.

algorithm a user id can derive secret keys for any of its descendants id′; we occa-

sionally use the notation usk[id′] $← KeyDerH (usk[id], id′) to denote this process. Via

C
$← EncH (pk, id,M) a sender encrypts a message M to identity id to get a ciphertext;

via M ← DecH (usk[id],C) the identity id decrypts ciphertext C to get back a message.
Here H is a random oracle with domain and range possibly depending on k and pk.
Associated to the scheme is a message space MsgSp obeying the conventions discussed
in Sect. 2. For consistency, we require that for all k ∈ N, all identities id with |id| ≥ 1
and all messages M ∈ MsgSp(k),

Pr
[

DecH (KeyDerH (usk[par(id)], id),EncH (pk, id,M)) = M
] = 1,

where the probability is taken over the choice of (pk,usk[()]) $← Setup(1k), the random
choice of H , and the coins of all the algorithms in the expression above.

Privacy and Anonymity The notion of privacy for HIBE schemes is analogous to that
for IBE schemes (IBE-IND-CPA) but using identity vectors rather than identity strings
and where the adversary is not allowed to query the KEYDER oracle for the secret key
of any ancestor of the identity under attack. Since we will deal with schemes where
privacy holds only up to some level, the notion is parameterized by a maximum depth
function d : N → N, and all identities id (in queries or challenges) must have |id| ≤ d(k).
To allow a fine-grained treatment of anonymity we introduce the concept of anonymity
at a set L(k) of levels, meaning that in an experiment the adversary A is challenged
to distinguish two distinct identities differing only at levels l ∈ L(k). (Here for each k,
L(k) is a finite set of integers. For ease of notation, we will write l rather than {l} when
L(k) = {l} is a singleton set.)

Formally, let HIBE = (Setup,KeyDer,Enc,Dec) be an identity-based encryption
scheme with message space MsgSp, let d : N → N be the maximum depth, and let L be
a set of levels. Let diff(· , ·) be the function that returns the set of coordinates at which
the input identities differ, and anc(·) the function returning the set of ancestors of the
input identity. To any bit b ∈ {0,1} and any adversary A, we associate the experiments:

Experiment Exphibe-ind-cpa-b[d]
HIBE,A (k)

IDSet ← ∅ ; (pk,msk)
$← Setup(1k)

pick random oracle H

(id,M0,M1, state)
$← AKEYDER(·),H (find,pk)

if |M0| �= |M1| or |id| > d(k)

or {M0,M1} �⊆ MsgSp(k)

then return 0

C
$← EncH (pk, id,Mb)

b′ $← AKEYDER(·),H (guess,C, state)
if IDSet ∩ anc(id) = ∅

then return b′ else return 0

Experiment Exphibe-ano-cpa-b[L,d]
HIBE,A (k)

IDSet ← ∅ ; (pk,msk)
$← Setup(1k)

pick random oracle H

(id0, id1,M, state)
$← AKEYDER(·),H (find,pk)

if |id0| �= |id1| or |id0| > d(k)

or |id1| > d(k) or M �∈ MsgSp(k)

then return 0

C
$← Enc(pk, idb,M)

b′ $← AKEYDER(·),H (guess,C, state)
if IDSet ∩ (anc(id0) ∪ anc(id1)) = ∅ and

diff(id0, id1) ⊆ L(k)

then return b′ else return 0

Searchable Encryption Revisited: Consistency Properties, Relation to Anonymous IBE 375

where the oracle KEYDER(·) is defined as

if |id| > d(k) then return ⊥ ; IDSet ← IDSet ∪ {id} ; return KeyDer(msk, id).

We define the advantage of A in the corresponding experiments as

Advhibe-ind-cpa[d]
HIBE,A (k) = Pr

[
Exphibe-ind-cpa-1[d]

HIBE,A (k) = 1
]

− Pr
[

Exphibe-ind-cpa-0[d]
HIBE,A (k) = 1

]

Advhibe-ano-cpa[L,d]
HIBE,A (k) = Pr

[
Exphibe-ano-cpa-1[L,d]

HIBE,A (k) = 1
]

− Pr
[

Exphibe-ano-cpa-0[L,d]
HIBE,A (k) = 1

]
.

The scheme HIBE is said to be HIBE-IND-CPA[d]-secure (resp. HIBE-ANO-
CPA[L,d]-secure) if the respective advantage function is negligible for all PTAs A.

5.2. A Sufficient Condition for Anonymity

We further extend Lemma 4.3 to the hierarchical case. To this end, we introduce a new
notion HIBE-ANO-RE-CPA[L,d] as follows. Let HIBE = (Setup,KeyDer,Enc,Dec)
be a HIBE scheme with message space MsgSp, let L be a set of levels, and let d be the
maximum hierarchy depth. To an adversary A and a bit b, we associate the following
experiment:

Experiment Exphibe-ano-re-b[L,d]
HIBE,A (k)

IDSet ← ∅ ; (pk,msk)
$← Setup(1k)

pick random oracle H

(id0, id1,M, state)
$← AKEYDER(·),H (find,pk)

if |id0| �= |id1| or |id0| > d(k) or |id1| > d(k)

or M �∈ MsgSp(k) then return 0

R
$← {0,1}|M| ; C

$← EncH (pk, idb,R)

b′ $← AKEYDER(·),H (guess,C, state)
if IDSet ∩ ({id0, id1} ∪ anc(id0) ∪ anc(id1)) = ∅

and diff(id0, id1) ⊆ L(k)

then return b′ else return 0

Oracle KEYDER(id)

if |id| > d(k) then return ⊥
IDSet ← IDSet ∪ {id}
return KeyDerH (msk, id)

The HIBE-ANO-RE-CPA[L,d]-advantage of an adversary A in violating the level-L
anonymity of the scheme HIBE with depth d(k) is defined as

Advhibe-ano-re[L,d]
HIBE,A (k) = Pr

[
Exphibe-ano-re-1[L,d]

IBE,A (k) = 1
]

− Pr
[

Exphibe-ano-re-0[L,d]
IBE,A (k) = 1

]
.

A scheme HIBE is said to be HIBE-ANO-RE-CPA[L,d]-secure if this advantage is a
negligible function in k for all PTAs A. The following lemma follows from a hybrid
argument similar to that of Lemma 4.3.

376 M. Abdalla et al.

Lemma 5.1. Let HIBE be a HIBE scheme that is HIBE-IND-CPA[d] and
HIBE-ANO-RE-CPA[L,d]-secure for some set of levels L and hierarchy depth d . Then
HIBE is also HIBE-ANO-CPA[L,d]-secure.

5.3. Construction

The HIBE scheme of [20] appears to be anonymous, but supports only two levels of
identities, and is only resistant against limited collusions at the second level, and hence
is not usable for our constructions that follow. Since the HIBE of [15], here denoted
GS -HIBE , is equivalent to the Boneh–Franklin IBE scheme [9] when restricted to the
first level, and since the latter is provably anonymous as per Theorem 4.4, one could
hope that GS -HIBE is level-1 anonymous, but this turns out not to be true, and the
HIBE of [7] is not level-1 anonymous either. To see why, consider the following. The
GS -HIBE encryption of a message M under identity id = (id1, . . . , idl) is a tuple

(
rP, rH1(id|2), . . . , rH1(id|l), H2(e(rP,H1(id1))) ⊕ m

)
(7)

where H1,H2 are random oracles, P is a generator of a pairing group that is part of pk,
and r is chosen at random from Zp by the encryption algorithm. Anonymity is violated
because an adversary can decide whether a given ciphertext (C1,C2,C3) is intended for
id = (id1, id2) or id′ = (id′

1, id2) by checking whether e(C2,P) equals e(C1,H1(id))

or e(C1,H1(id′)).
The lack of anonymity in GS -HIBE stems from the fact that the hashes in the first l

components of the ciphertext depend on the first component of the recipient’s identity.
In Fig. 6, we present a modified mGS -HIBE scheme that uses a different random oracle
H1,l for each level l, and that computes ciphertexts as

(
rP, rH1,2(id2), . . . , rH1,l(idl), H2(e(rP,H1,1(id1))) ⊕ m

)
.

The following implies in particular that mGS -HIBE is the first full HIBE scheme pro-
viding anonymity at any level. The restriction on d is inherited from [15]. We note
that, subsequently to our work, Boyen and Waters [11] proposed a HIBE scheme that is
anonymous at all levels in the standard (i.e., non-random-oracle) model.

Theorem 5.2. For any d(k) = O(log(k)), the mGS -HIBE scheme is HIBE-ANO-
CPA[1, d]-secure and HIBE-IND-CPA[d]-secure in the random oracle model assum-
ing the BDH problem is hard relative to the generator G.

We split up the proof in the following two lemmas. The proof of the first is given in
Appendix B, and recycles ideas from [9,15]. We use Lemma 5.1 to prove the second
lemma.

Lemma 5.3. For any d(k) = O(log(k)), the mGS -HIBE scheme is HIBE-IND-
CPA[d]-secure in the random oracle model assuming the BDH problem is hard rela-
tive to the generator G.

Lemma 5.4. For any d(k) = O(log(k)), the mGS -HIBE scheme is HIBE-ANO-
CPA[1, d]-secure in the random oracle model assuming the BDH problem is hard rela-
tive to the generator G.

Searchable Encryption Revisited: Consistency Properties, Relation to Anonymous IBE 377

Setup(1k)

(G1,G2,p, e)
$← G(1k) ; P

$← G
∗
1

s0
$← Z

∗
p ; S0 ← 0 ; Q0 ← s0P

pk ← (G1,G2,p, e,P,Q0)

msk ← (pk, (), S0, s0)

return (pk,msk)

KeyDerH1,1,...,H1,l (usk, id)

parse id as (id1, . . . , idl+1)

parse usk as (pk, id|l , Sl,Q1, . . . ,Ql−1, sl)

parse pk as (G1,G2,p, e,P,Q0)

Sl+1 ← Sl + slH1,l+1(idl+1)

Ql ← slP ; sl+1
$← Z

∗
p

return (pk, id, Sl+1,Q1, . . . ,Ql, sl+1)

EncH1,1,...,H1,l ,H2 (pk, id,M)

parse pk as (G1,G2,p, e,P,Q0)

parse id as (id1, . . . , idl)

r
$← Z

∗
p ; C1 ← rP

for i = 2, . . . , l do Ci ← rH1,i (idi)

Cl+1 ← M ⊕ H2(e(rH1,1(id1),Q0))

return (C1, . . . ,Cl+1)

DecH2 (usk,C)

parse usk as (pk, id, Sl,Q1, . . . ,Ql−1, sl)

parse id as (id1, . . . , idl)

parse pk as (G1,G2,p, e,P,Q0)

parse C as (C1, . . . ,Cl+1)

κ ← e(Sl,C1) · ∏l
i=2 e(Qi−1,Ci)

−1

return Cl+1 ⊕ H2(κ)

Fig. 6. Algorithms of the mGS -HIBE scheme. G is a pairing parameter generator and H1,i : {0,1}∗ → G
∗
1

and H2 : G2 → {0,1}k are random oracles.

Proof. Given Lemmas 5.1 and 5.3, it suffices to show that mGS -HIBE is HIBE-ANO-
RE-CPA[1, d]-secure. In the challenge ciphertext (C∗

1, . . . ,C∗
l+1), the first component

C1 is chosen uniformly at random from G
∗
1. Component C∗

i for 2 ≤ i ≤ l is uniquely
defined by C∗

1 and the i-th component of the identity, which is the same for both chal-
lenge identities since they can only differ at level 1. Finally, if the message M is cho-
sen uniformly at random from {0,1}k , then the last component C∗

l+1 is also uniformly
distributed over {0,1}k , independent of H2(e(rH1,1(id1),Q0)). Hence, the challenge
ciphertext is identically distributed in both worlds, and the advantage of any adversary
is 0. �

6. Public-Key Encryption with Temporary Keyword Search

In a PEKS scheme, once the gateway has the trapdoor for a certain keyword, it can
test whether this keyword was present in past ciphertexts, and can test its presence in
any future ciphertexts. It may be useful to limit the period in which the trapdoor can
be used. Here we propose an extension of PEKS that allows this. We call it public-key
encryption with temporary keyword search (PETKS) or temporarily searchable encryp-
tion for short. A trapdoor here is created for a time interval [s, e] and will only allow the
gateway to test whether ciphertexts created in this time interval contain the keyword.

6.1. Definitions

PETKS Schemes Public-key encryption with temporary keyword search (PETKS) is
a generalization of PEKS in which a trapdoor can be issued for any desired window
of time rather than forever. Formally, the scheme PETKS = (KG,Td,PETKS,Test,N)

consists of four PTAs and a function N : N → N. Via (pk, sk)
$← KG(1k), the receiver

generates its public and secret key; via C
$← PETKSH (pk,w, i) a sender encrypts a key-

word w in time period i ∈ [0,N(k) − 1] to get a ciphertext; via tw
$← TdH (sk,w, s, e)

378 M. Abdalla et al.

the receiver computes a trapdoor tw for keyword w in period [s, e] where 0 ≤ s ≤
e ≤ N(k) − 1, and provides it to the gateway; via b ← TestH (tw,C) the gateway tests
whether C encrypts w, where b is a bit with 1 meaning “accept” or “yes” and 0 meaning
“reject” or “no”. Here H is a random oracle whose domain and/or range might depend
on k and pk. We require that for all k ∈ N, all s, e, i with 0 ≤ s ≤ i ≤ e ≤ N(k) − 1, and
all w ∈ {0,1}∗,

Pr
[

TestH (TdH (sk,w, s, e),PETKSH (pk,w, i)) = 1
] = 1,

where the probability is taken over the choice of (pk, sk)
$← KG(1k), the random choice

of H , and the coins of all the algorithms in the expression above.

Consistency Consistency for PETKS schemes requires that no user U can output key-
words w,w′ and time period indices s, e, i ∈ [1,N(k)−1] such that w �= w′ or i �∈ [s, e],
yet still an encryption of w for time period i tests positively under a trapdoor for key-
word w′ and time period [s, e]. We define the advantage Advpetks-consist

PETKS,U (k) as the proba-
bility that U succeeds in doing so. Just like for standard PEKS schemes, we distinguish
between perfect, statistical and computational consistency.

Privacy Privacy for a PETKS scheme asks that an adversary be unable to distinguish
between the encryption of two challenge keywords of its choice in a time period i ∈
[0,N(k) − 1] of its choice, even if it is allowed not only to obtain trapdoors for non-
challenge keywords issued for any time interval, but also is allowed to obtain trapdoors
for any keywords (even the challenge ones), issued for time intervals not containing i.
The formal experiment and the definition of PETKS-IND-CPA-advantage and security
are otherwise analogous to those of standard PEKS schemes, and hence are omitted
here.

6.2. Constructions for PETKS Schemes

Constructions with Linear Complexity PETKS is reminiscent of forward-security
[4,12], and, as in these works, there are straightforward solutions with keys or trap-
doors of length linear in N(k). One such solution is to use a standard PEKS scheme
and generate a different key pair (pki , ski) for each time period i ∈ [0,N(k) − 1]. Let
pk = (pk0, . . . ,pkN(k)−1) be the PETKS public key and sk = (sk0, . . . , skN(k)−1) be the
PETKS secret key. During time period i, the sender encrypts a keyword w by encrypt-
ing w under pki using the PEKS scheme. The trapdoor for a keyword w in the interval
[s, e] consists of all PEKS trapdoors for w of periods s, . . . , e. A somewhat more effi-
cient solution is to let the PETKS master key pair be a single key pair for the standard
PEKS scheme, and append the time period to the keyword (making sure that the string
is uniquely decodable, e.g. by using a special separator symbol) when encrypting or
computing trapdoors. This scheme achieves short public and secret keys, but still has
trapdoor length linear in N(k), because the PETKS trapdoor still contains PEKS trap-
doors for all time periods s, . . . , e. Note that both these construction only work for
polynomially bounded N(k).

Searchable Encryption Revisited: Consistency Properties, Relation to Anonymous IBE 379

The hibe-2-petks transform We now present a transformation hibe-2-petks of a HIBE
scheme into a PETKS scheme that yields a PETKS scheme with complexity logarith-
mic in N(k) for all parameters. The construction is very similar to the generic con-
struction of forward-secure encryption from binary-tree encryption [12]. The number
of time periods is N(k) = 2t (k) for some polynomially bounded function t : N → N.
If i ∈ [0,N(k) − 1], then let i1, . . . , it (k) denote its binary representation as a t (k)-bit
string. Intuitively, our construction instantiates a HIBE of depth t (k)+ 1 with keywords
as the first level of the identity tree and the time structure on the lower levels. The trap-
door for keyword w and interval of time periods [s, e] consists of the user secret keys
of all identities from (w, s1, . . . , st (k)) to (w, e1, . . . , et (k)), but taking advantage of the
hierarchical structure to include entire subtrees of keys.

More precisely, let HIBE = (Setup,KeyDer,Enc,Dec) be a HIBE scheme. Then
we associate to it a PETKS scheme PETKS = hibe-2-petks(HIBE, t (k)) = (KG,Td,

PETKS,Test,N) such that N(k) = 2t (k), KG(1k) = Setup(1k) and PETKS(pk,w, i) =
(i,R,C) where R

$← {0,1}k and C ← Enc(pk, (w, i1, . . . , it (k)),R). The trapdoor al-
gorithm Td(sk,w, s, e) first constructs a set T of identities as follows. Let j be
the smallest index so that sj �= ej . Then T is the set containing (w, s1, . . . , st (k)),
(w, e1, . . . , et (k)), the right siblings of all nodes on the path from (w, s1, . . . , sj+1) to
(w, s1, . . . , st (k)), and the left siblings of all nodes on the path from (w, e1, . . . , ej+1)

to (w, e1, . . . , et (k)). If j does not exist, meaning s = e, then T ← {(w, s1, . . . , st (k))}.
The trapdoor tw is the set of tuples ((w, i1, . . . , ir),KeyDer(sk, (w, i1, . . . , ir))) for all
(i1, . . . , ir) ∈ T . To test a ciphertext (i,R,C), the Test algorithm looks up a tuple ((w, i1,

. . . , ir),usk[(w, i1, . . . , ir)]) in tw. It returns 0 when no such tuple is found. Otherwise,
it derives usk[(w, i1, . . . , it (k))] using repetitive calls to the KeyDer algorithm, and re-
turns 1 iff Dec(usk[(w, i1, . . . , it (k))],C) = R.

Theorem 6.1. Let HIBE be a HIBE scheme, and let PETKS =
hibe-2-petks(HIBE, t (k)) for some polynomially bounded function t : N → N. If HIBE
is HIBE-ANO-CPA[1, t (k) + 1]-secure, then PETKS is PETKS-IND-CPA-secure. Fur-
thermore, if HIBE is HIBE-IND-CPA[t (k)+ 1]-secure, then PETKS is computationally
consistent.

We split the proof of the theorem over the following two lemmas.

Lemma 6.2. Let HIBE be a HIBE scheme, and let PETKS = hibe-2-petks(HIBE, t (k))

for some polynomially bounded function t : N → N. If HIBE is
HIBE-ANO-CPA[1, t (k) + 1]-secure, then PETKS is PETKS-IND-CPA-secure.

Proof. Let HIBE = (Setup,KeyDer,Enc,Dec) be a level-1 anonymous (HIBE-ANO-
CPA[1, t (k) + 1]-secure) HIBE scheme, and let PETKS = hibe-2-petks(HIBE, t (k)) =
(KG,Td,PETKS,Test,N) be the associated PETKS scheme. Given an adversary A
breaking the PETKS-IND-CPA security of PETKS , we construct an adversary B break-
ing the HIBE-ANO-CPA[1, t (k) + 1] security of HIBE as follows. On input public
parameters pk, B runs A on inputs (find,pk). When A queries its TRAPD oracle for
the trapdoor of keyword w for interval [s, e], then B constructs a set T exactly as the

380 M. Abdalla et al.

Td algorithm does, and constructs the corresponding trapdoor by querying its KEYDER

oracle for the user secret keys corresponding to all identities in T .
When A outputs challenge keywords w0,w1 and time period i, B outputs challenge

identities id0 = (w0, i1, . . . , it (k)), id1 = (w1, i1, . . . , it (k)) and a randomly chosen mes-
sage M of length k. Note that identities id0 and id1 differ on level 1, but are otherwise
equal, as required for level-1 anonymity. Upon receiving challenge ciphertext C, adver-
sary B sends (i,R,C) to A and runs it until A outputs a bit b′ (responding to A’s oracle
queries the same way as before). Adversary B outputs the same bit b′.

It is easy to see that, due to the ordered structure of the time tree, adversary B does
not need to corrupt any ancestors of its challenge identities. Therefore, adversary B
succeeds whenever A does, and we have

Advpetks-ind-cpa
PETKS,A (k) ≤ Advhibe-ano-cpa[1,t (k)+1]

HIBE,B (k)

for all k ∈ N, from which the lemma follows. �

Lemma 6.3. Let HIBE be a HIBE scheme, and let PETKS = hibe-2-petks(HIBE, t (k))

for some polynomially bounded function t : N → N. If HIBE is HIBE-IND-
CPA[t (k) + 1]-secure, then PETKS is computationally consistent.

Proof. Let A be an adversary of the consistency of PETKS . We construct an
HIBE-IND-CPA adversary B of HIBE as follows.

Adversary BKEYDER(·)(find,pk)

(w,w′, s, e, i) $←A(pk)

R,R′ $← {0,1}k (where {0,1}k is the message space of HIBE)
id ← (w, i1, . . . , it (k))

M0 ← R ; M1 = R′
state ← (pk,w,w′,R,R′, s, e, i)
return (id,M0,M1, state)

Adversary BKEYDER(·)(guess,C, state)
parse C as (i,R,C′)
tw′

$← KEYDER((w′, i1, . . . , it (k))) ; X ← Dec(tw′ ,C′)
if X = R′ then return 1 else return 0

Since, by construction, Test(tw,C) returns 0 whenever i /∈ [s, e], we can assume that
w′ �= w and i ∈ [s, e]. Then, exactly as in Theorem 4.2, we have

Pr
[

Exphibe-ind-cpa-1[t (k)+1]
HIBE,B (k) = 1

] ≥ Pr
[

Exppetks-consist
PETKS,A (k) = 1

]
, (8)

Pr
[

Exphibe-ind-cpa-0[t (k)+1]
HIBE,B (k) = 1

] ≤ 2−l . (9)

Equations (8) and (9) give us

Advpetks-consist
PETKS,A (k) ≤ Advhibe-ind-cpa[t (k)+1]

HIBE,B (k) + 2−l .

The result follows. �

Searchable Encryption Revisited: Consistency Properties, Relation to Anonymous IBE 381

Complexity Since the mGS -HIBE has user secret keys and ciphertexts of size linear
in the depth of the tree, our resulting PETKS scheme has public and secret keys of
size O(1), ciphertexts of size O(logN(k)) and trapdoors of size O(log2 N(k)). We
note that in this case a user can decrypt ciphertexts intended for any of its descendants
directly, without needing to derive the corresponding secret key first. This makes the
call to the KeyDer algorithm in the Test algorithm superfluous, thereby improving the
efficiency of Test. Note that since the mGS -HIBE scheme is only secure for tree depths
d(k) = O(log(k)), the derived PETKS scheme is restricted to a polynomial number of
time periods.

Unbounded Time Periods Using the techniques of [21], one can create a variant of
our scheme with efficiency depending on the number of elapsed time periods, rather
than the maximal number of time periods N(k). This means that there is no efficiency
penalty for overestimating N(k), so that a sufficiently high value can be chosen when
setting up the system. However, for security reasons the number of time periods remains
limited to a maximum of N(k) ≤ 2d(k)−�logd(k)�−1 periods, where d(k) is the maximum
depth of the underlying HIBE scheme.

7. Identity-Based Encryption with Keyword Search

In this section, we show how to combine the concepts of identity-based encryption and
PEKS to obtain identity-based encryption with keyword search (IBEKS) or ID-based
searchable encryption for short. Like in IBE schemes, this allows to use any string as a
recipient’s public key for the PEKS scheme.

7.1. Definitions

IBEKS Schemes An identity-based encryption with keyword search scheme IBEKS =
(Setup,KeyDer,Td, IBEKS,Test) is made up of five algorithms. Via (pk,msk)

$←
Setup(1k), where k ∈ N is the security parameter, the master generates the master keys;

via usk[id] $← KeyDerH (msk, id), the master computes the secret key for identity id;

via C
$← IBEKSH (pk, id,w), a sender encrypts a keyword w to identity id to get a ci-

phertext; via tw
$← TdH (usk[id],w), the receiver computes a trapdoor tw for keyword

w and identity id and provides it to the gateway; via b ← TestH (tw,C), the gateway
tests whether C encrypts w, where b is a bit with 1 meaning “accept” or “yes” and 0
meaning “reject” or “no”. As usual H is a random oracle whose domain and/or range
might depend on k and pk. For correctness, we require that for all k ∈ N, all identities
id, and all w ∈ {0,1}∗,

Pr
[

TestH (TdH (KeyDerH (msk, id),w), IBEKSH (pk, id,w)) = 1
] = 1,

where the probability is taken over the choice of (pk,msk)
$← Setup(1k), the random

choice of H , and the coins of all algorithms in the expression above.

382 M. Abdalla et al.

Consistency The notion of consistency for IBEKS is similar to the one given for
PEKS. The advantage of a user U is defined as the probability that, on input the master
public key pk, it can output keywords w,w′ and identities id, id′ such that w �= w′ or
id �= id′, yet still an encryption of w under identity id tests positively under a trapdoor
derived for keyword w′ and identity id′. We again distinguish between perfect, statistical
and computational consistency. Note that this definition also considers it a consistency
problem if a trapdoor for identity id′ tests positively for a ciphertext intended for iden-
tity id �= id′. This type of problems is easily avoided by having the KeyDer, Td and
IBEKS algorithms include the intended identity into the user secret keys, trapdoors and
ciphertexts, respectively.

Privacy We define privacy for IBEKS schemes says that an adversary should not be
able to distinguish between the encryption of two different challenge keywords w0,w1
of its choice for any identity id of its choice. Moreover, this should be the case even
if the adversary is allowed to obtain trapdoors for non-challenge keywords issued for
any identity and to obtain trapdoors for w0,w1 for identities other than id. The advan-
tage function Advibeks-ind-cpa

IBEKS,A (k) of an adversary A and the notion of IBEKS-IND-CPA
security are defined analogously to standard PEKS schemes.

7.2. A Generic Transformation from Anonymous HIBE Schemes

We now propose a generic transform, called hibe-2-ibeks, to convert any HIBE scheme
with two levels into an IBEKS scheme. To obtain an IBEKS that is IBEKS-IND-CPA-
secure, it is sufficient to start with a HIBE that is anonymous at level 2. Moreover, if
the underlying HIBE is HIBE-IND-CPA[2]-secure, then the resulting IBEKS is also
computationally consistent.

The hibe-2-ibeks Transform Given a HIBE scheme HIBE = (Setup,KeyDer,
Enc,Dec) with two levels, hibe-2-ibeks returns the IBEKS scheme IBEKS =
(Setup,KeyDer, IBEKS,Td,Test) such that KeyDer(msk, id) = (usk, id) where usk

$←
KeyDer(msk, id), IBEKS(pk, id,w) = (id,R,C) where R

$← {0,1}k and C = Enc(pk,

(id,w),R), Td(usk = (usk, id),w) = (id, tw) where tw
$← KeyDer(usk, (id,w)) and

Test(tw = (id, tw), (id′,R,C)) returns 1 iff Dec(tw,C) = R and id = id′.

Theorem 7.1. Let HIBE be a HIBE scheme and let IBEKS = hibe-2-ibeks(HIBE).
If HIBE is HIBE-IND-CPA[2]-secure, then IBEKS is computationally consistent. Fur-
thermore, if HIBE is HIBE-ANO-CPA[2,2]-secure, then IBEKS is IBEKS-IND-CPA-
secure.

The proof of Theorem 7.1 follows from Lemmas 7.2 and 7.3.

Lemma 7.2. Let HIBE be a HIBE scheme and let IBEKS = hibe-2-ibeks(HIBE). If
HIBE is HIBE-ANO-CPA[2,2]-secure, then IBEKS is IBEKS-IND-CPA-secure.

Proof. Given an adversary A breaking the IBEKS-IND-CPA-security of IBEKS , we
construct an HIBE-ANO-CPA[2,2]-adversary B breaking HIBE as follows. On input

Searchable Encryption Revisited: Consistency Properties, Relation to Anonymous IBE 383

a public key pk, algorithm B runs A on the same input, answering A’s KEYDER(·)
queries by forwarding the output of its own KEYDER(·) oracle, and answering A’s
TRAPD(id,w) oracle queries by querying its own KEYDER(·) oracle for the secret key
corresponding to identity (id,w). When A outputs a challenge identity id� and two
challenge keywords w�

0,w�
1, adversary B chooses a random message M� ∈ {0,1}k and

outputs M� as the challenge message and id�
0 = (id�,w�

0) and id�
1 = (id�,w�

1) as the chal-
lenge identities, which in fact differ only in the second entry. Let C� be the challenge
ciphertext that B receives at the beginning of its guess phase. Adversary B returns
(M�,C�) to A, and continues to run A (answering TRAPD queries the same way as be-
fore) until it outputs a bit b′. Algorithm B then outputs the same bit b′ as its own output.

It is clear from the construction that B’s simulation of A’s environment is perfect.
Since A cannot query its TRAPD oracle on keywords (id�,w�

0) and (id�,w�
1), B will

not be forced to query its KEYDER on identities id�
0 and id�

1, and hence wins the game
whenever A does. Therefore, we have that

Advibeks-ind-cpa
IBEKS,A (k) ≤ Advhibe-ano-cpa[2,2]

HIBE,B (k),

from which the theorem follows for CPA security. This proves the lemma. �

Lemma 7.3. Let HIBE be a HIBE scheme and let IBEKS = hibe-2-ibeks(HIBE). If
HIBE is HIBE-IND-CPA[2]-secure, then IBEKS is computationally consistent.

Proof. Let A1 be an adversary of the consistency of IBEKS . We construct an
HIBE-IND-CPA[2] adversary B1 of HIBE as follows.

Adversary BKEYDER(·)
1 (find,pk)

(w,w′, id, id′) $← A1(pk) ; R,R′ $← {0,1}l (where {0,1}l is the message space
of HIBE)

id = (id′,w)

w0 = R ; w1 = R′
state = (pk,w,w′,R,R′)
return (id,w0,w1, state)

Adversary BKEYDER(·)
1 (guess,C, state)

tw′
$← KEYDER((id′,w′)) ; X ← Dec(tw′ ,C)

if X = R′ then return 1 else return 0

Since, by construction, Test(tw,C) returns 0 whenever id �= id′, we can assume that
w′ �= w and id′ = id. Thus, exactly as in Theorem 4.2, we have

Pr
[

Exphibe-ind-cpa-1[2]
HIBE,B1

(k) = 1
] ≥ Pr

[
Expibeks-consist

IBEKS,A (k) = 1
]
, (10)

Pr
[

Exphibe-ind-cpa-0[2]
HIBE,B1

(k) = 1
] ≤ 2−l . (11)

Equations (10) and (11) give us

Advibeks-consist
IBEKS,A1

(k) ≤ Advhibe-ind-cpa[2]
HIBE,B1

(k) + 2−l .

The result follows. �

384 M. Abdalla et al.

7.3. Concrete Instantiations

Neither the GS -HIBE scheme of [15] nor the mGS -HIBE scheme of Fig. 6 are anony-
mous at the second level. For the GS -HIBE scheme, consider an adversary A who out-
puts challenge identities id = (id1, id2) and id′ = (id1, id′

2) for any id1, id2, id′
2 ∈ {0,1}∗

such that id2 �= id′
2, and any challenge message M ∈ {0,1}k . When given the challenge

ciphertext C = (C1,C2,C3), A checks whether e(C1,H1(id)) = e(P,C2). (See (7)
for how ciphertexts are created in the GS -HIBE scheme.) If the test succeeds, then
A returns 0, otherwise it returns 1. It is easy to see that the advantage of A is
Advhibe-ano-cpa[2,2]

GS-HIBE,A (k) ≥ 1 − 2−k . A similar attack can be mounted on the mGS -HIBE
scheme by checking whether e(C1,H1,2(id2)) = e(P,C2).

In Appendix A.3, we show that the recently introduced HIBE scheme by Boneh
et al. [7] is not level-2 anonymous either (and actually, not anonymous at any level).
Subsequent to our work, Boyen and Waters [11] proposed a fully anonymous HIBE
scheme that, when used to instantiate our generic construction, immediately yields an
IBEKS scheme with security and consistency in the standard model.

7.4. Identity-Based Encryption with Temporary Keyword Search

The ideas of Sects. 6 and 7 can be further combined to create an identity-based encryp-
tion scheme with temporary keyword search. This can be constructed from a level-2
anonymous HIBE scheme by putting the users’ identities at the first level of the hierar-
chy, the keywords at the second, and a binary tree of time frames on the levels below.

Acknowledgements

We thank Nigel Smart for suggesting the concept of temporarily searchable encryp-
tion. Second and tenth authors were supported in part by NSF grants ANR-0129617
and CCR-0208842 and by an IBM Faculty Partnership Development Award. The fourth
author was supported by the research program Sentinels (http://www.sentinels.nl). Sen-
tinels is being financed by Technology Foundation STW, the Netherlands Organization
for Scientific Research (NWO), and the Dutch Ministry of Economic Affairs. Fifth au-
thor was supported by an IBM Ph.D. Fellowship. Eighth author is a Postdoctoral Fel-
low of the Research Foundation—Flanders (FWO), and was supported in part by the
Flemish Government under GOA Mefisto 2006/06 and Ambiorix 2005/11, and by the
European Commission through the IST Project PRIME. The rest of the authors were
supported in part by the European Commission through the IST Program under Con-
tract IST-2002-507932 ECRYPT.

Appendix A. Attacks Against the Anonymity of Existing Schemes

A.1. Waters’ IBE Scheme

We recall Waters’ IBE scheme [25] W -IBE = (Setup,KeyDer,Enc,Dec) in Fig. 7. As-
sociated with W -IBE is a polynomial n. It is assumed that all user identities are n(k)-
bit (e.g. 160-bit) strings (for instance obtained by hashing the actual identity using a

Searchable Encryption Revisited: Consistency Properties, Relation to Anonymous IBE 385

Setup(1k)

(G1,G2,p, e)
$← G(1k)

P,Q
$← G

∗
1 ; α

$← Zp ; P1 ← αP ; Q1 ← αQ

U [0 . . . n] $← G
n+1
1 ; E ← e(P,Q)

pk ← (G1,G2,p, e,P,P1,U ,E)

msk ← (pk,Q1)

return (pk,msk)

KeyDer(msk, id)

parse msk as ((G1,G2,p, e,P,P1,U ,E),Q1)

r
$← Zp ; V ← U [0] + ∑n

i=1 id[i]U [i]
usk[id] ← (Q1 + rV, rP)

return usk[id]

Enc(pk, id,M)

parse pk as
(G1,G2,p, e,P,P1,U ,E)

V ← U [0] + ∑n
i=1 id[i]U [i]

t
$← Zp ; T ← Et

C ← (T · M, tP , tV)

return C

Dec(usk[id],C)

parse usk[id] as (S1, S2),
C as (C1,C2,C3)

T ′ ← e(S1,C2) · e(S2,C3)
−1

return T ′−1 · C1

Fig. 7. The algorithms constituting W -IBE . Identities are represented as bit strings id = id[1, . . . , n] ∈
{0,1}n .

collision-resistant hash function), which are written as id = id[1]id[2] . . . id[n], where
each id[i] (1 ≤ i ≤ n) is a bit id[i] ∈ {0,1}. (We drop the argument k to n when k is
understood.) The message space is defined by MsgSp(k) = {0,1}k , and messages are
encoded as elements of G2 in the scheme.

We now describe a PTA A against the IBE-ANO-CPA-security of W -IBE . In the
find stage it gets input a public key (G1,G2,p, e,P,P1,U ,E), and returns any
two distinct n-bit strings id0, id1 as challenge identities, along with any k-bit chal-
lenge message. In the guess phase, given a challenge ciphertext C = (C1,C2,C3)

formed by encrypting M under idb , where b ∈ {0,1} is the challenge bit, it computes
V ′ ← U [0]+∑n

i=1 id1[i]U [i]. If e(P,C3) = e(C2,V
′) then it returns 1 else it returns 0.

It is easy to see that Advibe-ano-cpa
W -IBE,A (k) ≥ 1 − 2−k .

A.2. Boneh–Boyen’s IBE Scheme

The IBE scheme by Boneh and Boyen [6], here referred to as BB-IBE , is depicted in
Fig. 8. An identity is represented by a vector of n(k) symbols id[1, . . . , n] ∈ 	n where
	 is an alphabet of size s. In the original scheme, these are obtained as the output of an
admissible hash function, but we ignore this here as it is irrelevant to the attack.

Consider a PTA A that, on input pk = (G1,G2,p, e,P,P1,Q,U), outputs any
two distinct identities id0, id1 ∈ 	n, and any message M ∈ {0,1}k . Let i ∈ {1, . . . , n}
be an index so that id0[i] �= id1[i]. When A is given the challenge ciphertext C =
(C1, . . . ,Cn+2), it checks whether e(C2,U [i, id0[i]]) = e(P,Ci+2). If so, then A re-
turns 0, else it returns 1. It is easily verified that Advibe-ano-cpa

BB-IBE,A (k) ≥ 1 − 2−k .

A.3. Boneh–Boyen–Goh’s HIBE Scheme

The recently proposed BBG-HIBE scheme [7], depicted in Fig. 9, is not anonymous
at any single level, and therefore not at any set of multiple levels either. This can
be seen from the following adversary A that breaks the anonymity at level l. On
input pk = (G1,G2,p, e,P,P1,Q,Q2,U), adversary A outputs challenge identities

386 M. Abdalla et al.

Setup(1k)

(G1,G2,p, e)
$← G(1k)

P,Q
$← G

∗
1 ; α

$← Zp ;
P1 ← αP ; Q1 ← αQ

U [1 . . . n,1 . . . s]) $← G
n×s
1

pk ← (G1,G2,p, e,P,P1,Q,U)

msk ← (pk,Q1)

return (pk,msk)

KeyDer(msk, id)

parse msk as
((G1,G2,p, e,P,P1,U ,Q),Q1)

r1, . . . , rn
$← Zp ; V ← ∑n

i=1 riU [i, id[i]]
usk[id] ← (Q1 + V, r1P, . . . , rnP)

return usk[id]

Enc(pk, id,M)

parse pk as (G1,G2,p, e,P,P1,U ,Q)

t
$← Zp ; T ← e(P1,Q)t

C ← (T · M, tP , tU [1, id[1]], . . . ,
tU [n, id[n]])

return C

Dec(usk[id],C)

parse usk[id] as (S1, S2, . . . , Sn+1)

parse C as (C1, . . . ,Cn+2)

T ′ ← e(S1,C2) · ∏n
i=1 e(Si+1,Ci+2)

−1

return T ′−1 · C1

Fig. 8. The algorithms constituting BB-IBE . Identities are represented as vectors of symbols id =
id[1, . . . , n] ∈ 	n, where |	| = s.

Setup(1k)

(G1,G2,p, e)
$← G(1k)

P
$← G1 ; α

$← Zp ; P1 ← αP

Q,Q2
$← G1 ; Q1 ← αQ

U [1 . . . d(k)]) $← G
d(k)
1

pk ← (G1,G2,p, e,P,P1,Q,Q2,U)

msk ← (pk,Q1,0, . . . ,0)

return (pk,msk)

KeyDer(usk, id)

l ← |id|
parse usk as (pk,A,B,Sl, . . . , Sd(k))

parse pk as
(G1,G2,p, e,P,P1,Q,Q2,U)

parse id as (id1, . . . , idl) ; r
$← Zp

A′ ← A + idlSl

+ r(id1U [1] + · · · + idlU [l] + Q2)

B ′ ← B + rP

for l + 1 ≤ i ≤ d(k) do S′
i ← Si + rU [i]

return (pk,A′,B ′, S′
l+1, . . . , S

′
d(k))

Enc(pk, id,M)

parse pk as
(G1,G2,p, e,P,P1,Q,Q2,U)

parse id as (id1, . . . , idl)

t
$← Zp ; T ← e(P1,Q)t

C3 ← t (id1U [1] + · · · + idlU [l] + Q2)

C ← (T · M, tP ,C3)

return C

Dec(usk,C)

parse usk as (pk,A,B,Sl, . . . , Sd(k))

parse pk as
(G1,G2,p, e,P,P1,Q,Q2,U)

parse C as (C1,C2,C3)

T ′ ← e(A,C2) · e(B,C3)
−1

return T ′−1 · C1

Fig. 9. The algorithms constituting BBG-HIBE with maximum hierarchy depth d(k). An identity at level l

is represented as a vector id = (id1, . . . , idl) ∈ Z
l
p .

(id1, . . . , idl−1, idl) and (id1, . . . , idl−1, id′
l) for any id1, . . . , idl , id′

l ∈ Zp such that
idl �= id′

l , and any challenge message M ∈ {0,1}k . When given the challenge ciphertext
C = (C1,C2,C3), A checks whether e(C2, id1U [1] + · · · + idlU [l] + Q2) = e(P,C3).

Searchable Encryption Revisited: Consistency Properties, Relation to Anonymous IBE 387

If this is the case, then A returns 0, otherwise it returns 1. It is easily verified that
Advhibe-ano-cpa[l,d]

BBG-HIBE,A (k) ≥ 1 − 2−k .

Appendix B. Proof of Lemma 5.3

Suppose that there is an adversary A of mGS -HIBE that breaks its HIBE-IND-CPA[d]
security. We will show how to use A in the construction of a simulator B that solves the
bilinear Diffie–Hellman problem. Let n1,i be the number of queries that A makes to the
H1,i oracle, let n2 be the number of queries to the H2 oracle, let ne be the number of
queries to the key extraction oracle, and let nh = ∑d(k)

i−1 n1,i + n2 be the total number of
hash queries.

The simulator is given as input (P, aP,bP, cP). It sets Q0 ← bP as the pub-
lic key and then runs A(find,pk). The simulator responds to A’s queries as de-
scribed below. To maintain consistency between queries it keeps lists L1,1, . . . ,L1,d(k),
L2 and L3. All lists are initially empty. At the very beginning the simulator chooses

n∗
1,i

$← {1, . . . , n1,i} and s∗
i , x∗

i

$← Z
∗
p , and it computes Q∗

i ← s∗
i (bP) for 1 ≤ i ≤ d(k).

For the description of the simulation we distinguish between H1,1 queries and H1,i

queries for i ≥ 2. Without loss of generality, we assume that before querying the
KEYDER oracle to obtain the secret key of id = (id1, . . . , idl), adversary A first queried
H1,i (idi) for all 1 ≤ i ≤ l.

H1,1 Queries: To respond to a query id1, proceed as follows.

• If L1,1 contains (id1,P1,∗) for some P1, respond with P1.
• If this is the n∗

1,1-th call to the H1,1 oracle, let id∗
1 ← id1, add (id∗

1, aP,⊥) to
L1,1 and respond with aP .

• Else, randomly choose an integer x1
$← Z

∗
p , add (id1, x1P,x1) to L1,1 and reply

with x1P .

H1,i Queries, i ≥ 2: To respond to a query idi , proceed as follows.

• If L1,i contains (idi , Pi,∗) for some Pi then respond with Pi .
• If this is the n∗

1,i -th query to the H1,i oracle, let id∗
i ← idi , add (id∗

i , x
∗
i P , x∗

i) to
L1,i and respond with x∗

i P .

• Else, choose an integer xi
$← Z

∗
p and compute Pi ← xiP − s∗

i−1
−1(aP +

∑i−1
j=2 s∗

j−1x
∗
j P). If Pi = 0, then abort; else, add (idi , Pi, xi) to L1,i and reply

with Pi .

H2 Queries: To respond to a query κ , proceed as follows.

• If (κ,K) ∈ L2 for some K , respond with K .
• Else, choose K uniformly at random from {0,1}n, respond with K and add

(κ,K) to L2.

KeyDer Queries: To respond to a query id = (id1, . . . , idl), proceed as follows.

• If (id1, . . . , idl) = (id∗
1, . . . , id∗

l), then B aborts.
• Let j be the largest integer 1 ≤ j ≤ l so that (id|j , Sj ,Q1, . . . ,Qj−1, sj) ∈ L3,

or let j = 0 if such element does not exist.

388 M. Abdalla et al.

• For i = j + 1, . . . , l, do the following:
– Find (idi , Pi, xi) ∈ L1,i .
– If i = 1 and id1 = id∗

1, then add (id∗
1,⊥,⊥) to L3. If i = 1 and id1 �= id∗

1, then

compute S1 ← xi(bP), choose s1
$← Z

∗
p , and add (id1, S1, s1) to L3.

– If i > 1 and Si−1 �= ⊥, then look up (idi , Pi, xi) in L1,i , compute Si ← Si−1 +
si−1Pi , Qi−1 ← si−1P , choose si

$← Z
∗
p , and add (id|i , Si,Q1, . . . ,Qi−1, si)

to L3.
– If i > 1 and Si−1 = ⊥ and idi = id∗

i , then compute Qi−1 ← s∗
i−1(bP) and

add (id|i ,⊥,Q1, . . . ,Qi−1,⊥) to L3.
– If i > 1, Si−1 = ⊥ and idi �= id∗

i , then look up (idi , Pi, xi) in L1,i , com-

pute Si ← s∗
i−1xiP , let Qi−1 ← s∗

i−1(bP), choose si
$← Z

∗
p , and add

(id|i , Si,Q
∗
1, . . . ,Q

∗
i−1, si) to L3.

• Find (id, Sl,Q1, . . . ,Ql−1, sl) ∈ L3 and return (id, Sl,Q1, . . . ,Ql−1, sl).

At some point A outputs (id = (id1, id2, . . . , idl),M0,M1, state). Without loss of gen-
erality, we assume that the adversary submitted idi to the H1,i oracle before for all
1 ≤ i ≤ l. If id �= (id∗

1, . . . , id∗
l), then B aborts. Otherwise, he sets C∗

1 ← cP , C∗
2 ←

x∗
2 (cP), . . . ,Cl ← x∗

l (cP), he chooses C∗
l+1 uniformly at random from {0,1}n, and

lets C∗ ← (C∗
1,C∗

2, . . . ,C∗
l+1). He then proceeds to run A(guess,C∗, state). Once A

completes its attack by outputting its guess b′, the simulator chooses a random element
(κ,K) from L2 and outputs κ as its solution to the bilinear Diffie–Hellman problem.

We first show that our simulator B provides a real attack environment for A as long
as B doesn’t abort. The public key pk given to A is correctly distributed because the
challenge elements aP,bP, cP are random elements from G

∗
1. The responses to H1,i

queries are uniformly distributed over G
∗
1 due to the independent random choices of

xi (when simulating queries H1,i (idi), idi �= id∗
i , 1 ≤ i ≤ d(k)), of x∗

i (which is used
to simulate H1,i (id∗

i) queries, 2 ≤ i ≤ d(k)) and due to the uniform distribution of aP

(which is used to simulate H1,1(id∗
1)). Responses to H2 queries are easily seen to be

correctly distributed. The way KEYDER queries are handled requires a bit more ex-
planation. For all level-1 identities id1 �= id∗

1, the returned secret key (S1, s1) contains
the unique group element S1 such that e(Q0,H1,1(id1)) = e(S1,P) and a uniformly
distributed scalar s1, as in the real game. For all descendants of id1 �= id∗

1, the secret
keys are derived from (S1, s1) exactly as in the real scheme. Now consider identity
(id∗

1, . . . , id∗
i−1, idi) with idi �= id∗

i , for which a tuple (Si,Q1, . . . ,Qi−1, si) is returned
as the secret key. The values Q1, . . . ,Qi−2 are inherited from the ancestors, as in the
real scheme; Qi−1 is a random group element due to the random choice of s∗

i−1; and si
is a random element in Z

∗
p . The simulated value Si = s∗

i−1xi(bP) is then the unique

group element such that e(H1,1(id∗
1),Q0) = e(Si,P) · ∏i−1

j=2 e(H1,j (id∗
j),Qj−1)

−1 ·
e(H1,i (idi),Qi−1)

−1, as required by the scheme. This can be seen from:

e(H1,1(id
∗
1), Q0) ·

i−1∏

j=2

e(H1,j (id
∗
j), Qj−1) · e(H1,i (idi), Qi−1)

= e(aP, bP) ·
i−1∏

j=2

e(x∗
j P , s∗

j−1bP)

Searchable Encryption Revisited: Consistency Properties, Relation to Anonymous IBE 389

· e
(

xiP − s∗
i−1

−1

(

aP +
i−1∑

j=2

s∗
j−1x

∗
j P

)

, s∗
i−1bP

)

= e(aP,bP) · e
(

i−1∑

j=2

s∗
j−1x

∗
j P , bP

)

· e
(

s∗
i−1xiP − aP −

i−1∑

j=2

s∗
j−1x

∗
j P , bP

)

= e(S3,P).

The secret keys of descendants of these nodes are derived from (Si,Q1, . . . ,Qi−1, si)

as dictated by the scheme, and hence are correctly distributed as well.
The only part of A’s environment left to analyze is the challenge ciphertext C∗ =

(C∗
1, . . . ,C∗

l+1). The first component C∗
1 = cP is uniformly distributed over G

∗
1, and

the second to l-th components are the unique group elements such that e(C∗
i , P) =

e(C∗
1,H1,i (id∗

i)) for 2 ≤ i ≤ l. The last component C∗
l+1 however may deviate from the

distribution in a real game, depending on A’s H2 queries. In the following, we show
that this does not harm our analysis, intuitively because the only way A can distinguish
between the real and the simulated game is by making an H2 query that helps B solve
the BDH problem.

Let s0 be the master secret key of the scheme in a real HIBE-IND-CPA[d] attack on
mGS -HIBE , and let D ← e(s0H1,1(id1), C∗

1). Let Ask be the event that A queries the
H2 oracle on point D. Let PrR[·] denote the probability of an event taking place in
a real attack on mGS -HIBE , and let PrB[·] denote the probability in the environment
simulated by B. We argue that PrR[Ask] = PrB[Ask], as long as B doesn’t abort. Let
Aski be the event that A queries H2(D) within the first i queries to H2. Obviously,
PrR[Ask0] = PrB[Ask0] = 0. Now assume that PrR[Aski−1] = PrB[Aski−1]. We
have that

PrR[Aski] = PrR[Aski | Aski−1] · PrR[Aski−1]
+ PrR[Aski | ¬Aski−1] · PrR[¬Aski−1]

= PrR[Aski−1] + PrR[Aski | ¬Aski−1] · PrR[¬Aski−1].
We know that PrR[Aski−1] = PrB[Aski−1], so we only have to show that PrR[Aski |
¬Aski−1] = PrB[Aski | ¬Aski−1]. Given that ¬Aski−1 and that B’s simulation
didn’t abort, the simulated public key, the oracle responses and the first l components of
the ciphertext provided by B are distributed exactly as in a real attack, as we explained
before. Moreover, since A did not query for H2(D) yet, from A’s point of view the last
ciphertext component C∗

l+1 is a random string in {0,1}n, both in the real attack and in
the simulated environment. Since all the information on which A can base its decision
for its next H2 query is identically distributed in both environments, the probability that
A chooses to query D is the same in both environments as well. Hence, we have that
PrR[Aski] = PrB[Aski], and by induction that PrR[Ask] = PrB[Ask].

The probability that A wins a real attack against mGS -HIBE can be written as

PrR[A wins] = PrR[A wins ∧ Ask] + PrR[A wins ∧ ¬Ask]

390 M. Abdalla et al.

= PrR[A wins ∧ Ask] + 1

2
≤ PrR[Ask] + 1

2
,

where the second equation is true because in the event ¬Ask, the distribution of the
challenge ciphertext is completely independent of M0,M1, and hence the probability
that A guesses correctly is 1/2. Since PrR[Ask] = PrB[Ask] and moreover

PrR[A wins] = 1

2
· Advhibe-ind-cpa[d]

mGS-HIBE,A (k) + 1

2
,

it follows that

PrB[Ask] ≥ 1

2
· Advhibe-ind-cpa[d]

mGS-HIBE,A (k).

Now we only have to relate B’s advantage in solving the BDH problem to PrB[Ask].
In the game simulated by B, the probability that B guesses the correct identities such
that id = (id∗

1, . . . , id∗
l) 1/

∏l
i=1 n1,i ≥ n

−d(k)
h ; the probability that B guesses the correct

H2 query is 1/n2 ≥ n−1
h ; and the probability that B aborts when answering H1,i queries

is
∑d(k)

i=1 n1,i/(p − 1) ≤ nh/2k . The advantage of B in solving the BDH problem is

Advbdh
G,B(k) ≥ 1

n
d(k)+1
h

·
(

1 − nh

2k

)
· PrB[Ask]

and hence

Advhibe-ind-cpa[d]
mGS-HIBE,A (k) ≤ 2 · nd(k)+1

h · Advbdh
G,B(k) + nh

2k
,

from which the theorem follows.

References

[1] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-Lee, G. Neven, P. Pail-
lier, H. Shi, Searchable encryption revisited: consistency properties, relation to anonymous IBE, and
extensions, Cryptology ePrint Archive, 2005. http://eprint.iacr.org/

[2] M. Ajtai, C. Dwork, A public-key cryptosystem with worst-case/average-case equivalence, in 29th An-
nual ACM Symposium on Theory of Computing, El Paso, TX, USA, May 4–6, 1997 (ACM Press, New
York, 1997), pp. 284–293

[3] M. Bellare, A. Boldyreva, A. Desai, D. Pointcheval, Key-privacy in public-key encryption, in Advances
in Cryptology—ASIA CRYPT 2001, ed. by C. Boyd, Gold Coast, Australia, December 9–13, 2001.
Lecture Notes in Computer Science, vol. 2248 (Springer, Berlin, 2001), pp. 566–582

[4] M. Bellare, S.K. Miner, A forward-secure digital signature scheme, in Advances in Cryptology—
CRYPTO’99, ed. by M.J. Wiener, Santa Barbara, CA, USA, August 15–19, 1999. Lecture Notes in
Computer Science, vol. 1666 (Springer, Berlin, 1994), pp. 431–448

[5] M. Bellare, P. Rogaway, Random oracles are practical: a paradigm for designing efficient protocols, in
ACM CCS 93: 1st Conference on Computer and Communications Security, Fairfax, VA, November 3–5,
1993 (ACM Press, New York, 1993), pp. 62–73

[6] D. Boneh, X. Boyen, Secure identity based encryption without random oracles, in Advances in
Cryptology—CRYPTO 2004, ed. by M. Franklin, Santa Barbara, CA, August 15–19, 2004. Lecture
Notes in Computer Science, vol. 3152 (Springer, Berlin, 2004), pp. 443–459

[7] D. Boneh, X. Boyen, E.-J. Goh, Hierarchical identity based encryption with constant size ciphertext, in
Advances in Cryptology—EUROCRYPT 2005, ed. by R. Cramer, Aarhus, Denmark, May 22–26, 2005.
Lecture Notes in Computer Science, vol. 3494 (Springer, Berlin, 2005), pp. 440–456

Searchable Encryption Revisited: Consistency Properties, Relation to Anonymous IBE 391

[8] D. Boneh, G. Di Crescenzo, R. Ostrovsky, G. Persiano, Public key encryption with keyword search, in
Advances in Cryptology—EUROCRYPT 2004, ed. by C. Cachin, J. Camenisch, Interlaken, Switzerland,
May 2–6, 2004. Lecture Notes in Computer Science, vol. 3027 (Springer, Berlin, 2004), pp. 506–522

[9] D. Boneh, M.K. Franklin, Identity based encryption from the Weil pairing, SIAM J. Comput. 32(3),
586–615 (2003)

[10] D. Boneh, Brent R. Waters, Conjunctive, subset, and range queries on encrypted data, in TCC 2007:
4th Theory of Cryptography Conference, ed. by S.P. Vadhan, Amsterdam, The Netherlands, February
21–24, 2007. Lecture Notes in Computer Science, vol. 4392 (Springer, Berlin, 2007). Also available at
http://eprint.iacr.org/, Report 2006/287

[11] X. Boyen, B. Waters, Anonymous hierarchical identity-based encryption (without random oracles), in
Advances in Cryptology—CRYPTO 2006, ed. by C. Dwork, Santa Barbara, CA, August 20–24, 2006.
Lecture Notes in Computer Science, vol. 4117 (Springer, Berlin, 2006), pp. 290–307

[12] R. Canetti, S. Halevi, J. Katz, A forward-secure public-key encryption scheme, in Advances in
Cryptology—EUROCRYPT 2003, ed. by E. Biham, Warsaw, Poland, May 4–8, 2003. Lecture Notes
in Computer Science, vol. 2656 (Springer, Berlin, 2003), pp. 255–271

[13] C. Dwork, M. Naor, O. Reingold, Immunizing encryption schemes from decryption errors, in Advances
in Cryptology—EUROCRYPT 2004, ed. by C. Cachin, J. Camenisch, Interlaken, Switzerland, May 2–6,
2004. Lecture Notes in Computer Science, vol. 3027 (Springer, Berlin, 2004), pp. 342–360

[14] C. Gentry, Practical identity-based encryption without random oracles, in Advances in Cryptology—
EUROCRYPT 2006, ed. by S. Vaudenay, St. Petersburg, Russia, May 28–June 1, 2006. Lecture Notes
in Computer Science, vol. 4004 (Springer, Berlin, 2006), pp. 445–464

[15] C. Gentry, A. Silverberg, Hierarchical ID-based cryptography, in Advances in Cryptology—ASIACRYPT
2002, ed. by Y. Zheng, Queenstown, New Zealand, December 1–5, 2002. Lecture Notes in Computer
Science, vol. 2501 (Springer, Berlin, 2002), pp. 548–566

[16] E.-J. Goh, Secure indexes, Cryptology ePrint Archive, Report 2003/216, 2003. http://eprint.iacr.org/
[17] O. Goldreich, Foundations of Cryptography: Basic Applications, vol. 2 (Cambridge University Press,

Cambridge, 2004)
[18] P. Golle, J. Staddon, B.R. Waters, Secure conjunctive keyword search over encrypted data, in ACNS 04:

2nd International Conference on Applied Cryptography and Network Security, ed. by M. Jakobsson,
M. Yung, J. Zhou, Yellow Mountain, China, June 8–11, 2004. Lecture Notes in Computer Science,
vol. 3089 (Springer, Berlin, 2004), pp. 31–45

[19] S. Halevi, A sufficient condition for key-privacy, Cryptology ePrint Archive, Report 2005/005, 2005.
http://eprint.iacr.org/

[20] J. Horwitz, B. Lynn, Toward hierarchical identity-based encryption, in Advances in Cryptology—
EUROCRYPT 2002, ed. by L.R. Knudsen, Amsterdam, The Netherlands, April 28–May 2, 2002. Lecture
Notes in Computer Science, vol. 2332 (Springer, Berlin, 2002), pp. 466–481

[21] T. Malkin, D. Micciancio, S.K. Miner, Efficient generic forward-secure signatures with an unbounded
number of time periods, in Advances in Cryptology—EUROCRYPT 2002, ed. by L.R. Knudsen, Amster-
dam, The Netherlands, April 28–May 2, 2002. Lecture Notes in Computer Science, vol. 2332 (Springer,
Berlin, 2002), pp. 400–417

[22] D.J. Park, K. Kim, P.J. Lee, Public key encryption with conjunctive field keyword search, in WISA
04: 5th International Workshop on Information Security Applications, ed. by C.H. Lim, M. Yung, Jeju
Island, Korea, August 23–25, 2004. Lecture Notes in Computer Science, vol. 3325 (Springer, Berlin,
2004), pp. 73–86

[23] A. Shamir, Identity-based cryptosystems and signature schemes, in Advances in Cryptology—
CRYPTO’84, ed. by G.R. Blakley, D. Chaum, Santa Barbara, CA, August 19–23, 1985. Lecture Notes
in Computer Science, vol. 196 (Springer, Berlin, 1985), pp. 47–53

[24] D.X. Song, D. Wagner, A. Perrig, Practical techniques for searches on encrypted data, in 2000 IEEE
Symposium on Security and Privacy, Oakland, CA, May 2000 (IEEE Computer Society Press, Reading,
2000), pp. 44–55

[25] B.R. Waters, Efficient identity-based encryption without random oracles, in Advances in Cryptology—
EUROCRYPT 2005, ed. by R. Cramer, Aarhus, Denmark, May 22–26, 2005. Lecture Notes in Computer
Science, vol. 3494 (Springer, Berlin, 2005), pp. 114–127

[26] B.R. Waters, D. Balfanz, G. Durfee, D.K. Smetters, Building an encrypted and searchable audit log,
in ISOC Network and Distributed System Security Symposium—NDSS 2004, San Diego, CA, February
4–6, 2004 (The Internet Society, Reston, 2004)

	Searchable Encryption Revisited: Consistency Properties, Relation to Anonymous IBE, and Extensionsa1
	Abstract
	Introduction
	Consistency in PEKS
	PEKS
	Consistency of BDOP-PEKS
	New Notions of Consistency
	An Analogy
	Consistency of BDOP-PEKS, Revisited
	A Statistically Consistent PEKS Scheme

	PEKS and Anonymous IBE
	Consistency in ibe-2-peks
	new-ibe-2-peks
	Anonymous IBE Schemes

	Extensions
	Anonymous HIBE
	PETKS
	IBEKS

	Remarks
	peks-2-ibe
	Limited PEKS Schemes
	Consistency of Other Searchable Encryption Schemes
	Subsequent Work

	Some Definitions
	Notation and Conventions
	PEKS
	Consistency
	Privacy
	Parameter Generation Algorithms and the BDH Problem

	Consistency in PEKS
	Perfect Consistency of BDOP-PEKS
	New Notions of Consistency
	A Possible Relaxation of Perfect Consistency
	Our Definitions
	Stronger Notions?

	Statistical and Computational Consistency of BDOP-PEKS
	A Statistically Consistent PEKS Scheme

	PEKS and Anonymous IBE
	Definitions
	IBE Schemes
	Privacy and Anonymity

	The ibe-2-peks Transform
	The new-ibe-2-peks Transform
	A Sufficient Condition for Anonymity
	Anonymity of BF-IBE

	Anonymous HIBE
	Definitions
	HIBE Schemes
	Privacy and Anonymity

	A Sufficient Condition for Anonymity
	Construction

	Public-Key Encryption with Temporary Keyword Search
	Definitions
	PETKS Schemes
	Consistency
	Privacy

	Constructions for PETKS Schemes
	Constructions with Linear Complexity
	The hibe-2-petks transform
	Complexity
	Unbounded Time Periods

	Identity-Based Encryption with Keyword Search
	Definitions
	IBEKS Schemes
	Consistency
	Privacy

	A Generic Transformation from Anonymous HIBE Schemes
	The hibe-2-ibeks Transform

	Concrete Instantiations
	Identity-Based Encryption with Temporary Keyword Search

	Acknowledgements
	Appendix A. Attacks Against the Anonymity of Existing Schemes
	Waters' IBE Scheme
	Boneh-Boyen's IBE Scheme
	Boneh-Boyen-Goh's HIBE Scheme

	Appendix B. Proof of Lemma 5.3
	References

