Searches for B Meson Decays to $\phi \phi, \phi \rho, \phi f_{0}(980)$, and $f_{0}(980) f_{0}(980)$ Final States

B. Aubert, ${ }^{1}$ M. Bona, ${ }^{1}$ Y. Karyotakis, ${ }^{1}$ J. P. Lees, ${ }^{1}$ V. Poireau, ${ }^{1}$ E. Prencipe, ${ }^{1}$ X. Prudent, ${ }^{1}$ V. Tisserand, ${ }^{1}$ J. Garra Tico, ${ }^{2}$ E. Grauges, ${ }^{2}$ L. Lopez,,${ }^{3 a, 3 b}$ A. Palano, ${ }^{3 a, 3 b}$ M. Pappagallo, ${ }^{3 a, 3 b}$ G. Eigen, ${ }^{4}$ B. Stugu, ${ }^{4}$ L. Sun, ${ }^{4}$ G. S. Abrams, ${ }^{5}$ M. Battaglia, ${ }^{5}$ D. N. Brown, ${ }^{5}$ R. N. Cahn, ${ }^{5}$ R. G. Jacobsen, ${ }^{5}$ L. T. Kerth, ${ }^{5}$ Yu. G. Kolomensky, ${ }^{5}$ G. Lynch, ${ }^{5}$ I. L. Osipenkov, ${ }^{5}$ M. T. Ronan,,${ }^{5, *}$ K. Tackmann, ${ }^{5}$ T. Tanabe,,${ }^{5}$ C. M. Hawkes, ${ }^{6}$ N. Soni, ${ }^{6}$ A. T. Watson, ${ }^{6}$ H. Koch, ${ }^{7}$ T. Schroeder, ${ }^{7}$ D. Walker, ${ }^{8}$ D. J. Asgeirsson, ${ }^{9}$ B. G. Fulsom, ${ }^{9}$ C. Hearty, ${ }^{9}$ T. S. Mattison, ${ }^{9}$ J. A. McKenna, ${ }^{9}$ M. Barrett,,${ }^{10}$ A. Khan, ${ }^{10}$ V.E. Blinov, ${ }^{11}$ A. D. Bukin, ${ }^{11}$ A. R. Buzykaev, ${ }^{11}$ V. P. Druzhinin, ${ }^{11}$ V. B. Golubev, ${ }^{11}$ A. P. Onuchin, ${ }^{10}$ S. I. Serednyakov, ${ }^{11}$ Yu. I. Skovpen, ${ }^{11}$ E. P. Solodov, ${ }^{11}$ K. Yu. Todyshev, ${ }^{11}$ M. Bondioli, ${ }^{12}$ S. Curry, ${ }^{12}$ I. Eschrich, ${ }^{12}$ D. Kirkby, ${ }^{12}$ A. J. Lankford, ${ }^{12}$ P. Lund, ${ }^{12}$ M. Mandelkern, ${ }^{12}$ E. C. Martin, ${ }^{12}$ D. P. Stoker, ${ }^{12}$ S. Abachi, ${ }^{13}$ C. Buchanan, ${ }^{13}$ J. W. Gary, ${ }^{14}$ F. Liu, ${ }^{14}$ O. Long, ${ }^{14}$ B. C. Shen, ${ }^{14, *}$ G. M. Vitug, ${ }^{14}$ Z. Yasin, ${ }^{14}$ L. Zhang, ${ }^{14}$ V. Sharma, ${ }^{15}$ C. Campagnari, ${ }^{16}$ T. M. Hong, ${ }^{16}$ D. Kovalskyi, ${ }^{16}$ M. A. Mazur, ${ }^{16}$ J. D. Richman, ${ }^{16}$ T. W. Beck, ${ }^{17}$ A. M. Eisner, ${ }^{17}$ C. J. Flacco, ${ }^{17}$ C. A. Heusch, ${ }^{17}$ J. Kroseberg, ${ }^{17}$ W. S. Lockman, ${ }^{17}$ T. Schalk, ${ }^{17}$ B. A. Schumm, ${ }^{17}$ A. Seiden, ${ }^{17}$ L. Wang, ${ }^{17}$ M. G. Wilson, ${ }^{17}$ L. O. Winstrom, ${ }^{17}$ C. H. Cheng, ${ }^{18}$ D. A. Doll, ${ }^{18}$ B. Echenard, ${ }^{18}$ F. Fang, ${ }^{18}$ D. G. Hitlin, ${ }^{18}$ I. Narsky, ${ }^{18}$ T. Piatenko, ${ }^{18}$ F. C. Porter, ${ }^{18}$ R. Andreassen, ${ }^{19}$ G. Mancinelli, ${ }^{19}$ B. T. Meadows, ${ }^{19}$ K. Mishra, ${ }^{19}$ M. D. Sokoloff, ${ }^{19}$ P. C. Bloom, ${ }^{20}$ W. T. Ford, ${ }^{20}$ A. Gaz, ${ }^{20}$ J. F. Hirschauer, ${ }^{20}$ M. Nagel, ${ }^{20}$ U. Nauenberg, ${ }^{20}$ J. G. Smith, ${ }^{20}$ K. A. Ulmer, ${ }^{20}$ S. R. Wagner, ${ }^{20}$ R. Ayad, ${ }^{21,+}$ A. Soffer, ${ }^{21, \#}$ W. H. Toki, ${ }^{21}$ R. J. Wilson, ${ }^{21}$ D. D. Altenburg, ${ }^{22}$ E. Feltresi, ${ }^{22}$ A. Hauke, ${ }^{22}$ H. Jasper, ${ }^{22}$ M. Karbach, ${ }^{22}$ J. Merkel, ${ }^{22}$ A. Petzold, ${ }^{22}$ B. Spaan, ${ }^{22}$ K. Wacker, ${ }^{22}$ M. J. Kobel, ${ }^{23}$ W. F. Mader, ${ }^{23}$ R. Nogowski, ${ }^{23}$ K. R. Schubert, ${ }^{23}$ R. Schwierz, ${ }^{23}$ J. E. Sundermann, ${ }^{23}$ A. Volk, ${ }^{23}$ D. Bernard, ${ }^{24}$ G. R. Bonneaud, ${ }^{24}$ E. Latour, ${ }^{24}$ Ch. Thiebaux, ${ }^{24}$ M. Verderi, ${ }^{24}$ P. J. Clark, ${ }^{25}$ W. Gradl, ${ }^{25}$ S. Playfer, ${ }^{25}$ J. E. Watson, ${ }^{25}$ M. Andreotti, ${ }^{26 a}, 26 \mathrm{~b}$ D. Bettoni, ${ }^{26 a}$ C. Bozzi, ${ }^{26 \mathrm{a}}$ R. Calabrese, ${ }^{26 \mathrm{a}, 26 \mathrm{~b}}$ A. Cecchi, ${ }^{26 a, 26 \mathrm{~b}}$ G. Cibinetto, ${ }^{26 a, 26 b}$ P. Franchini, ${ }^{26 a, 26 b}$ E. Luppi, ${ }^{26 a, 26 b}$ M. Negrini, ${ }^{26 a, 26 b}$ A. Petrella, ${ }^{26 a, 26 b}$ L. Piemontese, ${ }^{26 a}$ V. Santoro, ${ }^{26 a, 26 b}$ R. Baldini-Ferroli, ${ }^{27}$ A. Calcaterra, ${ }^{27}$ R. de Sangro, ${ }^{27}$ G. Finocchiaro, ${ }^{27}$ S. Pacetti, ${ }^{27}$ P. Patteri, ${ }^{27}$ I. M. Peruzzi,,${ }^{27,8}$ M. Piccolo, ${ }^{27}$ M. Rama, ${ }^{27}$ A. Zallo, ${ }^{27}$ A. Buzzo, ${ }^{28 a}$ R. Contri, ${ }^{28 a, 28 b}$ M. Lo Vetere, ${ }^{28 a, 28 b}$ M. M. Macri, ${ }^{28 a}$ M. R. Monge, ${ }^{28 a, 28 b}$ S. Passaggio, ${ }^{28 a}$ C. Patrignani, ${ }^{28 a, 28 b}$ E. Robutti, ${ }^{28 \mathrm{a}}$ A. Santroni, ${ }^{28 \mathrm{a}, 28 \mathrm{~b}}$ S. Tosi, ${ }^{28 \mathrm{a}, 28 \mathrm{~b}}$ K. S. Chaisanguanthum, ${ }^{29}$ M. Morii, ${ }^{29}$ J. Marks, ${ }^{30}$ S. Schenk, ${ }^{30}$ U. Uwer, ${ }^{30}$ V. Klose, ${ }^{31}$ H. M. Lacker, ${ }^{31}$ D. J. Bard, ${ }^{32}$ P. D. Dauncey, ${ }^{32}$ J. A. Nash, ${ }^{32}$ W. Panduro Vazquez, ${ }^{32}$ M. Tibbetts, ${ }^{32}$ P. K. Behera, ${ }^{33}$ X. Chai, ${ }^{33}$ M. J. Charles, ${ }^{33}$ U. Mallik, ${ }^{33}$ J. Cochran, ${ }^{34}$ H. B. Crawley, ${ }^{34}$ L. Dong, ${ }^{34}$ W. T. Meyer, ${ }^{34}$ S. Prell, ${ }^{34}$ E. I. Rosenberg, ${ }^{34}$ A. E. Rubin, ${ }^{34}$ Y. Y. Gao, ${ }^{35}$ A. V. Gritsan, ${ }^{35}$ Z. J. Guo, ${ }^{35}$ C. K. Lae, ${ }^{35}$ A. G. Denig, ${ }^{36}$ M. Fritsch, ${ }^{36}$ G. Schott, ${ }^{36}$ N. Arnaud, ${ }^{37}$ J. Béquilleux, ${ }^{37}$ A. D’Orazio, ${ }^{37}$ M. Davier, ${ }^{37}$ J. Firmino da Costa, ${ }^{37}$ G. Grosdidier, ${ }^{37}$ A. Höcker, ${ }^{37}$ V. Lepeltier, ${ }^{37}$ F. Le Diberder, ${ }^{37}$ A. M. Lutz, ${ }^{37}$ S. Pruvot, ${ }^{37}$ P. Roudeau, ${ }^{37}$ M. H. Schune, ${ }^{37}$ J. Serrano, ${ }^{37}$ V. Sordini, ${ }^{37, \|}$ A. Stocchi, ${ }^{37}$ G. Wormser, ${ }^{37}$ D. J. Lange, ${ }^{38}$ D. M. Wright, ${ }^{38}$ I. Bingham, ${ }^{39}$ J. P. Burke, ${ }^{39}$ C. A. Chavez, ${ }^{39}$ J. R. Fry, ${ }^{39}$ E. Gabathuler, ${ }^{39}$ R. Gamet, ${ }^{39}$ D. E. Hutchcroft, ${ }^{39}$ D. J. Payne, ${ }^{39}$ C. Touramanis, ${ }^{39}$ A. J. Bevan, ${ }^{40}$ C. K. Clarke, ${ }^{40}$ K. A. George, ${ }^{40}$ F. Di Lodovico, ${ }^{40}$ R. Sacco, ${ }^{40}$ M. Sigamani, ${ }^{40}$ G. Cowan, ${ }^{41}$ H. U. Flaecher, ${ }^{41}$ D. A. Hopkins, ${ }^{41}$ S. Paramesvaran, ${ }^{41}$ F. Salvatore, ${ }^{41}$ A. C. Wren, ${ }^{41}$ D. N. Brown, ${ }^{42}$ C. L. Davis, ${ }^{42}$ K. E. Alwyn, ${ }^{43}$ D. Bailey, ${ }^{43}$ R. J. Barlow, ${ }^{43}$ Y. M. Chia, ${ }^{43}$ C. L. Edgar, ${ }^{43}$ G. Jackson, ${ }^{43}$ G. D. Lafferty, ${ }^{43}$ T. J. West, ${ }^{43}$ J. I. Yi, ${ }^{43}$ J. Anderson, ${ }^{44}$ C. Chen, ${ }^{44}$ A. Jawahery, ${ }^{44}$ D. A. Roberts, ${ }^{44}$ G. Simi, ${ }^{44}$ J. M. Tuggle, ${ }^{44}$ C. Dallapiccola, ${ }^{45}$ X. Li, ${ }^{45}$ E. Salvati, ${ }^{45}$ S. Saremi, ${ }^{45}$ R. Cowan, ${ }^{46}$ D. Dujmic, ${ }^{46}$
P. H. Fisher, ${ }^{46}$ K. Koeneke, ${ }^{46}$ G. Sciolla, ${ }^{46}$ M. Spitznagel, ${ }^{46}$ F. Taylor, ${ }^{46}$ R. K. Yamamoto, ${ }^{46}$ M. Zhao, ${ }^{46}$ P. M. Patel, ${ }^{47}$ S. H. Robertson,,47 A. Lazzaro, ${ }^{48,48 \mathrm{~b}}$ V. Lombardo, ${ }^{48}$ F. Palombo, ${ }^{48,48 \mathrm{~b}}$ J. M. Bauer, ${ }^{49}$ L. Cremaldi, ${ }^{49}$ V. Eschenburg, ${ }^{49}$ R. Godang, ${ }^{49, \text {, }}$ R. Kroeger, ${ }^{49}$ D. A. Sanders, ${ }^{49}$ D. J. Summers, ${ }^{49}$ H. W. Zhao, ${ }^{49}$ M. Simard, ${ }^{50}$ P. Taras, ${ }^{50}$ F. B. Viaud, ${ }^{50}$ H. Nicholson, ${ }^{51}$ G. De Nardo, ${ }^{52 \mathrm{a}, 52 \mathrm{~b}}$ L. Lista, ${ }^{52 \mathrm{a}}$ D. Monorchio, ${ }^{52 \mathrm{a}, 52 \mathrm{~b}}$ G. Onorato, ${ }^{52 \mathrm{a}, 52 \mathrm{~b}}$ C. Sciacca, ${ }^{52 \mathrm{a}, 52 \mathrm{~b}}$ G. Raven, ${ }^{53}$ H. L. Snoek, ${ }^{53}$ C. P. Jessop, ${ }^{54}$ K. J. Knoepfel, ${ }^{54}$ J. M. LoSecco, ${ }^{54}$ W. F. Wang, ${ }^{54}$ G. Benelli, ${ }^{55}$ L. A. Corwin, ${ }^{55}$ K. Honscheid, ${ }^{55}$ H. Kagan, ${ }^{55}$ R. Kass, ${ }^{55}$ J. P. Morris, ${ }^{55}$ A. M. Rahimi, ${ }^{55}$ J. J. Regensburger, ${ }^{55}$ S. J. Sekula, ${ }^{55}$ Q. K. Wong, ${ }^{55}$ N. L. Blount, ${ }^{56}$ J. Brau, ${ }^{56}$ R. Frey, ${ }^{56}$ O. Igonkina, ${ }^{56}$ J. A. Kolb, ${ }^{56}$ M. Lu, ${ }^{56}$ R. Rahmat, ${ }^{56}$ N. B. Sinev, ${ }^{56}$ D. Strom, ${ }^{56}$ J. Strube, ${ }^{56}$ E. Torrence, ${ }^{56}$ G. Castelli, ${ }^{57 \mathrm{a}, 57 \mathrm{~b}}$ N. Gagliardi, ${ }^{57 \mathrm{a}, 57 \mathrm{~b}}$ M. Margoni, ${ }^{57 \mathrm{a}, 57 \mathrm{~b}}$ M. Morandin, ${ }^{57 \mathrm{a} \text { M M. Posocco, }{ }^{57 \mathrm{a}} \text {. }{ }^{57} \text {. }{ }^{57} \text {. }}$ M. Rotondo, ${ }^{57 \mathrm{a}}$ F. Simonetto, ${ }^{57 \mathrm{a}, 57 \mathrm{~b}}$ R. Stroili, ${ }^{57 \mathrm{a}, 57 \mathrm{~b}}$ C. Voci, ${ }^{57 \mathrm{a}, 57 \mathrm{~b}}$ P. del Amo Sanchez, ${ }^{58}$ E. Ben-Haim, ${ }^{58}$ H. Briand, ${ }^{58}$ G. Calderini, ${ }^{58}$ J. Chauveau, ${ }^{58}$ P. David, ${ }^{58}$ L. Del Buono, ${ }^{58}$ O. Hamon, ${ }^{58}$ Ph. Leruste, ${ }^{58}$ J. Ocariz, ${ }^{58}$ A. Perez, ${ }^{58}$ J. Prendki, ${ }^{58}$ S. Sitt, ${ }^{58}$ L. Gladney, ${ }^{59}$ M. Biasini, ${ }^{60 a, 60 b}$ R. Covarelli, ${ }^{60 a, 60 b}$ E. Manoni, ${ }^{60 a, 60 b}$ C. Angelini, ${ }^{61 a, 61 b}$ G. Batignani, ${ }^{61 \mathrm{a}, 61 \mathrm{~b}}$ S. Bettarini, ${ }^{61 \mathrm{a}, 61 \mathrm{~b}}$ M. Carpinelli, ${ }^{61 \mathrm{a}, 61 \mathrm{~b}, * *}$ A. Cervelli, ${ }^{61 \mathrm{a}, 61 \mathrm{~b}}$ F. Forti, ${ }^{61 \mathrm{a}, 61 \mathrm{~b}}$ M. A. Giorgi, ${ }^{61 \mathrm{a}, 61 \mathrm{~b}}$ A. Lusiani, ${ }^{61 \mathrm{a}, 61 \mathrm{c}}$ G. Marchiori, ${ }^{61 \mathrm{a}, 61 \mathrm{~b}}$ M. Morganti, ${ }^{61 \mathrm{a}, 61 \mathrm{~b}}$ N. Neri, ${ }^{61 \mathrm{a}, 61 \mathrm{~b}}$ E. Paoloni, ${ }^{61 \mathrm{a}, 61 \mathrm{~b}}$ G. Rizzo, ${ }^{61 \mathrm{a}, 61 \mathrm{~b}}$ J. J. Walsh, ${ }^{61 \mathrm{a}}$ D. Lopes Pegna, ${ }^{62}$ C. Lu, ${ }^{62}$ J. Olsen, ${ }^{62}$ A. J. S. Smith, ${ }^{62}$ A. V. Telnov, ${ }^{62}$ F. Anulli, ${ }^{63 a}$ E. Baracchini, ${ }^{63 \mathrm{a}, 63 \mathrm{~b}}$ G. Cavoto, ${ }^{63 \mathrm{a}}$ D. del Re, ${ }^{63 \mathrm{a}, 63 \mathrm{~b}}$
E. Di Marco, ${ }^{63 \mathrm{a}, 63 \mathrm{~b}}$ R. Faccini, ${ }^{63 \mathrm{a}, 63 \mathrm{~b}}$ F. Ferrarotto, ${ }^{63 \mathrm{a}}$ F. Ferroni, ${ }^{63 \mathrm{a}, 63 \mathrm{~b}}$ M. Gaspero, ${ }^{63 \mathrm{a}, 63 \mathrm{~b}}$ P. D. Jackson, ${ }^{63 \mathrm{a}}$ L. Li Gioi, ${ }^{63 \mathrm{a}}$ M. A. Mazzoni, ${ }^{63 a}$ S. Morganti, ${ }^{63 a}$ G. Piredda, ${ }^{63 a}$ F. Polci, ${ }^{63 \mathrm{a}, 63 \mathrm{~b}}$ F. Renga, ${ }^{63 \mathrm{a}, 63 \mathrm{~b}}$ C. Voena, ${ }^{63 \mathrm{a}}$ M. Ebert, ${ }^{64}$ T. Hartmann, ${ }^{64}$ H. Schröder, ${ }^{64}$ R. Waldi, ${ }^{64}$ T. Adye, ${ }^{65}$ B. Franek, ${ }^{65}$ E. O. Olaiya, ${ }^{65}$ F. F. Wilson, ${ }^{65}$ S. Emery, ${ }^{66}$ M. Escalier, ${ }^{66}$ L. Esteve, ${ }^{66}$ S.F. Ganzhur, ${ }^{66}$ G. Hamel de Monchenault, ${ }^{66}$ W. Kozanecki, ${ }^{66}$ G. Vasseur, ${ }^{66}$ Ch. Yèche, ${ }^{66}$ M. Zito, ${ }^{66}$ X. R. Chen, ${ }^{67}$ H. Liu, ${ }^{67}$ W. Park, ${ }^{67}$ M. V. Purohit, ${ }^{67}$ R. M. White, ${ }^{67}$ J. R. Wilson, ${ }^{67}$ M. T. Allen, ${ }^{68}$ D. Aston, ${ }^{68}$ R. Bartoldus, ${ }^{68}$ P. Bechtle, ${ }^{68}$ J. F. Benitez, ${ }^{68}$ R. Cenci, ${ }^{68}$ J. P. Coleman, ${ }^{68}$ M. R. Convery, ${ }^{68}$ J. C. Dingfelder, ${ }^{68}$ J. Dorfan, ${ }^{68}$ G. P. Dubois-Felsmann, ${ }^{68}$ W. Dunwoodie, ${ }^{68}$ R. C. Field, ${ }^{68}$ A. M. Gabareen, ${ }^{68}$ S. J. Gowdy, ${ }^{68}$ M. T. Graham, ${ }^{68}$ P. Grenier, ${ }^{68}$ C. Hast, ${ }^{68}$ W. R. Innes, ${ }^{68}$ J. Kaminski, ${ }^{68}$ M. H. Kelsey, ${ }^{68}$ H. Kim, ${ }^{68}$ P. Kim, ${ }^{68}$ M. L. Kocian, ${ }^{68}$ D. W. G. S. Leith, ${ }^{68}$ S. Li, ${ }^{68}$ B. Lindquist, ${ }^{68}$ S. Luitz, ${ }^{68}$ V. Luth, ${ }^{68}$ H. L. Lynch, ${ }^{68}$ D. B. MacFarlane, ${ }^{68}$ H. Marsiske, ${ }^{68}$ R. Messner, ${ }^{68}$ D. R. Muller ${ }^{68}$ H. Neal, ${ }^{68}$ S. Nelson, ${ }^{68}$ C. P. O'Grady, ${ }^{68}$ I. Ofte, ${ }^{68}$ A. Perazzo, ${ }^{68}$ M. Perl, ${ }^{68}$ B. N. Ratcliff, ${ }^{68}$ A. Roodman, ${ }^{68}$ A. A. Salnikov, ${ }^{68}$ R. H. Schindler, ${ }^{68}$ J. Schwiening, ${ }^{68}$ A. Snyder, ${ }^{68}$ D. Su, ${ }^{68}$ M. K. Sullivan, ${ }^{68}$ K. Suzuki, ${ }^{68}$ S. K. Swain, ${ }^{68}$ J. M. Thompson, ${ }^{68}$ J. Va'vra, ${ }^{68}$ A. P. Wagner, ${ }^{68}$ M. Weaver, ${ }^{68}$ C. A. West, ${ }^{68}$ W. J. Wisniewski, ${ }^{68}$ M. Wittgen, ${ }^{68}$ D. H. Wright, ${ }^{68}$ H. W. Wulsin, ${ }^{68}$ A. K. Yarritu, ${ }^{68}$ K. Yi, ${ }^{68}$ C. C. Young, ${ }^{68}$ V. Ziegler, ${ }^{68}$ P. R. Burchat, ${ }^{69}$ A. J. Edwards, ${ }^{69}$ S. A. Majewski, ${ }^{69}$ T. S. Miyashita, ${ }^{69}$ B. A. Petersen, ${ }^{69}$ L. Wilden, ${ }^{69}$ S. Ahmed, ${ }^{70}$ M. S. Alam, ${ }^{70}$ J. A. Ernst, ${ }^{70}$ B. Pan, ${ }^{70}$ M. A. Saeed, ${ }^{70}$ S. B. Zain, ${ }^{70}$ S. M. Spanier, ${ }^{71}$ B. J. Wogsland, ${ }^{71}$ R. Eckmann, ${ }^{72}$ J. L. Ritchie, ${ }^{72}$ A. M. Ruland, ${ }^{72}$ C. J. Schilling, ${ }^{72}$ R. F. Schwitters, ${ }^{72}$ B. W. Drummond, ${ }^{73}$ J. M. Izen, ${ }^{73}$ X. C. Lou, ${ }^{73}$ F. Bianchi, ${ }^{74 a, 74 b}$ D. Gamba, ${ }^{74 a, 74 b}$ M. Pelliccioni, ${ }^{74 a, 74 b}$ M. Bomben, ${ }^{75 a, 75 b}$ L. Bosisio, ${ }^{75 \mathrm{a}, 75 \mathrm{~b}}$ C. Cartaro, ${ }^{75 \mathrm{a}, 75 \mathrm{~b}}$ G. Della Ricca, ${ }^{75 \mathrm{a}, 75 \mathrm{~b}}$ L. Lanceri, ${ }^{75 \mathrm{a}, 75 \mathrm{~b}}$ L. Vitale, ${ }^{75 \mathrm{a}, 75 \mathrm{~b}}$ V. Azzolini, ${ }^{76}$ N. Lopez-March, ${ }^{76}$ F. Martinez-Vidal, ${ }^{76}$ D. A. Milanes, ${ }^{76}$ A. Oyanguren, ${ }^{76}$ J. Albert, ${ }^{77}$ Sw. Banerjee, ${ }^{77}$ B. Bhuyan, ${ }^{77}$ H. H. F. Choi, ${ }^{77}$ K. Hamano, ${ }^{77}$ R. Kowalewski, ${ }^{77}$ M. J. Lewczuk, ${ }^{77}$ I. M. Nugent, ${ }^{77}$ J. M. Roney, ${ }^{77}$ R. J. Sobie, ${ }^{77}$ T. J. Gershon, ${ }^{78}$ P. F. Harrison, ${ }^{78}$ J. Ilic, ${ }^{78}$ T. E. Latham, ${ }^{78}$ G. B. Mohanty, ${ }^{78}$ H. R. Band, ${ }^{79}$ X. Chen, ${ }^{79}$ S. Dasu, ${ }^{79}$ K. T. Flood, ${ }^{79}$ Y. Pan, ${ }^{79}$ M. Pierini, ${ }^{79}$ R. Prepost, ${ }^{79}$ C. O. Vuosalo, ${ }^{79}$ and S. L. Wu ${ }^{79}$

(BABAR Collaboration)

[^0]```
 \({ }^{30}\) Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
 \({ }^{31}\) Humboldt-Universität zu Berlin, Institut für Physik, Newtonstr. 15, D-12489 Berlin, Germany
 \({ }^{32}\) Imperial College London, London, SW7 2AZ, United Kingdom
 \({ }^{33}\) University of Iowa, Iowa City, Iowa 52242, USA
 \({ }^{34}\) Iowa State University, Ames, Iowa 50011-3160, USA
 \({ }^{35}\) Johns Hopkins University, Baltimore, Maryland 21218, USA
 \({ }^{36}\) Universität Karlsruhe, Institut für Experimentelle Kernphysik, D-76021 Karlsruhe, Germany
 \({ }^{37}\) Laboratoire de l'Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Centre Scientifique d'Orsay,
 B. P. 34, F-91898 Orsay Cedex, France
 \({ }^{38}\) Lawrence Livermore National Laboratory, Livermore, California 94550, USA
 \({ }^{39}\) University of Liverpool, Liverpool L69 7ZE, United Kingdom
 \({ }^{40}\) Queen Mary, University of London, London, E1 4NS, United Kingdom
 \({ }^{41}\) University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 OEX, United Kingdom
 \({ }^{42}\) University of Louisville, Louisville, Kentucky 40292, USA
 \({ }^{43}\) University of Manchester, Manchester M13 9PL, United Kingdom
 \({ }^{44}\) University of Maryland, College Park, Maryland 20742, USA
 \({ }^{45}\) University of Massachusetts, Amherst, Massachusetts 01003, USA
 \({ }^{46}\) Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
 \({ }^{47}\) McGill University, Montréal, Québec, Canada H3A \(2 T 8\)
 \({ }^{48}\) INFN Sezione di Milano, I-20133 Milano, Italy;
 \({ }^{48 \mathrm{~b}}\) Dipartimento di Fisica, Università di Milano, I-20133 Milano, Italy
 \({ }^{49}\) University of Mississippi, University, Mississippi 38677, USA
 \({ }^{50}\) Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C \(3 J 7\)
 \({ }^{51}\) Mount Holyoke College, South Hadley, Massachusetts 01075, USA
 \({ }^{52 \mathrm{a}}\) INFN Sezione di Napoli, I-80126 Napoli, Italy;
 \({ }^{52 \mathrm{~b}}\) Dipartimento di Scienze Fisiche, Università di Napoli Federico II, I-80126 Napoli, Italy
\({ }^{53}\) NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
 \({ }^{54}\) University of Notre Dame, Notre Dame, Indiana 46556, USA
 \({ }^{55}\) Ohio State University, Columbus, Ohio 43210, USA
 \({ }^{56}\) University of Oregon, Eugene, Oregon 97403, USA
 \({ }^{57 \mathrm{a}}\) INFN Sezione di Padova, I-35131 Padova, Italy;
 \({ }^{57 \mathrm{~b}}\) Dipartimento di Fisica, Università di Padova, I-35131 Padova, Italy
 \({ }^{58}\) Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS,
 Université Pierre et Marie Curie-Paris6, Université Denis Diderot-Paris7, F-75252 Paris, France
 \({ }^{59}\) University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
 \({ }^{60 a}\) INFN Sezione di Perugia, I-06100 Perugia, Italy;
 \({ }^{60 b}\) Dipartimento di Fisica, Università di Perugia, I-06100 Perugia, Italy
 \({ }^{61 \mathrm{a}}\) INFN Sezione di Pisa, I-56127 Pisa, Italy;
 \({ }^{61 b}\) Dipartimento di Fisica, Università di Pisa, I-56127 Pisa, Italy;
 \({ }^{61 \mathrm{c}}\) Scuola Normale Superiore di Pisa, I-56127 Pisa, Italy
 \({ }^{62}\) Princeton University, Princeton, New Jersey 08544, USA
 \({ }^{63 \mathrm{a}}\) INFN Sezione di Roma, I-00185 Roma, Italy;
 \({ }^{63 \mathrm{~b}}\) Dipartimento di Fisica, Università di Roma La Sapienza, I-00185 Roma, Italy
 \({ }^{64}\) Universität Rostock, D-18051 Rostock, Germany
 \({ }^{65}\) Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX1 1 0QX, United Kingdom
 \({ }^{66}\) DSM/Irfu, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France
 \({ }^{67}\) University of South Carolina, Columbia, South Carolina 29208, USA
 \({ }^{68}\) Stanford Linear Accelerator Center, Stanford, California 94309, USA
 \({ }^{69}\) Stanford University, Stanford, California 94305-4060, USA
 \({ }^{70}\) State University of New York, Albany, New York 12222, USA
 \({ }^{71}\) University of Tennessee, Knoxville, Tennessee 37996, USA
 \({ }^{72}\) University of Texas at Austin, Austin, Texas 78712, USA
 \({ }^{73}\) University of Texas at Dallas, Richardson, Texas 75083, USA
 \({ }^{74 \mathrm{a}}\) INFN Sezione di Torino, I-10125 Torino, Italy;
 \({ }^{74 \mathrm{~b}}\) Dipartimento di Fisica Sperimentale, Università di Torino, I-10125 Torino, Italy
 \({ }^{75 \mathrm{a}}\) INFN Sezione di Trieste, I-34127 Trieste, Italy;
 \({ }^{75 \mathrm{~b}}\) Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy
 \({ }^{76}\) IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
 \({ }^{77}\) University of Victoria, Victoria, British Columbia, Canada V8W 3P6
 \({ }^{78}\) Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
 \({ }^{79}\) University of Wisconsin, Madison, Wisconsin 53706, USA
```


## (Received 24 July 2008; published 10 November 2008)


#### Abstract

We present the results of searches for $B$ decays to charmless final states involving $\phi, f_{0}(980)$, and charged or neutral $\rho$ mesons. The data sample corresponds to $384 \times 10^{6} B \bar{B}$ pairs collected with the $B A B A R$ detector operating at the PEP-II asymmetric-energy $e^{+} e^{-}$collider at SLAC. We find no significant signals and determine the following $90 \%$ confidence level upper limits on the branching fractions, including systematic uncertainties: $\mathcal{B}\left(B^{0} \rightarrow \phi \phi\right)<2.0 \times 10^{-7}, \mathcal{B}\left(B^{+} \rightarrow \phi \rho^{+}\right)<30 \times 10^{-7}$, $\mathcal{B}\left(B^{0} \rightarrow \phi \rho^{0}\right)<3.3 \times 10^{-7}, \mathcal{B}\left[B^{0} \rightarrow \phi f_{0}(980)\right] \times \mathcal{B}\left[f_{0}(980) \rightarrow \pi^{+} \pi^{-}\right]<3.8 \times 10^{-7}$, and $\mathcal{B}\left[B^{0} \rightarrow\right.$ $\left.f_{0}(980) f_{0}(980)\right] \times \mathcal{B}\left[f_{0}(980) \rightarrow \pi^{+} \pi^{-}\right] \times \mathcal{B}\left[f_{0}(980) \rightarrow K^{+} K^{-}\right]<2.3 \times 10^{-7}$.


DOI: 10.1103/PhysRevLett.101.201801
PACS numbers: $13.25 . \mathrm{Hw}, 11.30 . \mathrm{Er}$, 12.15. Hh

We report the results of searches for the decays $B^{0} \rightarrow$ $\phi \phi, \phi \rho^{0}, \phi f_{0}(980), f_{0}(980) f_{0}(980)$, and $B^{ \pm} \rightarrow \phi \rho^{ \pm}[1]$ using data collected with the BABAR detector. The $B^{0} \rightarrow$ $\phi \phi$ decay is an OZI suppressed process with an expected branching fraction in the range $(0.1-3) \times 10^{-8}$ in the standard model (SM) [2-4]. The decays $B^{0} \rightarrow \phi \rho^{0}$ and $B^{+} \rightarrow \phi \rho^{+}$are pure $b \rightarrow d$ loop processes; the expected branching fractions for these modes range from (2-7) $\times$ $10^{-8}$ [5-9]. The presence of new physics (NP) would give rise to additional amplitudes that could enhance the branching fractions for these decay modes relative to the SM predictions [2,3,6]. The branching fraction for $B^{0} \rightarrow$ $\phi \phi$ could be enhanced to $10^{-7}$ [2], and the branching fractions for $B \rightarrow \phi \rho$ decays could be enhanced by $20 \%$ [8] in the presence of NP. We are not aware of branching fraction predictions for $B^{0} \rightarrow \phi f_{0}$ and $B^{0} \rightarrow f_{0} f_{0}$.

The $B$ decays to $\phi \phi$ and $\phi \rho$ are complicated by the presence of one amplitude with longitudinal polarization and two amplitudes with transverse polarization. The fraction of longitudinally polarized events is denoted by $f_{L}$. Integrating over the angle between the vector meson decay planes, the angular distribution $(1 / \Gamma) d^{2} \Gamma / d \cos \theta_{1} d \cos \theta_{2}$ is

$$
\begin{equation*}
\frac{9}{4}\left[f_{L} \cos ^{2} \theta_{1} \cos ^{2} \theta_{2}+\frac{1}{4}\left(1-f_{L}\right) \sin ^{2} \theta_{1} \sin ^{2} \theta_{2}\right] \tag{1}
\end{equation*}
$$

where the indices 1,2 label the two vector mesons in the final state, and the helicity angles $\theta_{1,2}$ are the angles between the direction opposite to that of the $B^{0}\left(B^{+}\right)$and the $K^{+}$or $\pi^{+}\left(\pi^{0}\right)$ momentum in the $\phi$ or $\rho^{0}\left(\rho^{+}\right)$rest frame. We define the angles $\theta_{1,2}$ for $f_{0}$ mesons in an analogous way. The expected values of $f_{L}$ range from 0.6 to $0.8[3,4,6,7]$ for $B^{0} \rightarrow \phi \phi, \phi \rho^{0}$, and $B^{ \pm} \rightarrow \phi \rho^{ \pm}$. The presence of NP could lead to enhancements of the transverse polarization amplitudes [2,3,6].

The current upper limit on the $B^{0} \rightarrow \phi \phi$ branching fraction, obtained from a data sample of $82 \mathrm{fb}^{-1}$, is $1.5 \times$ $10^{-6}$ [10]. The upper limits on $B^{0} \rightarrow \phi \rho^{0}$ and $B^{+} \rightarrow$ $\phi \rho^{+}$, determined using $3.1 \mathrm{fb}^{-1}$ of data, are $1.3 \times 10^{-5}$ and $1.6 \times 10^{-5}$ [11], respectively. Using a data sample of $349 \mathrm{fb}^{-1}, B A B A R$ recently reported an upper limit of $1.6 \times$ $10^{-7}$ for $B^{0} \rightarrow f_{0} f_{0}$ [12]. This last result relies on the assumption that the $f_{0} \rightarrow \pi^{+} \pi^{-}$branching fraction is $100 \%$. In this analysis, we make the complimentary assumption that one $f_{0}$ decays to $\pi^{+} \pi^{-}$and the other to $K^{+} K^{-}$and search for $B^{0} \rightarrow f_{0} f_{0}$ in a cleaner final state
than Ref. [12]. All these limits correspond to a confidence level (C.L.) of $90 \%$.

The results presented here are based on an integrated luminosity of $349 \mathrm{fb}^{-1}$, corresponding to $(384 \pm 4)$ million $B \bar{B}$ pairs. These data were recorded at the $\Upsilon(4 S)$ resonance with a center-of-mass (c.m.) energy $\sqrt{s}=$ 10.58 GeV . The BABAR detector is described in detail elsewhere [13], and is situated at the interaction region of the PEP-II asymmetric energy $e^{+} e^{-}$collider located at the Stanford Linear Accelerator Center (SLAC). We use Monte Carlo (MC) simulated events generated using the GEANT4 based [14] BABAR simulation.

Photons are reconstructed from localized deposits of energy greater than 50 MeV in the electromagnetic calorimeter that are not associated with a charged track. We require $\gamma$ candidates to have a lateral shower profile [15] that is consistent with the expectation for photons. $\pi^{0}$ candidates are reconstructed from two $\gamma$ candidates with invariant mass $0.10<m_{\gamma \gamma}<0.16 \mathrm{GeV} / c^{2}$.

We use information from the vertex detector, drift chamber and detector of internally reflected Cherenkov light to select charged tracks that are consistent with kaon or pion signatures in the detector [16]. We reconstruct $\phi\left(\rho^{0}\right)$ candidates from pairs of oppositely charged kaon (pion) candidates with invariant mass $0.99<m_{K K}<$ $1.05 \mathrm{GeV} / c^{2}\left(0.55<m_{\pi \pi}<1.05 \mathrm{GeV} / c^{2}\right)$. For $\rho^{0}$ candidates we require the helicity angles to satisfy $\left|\cos \theta_{i}\right|<$ 0.98 since signal efficiency falls off near $\left|\cos \theta_{i}\right|=1$. Charged $\rho$ candidates are reconstructed from a charged track consistent with the pion signature and a $\pi^{0}$ candidate. The invariant mass $m_{\pi \pi^{0}}$ of the $\rho^{+}$candidate is required to lie between 0.5 and $1.0 \mathrm{GeV} / c^{2}$. We also require that the helicity angles satisfy $-0.8<\cos \theta_{i}<0.98$ as signal efficiency is asymmetric because of the $\pi^{0}$ meson, and falls off near $\cos \theta_{i}= \pm 1$, and background peaks near -1 . We select $f_{0}$ candidates from two charged tracks that are both either consistent with the kaon or the pion signature in the detector. We apply the same selection criteria to $f_{0} \rightarrow$ $\pi^{+} \pi^{-}$candidates as for $\rho^{0}$ mesons. Similarly, we apply the same selection criteria to $f_{0} \rightarrow K^{+} K^{-}$candidates as for $\phi$ mesons as the minimum $m_{K K}$ we can reconstruct in the detector is $0.99 \mathrm{GeV} / c^{2}$.

We reconstruct signal $B$ candidates ( $B_{\mathrm{rec}}$ ) from combinations of two $\phi$ mesons, one $\phi$ and one $\rho$ or $f_{0}$, and two $f_{0}$ mesons. The $f_{0} f_{0}$ mode is required to have one $f_{0}$
decaying into $\pi^{+} \pi^{-}$, and the other decaying into $K^{+} K^{-}$. We require the $f_{0}$ in $\phi f_{0}$ to decay into $\pi^{+} \pi^{-}$.

We use two kinematic variables, $m_{\mathrm{ES}}$ and $\Delta E$, in order to isolate the signal: $m_{\mathrm{ES}}=\sqrt{\left(s / 2+\mathbf{p}_{i} \cdot \mathbf{p}_{B}\right)^{2} / E_{i}^{2}-\mathbf{p}_{B}^{2}}$ is the beam-energy substituted mass and $\Delta E=E_{B}^{*}-\sqrt{s} / 2$ is the difference between the $B$ candidate energy and the beam energy in the $e^{+} e^{-}$c.m. frame. Here the $B_{\text {rec }}$ momentum $\mathbf{p}_{B}$ and four-momentum of the initial state $\left(E_{i}, \mathbf{p}_{i}\right)$ are defined in the laboratory frame, and $E_{B}^{*}$ is the $B_{\text {rec }}$ energy in the $e^{+} e^{-}$c.m. frame. The distribution of $m_{\mathrm{ES}}$ ( $\Delta E$ ) peaks at the $B$ mass (near zero) for signal events and does not peak for background. We require $m_{\mathrm{ES}}>$ $5.25 \mathrm{GeV} / c^{2}$. For the $\phi \phi$ final state we require $|\Delta E|<$ 0.15 GeV . To reduce background from nonsignal $B$ meson decays we apply the more stringent cut of $-0.07<\Delta E<$ 0.15 GeV for all other modes.

The angle in the c.m. frame between the thrust axis of the rest of the event ( $\mathrm{ROE)}$ ) and that of the $B$ candidate is required to satisfy $\left|\cos \left(\theta_{\mathrm{TB}, \mathrm{TR}}\right)\right|<0.8$ in order to reduce the background from $e^{+} e^{-} \rightarrow q \bar{q}(q=u, d, s, c)$ continuum events. The variable $\left|\cos \left(\theta_{\mathrm{TB}, \mathrm{TR}}\right)\right|$ is strongly peaked near 1 for $q \bar{q}$ events, whereas $B \bar{B}$ events are more isotropic because the $B$ mesons are produced close to the kinematic threshold. Additional separation between the signal and continuum events is obtained by combining several kinematic and topological variables into a Fisher discriminant $\mathcal{F}$, which we use in the maximum-likelihood fit described below. The variables $\left|\cos \left(\theta_{\mathrm{TB}, \mathrm{TR}}\right)\right|,|\Delta t| / \sigma(\Delta t)$, $\left|\cos \left(\theta_{B, Z}\right)\right|,\left|\cos \left(\theta_{\mathrm{TB}, Z}\right)\right|$, and the output of a multivariate tagging algorithm [17] are used as inputs to $\mathcal{F}$. The time interval $\Delta t$ is calculated from the measured separation distance $\Delta z$ between the decay vertices of $B_{\text {rec }}$ and the other $B$ in the event $\left(B_{\text {ROE }}\right)$ along the beam axis $(z)$. The vertex of $B_{\text {rec }}$ is reconstructed from the tracks that come from the signal candidate; the vertex of $B_{\text {ROE }}$ is reconstructed from tracks in the ROE, with constraints from the beam spot location and the $B_{\text {rec }}$ momentum. The uncertainty on the measured value of $\Delta t$ is $\sigma(\Delta t)$. The variable $\theta_{B, Z}$ is the angle between the direction of $B_{\mathrm{rec}}$ and the $z$ axis
in the c.m. frame. This variable follows a sine squared distribution for $B \bar{B}$ events, whereas it is almost uniform for $q \bar{q}$. The variable $\theta_{\mathrm{TB}, Z}$ is the angle between the $B$ thrust direction and the $z$ axis in the laboratory frame.

The decay modes studied are classified into three groups according to the final state particles: (i) $B^{0} \rightarrow \phi \phi$, (ii) $B^{+} \rightarrow \phi \rho^{+}$, and (iii) $B^{0} \rightarrow \phi \rho^{0}, B^{0} \rightarrow \phi f_{0}$, and $B^{0} \rightarrow f_{0} f_{0}$. We find that $6 \%$ of events for the mode in group (ii) and $3 \%$ of events for the modes in group (iii) have more than one candidate that passes our selection criteria. For such events we retain the candidate with the smallest $\chi^{2}$ for the $B_{\text {rec }}$ vertex for use in the fits described below. The numbers of selected candidates are given in Table I.

The dominant background for all modes comes from continuum events. The yield of this background component is determined from the fit to data. The dominant $B$ backgrounds for group (i) are $B^{0} \rightarrow \phi K^{* 0}$ and $f_{0} K^{* 0}$, which are estimated to contribute 1.4 and 0.6 events to the data, respectively. The $B$ backgrounds for group (ii) are events from $B$ decays to final states including charm and $B^{+} \rightarrow \phi K^{*+}$. These are estimated to contribute 107 and 5.5 events to the data. The $B$ backgrounds for group (iii) are events from $B$ decays to final states including charm, $B^{0}$ decays to $\phi K^{* 0}, f_{0} K^{* 0}, \phi K_{2}^{* 0}(1430)$, and $B^{+}$decays to $\phi K^{+}$and $\phi K^{*+}$ estimated to contribute $249,25.9,9.1,2.3$, 4.7, and 1.8 events to the data. The branching fractions for the $B$ backgrounds are taken from Ref. [18], except for $B^{0} \rightarrow f_{0} K^{* 0}$, which has not yet been measured, and $\phi \rho^{+}$ where we use the results obtained here. The current upper limit on the $B^{0} \rightarrow f_{0} K^{* 0}$ branching fraction is $4.3 \times 10^{-6}$ and we assume a branching fraction of $(2 \pm 2) \times 10^{-6}$.

We obtain yields for each mode from extended unbinned maximum likelihood (ML) fits with the input observables $m_{\mathrm{ES}}, \Delta E$, and $\cos \theta_{1,2}$. In addition, for all modes except $\phi \phi$, we include $m_{1,2}$ and $\mathcal{F}$ in the likelihood, where $m_{1,2}$ is $m_{\pi \pi}$ or $m_{K K}$ for the $\phi, \rho$ or $f_{0}$ candidates. A total of three fits are performed, one for each group of signal modes. We include event hypotheses for signal events and the aforementioned backgrounds in each of the fits. For each event $i$

TABLE I. Number of events $N$ in the data sample, signal yield $\mathcal{Y}_{\mathcal{S}}$ (corrected for fit bias), fit bias, detection efficiency $\epsilon$, daughter branching fraction product ( $\Pi \mathcal{B}_{i}$ ), significance $\sigma$ (including additive systematic uncertainties, taken to be zero if the fitted yield is negative), measured branching fraction where the first error is statistical, and the second systematic (see text), and the $90 \%$ C.L. upper limit on this branching fraction (including systematic uncertainties). For $B$ decays to $\phi \phi$ and $\phi \rho$, two efficiencies are reported, one for longitudinally and one for transversely polarized events. The reported branching fractions for $\phi f_{0}$ and $f_{0} f_{0}$ are product branching fractions that are not corrected for the probability of $f_{0}$ decaying into $\pi^{+} \pi^{-}$or $K^{+} K^{-}$.

| Group | $N$ | Mode | $\boldsymbol{Y}_{\mathcal{S}}$ | Bias | $\boldsymbol{\epsilon}(\%)$ | $\prod \mathcal{B}_{i}(\%)$ | $\sigma$ | $\mathcal{B}\left(\times 10^{-7}\right)$ | $\mathrm{UL}\left(\times 10^{-7}\right)$ |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (i) | 209 | $\boldsymbol{\phi} \boldsymbol{\phi}$ | $-1.5_{-2.9}^{+3.7}$ | $-0.4 \pm 0.2$ | $40.4[28.7]$ | $24.3 \pm 1.2$ | 0.0 | $-0.4_{-0.9}^{+1.2} \pm 0.3$ | $<2.0$ |
| (ii) | 3175 | $\boldsymbol{\phi} \boldsymbol{\rho}^{+}$ | $22.5_{-9.7}^{+11.3}$ | $+2.3 \pm 1.1$ | $5.7[9.8]$ | $49.3 \pm 0.6$ | 2.2 | $15_{-6}^{+7} \pm 9$ | $<30$ |
| (iii) | 3949 | $\boldsymbol{\phi} \boldsymbol{\rho}^{0}$ | $3.9_{-4.4}^{+6.3}$ | $+0.8 \pm 0.4$ | $24.1[26.5]$ | $49.3 \pm 0.6$ | 1.0 | $0.9_{-0.9}^{+1.3} \pm 0.9$ | $<3.3$ |
|  |  | $\boldsymbol{\phi} \boldsymbol{f}_{0}$ | $0.8_{-1.4}^{+2.4}$ | $-1.7 \pm 0.5$ | 22.1 | $\ldots$ | 0.0 | $0.2_{-0.3}^{+0.6} \pm 0.3$ | $<3.8$ |
|  |  | $\boldsymbol{f}_{0} \boldsymbol{f}_{0}$ | $-13.6_{-3.5}^{+4.8}$ | $-1.8 \pm 0.5$ | 25.5 | $\ldots$ | 0.0 | $-1.4_{-0.4}^{+0.5} \pm 1.5$ | $<2.3$ |

and hypothesis $j$, the likelihood function is

$$
\mathcal{L}=\frac{e^{-\left(\sum n_{j}\right)}}{N!} \prod_{i=1}^{N}\left[\sum_{j=1}^{N_{j}} n_{j} \mathcal{P}_{j}\left(\mathbf{x}_{i}\right)\right]
$$

where $N$ is the number of input events, $N_{j}$ is the number of hypotheses, $n_{j}$ is the number of events for hypothesis $j$ and $\mathcal{P}_{j}\left(\mathbf{x}_{i}\right)$ is the corresponding probability density function (PDF) evaluated for the observables $\mathbf{x}_{i}$ of the $i$ th event. The correlations between input observables are small and are assumed to be negligible. Possible biases due to residual correlations are evaluated as described below. We compute the combined PDFs $\mathcal{P}_{j}\left(\mathbf{x}_{i}\right)$ as the product of PDFs for each of the input observables. These combined PDFs are used in the fit to the data.

For $B$ decays to $\phi \phi$ and $\phi \rho$, the $m_{\mathrm{ES}}$ distribution is parametrized with the sum of a Gaussian and a Gaussian with a low-side exponential component. The $\Delta E$ distribution is described by the sum of two Gaussian distributions, and the $\cos \theta_{1,2}$ distributions are described by Eq. (1) multiplied by an acceptance function. The acceptance function is a polynomial for all $\cos \theta_{1,2}$, with the exception of the $\rho^{+}$ helicity angle distribution for longitudinally polarized $\phi \rho^{+}$, which uses a polynomial multiplied by the sigmoid function $1 /\left(1+\exp \left[\alpha\left(\cos \theta_{1,2}+\beta\right)\right]\right)$, where the parameters $\alpha$ and $\beta$ are determined from MC simulated data. For the $\phi \rho$ final states we use a Gaussian to describe the $\mathcal{F}$ distribution, and the sum of a relativistic Breit-Wigner (BW) resonance with two Gaussians for $m_{1,2}$. The continuum background $m_{\mathrm{ES}}$ distribution is described by an ARGUS function [19]. We parameterize the continuum $\Delta E$ distribution using a second-order polynomial and use polynomials to describe $\cos \theta_{1,2}$. Where appropriate, we parameterize the $\mathcal{F}$ distributions for the continuum background using a Gaussian, and we parameterize the $m_{1,2}$ distributions using the sum of a BW coordinate and a polynomial. We use smoothed histograms of MC simulated data as the PDFs for all other signal and background modes. We generate $B^{0} \rightarrow \phi f_{0}$ assuming that the $\phi$ is longitudinally polarized, and we use phase space distributions for $B^{0} \rightarrow f_{0} f_{0}$. Before fitting the data, we validate the fitting procedure using the methods described in Ref. [20]. We determine a bias correction on our ability to correctly determine the signal yield using ensembles of simulated experiments generated from samples of MC simulated data for the signal and exclusive backgrounds and from the PDFs for the other backgrounds.

Our results are summarized in Table I where we show the measured yield, fit bias, efficiency, and the product of daughter branching fractions for each decay mode. We compute the branching fractions from the fitted signal event yields corrected for the fit bias, reconstruction efficiency, daughter branching fractions, and the number of produced $B$ mesons, assuming equal production rates of charged and neutral $B$ pairs. As we do not know the value
of $f_{L}$ for the $\phi \phi$ and $\phi \rho$ modes, we fit the data for different physically allowed values of $f_{L}$ in steps of 0.1 . We find no evidence for any of the signal modes and calculate $90 \%$ C.L. branching fraction upper limits $x_{U L}$ such that $\int_{0}^{x_{\mathrm{UL}}} L\left(\mathcal{Y}_{\mathcal{S}}, f_{L}\right) d \mathcal{Y}_{\mathcal{S}} / \int_{0}^{+\infty} L\left(\mathcal{Y}_{\mathcal{S}}, f_{L}\right) d \mathcal{Y}_{\mathcal{S}}=0.9$, where $L\left(Y_{\mathcal{S}}, f_{L}\right)$ is the likelihood as a function of signal yield $\mathcal{Y}_{\mathcal{S}}$ and $f_{L}$ multiplied by a uniform prior. We report the most conservative (largest) upper limits for each mode, for which $f_{L}=0.5,0.7$, and 0.2 for groups (i), (ii), and (iii), respectively. The central values of the branching fractions given in Table I correspond to these values of $f_{L}$. Figure 1 shows the $m_{\text {ES }}$ distributions in subsamples of the data where $|\Delta E|<0.05 \mathrm{GeV}$ for $B^{+} \rightarrow \phi \rho^{+}$, and $|\Delta E|<0.025 \mathrm{GeV}$ for all other modes.

We estimate the systematic uncertainty related to the parametrization of the PDF by varying each parameter by its estimated uncertainty, and by substituting smoothed histograms by unsmoothed ones. The total contribution


FIG. 1 (color online). Signal-enhanced distributions of $m_{\mathrm{ES}}$ in data, with a projection of the fitted likelihood for (top) $B^{0} \rightarrow$ $\phi \phi$, (middle) $B^{+} \rightarrow \phi \rho^{+}$, and (bottom) $B^{0} \rightarrow \phi \rho^{0}, B^{0} \rightarrow \phi f_{0}$, and $B^{0} \rightarrow f_{0} f_{0}$. The solid line represents the total PDF, the dotted line represents signal, and the dashed line represents the sum of continuum and $B$ backgrounds.
of all variations in signal yields, when added in quadrature, gives an error between 0.2 and 5.6 events, depending on the mode. We account for possible differences between data and MC events from studies of a control sample of $B \rightarrow$ $D \pi$ events, yielding an uncertainty of 0.1 to 12.2 events depending on the mode. The uncertainty from fit bias is taken to be half the correction listed in Table I. Incorporating the statistical uncertainty of the bias has a negligible effect. The uncertainty on $B$-daughter branching fractions is in the range (1.2-4.9)\% [18]. The modes in group (iii), $\phi \rho^{0}, \phi f_{0}$, and $f_{0} f_{0}$ have systematic uncertainties from the $f_{0}$ line shape [21] of $0.2,3.1$, and 15.9 events, respectively. The mode $B^{+} \rightarrow \phi \rho^{+}$has a fractional systematic uncertainty of $3.0 \%$ from the reconstruction efficiency of $\pi^{0}$ mesons. Other sources of systematic errors are track reconstruction efficiency [(2.4-3.2)\%], uncertainty on the number of $B$ meson pairs ( $1.1 \%$ ), particle identification efficiency ( $3.5 \%$ ), and differences between data and MC efficiencies related to the cut on the vertex $\chi^{2}$ (0.6\%).

Assuming isospin is conserved in $f_{0} \rightarrow h h$ decays, where $h=\pi, K$, we correct for factors of $\mathcal{B}\left(f_{0} \rightarrow\right.$ $h h) / \mathcal{B}\left(f_{0} \rightarrow h^{+} h^{-}\right)$, to obtain the product branching fraction upper limits of $\mathcal{B}\left(B^{0} \rightarrow \phi f_{0}\right) \times \mathcal{B}\left(f_{0} \rightarrow \pi \pi\right)<$ $5.7 \times 10^{-7}, \quad$ and $\quad \mathcal{B}\left(B^{0} \rightarrow f_{0} f_{0}\right) \times \mathcal{B}\left(f_{0} \rightarrow \pi \pi\right) \times$ $\mathcal{B}\left(f_{0} \rightarrow K K\right)<6.9 \times 10^{-7}$ at $90 \%$ C.L.

In summary we have performed searches for the decays $B^{0} \rightarrow \phi \phi, \phi \rho^{0}, \phi f_{0}, f_{0} f_{0}$, and $B^{ \pm} \rightarrow \phi \rho^{ \pm}$and place upper limits on these modes. The upper limit on $B^{0} \rightarrow$ $\phi \phi$ reported here can be used to constrain possible NP enhancements suggested in Ref. [2].

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support $B A B A R$. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation.
*Deceased.
${ }^{+}$Present address: Temple University, Philadelphia, PA 19122, USA.
${ }^{\dagger}$ Present address: Tel Aviv University, Tel Aviv, 69978, Israel.
${ }^{\text {§ }}$ Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy.
"Also with Università di Roma La Sapienza, I-00185 Roma, Italy.
${ }^{\text {IT}}$ Present address: University of South Alabama, Mobile, AL 36688, USA.
**Also with Università di Sassari, Sassari, Italy.
[1] Throughout this Letter, charge conjugation states are implied, and when we refer to $f_{0}$, we mean specifically $f_{0}(980)$.
[2] S. Bar-Shalom, G. Eilam, and Y. D. Yang, Phys. Rev. D 67, 014007 (2003).
[3] C. D. Lu et al., Eur. Phys. J. C 41, 311 (2005).
[4] M. Beneke, J. Rohrer, and D. Yang, Nucl. Phys. B774, 64 (2007).
[5] W. Zou and Z. Xiao, Phys. Rev. D 72, 094026 (2005).
[6] C. D. Lu et al., Chin. Phys. Lett. 23, 2684 (2006).
[7] J. Li et al., arXiv:hep-ph/0607249.
[8] S. Bao, F. S. Su, Y.-L. Wu, and C. Zhuang, Phys. Rev. D 77, 095004 (2008).
[9] M. Gronau and J. Rosner, Phys. Lett. B 666, 185 (2008).
[10] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 93, 181806 (2004).
[11] T. Bergfeld et al. (CLEO Collaboration), Phys. Rev. Lett. 81, 272 (1998).
[12] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 98, 111801 (2007).
[13] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
[14] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
[15] A. Drescher et al., Nucl. Instrum. Methods Phys. Res., Sect. A 237, 464 (1985).
[16] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 66, 032003 (2002).
[17] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 99, 171803 (2007); 94, 161803 (2005).
[18] Y.-M. Yao et al. (Particle Data Group), J. Phys. G 33, 1 (2006) and web-based 2007 partial update for the 2008 edition.
[19] H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B 254, 288 (1991).
[20] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 76, 052007 (2007).
[21] K. Abe et al. (Belle Collaboration), Phys. Rev. D 75, 051101 (2007).


[^0]:    ${ }^{1}$ Laboratoire de Physique des Particules, IN2P3/CNRS et Université de Savoie, F-74941 Annecy-Le-Vieux, France
    ${ }^{2}$ Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
    ${ }^{31}$ INFN Sezione di Bari, I-70126 Bari, Italy;
    ${ }^{3 \mathrm{~b}}$ Dipartmento di Fisica, Università di Bari, I-70126 Bari, Italy;
    ${ }^{4}$ University of Bergen, Institute of Physics, N-5007 Bergen, Norway
    ${ }^{5}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
    ${ }^{6}$ University of Birmingham, Birmingham, B15 2TT, United Kingdom
    ${ }^{7}$ Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
    ${ }^{8}$ University of Bristol, Bristol BS8 1TL, United Kingdom
    ${ }^{9}$ University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
    ${ }^{10}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
    ${ }^{11}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
    ${ }^{12}$ University of California at Irvine, Irvine, California 92697, USA
    ${ }^{13}$ University of California at Los Angeles, Los Angeles, California 90024, USA
    ${ }^{14}$ University of California at Riverside, Riverside, California 92521, USA
    ${ }^{15}$ University of California at San Diego, La Jolla, California 92093, USA
    ${ }^{16}$ University of California at Santa Barbara, Santa Barbara, California 93106, USA
    ${ }^{17}$ University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
    ${ }^{18}$ California Institute of Technology, Pasadena, California 91125, USA
    ${ }^{19}$ University of Cincinnati, Cincinnati, Ohio 45221, USA
    ${ }^{20}$ University of Colorado, Boulder, Colorado 80309, USA
    ${ }^{21}$ Colorado State University, Fort Collins, Colorado 80523, USA
    ${ }^{22}$ Technische Universität Dortmund, Fakultät Physik, D-44221 Dortmund, Germany
    ${ }^{23}$ Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
    ${ }^{24}$ Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France
    ${ }^{25}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
    ${ }^{26 \mathrm{a}}$ INFN Sezione di Ferrara, I-44100 Ferrara, Italy;
    ${ }^{26 b}$ Dipartimento di Fisica, Università di Ferrara, I-44100 Ferrara, Italy
    ${ }^{27}$ INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
    ${ }^{28 a}$ INFN Sezione di Genova, I-16146 Genova, Italy;
    ${ }^{28 \mathrm{~b}}$ Dipartimento di Fisica, Università di Genova, I-16146 Genova, Italy
    ${ }^{29}$ Harvard University, Cambridge, Massachusetts 02138, USA

