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Abstract—Searchable symmetric encryption (SSE) has been widely applied in the encrypted database for queries in practice.

Although SSE is powerful and feature-rich, it is always plagued by information leaks. Some recent attacks point out that forward privacy

which disallows leakage from update operations, now becomes a basic requirement for any newly designed SSE schemes. However,

the subsequent search operations can still leak a significant amount of information. To further strengthen security, we extend the

definition of forward privacy and propose the notion of “forward search privacy”. Intuitively, it requires search operations over newly

added documents do not leak any information about past queries. The enhanced security notion poses new challenges to the design of

SSE. We address the challenges by developing the hidden pointer technique (HPT) and propose a new SSE scheme called Khons,

which satisfies our security notion (with the original forward privacy notion) and is also efficient. We implemented Khons and our

experiment results on large dataset (wikipedia) show that it is more efficient than existing SSE schemes with forward privacy.

Index Terms—Encrypted web application, data privacy, format-preserving encryption, shadow DOM, cloud storage.

✦

1 INTRODUCTION

Data storage outsourcing is increasingly prevalent fuelled
by the development of cloud computing. While the users
enjoy benefits such as low cost and ubiquitous access, data
privacy becomes a major concern. To protect data priva-
cy, the users usually encrypt data before uploading it to
the untrusted storage server. However, encryption makes
data incomprehensible so that common retrieval methods
such as the keyword search cannot be directly executed
on ciphertexts. To solve this problem, searchable symmetric
encryption (SSE) was introduced in 2000 [11]. It allows a
client to store encrypted documents on an untrusted server,
then to retrieve all documents containing a certain keyword
by submitting a token that cryptographically encodes the
keyword.

Now, SSE has been widely used in encrypted databas-
es [1–7] and encrypted emails [8]. Take the CryptDB [4] as
an example, besides supporting SQL LIKE operator by using
an SSE scheme [11] directly, it uses SSE to implement SQL
equality queries (=, !=, IN, NOT IN, etc) when the values in
the column are not unique. Recently, it has been proposed
to apply SSE to support rich queries [5], e.g. conjunctive
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query [9], range query [12], and so on. Moreover, ARX has
applied SSE to provide equality query over the encrypted
NoSQL databases.

1.1 The Need for Forward Privacy

Deterministic encryption used in SSE makes it easy for
the malicious server to observe repeated queries and other
information. These leakages are modeled as search pat-
tern (repetitive pattern in search queries), size pattern (the
number of search results) [13] and access pattern (how the
encrypted data or indexes are accessed). Generally, these
leakages could be eliminated by using an oblivious RAM
(ORAM) [10, 18, 19, 27, 28]. However, ORAM usually brings
heavy computational overhead and bandwidth cost for each
keyword search. Thus, a practical SSE has to allow some
information leakage in exchange for acceptable efficiency.
Unfortunately, these leakages have been abused to attack
SSE schemes in different ways [14, 15, 29, 38, 39].

In 2016, Zhang et al. [16] proposed the file-injection
attack. This attack assumes that the adversary can inject
files, i.e. to craft a set of documents and trick the client into
encrypting them. By injecting the carefully selected files,
the adversary can recover keywords, which should be kept
private, from search tokens submitted by the client. The
attack is very effective and requires only a small number
of files to be injected. The problem highlighted by this
attack is that the security notion widely used in the past is
too weak. More specifically, it allows the adversary to gain
knowledge about keywords queried in the past by relating
past submitted token to newly updated files. The attack
calls for a more stringent treatment of information leakage
in SSE and makes forward privacy the baseline for newly
developed SSE schemes.

Forward privacy (FP) requires that the update (addition
and deletion) operations cannot be linked to previous search
queries. From a practical point of view, it is important
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TABLE 1: Comparison with prior forward private SSE schemes. K is the number of keywords, m is the number of sub keywords, D is the
number of documents in EDB. The nw is the size of the search result set matching keyword w, aw is the total number of entries matching keyword w, dw is the
number of deleted entries matching w. RT denotes round trip, BP denotes backward-private, PT denotes Partition-based technique, FuP denotes forward update
privacy and FsP denotes forward search privacy.

Scheme
Computation Communication

Client Storage BP PT FuP FsP
Search Update Search RT Update

Previous works

TWORAM [10]
Õ(aw logN
+ log3 N)

Õ(log2 N)
Õ(aw logN
+ log3 N)

2 Õ(log3 N) O(1) − − √ −
Dual [25] O(aw − dw) O(1) O(nw) 1 O(1) O(K logD) − − √ ×
Fides [24] O(aw) O(1) O(aw) 2 O(1) O(K logD) II − √ ×

Dianadel [24] O(aw) O(log aw) O(nw + dw log aw) 2 O(1) O(K logD) III − √ ×
Janus [24] O(nw · dw) O(1) O(nw) 1 O(1) O(K logD) III − √ ×

This works

Khons O(nw) O(1) O(nw) 2 O(1)
O(m logD+
D logK)

III
√ √ √

for users to securely and dynamically build the encrypted
database [34–37]. Since 2016 several schemes have been
proposed to achieve this goal using different cryptographic
primitives, including Sophos [20] (uses trapdoor permuta-
tion (TDP)), Diana [24] (uses Constrained Pseudorandom
Function (CPRF)), and Dual [25] (uses keyed hash function).
Among them, Diana [24] and Dual [25] only use symmetric
primitives and are more efficient. Backward privacy (BP) is a
related security notion that prevents search operations from
leaking the matching elements after they have been deleted.
It was showed in [24] that a two-roundtrip backward-
private SSE can be obtained from any forward private SSE
scheme by applying the generic transformation.

1.2 Security Limitation of Forward Privacy

Currently, FP (and BP, as it can be obtained from an FP
scheme) has become a basic security requirement for SSE
without ORAM. However, we think that FP is not satisfac-
tory enough, and there is still room for improving security.

The problem of FP is that new updates remain unlink-
able to previous search queries only until a search query
is performed. The search query links all updates matching
to the same keyword. This is the reason why it can resist
the adaptive file-injection attack, but not statistical inference
attacks [14, 15, 17, 29]. These statistical attacks are based
on a large collection of information about the same query
behaviors. If the newly added documents remain unlinkable
after search queries, it will be more difficult for an adversary
to infer the keywords being queried and may defend some
statistical attacks.

To some degree, the current FP concerns only infor-
mation leakage caused by update operations and can be
regarded as “forward update privacy” (FuP). A more stringent
security notion should also consider information leaked
through search operations. If an SSE scheme is forward
update privacy and its search operation over newly updated
documents or over documents within a period of time does
not leak the past query information, it achieves a new
security notion. We call it “forward search privacy” (FsP).

1.3 Challenges of designing a forward search privacy

scheme

Primarily, we divide forward search privacy into two types:
weak forward search privacy and strong forward search privacy

respectively, which will be described detailedly in Section
3.2. Among them, the latter can only be achieved by Obliv-
ious RAM or similar construction. However, ORAM will
bring heavy computation and communication overhead,
which make SSE impractical. As we focus on practically
relevant SSE schemes, strong forward search privacy is
beyond the scope of this article.

For the weak forward search privacy, the most critical
challenge is to design a brand new SSE scheme which can
balance the security and efficiency. For the consideration of
efficiency, most of SSE schemes leverage inverted index so
that maps a keyword to a set of documents containing this
keyword. Conceptually, for each keyword w, there is a list
Lw such that each element in Lw is a pair (index, ind), where
ind is the identifier of a document that contains w, and index

is a pointer to the previous (or next) element in Lw. To
achieve forward privacy, all the Lws are merged into a single
list L, and some cryptographic primitives are used so that
when a new element is added into L, one cannot link it to
a specific Lw (until the next search query for w). A search
query for w can be easily answered by giving the index of
latest element in Lw, and decrypting the previous element’s
index one by one to recover all identifiers. However, it is
not suitable for the goal of forward search privacy, because
it is hard to get a part of elements without leaking which
list they belong to and the relation with other elements in
the same list. How to achieve the highest possible level of
security while preserving the efficiency of SSE can be a huge
challenge.

1.4 Our Contributions

Our contributions are summarized as follows.

1) We explain the security limitation of current for-
ward privacy and propose an enhanced notion for-
ward search privacy, which ensures that searches over
newly added documents do not leak the past query
information. We point out that forward search pri-
vate SSE will leak less information than SSE which
only satisfies the original FP notion. We also de-
scribe its applications in building secure encrypted
applications and improving efficiency in the design
of encrypted databases.

2) We design Khons scheme which achieves forward
search privacy and supports parallel query. It has
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both high security and efficiency. Experiment results
show that with the large dataset (wikipedia) and
RockDB, in multiple thread environment, Khons
is at least 3× faster than Dual [25] and 2× than
Fides [24].

TABLE 1 summarizes the comparisons between our
schemes and prior forward private schemes.

2 PRELIMINARIES

In this section, we will introduce the notations used in this
paper, the cryptographic primitives, and the definition of
Searchable Symmetric Encryption (SSE).

2.1 Notations

In this paper, negl(λ) is a negligible function, where λ

is the security parameter. Unless specified explicitly, the
symmetric keys are strings of λ bits, and the key generation
algorithm uniformly samples a key in {0, 1}λ. We only
consider (probabilistic) algorithms and protocols running in
time polynomial in the security parameter λ. In particular,
adversaries are probabilistic polynomial-time (PPT) algo-

rithms. For a finite set X , x
$
←− X means that x is sampled

uniformly from X .
A database DB=(indi, Wi)

D
i=1 is a tuple of

index/keyword-set pair with indi ∈ {0, 1}µ and
Wi ⊆ {0, 1}

∗ where indi is a document identifier and
Wi is a set of keywords matching document indi. The

keyword set of the database DB is W =
⋃D

i=1 Wi and the

document set is D =
⋃D

i=1{indi}. We define the number of
search results for keyword w as nw and the set of documents
containing a keyword w as DB(w) = (indi|w ∈ DB(indi)}
where |DB(w)| is aw. A keyword w can be divided into
a set of sub keywords Sw = {wi|EKs

(w, i), 1 ≤ i ≤ x}
where Ks is the encryption key and x is a constant. Let
D = |D| denotes the number of documents in DB, W =
|W| the total number of keywords, and N be the number
of document/keyword pairs (we identify documents
with their identifier). Note that N can be written as
N =

∑n
i=1 |DB(indi)| =

∑
w∈W

|DB(w)|.

2.2 Cryptographic primitives.

A private-key encryption scheme [26, 30] is a set of three
polynomial-time algorithms SK = (Gen, Enc, Dec) where
Gen is a probabilistic algorithm that takes as a input a
security parameter λ and returns a secret key Ks, Enc is
a probabilistic algorithm takes as inputs a key Ks and
a message m and returns a ciphertext c and Dec is a
deterministic algorithm that takes as inputs a key Ks and
a ciphertext c and returns m if Ks was the key under
which c was encrypted. Informally, a private-key encryption
scheme is CPA-secure if for any probabilistic polynomial-
time adversary A, there exists a negligible function negl

such that

Pr[PrivKCPA
A,SK(λ) = 1] 6

1

2
+ negl(λ)

For encryption schemes, we employ pseudo-random
functions (PRF), which is a polynomial-time computable

functions. PRF cannot be distinguished from random func-
tions by any probabilistic polynomial-time adversary. A
hash function is a pair of probabilistic polynomial-time
algorithms (Gen, H) where Gen is a probabilistic algorithm
which takes as input a security parameter 1n and outputs
a key s. We assume that 1n is included in s. There exists
a polynomial l such that H is (deterministic) polynomial-
time algorithm that takes as input a key s and any string
x ∈ {0, 1}∗, and outputs a string Hs(x) ∈ {0, 1}l(n). It is
not much more difficult to see that a random oracle acts like
a hash function.The success probability of any polynomial-
time adversary A in the following game is negligible:

• A random function H is chosen.
• A succeeds if it outputs x, x′ with H(x) = H(x′) but

x 6= x′.

We refer the reader to [30] for formal definitions of CPA-
security, PRFs and Hash functions.

2.3 Searchable Symmetric Encryption

Initially, SSE is proposed to protect static data and thus
does not support update operations. Recently, most research
focuses on constructing dynamic searchable symmetric en-
cryption (DSSE) [6, 21–23] that offers search capability and
allows dynamically adding and deleting documents. We re-
view the definition of dynamic SSE in [20]. A DSSE scheme
Π=(Setup, Search, Update) contains a Setup algorithm, and
two protocols Search and Update:

• Setup(DB) → (EDB, sk, σ) is an algorithm for set-
ting up the encrypted database supporting keyword
search. It takes as input a database DB and outputs
(EDB, sk, σ) where EDB is the encrypted database,
sk is a secret key, and σ is the client’s state.

• Search(sk, q, σ; EDB) = (SearchC(sk, q, σ),
SearchS(EDB)) is a client-server protocol supporting
search operation of a document. The client takes as
inputs the key sk, its state σ, and a search query q.
The server takes as input EDB , outputs the results
as document identifiers matching the query q.

• Update(sk, σ, op, in; EDB) = (UpdateC(sk, σ, op, in),
UpdateS(EDB)) is a client-server protocol supporting
update operation of a document. The client takes as
inputs the key sk, an operator op which is taken from
the set {add, del}, client’s state σ and an input in

parsed as the document ind and a set W of keywords.
The server takes as input the EDB.

Adaptive Security of SSE. The standard security defi-
nition of a DSSE scheme follows the ideal/real simulation
paradigm [20, 24]. It requires the server to know as little as
possible about the content of database and queries. More
specifically, we wish the adversary will learn nothing ex-
cept for some obvious leakages. We use a stateful leakage
functions to express the information leaked to the adver-
sary by each SSE operation, which is L = (LSetup, LSearch,
LUpdate), whose components correspond respectively to the
information leaked to the adversary by Setup, Search and
Update operations. The definition ensures that the scheme
will reveal no information beyond what is inferred from the
leakage functions.
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The adversary aims to distinguish between a real world
SSEREAL and an ideal world SSEIDEAL. In these worlds,
the adversary can trigger Setup, Search and Update oper-
ations with parameters which are chosen by herself. Then,
she can observe the execution of the scheme like what the
server does. We describe what the adversary A does in real
world and ideal world specifically as follows.

• In the SSEREAL world, the DSSE scheme is executed
honestly. The adversary A chooses a database DB.
The experiment runs Setup(DB) and returns EDB to
A. Then, A adaptively chooses queries qi. The exper-
iment runs Search(sk, qi, σi; EDBi) or Update(sk, σi,
op, ini; EDBi) depending on the protocol of query qi
and returns (σi+1,DB(wi) EDBi+1) or (σi+1, EDBi+1).
Finally, the adversary A outputs a bit b ∈ {0, 1}.

• In the SSEIDEAL world, the adversary sees messages
generated by a PPT algorithm S , known as the simu-
lator, that has access to only the leakage functions but
not the database or queries. The adversaryA chooses
a database DB. The simulator returns an encryp-
tion database EDB ← S(LSetup(DB)) to A. Then, A
adaptively chooses queries qi. The experiment runs
S(LSearch(qi)) or S(LUpdate(qi)) to answer the query
qi. Finally, the adversary A outputs a bit b ∈ {0, 1}.

If an adversary can distinguish the real game and the ideal
game of DSSE with only a negligible probability, we say
that DSSE achieves adaptive security, which is defined as
follows.

Definition 1. (Adaptive security). A DSSE scheme Π with a
collection of leakage functions L is L-adaptively-secure, if
for any polynomial-time adversary A issuing a polyno-
mial number of queries q(λ), there exists a PPT simulator
S such that

|Pr[SSEREAL
Π
A(λ, q)=1]-Pr[SSEIDEALS,A,L(λ, q)=1]| ≤ negl(λ)

3 PRIVACY DEFINITION

We now review the definitions of forward privacy and back-
ward privacy and define the new forward search privacy.
The following notations are used throughout the paper.

The repetition of token (i.e., queried keywords) sent to
the server will be leaked in the most SSE schemes. If this
leakage is limited to search queries, we call it search pattern.
If this leakage includes the repetition of updated keywords,
we call it the query pattern.

The leakage function L will keep as state the query list
Q:the list of all queries issued so far, and whose entries are
(i, w) for a search query on keyword w, or (i, op, in) for an
op update query with input in. The integer i is a timestamp,
initially sets to 0, and which is incremented at each query.
Let sp(x) and qp(x) denote the search and query patterns
respectively which are defined as

sp(x) = {j : (j, x) ∈ Q}(only matches search queries)

qp(x) = {j : (j, x) ∈ Q} or (j, op, in) ∈ Q and x appears in in

In this paper, TimeDB(w) is the list of all documents
matching w, excluding the deleted ones, together with the
timestamp of when they were inserted in the database.
Updates(w) is the list of timestamps of updates on w.
Deletion history DelHist(w) is the list of timestamps for
all deletion operations, together with the timestamp of the
inserted entry it removes.

3.1 Forward Update Privacy

The traditional forward privacy [20] is that the server cannot
learn whether the newly updated documents match a pre-
viously searched keyword or not. In this paper, we define it
as forward update privacy.

Definition 2. (Forward update privacy). A
L-adaptively-secure SSE scheme is forward-update-
private iff the update leakage function LUpdate can be
written as

LUpdate(op, ind,W ) = L
′

(ind, |W |)

where ind denotes the identifiers of the newly added
documents, |W | denotes the number of keywords of the

newly added document and L
′

is stateless.

As shown in Definition 2, forward update privacy re-
quires that the information leaked in update operation
should not be more than the identifier and the number of
keywords of newly updated document.

3.2 Forward Search Privacy

In existing SSE schemes, a search token leaks a significant
amount of information. This is captured by the leakage

functionLSearch(w) = L
′

(TimeDB(w)), whereL
′

is stateless.
Forward search privacy is defined on the basis of for-

ward update privacy. It further prevents the server to know
whether a search over newly updated documents matches
a previously searched keyword. We first introduced the
notion of strong forward search privacy. An SSE scheme
satisfies strong forward search privacy if the search token
leaks no information. We define it as follows:

Definition 3. (Strong forward search privacy). A
L-adaptive-secure SSE scheme is strong forward-
search-private, iff functions LSearch can be written
as:

LSearch(w) = L
′

(⊥)

where L
′

is stateless.

This is a very strong notion, but on the other hand
is also very difficult to achieve. In fact, this implies the
search operation is fully oblivious, and cannot be achieved
unless expensive protocols such as ORAM or PIR are used.
For practicality, we also define a weaker notion of forward
search privacy that leaks partial pattern:

Definition 4. (Weak forward search privacy). Let Sw =
{w1, ..., wx} denote a set of sub keywords for a keyword
w where x is a constant. A L-adaptive-secure SSE scheme
is weak forward-search-private, iff the leakage functions
LSearch can be written as:

LSearch(wi) = L
′

(TimeDB(wi))

where L
′

is stateless and |TimeDB(wi)| = aw for aw is a
constant.
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3.3 Backward Privacy

An SSE scheme satisfies backward privacy if after deleting a
document ind matching keyword w, the server cannot reveal
the deleted document ind from the subsequent search of
keyword w.

In 2017, Bost et al. [24] have defined backward privacy
at three levels: BP-I, BP-II and BP-III. They all leak the
documents currently matching w, when they were inserted.
As for other leakages: BP-I only allows the leakage of
“the total number of updates on w”; BP-II further allows
the leakage of “when all the updates on w happened”;
and BP-III further allows the leakage of “which deletion
update canceled which insertion update”. We review these
definitions as follows.

Definition 5. (BP-I). A L-adaptively-secure SSE scheme is
insertion pattern revealing backward-private iff leakage
functions LSearch can be written as:

LUpdate(op, w, ind) = L
′

(op),

LSearch(w) = L
′′

(TimeDB(w)),

where L
′

and L
′′

are stateless and |TimeDB(w)| = aw
for aw is a constant.

Definition 6. (BP-II). A L-adaptively-secure SSE scheme is
update pattern revealing backward-private iff leakage
functions LSearch can be written as:

LUpdate(op, w, ind) = L
′

(op, w),

LSearch(w) = L
′′

(TimeDB(w),Updates(w)),

where L
′

and L
′′

are stateless and |TimeDB(w)| = aw
for aw is a constant.

Definition 7. (BP-III). A L-adaptively-secure SSE scheme is
weakly backward-private iff leakage functions LSearch

can be written as:

LUpdate(op, w, ind) = L
′

(op, w),

LSearch(w) = L
′′

(TimeDB(w),DelHist(w)),

where L
′

and L
′′

are stateless and |TimeDB(w)| = aw
for aw is a constant.

The difference between weak forward search and back-
ward privacy is that weak forward search privacy only
leaks partial query pattern. Note that in the defintion 4, the
leakage function is based on TimeDB(wi) where wi is a sub-
keyword of keyword w, while in definition 5 -7, the leakage
function is based on TimeDB(w), i.e. it exposes the whole
query pattern.

4 OVERVIEW OF TECHNIQUES

In this section, we will introduce two techniques to help
achieve the forward search privacy and then describe a toy
construction.

4.1 Partitioning Technique

In SSE schemes, indexes are used widely. In our construc-
tion, inverted index is used to facilitate search queries in
the form of a pair (key, value) , where key is a keyword
and value is a list of identifiers of documents containing
this keyword. Given a keyword, we can retrieve all the
documents that contains the keyword efficiently.

We partition the inverted index into disjoint partitions
and generate a sub-keyword for each partition to reduce
information leakage in SSE. In this way, a search token of
a keyword will become multiple search tokens, each for a
different partition. More specifically, we add the identifier
of the document to a partition using a sub-keyword derived
from w as the key when adding a document that contains
a keyword w. When performing a search query, we allow
the client to submit a search token of a sub-keyword to
search over a subset of documents in this partition. If we set
only one partition for a keyword, it will be the traditional
inverted index.

4.2 Hidden Pointer Technique (HPT)

To use the partitioning technique in SSE, we need to build
encrypted lists so that we can store all indexes at the server
securely.

We first define the data structure. A data block is a four-
tuple (id, data, key, ptr), where id is the block identifier,
data is a piece of data, key and ptr are the encryption key
and identifier of another block (suffix block). If a block has
no suffix block, key is set to ⊥. In a data block b, data, ptr

and key fields should be encrypted. We denote b.id as the id

of block b and b.value as all the other contents of b including
b.data, b.key and b.ptr.

As shown in Fig. 1, HPT allows us to add data blocks
into an encrypted linked list. Let L be a list of data blocks.
Let the head block be the latest block being added to L and
the tail block be the oldest block in L. We can describe how
HPT works by the following algorithms:

• AddHead(L, id, value, 1λ): it adds a new block as the
head block to list L. It has four steps: 1) generate a
data block as b=(id, data, L.head.key, L.head.id); 2)
sample a random key k from {0, 1}λ; 3) use k to
encrypt the b.value; 4) add b to L.

• RetrieveABlock(L, id, k): it retrieves a data block
from the list L. It has three steps: 1) find block
b by identifier id; 2) decrypt block b.value by the
corresponding key k; 3) return b.

• RetrieveList(L, id, k): it retrieves all data blocks from
a sublist of L, by calling RetrieveABlock(L, id, k)
repeatedly until the tail block (i.e. a block b such that
b.key = ⊥) is visited.

We can use it to build secure index. For example, we can
build an inverted index (w,Lw) such that Lw is a list built
using HPT. The client can keep the head of the list and store
Lw on the server. The list Lw can be updated by the client
by adding a new block, and the client can search the index
by revealing the id of the head block and the encryption
key to the server. Similarly, we can also build a forward
index using HPT that maps a document identifier to a list of
keywords contained in the document.
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id1id1 data1 key1 id2

id2id2 data2 key4 id4

id3id3 data3 null null

id4id4 data4 null null

Key1

Key2

Client Server

Plaintext Ciphertext

Fig. 1: An example of HPT. There are four data blocks, whose identifiers
and encryption keys are (id1, key1), (id2, key2), (id3, key3) and (id4, key4). The
head block in the target list is the id1, whose encryption key is maintained in the
client; the id2 is an inner block and its key is stored in the prefix block id1; the tail
block is the id4, whose encryption key is stored in the prefix block id2. The ptr
value of id4 is ⊥ because it is the end of this list.

One advantage of HPT is that one can have multiple lists
and store their blocks in arbitrary order, and can still retrieve
each individual list correctly by the id and the encryption
key of the head block of the list. Another advantage is that
if the server stores multiple lists and a new block comes in,
the server will not be able to tell which list this block belongs
to (until later the user reveals it), which is important if we
want to achieve forward privacy.

4.3 A Toy Construction

We propose a toy construction, which is shown in Fig. 2, to
achieve forward search privacy. For a keyword w, we divide
it into a set of sub-keywords Sw={w1, · · ·, wx} according to
the total number of associated documents and the number
of documents in a partition where x is a constant. Each sub-
keyword wi maintains its own index list Lwi

. Each Lwi
can

be retrieved using the sub-keyword state that includes the
id and encryption key of its head node. The total number of
partitions and sub-keyword states should be maintained at
the client.

Lw1
Lw2

… Lwx

w1W: head of Lw1 w2
head of Lw2

wx
head of Lwx…Client:

Server: ind2,ind3,……,indn ind1,ind4,……,ind9

ind2,ind3,……,indn ind6,ind8,……,ind7

...

Fig. 2: The toy construction of forward search privacy

As shown in Fig. 2, the server stores Lwi
(i ∈ [1, x]) and

the client stores the head of Lwi
. Thus, for each keyword,

the client maintains at most x heads. With these heads, the
client can search each partition.

Challenges. A traditional SSE can be used to implement the
single partition search query by issuing a search token of the
associated sub-keyword. However, to implement a complete
search query that covers all partitions, it must issue all the
search tokens of all sub-keywords.

Another huge challenge is immediate deletion problem.
Immediate deletion means that when a document is deleted,
it should immediately delete the related keyword-document
pairs in the inverted index. If the final SSE does not support
immediate deletion, a single partition query may return
documents that have already been deleted.

How to achieve weak forward search privacy. In order
to satisfy the requirement of weak FsP, when adding a
document, the keyword-document pair should not be added
into the list that has been searched. If the latest partition has
been searched, even if it is not full, we must create a new
partition and generate a new sub-keyword for this partition.
In other cases, we can add the keyword-document pair into
the latest partition directly until it is full.

5 KHONS: FIRST SSE SCHEME WITH FORWARD

SEARCH PRIVACY

In this section, we propose a forward and backward secure
SSE scheme named “Khons”. It satisfies the weak forward
search privacy and forward update privacy (thus can be
extended to backward privacy(BP-II)). We combine inverted
indexes and forward indexes for efficient search, addition
and more importantly immediate deletion.

5.1 Storage Structure

The server stores the data blocks in a dictionary D where
D[id] stores a data block with identifier id. As in section
4.3, from each keyword w we derive a set of sub-keywords
Sw = {wi|EKs

(w, i), 1 ≤ i ≤ x} where Ks is the encryption
key. For each sub-keyword wi, we build a list Lwi

for the
single partition query which is treated as an inverted index.

To support the full search query, for each keyword w, we
made some change to the tail blocks of the lists. In a single
partition search, the search is restricted to one partition
because the server knows only the head id and encryption
key for that one list (partition). When reaching the tail block
of the list, the search has to stop because there is not pointer
to the next block. Now in the list Lwi

, we store the head
head id and encryption key, both encrypted, for Lwi−1

. More
specifically, the encrypted head id is stored in the data field
and the encrypted encryption key is stored in the key field.
Encrypting the two pieces of information ensures that the
server cannot do a full search without the user’s permission.
The encryption brings a problem, that is, where to store the
keys. To solve this problem, we also build another list Lw. It
has one block for each Lwi

that store the key to decrypt data
stored in the tail block of Lwi

.
To support immediate deletion, for each document ind,

there is a list Lind. Lind play a role as forward index.
The client stores key Ks and map Mb, Mb

∗, Mf . Key
Ks is the user secret key for generating a one-time key
to encrypt data. Additionally, we apply a map Mb, Mb

∗

to store the state of each keyword and sub-keyword. Mf

stores the state of each document. For each keyword w, we
define Mb[w] stores (nump, cntp, key, flag) with initial value
of (1,0,⊥, false), where nump is the total number of partitions,
cntp, keyw the number of blocks and the encryption key
of the tail block in the latest (nump-th) partition and flag
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w1
Client

ServerLind1
id1, Ek(ind1, w1) id2, Ek(ind1, w3) id3, Ek(ind1, w7)

Lw11

 

…… …… …… 

Lw21 …… id2 ……

nump=2,numb=3, Keyw
w11 head of Lw11

w3 nump=1,numb=4,... w31 head of Lw31

ind1 head of Lind1

ind2 head of Lind2

indi head of Lindi

… … 

…… 

Lw12 id1 …… …… 

w12 head of Lw12

Map Mb Map Mf

…… 

indx head of Lindx

… … 

Forward index

Inverted index

Map M
*

b

Fig. 3: The storage structure of Khons. There are three lists. List
Lind1

contains the keywords in document ind1 in form of (ind1,w). List Lw11
and Lw12

contain the document identifiers of the first and second partition of
keyword w1 respectively; however, instead of storing a document identifier ind
directly, they store an identifier of a block whose value is (ind,w1) in list of Lind.
The blue dotted line shows it. List Lw1

builds a hidden list among lists of its
sub-keywords, by linking all the tail blocks in them. The red line shows it.

denotes whether the latest (nump-th) partition is accessed.
Notice that a partition can only hold at most P blocks.
For each sub-keyword wi, Mb

∗[wi]=(id, key, cnt, flag) with
initial value of (⊥,⊥,0, false), where id, key is the identify and
encryption key of the head block in Lwi

, cnt the number
of blocks in this partition related to wi and flag denotes
whether this partition (keyword wi) is accessed. For each
document ind, we adopt Mf [ind]=(id, key), i.e., the pointer
information of head block of list Lind. Fig. 3 shows the details
of the storage structure.

5.2 Basic Algorithm

In the following pseudo codes, encryption Ek(m) and de-
cryption Dk(c) are implemented by an IND-CPA (indis-
tinguishability against the chosen plaintext attack) secure
symmetric cryptographic primitive with the encryption key
k. H,H1, H2 and H3 are keyed hash functions.

Algorithm 1 Khons.Setup()

1: Ks
$←− {0, 1}λ, keyh

$←− {0, 1}λ
2: Mb, Mb

∗, Mf ← empty map
3: D← empty dictionary

Khons.Setup. The client randomly generates Ks as user key
and initializes map Mb, Mb

∗ and Mf for maintaining the
pointer information of each keyword and document. The
server initializes the dictionary D to store data blocks.

Khons.Add. To add a document (with identifier ind) match-
ing w, there are three steps. Khons firstly inserts a block b

with value of (ind, w) into list Lind. Then, it gets the keyword
state stored in Mb[w] and obtains sub-keyword wi of the
latest partition. Notice that, if the latest partition has been
accessed or is full (P is maximum number of documents
in a partition), it must create a new partition by adding a
new sub-keyword wi for w. If the number of elements in
the latest partition is less than P , we must fill with dummy
blocks until the number of elements in this partition reaches

Algorithm 2 Khons.Update( add, w, ind, σ; EDB)

Client:

1: (idf , keyf )← (Mf [ind].id, Mf [ind].key)

forward index

2: id∗f
$←− {0, 1}λ, key

$←− {0, 1}λ
3: mask← H1(key, id∗f )
4: value← EKs(ind‖w)‖keyf‖idf
5: (b.id, b.value)← (id∗f , value⊕mask)
6: Mf [ind].id← id∗f , Mf [ind].key← key

inverted index
7: (nump, cntp, keyw)← (Mb[w].nump,Mb[w].cntp,Mb[w].keyw)
8: wi ← H(keyh, w‖nump)
9: (idb, keyb)← (M∗

b [wi].id,M∗

b [wi].key)
10: (cntb, flagb)← (M∗

b [wi].cnt,M∗

b [wi].flag)
11: IF (cntp = P ‖ flagb = true)
12: IF (flagb = true)
13: padding P − cntp dummy blocks to wi

14: nump ← nump + 1, cntp ← 1
15: wi ← H(keyh, w‖nump)
16: initialize M∗

b [wi]
17: ELSE
18: cntp ← cntp + 1

19: id∗b
$←− {0, 1}λ, key∗ $←− {0, 1}λ

20: mask2 ← H2(key∗, id∗b)
21: IF (cntb = 0) // Add the first block into the list

22: idt
$←− {0, 1}λ, keyt

$←− {0, 1}λ
23: mask3 ← H3(keyt, w)
24: Btail.id← idt
25: wi−1 ← H(keyh, w‖nump − 1)
26: Btail.value← (keyw‖M∗

b [wi−1].key‖M∗

b [wi−1].id)⊕mask3

27: idb ← idt, keyb ← ⊥, Mb[w].keyw ← keyt

28: (b∗.id, b∗.value)← (id∗b , (id
∗

f‖keyb‖idb)⊕mask2)
29: M∗

b [wi].id← id∗b , M∗

b [wi].key← key∗, M∗

b [wi].cnt++
30: Send block b, b∗ and Btail (if exists) to the server.

Server:
31: D[b.id] = b.value
32: D[b∗.id] = b∗.value
33: IF(Btail exists)
34: D[Btail.id] = Btail.value

P . Finally, a block with the value of b.id will be inverted
into list Lwi

.

We explain how to add the first block to list Lwi
in

more details. To build list Lw, we firstly add a special tail
block Btail into list Lwi

. The block Btail stores the identify
and encryption key of the head block of list Lwi−1

and
encryption key of the tail block of list Lwi−1

. The prefix
block of Btail in list Lwi

only stores the identifier of Btail

but does not store its encryption key. The details are shown
in Algorithm 2.

Khons.Delete. To delete a document with identifier ind, the
client gets pointer information of the list associated with it
from map Mf , i.e., (id, key) ← (Mf [ind].id, Mf [ind].key),
and sends them to the server. Then, the server repeatedly
gets all the blocks in list Lind, deletes them (marking them as
inaccessible) and returns their identifiers back to the client
for future reuse. The details are shown in Algorithm 3.

Notice that Khons.Delete only influences the blocks in
Lind. The identifier ind is not stored in Lw or Lwi

directly,
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Algorithm 3 Khons.Update( delete, ind, σ; EDB)

Client:

1: (id, key)← (Mf [ind].id,Mf [ind].key)
2: Send (id, key) to the server.

Server:
3: REPEAT
4: b← D[id]
5: Delete the block b from the dictionary D

6: mask← H1(key, id)
7: b.value← b.value⊕mask
8: (id, key)← (b.idf , b.keyf )
9: UNTIL (id =⊥)

but only stored in Lind. Because Lw and Lwi
only store the

pointer information to Lind, the deletion of Lind will make
the search meaningless.

Algorithm 4 Khons.Search( w, i, σ; EDB)

Client:

1: wi ← H(keyh, w‖i)
2: (id, key)← (M∗

b [wi].id,M∗

b [wi].key)
3: M∗

b [wi].flag← true
4: Send token (id, key) to the server.

Server:
5: S← empty set, j ← 0
6: REPEAT
7: b← D[id]
8: mask2 ← H2(key, id)
9: b.value← b.value⊕mask2

10: S = S ∪ D[b.idf ]
11: (id, key)← (b.idb, b.key)
12: IF (key = ⊥ )
13: id← ⊥
14: UNTIL (id =⊥)
15: Send S to the Client.

Client:
16: S← DecryptKs

(S)

Khons.Search. Two kinds of query can be supported with
the same search token t =(id, key, keyw). For a single
partition query, such as the i-th partition, the client issues
token=(M∗

b [wi].id, M∗
b [wi].key). The query in a partition will

result in the update of its sub-keyword state, which is aimed
to achieve the FsP. Note that each query will return a fixed
number of elements due to the padding of dummy blocks in
Khons.Upadte. Algorithm 4 shows the details of the search
operation. We emphasize that every touched blocks will
be deleted after querying and updated to corresponding
keyword.

Khons achieves backward privacy with two round trips.
After receiving the search token, the server retrieves data
from either a single partition or all the partitions. For each
block b in the list associated with the keyword w, it contains
a block identifier. With this block identifier, the server can
access the corresponding block in the list associated with
a document and get its value (the encrypted document
identifier and keyword). Then, the server returns all the
encrypted information to the client. The client finally de-
crypts them, removes the element whose keyword is not w

and downloads the documents from the server. The remove
operation is caused by the immediate deletion of blocks. If
the decrypted keyword of an element is not equal to w, it
will be removed from the search results.

5.3 Comparison

The highlight of our index is to support the partial query
and maintain the complete query at the same time with the
help of HPT technique. The key to implementing the partial
query is that encryption key and pointer should be separate.
But in [21], each item in index list Lwi

shares the same key,
so that partial query is difficult to implement.

There exist some differences among our scheme, [21] and
[25] even we all employ forward and backward indexes
simultaneously. Notice that the order of the pointers of
elements in Khons is the opposite of [21] and [25]. Namely
the new file will point to the old file, so that adding a
new file no longer require changing the pointing of the
previous file. The reverse of pointers will simplify the ad-
dition operation of Khons. But in [21] the add operation
needs to homomorphically set the previous node’s “next”
pointers to point to newly added nodes, which brings more
computation overhead than our solution. And [25] utilizes
label and count to “concatenate” each block corresponding
to the same keyword. In add operation of [25], the client
will generate and upload a set contains label and count to
the dictionary in the server.

For deletion operation, Khons only deletes the elements
of file physically according to the linked list in forward
index, so that the inverted index will not point to the
element in forward index any more. The inverted index
will be updated after querying. The deletion of [21] is a
“dual operation” to addition. The server will “free” the
correlative positions in deletion array and search array.
While“freeing” the positions in the search array, it will also
homomorphically update the pointers of previous entries
in the corresponding keyword list. The dual operation is
complicated to update both deletion array and search array.
For [25], the server calculates label with key and count
and then deletes the corresponding document identifier. The
server repeats this process by incrementing the counter until
all documents in forward index are deleted. Accordingly, the
corresponding entries in inverted index will be deleted. Si-
multaneous updating of two index increases the cost of dele-
tion operations. Additionally, since Fides[24], Dianadel[24]
and Janus[24] only unitize inverted index but not forward
index, the deletion operation is slightly different. Fides only
deletes entries logically. And in Dianadel and Janus, the
server maintains two instances of the construction, one for
insertions and one for deletions.

5.4 Analysis

In Khons, all the states of documents, keywords and sub-
keywords are stored in the client. Thus its client storage
overhead is O(m logD + D logK), where m, D and K

denote the number of sub-keywords, documents and key-
words respectively. Khons supports parallel query which
is more efficient when performing full query. Because the
server can get the pointer information of head block of each
partition by retrieving the list Lw.
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Setup():

1: Ks
$←− {0, 1}λ, keyh

$←− {0, 1}λ
2: Mb, Mb

∗, Mf ← empty map
3: D← empty dictionary

Update( add, w, ind, σ,EDB)
Client:
1: (idf , keyf )← (Mf [ind].id, Mf [ind].key)

2: id∗f
$←− {0, 1}λ, key

$←− {0, 1}λ

3: mask
$←− {0, 1}λ

4: MASKf [idf ]← mask
5: value← EKs(ind‖w)‖keyf‖idf
6: b← (id∗f , value⊕mask)
7: Mf [ind].id← id∗f , Mf [ind].key← key
8: (idb, keyb)← (M∗

b [wi].id,M∗

b [wi].key)

9: id∗b
$←− {0, 1}λ

10: key∗ $←− {0, 1}λ
11: mask← H2(key∗, id∗b)
12: b∗ ← (id∗b , (id

∗

f , keyb, idb)⊕mask)
13: M∗

b [wi].id← id∗b , M∗

b [wi].key← key∗, M∗

b [wi].cnt++
14: Send block b, b∗ and Btail (if exists) to the server.

Server:
15: D[b.id] = b.value, D[b∗.id] = b∗.value
16: IF(Btail exists)
17: D[Btail.id] = Btail.value

Update( delete, ind, σ,EDB)
Client:
1: (id, key)← (Mf [ind].id,Mf [ind].key)
2: Send (id, key) to the server.

Server:
3: REPEAT
4: b← D[id]
5: Delete the block b from the dictionary D

6: mask←MASKf (id)
7: b.value← b.value⊕mask
8: (id, key)← (b.idb, b.key)
9: UNTIL (id =⊥)

Search(w, i, σ,EDB) Client:
1: wi ← H(keyh, w‖i)
1: (id, key)← (M∗

b [wi].id,M∗

b [wi].key)
2: Send token (id, key) to the server.

Server:
3: S← empty set, j ← 0
4: REPEAT
5: b← D[id]
6: mask← H2(key, id)
7: b.value← b.value⊕mask
8: S = S ∪ b.idf
9: (id, key)← (b.idb, b.key)

10: UNTIL (id =⊥)
11: Send S to the Client.

Client:
12: S← DecryptKs

(S)

Fig. 4: Algorithms for G1.

The computation complexities in Khons are O(nw) and
O(1) in Search and Update process respectively, where nw

is the size of the search result set matching keyword w. And
the communication complexities in Khons are also O(nw)
and O(1) in Search and Update process respectively. Khons
achieves backward privacy with two round trips.

In Search operation, each partition which has been
queried will be updated so that there is no sub-keyword will
be repeatedly queried. Except that, the number of elements
in each partition is the same, which prevents the server
from identifying sub-keyword by the number of elements
contained in the partition.

Adaptive security. Khons is the first forward search
privacy SSE scheme with partial pattern when . It can also
achieve weak backward privacy as the server learns when
the deletions occurred. The adaptive security of Khons is
proven in Theorem 1.

Theorem 1. Let λ denotes the security parameter. Assume L
′

is stateless. Define LKhon = (LSearch
Khon ,LUpdate

Khon ), where

LUpdate
Khon (op, w, ind) = L

′

(op, w),

LSearch
Khon (w) = L

′′

(sp(w),TimeDB(w),Updates(w)),

Then Khons is LK -adaptively-secure with forward up-
date privacy and backward privacy(BP-II).

Proof 1. We derive some games from real world game to
prove the theorem.

Game G0. G0 is the real world SSE security game
SSEREAL. That is to say,

Pr[SSEREAL
Khons

A (λ) = 1] = Pr[G0 = 1].

Game G1. In G1, we pick random strings as identifiers
in Update protocol instead of calling H1 to generate a
new encryption key. The algorithm of G1 is described
in Fig. 4. In Search protocol, the random oracle H2 is
programmed so that H2(key, id) = mask. Note that in
G1, the generation of key is as same as in G0, so that
mask can be treated as a random string. For convenience,
we ignore the generation and application of tail block
in G1. We remove the code which is useless with the
security analysis. Furthermore, compared with G0, we
do not consider the reuse of blocks and the partition
mechanism in G1. Hence, we have

Pr[G0 = 1]− Pr[G1 = 1] = 0.

Game G2. In G2, the same argument of H2 can be reused.
Thus the only difference between G1 and G2 is H2.
Hence, we have

Pr[G1 = 1]− Pr[G2 = 1] = 0.

Game G3. In G3, the same argument of H3 can be
reused. Thus the only difference between G2 and G3 is
H . Hence, we have



1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2894411, IEEE

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, XX 2017 10

Update(add, ind, |W |)
Client:
1: For (u to u+ |W |)
2: Update[ind]← u

3: Bfid[u]
$←− {0, 1}λ

4: Bfkey[u]
$←− {0, 1}λ

5: Bfdata[u]
$←− {0, 1}(2λ+l)

6: Bf[u]← (Bfid,Bfdata)
7: End For
8: For(u+ |W | to u)
9: Program H1 s.t. H1(Bfid[u]‖Bfkey[u])←

Bfdata[u− 1]⊕ (e‖Bfid[u− 1]‖Bfkey[u− 1])
10: For (u to u+ |W |)
11: Bwid[u]

$←− {0, 1}λ
12: Bwkey[u]

$←− {0, 1}λ
13: Bwkey#[u]

$←− {0, 1}λ
14: Bwdata[u]

$←− {0, 1}(4λ+l)

15: Bw[u]← (Bwid,Bwdata)
16: End For

17: Send block Bf,Bw to server

Setup():

1: Ks
$←− {0, 1}λ

2: Mb, M∗

b , Mf ← empty map
3: T← empty tree

Update( delete, ind, |W |)
Client:
1: u← Update[ind]
2: token← (u,Bfid[u],Bfkey[u])
3: Send token to server.

Search(sp(w),TimeDB(w),Updates(w))
Client:
1: w ← min(sp(w))
2: (u0, u1, . . . , uhead)← Updates(w)
3: FOR (ui, ind) ∈ TimeDB(w) DO
4: e← EBwkey#[ui]

(ind)
5: Program H2 s.t. H2(Bwid[ui]‖Bwkey[ui])←

Bwdata[ui − 1]⊕ (e‖Bwkey[ui−1]‖Bwid[ui−1])
6: END FOR
7: Send token(Bwid[uhead],Bwkey[uhead]) to server.

Fig. 5: Algorithms for Simulator S.

Pr[G2 = 1]− Pr[G3 = 1] = 0.

Simulator. The algorithm of simulator is shown in
Fig. 5 and the leakage function is LKhons. We gener-
ate a new block whose identifier is picked randomly
when performing update operation. When performing
Khons.Update(add), we use the random oracle and
store the relationship between timestamp u and docu-
ment identifier in table Update. Therefore, when per-
form Khons.Update(delete), simulator can get the doc-
ument identifier through Update. Hence, we have

Pr[G3 = 1]− Pr[SSEIDEAL
Khons

A,S,LKhons
(λ) = 1] = 0.

Conclusion.By combining all the contributions from all
the games, there exists an adversary A such that

|Pr[SSEREAL
Khons

A (λ)=1]− Pr[SSEIDEAL
Khons

A,S,LKhons
(λ)=1]|

≤ Adv
prf
F,A(λ).

We conclude that the probability of result is negl(λ) by
assuming that PRF is secure.

6 KHONS-F: SSE SCHEME SUPPORTING FULL

QUERY

To support full query, we propose a forward security SSE
scheme named Khons-f. It satisfies backward privacy(BP-
II). The Setup and Update operation in Khons-f is almost
as the same as Khons, so that we will not repeat these algo-
rithms. The only difference between Khons-f and Khons is
Search operation, which is shown in Algorithm 5.

In Khons-f, we leverage tail blocks to link all ele-
ments in Lwi

. As mentioned before, the tail block in Lwi

stores the id and key of head block in Lwi
and key of

the tail block of Lwi−1. To perform full query, the client
issues token=(M∗

b [wnump
].id, M∗

b [wnump
].key, M∗

b [w].keyw).
The server can trace all Lwi

in order of Lnump
to L0. Firstly,

the server retrieves the blocks in Lnump
one after another.

Secondly, the tail block of Lnump
can be retrieved to get the

pointer information of the head block and the encryption
key of the tail block in Lnump−1

. Therefore, the server can
continue to retrieve all the blocks in Lnump−1

. And so on in
a similar fashion, all the elements belong to keyword w can
be sent to the client. The security analysis of Khons-f is
similar to Khons, so that we will not repeat the analysis.

Algorithm 5 Khons.Search( w, σ; EDB)

Client:

1: (keyw, nump)← (Mb[w].key,Mb[w].nump)
2: wi ← H(keyh, w‖nump)
3: (id, key)← (M∗

b [wi].id,M∗

b [wi].key)
4: M∗

b [wi].flag← true
5: Send token (id, key, keyw) to the server.

Server:
6: S← empty set, j ← 0
7: REPEAT
8: b← D[id]
9: mask2 ← H2(key, id)

10: b.value← b.value⊕mask2

11: S = S ∪ D[b.idf ]
12: (id, key)← (b.idb, b.key)
13: IF (key = ⊥ )
14: IF ( keyw = ⊥ ) id← ⊥
15: ELSE b∗ ← D[id]
16: mask3 ← H3(keyw, w)
17: b∗.value← b∗.value⊕mask3

18: (id, key, keyw)← (b∗.id, b∗.key, b∗.keyw)
19: UNTIL (id =⊥)
20: Send S to the Client.

Client:
21: S← DecryptKs

(S)
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7 APPLICATIONS

As a special type of SSE, Khons can be applied to typical
ciphertext retrieval scenarios to reduce information leakage
or improve the efficiency.

Build secure encrypted applications. The two most
popular applications supporting keyword search are mail
system and cloud storage system. In encrypted mail system
(such as ShadowCrypt [8]), mails are stored in chronological
order and queries are allowed to be made within a certain
period of time. Its default query is to first get all of the page
information and mailing list matching this query on the first
page. Then, it obtains the mailing list according to the page
selected by the user. Each page can be regarded as a logical
partition of Khons. As for cloud storage systems, most of
them support pagination display at their clients. Therefore,
Khons can also be used to build index trees for documents
added in different time periods or different storage areas.

These applications usually do not need to retrieve all
documents and pagination query can meet the application
requirements. For them, Khons can be directly applied to
achieve forward search privacy without loss of functionality.
In this case, they can resist some statistical attacks, such as
non-adaptive file injection attack.

New directions for designing encrypted databases. Re-
cently, encrypted databases [1, 3–6] have become a promis-
ing direction, which provides confidentiality and function-
ality by running queries on encrypted data based on SSE,
order-preserving encryption (OPE) and other cryptographic
prototypes. Working as proxy services, they usually build
their own indexes for ciphertext data and achieve transpar-
ent client support by reinterpreting SQL statements.

In encrypted databases, Khons may help implement
some complex queries. Especially, Khons can be considered
for implementing pagination query. By reinterpreting SQL
“LIMIT” statement to that in one or many partitions, it can
reduce information leakage and improve search efficiency.
Even if full query must always be executed, Khons can also
be used instead of SSE to improve efficiency because it can
provide the ability of parallel query. Moreover, in the com-
mercial database products, Khons can be combined with
some fine-grained access control techniques like attribute-
based encryption (ABE) to enhance the security without loss
of efficiency.

8 EXPERIMENTS AND EVALUATION

8.1 Experiment Details

Implementation details. We implemented Fides [24] and
Dual [25] in single thread mode without remote RPC. We
further implemented Khons in parallel mode (on search op-
eration). Fides [24] is implemented following the Algorithm
2 mentioned in [24] which is based on the open source code
of Sophos. Dual [25] is implemented following its pseudo
code and is added two-roundtrip mechanism to achieve
backward privacy.

For client storage, we used a C++ STL map to store
keyword dictionary and a memory-mapped disk-resident
hash table to store M. For server storage, we chose google
implemented B-tree map [31], MongoDB and RocksDB. We
wrote wrapper code for them and tested the performance of
the above SSE schemes on them.

For cryptographic algorithms, AES and Blake2b are se-
lected as symmetric encryption algorithm and underlying
hash function, respectively. The encryption key of AES is
set to 256 bits. Moreover, the sse crypto library used in
Sophos [20] is used as our cryptographic tools.

Experiment environment. All the experiments were per-
formed on a desktop computer with a single Intel Core
i7-7700 3.6GHz CPU, 16GB of DDR3 RAM running Linux
Ubuntu 14.04 LTS operating system.

8.2 Dataset

We used the well-known Enron email [32] and Wikipedia
dumps [33] as our test datasets. TABLE 2 shows their
statistic characteristics.

TABLE 2: Dataset overall

Small dataset Large dataset
name Enron email wikipedia-20150602

tar.gz file size 0.432GB 11.9GB
key-value pair number 34510k 445505k

file number 517k 5078k
key number 20k 70k

Dataset preprocess. A set of keyword-document pairs
were extracted from each wikipedia document or email. We
used the NLTK library to exclude stopwords and punctua-
tion marks from the original text. Then we used PorterStem-
mer provided by the NLTK to extract keywords and exclude
duplicate keywords in every document.

8.3 Evaluation on B-tree Map

We focus on the detailed tree operations in different SSE
schemes, for understanding their effects on overall perfor-
mance. Meanwhile, we try to evaluate the performance of
SSE schemes excluding disk I/O latency. Thus, we used B-
tree map [31] stored in memory as server storage structure.

8.3.1 EDB Creation

TABLE 3: Comparison with creation using Enron dataset

Implementation Time(s) Pairs per sec(s)
storage(MB)

Client Server
Khons 406 85000 11 3418
Fides 39653 870 16 803
Dual 469 73582 11 2352

We ran all three SSE schemes to store the entire encrypt-
ed contents of Enron email dataset. TABLE 3 presents that
Khons is 100× faster than Fide [24] and 1.15× faster than
Dual [24]. Notice that the time of creation is nearly propor-
tionate to the cryptographic computation time. Compared
to Fides [24], AES encryption adopted in Khons is much
faster than its 2048-bit RSA-based operation. Compared to
Dual [25], Khons does less symmetric cryptographic com-
putation reported in TABLE 4. We also report the fact that
our scheme takes up more space than other two schemes.

8.3.2 EDB Search

To evaluate search performance, we searched all keywords
extracted from Enron dataset. We further added some code
to google B-tree implementation to record the numbers of
node splitting, node merging and node rebalancing per
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Fig. 6: Comparison with search time per matched document
on B-tree

search operation. Due to space constraints, we just reported
the records that were not approximate to zero in Fig. 7.

Fig. 6 shows the average time used to search based
on the number of documents returned in a search. The
average time means the time taken to search divided by
the number of matched documents. From Fig. 6, we can
see that: 1) Khons is 20-100× faster than Fides [24] for all
the cases of matched documents; 2) Khons is 2× faster
than Dual [25] for the case of small number of matched
documents, but is nearly equal to Dual [25] for the case
of large number of matched documents. We pointed out
that Fides [24] and Dual [25] need to delete old nodes and
add new nodes. The former is for actual deletion and the
latter is in nature. We explain the above conclusion from
two aspects. First, the performance of search operation is
related to the cryptographic computation. Fides [24] and
Dual [25] need to generate indexes for new nodes, but
Khons can reuse the existing nodes and thus reduce these
cryptographic computations. Second, the frequent add and
delete operations in Fides [24] and Dual [25] bring more
underlying tree operations and corresponding I/O cost. We
report the details in TABLE 4. Besides, we could see that
the performance of Khons is better when considering the
real-world I/O latency in section 8.4.

Fig. 7 represents that a significant amount of B-tree
nodes is influenced in the search operations of Fides [24]
and Dual [25]. Khons influences none due to node reuse.
The result indicates that node reuse can avoid a significant
amounts of storage space allocation, free and memory copy.
Thus, node reuse can efficiently reduce the I/O load.

TABLE 4: Comparison of main operations per search

cryptographic computation database operation
T H F E insert delete update

Fides 1aw 3aw aw aw aw nw 0
Dual - 5aw - 1aw 2aw 2aw 0

Khons - 1aw aw 2aw 0 0 0

T:

trapdoor permutation, H:hash function, F:PRF, E:symmetric encryption
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Fig. 7: Comparison with influenced nodes of B-tree. Influenced
node means node is allocated or freed; rebalanced node means node whose values
inside is moved.

8.4 Evaluation on Real-world Database

To verify that node reuse can take advantage in a real-world
database and evaluate the performance in more realistic
situation, we stored the data in the well-known key-value
database MongoDB, which uses B-tree as its index structure.
We also used RocksDB as storage structure to verify whether
the node reuse can rise performance in other storage struc-
tures, such as LSM tree-based structure.

8.4.1 EDB Creation

We ran all four schemes to store the entire encrypted con-
tents of the Enron email dataset. Fig. 8 shows the EDB
creation time of these schemes on different databases.
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Fig. 8: Comparison with creation using Enron email dataset
on real-world database

From Fig. 8, we can see that Khons are 20-40× faster
than Fides [24] and 1.2× faster than Dual [25]. Compared to
the result on B-tree, the performance reduction is due to the
database management expenditure and the load of disk I/O.
Moreover, the creation time in RocksDB is shorter than that
in MongoDB, because the underlying structure of RocksDB
has been optimized for write operation. For all the storage
wrapper code, we used the default configuration.
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Fig. 9: Comparison with search time on MongoDB (Small
Dataset)

8.4.2 EDB Search

From Fig. 9 and Fig. 10, we can see that the disk I/O latency
delay factor is enlarged. Compared with Dual [25], Khons
is 2-3× faster for all the cases of matched documents. They
both much faster than Fides [24].
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Fig. 10: Comparison with search time on RocksDB (Small
Dataset)

8.5 Evaluation on Large Dataset

Experiments on large dataset are designed to evaluate the
full search performance of Khons in parallel mode. In these
experiments, we chose RocksDB as storage structure and set
the maximum number of documents in a partition to 20,
which is reasonable in applications supporting pagination
query.

8.5.1 EDB Creation

The average throughput of each scheme is close to the per-
formance testing on small datasets. Through experiments,

we report that the update throughput of Khons is around
83500 keyword-document pairs per second in average. Dual
is around 73000 keyword-document pairs per second and
Fides is around 920 keyword-document pairs per second.

8.5.2 EDB Search
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Fig. 11: Comparison with search time per matched docu-
ment on RocksDB (Large Dataset)

From Fig. 11, we can conclude that Khons is at least 3×
faster than Dual [25] and 2× faster than Fides [24] for the
cases of medium and large result set. For the case of small
result set, however, it is slower than Dual [25] and Fides [24].

In these experiments, we mainly take two factors into
considerations: storage accesses and cryptographic compu-
tation. For the first, because it is impossible to load full
EDB in the case of the large dataset, accessing data on
different hierarchies of memory is unavoidable and becomes
a bottleneck. Furthermore, since SSE is not optimized for the
memory locality, the time spent on memory access is pro-
portional to the number of database operations. Therefore,
Dual costs the most time on memory access to complete
its search and Khons costs the least. To note, Khons needs
more storage space to store node states which leads to extra
time cost due to swap of memory. For the second, the
parallelized cryptographic computation cost takes up the
most of computation cost. For Fides, although RSA and hash
function computations are fully parallelized, computation
based on RSA private key is very expensive. For Khons, its
parallelization mechanism is based on pagination technique.
In the case of small result set, the search time cost cannot be
amortized. Thus, Fides costs the most time on computation
to complete its search while Dual and Khons cost less.

9 CONCLUSIONS

In this paper, we proposed the notion “forward search
privacy”, which ensures search operation over newly added
documents doesn’t leak the past query information. To
achieve this security goal, we developed the new forward
private technique, hidden pointer technique (HPT). Finally,
we constructed the Khons scheme achieving both forward
search privacy and backward privacy. Experiment results
show that Khons is efficient and practical.

Khons can support partial query, but the application
scenarios of our solutions may be relatively limited. And
our scheme can only achieve weak forward search security.
How to achieve strong forward search security can be our
key point in the future work.
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