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The electron-positron stage of the Future Circular Collider, FCC-ee, is a frontier

factory for Higgs, top, electroweak, and flavour physics. It is designed to operate

in a 100 km circular tunnel built at CERN, and will serve as the first step towards

≥100 TeV proton-proton collisions. In addition to an essential and unique Higgs

program, it offers powerful opportunities to discover direct or indirect evidence

of physics beyond the Standard Model. Direct searches for long-lived particles

at FCC-ee could be particularly fertile in the high-luminosity Z run, where 5 ×

1012 Z bosons are anticipated to be produced for the configuration with two

interaction points. The high statistics of Higgs bosons,W bosons and top quarks

in very clean experimental conditions could offer additional opportunities at

other collision energies. Three physics cases producing long-lived signatures at

FCC-ee are highlighted and studied in this paper: heavy neutral leptons (HNLs),

axion-like particles (ALPs), and exotic decays of the Higgs boson. These

searches motivate out-of-the-box optimization of experimental conditions

and analysis techniques, which could lead to improvements in other physics

searches.
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1 Introduction

The Standard Model (SM) of particle physics is a mature and consistent theory that,

after the observation of the Higgs boson, still fails to explain important experimental

observations such as dark matter (DM), neutrino masses, or the baryon asymmetry of the

Universe (BAU), among others. Theoretical aspects of the SM, including the origins of the

electroweak scale, the spectrum of fermions masses, or flavor patterns also await
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explanation. These questions may be answered by the direct

observation of new particles and phenomena, or by measuring

deviations from SM predictions. This is a chief motivation for

new colliders that can push both the energy and intensity

frontiers.

Long-lived particles (LLPs) are new, beyond the SM (BSM)

states that travel a substantial distance between creation and

decay in collider systems, presenting distinct experimental

signatures [1]. LLPs feature in many BSM models and could

provide answers to central questions in particle physics and

beyond. The lifetime of a particle depends mostly on its mass

and couplings, and so feebly-interacting particles (FIPs), with

couplings to the SM particles several orders of magnitude smaller

than the SM couplings, are often glaring examples of LLPs.

The experimental signatures of LLPs are particularly

interesting. In contrast to promptly decaying particles, LLPs

can decay after flying some distance from the primary

interaction point. This produces a displaced vertex, with decay

products including charged and neutral SM particles (e.g.,

charged leptons, light neutrinos, and pions). This kind of

displaced signature is most commonly associated with LLPs.

Other models predict disappearing LLPs giving rise to “short” or

“broken” tracks; some are “stopped” or delayed; or produce

unusual jets, such as “dark showers.” Such a variety of

experimental signatures is very different from the usual SM

processes studied at colliders, and any of these signatures

would, if observed, constitute a striking “smoking gun” of new

physics. In hadron collider environments, standard trigger and

reconstruction techniques are often unable to recognize LLP

signatures and their study requires dedicated techniques and

experiments.

The Future Circular Collider (FCC) program is a design

study for a post-LHC particle accelerator at CERN following the

priorities set by the 2020 Update of the European Strategy for

Particle Physics [2]. The first stage of the FCC design study (FCC-

ee) is a high-luminosity, high-precision lepton collider with the

goal of better understanding the electroweak (EW) sector,

especially the Higgs boson. In addition to a robust program in

its own right, FCC-ee will also act as a possible precursor to a

high-energy hadron collider (FCC-hh), located in the same

tunnel and complementary to it [3].

Though FCC-ee will be a high precision exploration tool, it

also opens the possibility of directly discovering new physics [4].

In particular, a future FCC-ee program has an exciting potential

for exploring LLPs. The large integrated luminosity of the FCC-

ee run around the Z pole, producing 5 × 1012 Z bosons (Tera-Z

run), will facilitate direct searches for LLPs that could be closely

linked to neutrino masses, explain the BAU, be sound DM

candidates, or all at the same time. In the following, three

central physics cases are discussed: heavy neutral leptons

(HNLs) [5] in the context of the Phenomenological Type I

Seesaw model, axion-like particles (ALPs), and exotic Higgs

boson decays. In Section 2, the theoretical landscapes of these

three physics cases are outlined. Section 3 discusses the

experimental outlook. In particular, the common simulation

details (Section 3.1), the experimental aspects of HNLs

(Section 3.2), ALPs (Section 3.3), and exotic Higgs boson

decays (Section 3.4) at FCC-ee, and considerations for

additional detectors for LLPs at FCC-ee (Section 3.5) are

covered. Finally, the summary and conclusions are presented

in Section 4.

2 Theoretical landscape

In this section, the theoretical frameworks considered are

briefly summarized. These representative scenarios are: the

Phenomenological Type I Seesaw model (Section 2.1), axion-

like particles (Section 2.2), and scalar singlet extensions of the SM

(Section 2.3).

2.1 Heavy neutral leptons

The oscillations between neutrino flavor eigenstates in long-

baseline experiments [6, 7] is one of the most pressing theoretical

puzzles in particle physics today. The neutrino masses that

produce these oscillations are also interesting because they

imply either the existence of new particles and interactions or

substantial changes to the SM paradigm [8, 9].

It is simply not enough to write effective neutrino masses,

given the SM’s limited particle content and the desire to

understand the mechanism (or mechanisms) that render

neutrinos so much lighter than charged leptons and quarks. It

is also desirable to understand the flavor/mixing pattern among

neutrinos and the possible connections to lepton and quark

flavors themselves.

Among the most popular solutions to these mysteries are

the Seesaw models. These tie the smallness of neutrino masses

(m]k with k = 1, 2, 3) to the scale of new physics (Λ). Depending

on the complexity, the scale (or scales) introduced by these

models can range from well below the EW scale to the Planck

scale. In the most minimal scenarios [9], general arguments

only require Λ to be below 1014 GeV. In high-scale Seesaws,

light neutrino masses scale inversely with this new physics scale,

m]k ∝ 1/Λ. In low-scale Seesaws, the behavior can be more

complicated, and in some cases light neutrino masses scale

proportionally with this new physics scale, m]k ∝Λ. The

manner in which either is implemented can vary widely, cf.

Section 5 in [10], and the most minimal, tree-level

constructions are known popularly as the Types I [11–17], II

[16, 18–22], and III [23] Seesawmodels. Notably, these minimal

scenarios are often stepping stones to fuller, more ultraviolet-

complete models, including extended gauge theories and grand

unified theories. Importantly, neutrino mass models predict a

plethora of phenomenology that are testable at a variety of low-
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energy and high-energy experiments [10, 24–27], including

particle colliders.

A common feature of several popular solutions to the

origin of neutrino masses is the hypothetical existence of

heavy, sterile neutrinos Ni, or heavy neutral leptons (HNLs)

as they are sometimes called. Depending on the precise

scenario, they can be Dirac or Majorana fermions, and

mediate processes that violate lepton flavor symmetries. In

practice, fermions may be arranged in a way that they form a

Majorana state with Dirac-like properties [28, 29]. This state is

known as a pseudo-Dirac fermion and results from underlying

symmetries that explain the smallness of neutrino masses

[30–33]. This leads to a phenomenology that practically

interpolates between these limiting cases in the sense that

the ratio between the rates of the lepton number violating and

conserving decays (Rll) can smoothly interpolate between Rll =

0 and Rll = 1 [34]. Searches for heavy Dirac and Majorana

neutrinos at e+e− facilities have a long history [35–38], and if

they are discovered at the LHC, FCC-ee would be a natural

program to study their properties [26, 39–51].

If HNLs mix with the SM neutrinos, they can participate in

the SM weak interaction via the couplings.

LInt
Type I � LW + LZ + LH, where (1a)

LW � −gW�
2

√ ∑τ
ℓ�e

∑ns
i�1

NiVℓi*W
+
μγ

μPLℓ
− +H.c., (1b)

LZ � − gW

2 cos θW
∑τ
ℓ�e

∑ns
i�1

NiV
p
ℓiZμγ

μPL]ℓ +H.c., (1c)

LH � − gW

2MW
h∑τ

ℓ�e
∑ns
i�1

NiV
p
ℓimNiPL]ℓ +H.c. (1d)

Here, N1, . . .Nns are the heavy mass eigenstates of the theory.

This model (1) is a common HNL benchmark for the pure type

I Seesaw we use in this study. In extended models, the HNLs

may have extra interactions, such as new gauge interactions

[52–60]. The number of right-handed neutrino chiral

eigenstates ns is not constrained by gauge anomaly

considerations in the model (1) because the chiral states

are gauge singlets. Here, the VℓNi are the complex-valued,

active-sterile mixing matrix elements and describe the

coupling between the heavy mass eigenstate i and lepton

flavor state ℓ.

The Lagrangian (1) approximates interactions to first order

in the parameter |Vℓi|. In this phenomenological framework, the

masses of Ni (mNi) and Vℓi are taken to be independent.

Hypothesizing connections to other physics, e.g., the relic

abundance of DM or the matter-antimatter asymmetry of the

observable Universe, can greatly constrain masses and mixing, cf.

Section 2.1.2. For simplicity, the analysis of Section 3.2 considers

only the lightest heavy mass eigenstate N1, denoted by N, with

mass and mixing mN and VℓN. It is important to stress that

considering only one HNL is for bench-marking and discovery

purposes; realistic scenarios usually contain multiple mass

eigenstates.

In analogy to the SM effective field theory (SMEFT)

framework [61–63], the above Lagrangian can be

systematically extended by higher dimensional operators in a

framework known as ]SMEFT [64–66], which can parameterize

ultraviolet completions.

In the minimal Type I Seesaw model, where ns = 2, the

requirement to reproduce the observed pattern of light neutrino

masses and mixing imposes testable constraints on the relative

size of the HNL couplings |Vℓi|
2 to individual SM flavors [67–70].

These will improve in the future with the Deep Underground

Neutrino Experiment (DUNE) [71], cf. Figure 1, leading to a

prediction that can be tested with FCC-ee. The position in the

triangle in Figure 1 is entirely determined by the low energy

phases in the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)

matrix. The number of events observed in displaced decays of

HNLs produced during the Z pole run permits the determination

of the relative mixing |Vℓi|
2/(∑ℓ|Vℓi|

2) at the percent level [44],

allowing for the Majorana phase in the light neutrino mixing

matrix to be indirectly constrained [68, 72]. For ns = 3, the model

is less constrained, and making a testable prediction would

require an independent determination of the lightest neutrino

mass in the SM, cf. Figure 11 in [70]. Beyond minimal models,

measuring the |Vℓi|
2/(∑ℓ|Vℓi|

2) can give insight into flavor at

charge-parity (CP) symmetries of the neutrino mixing matrix

[73–75], providing a hint towards possible ultraviolet

completions.

2.1.1 Phenomenology of Dirac and Majorana
heavy neutral leptons

In the kinematically accessible regime, FCC-ee is an excellent

machine to discover HNLs [39] and study their properties. An

analysis was completed for prompt HNL signals [79] and

reproduced in Ref. [3]. A comparison for various machines and

setups was compiled for the European Strategy for Particle Physics

Briefing Book [80] 1. The sensitivity to active-sterile mixing, labeled

here byΘ, is shown in the summary figure, Figure 2. Figure 3 shows

an updated estimation of different sensitivities for current and

proposed detectors including an FCC-ee displaced vertex analysis.

Figure 4 shows the four and one event contours. The four event

contour corresponds to the 95% confidence level (CL) exclusion in

the absence of signal events. The one event contour shows that for

the analysis of the LLP signatures, there still is a 63% probability to

observe one event, which, in the absence of background events,

could be sufficient for discovery, all the way down to the see-saw

limit around 20–40 GeV.

IfN is a Majorana fermion, then it can mediate processes that

conserve lepton number as well as those that violate lepton

1 Figure 8.19.
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number. Likewise, if lepton number is violated, then neutrinos

must in principle possess Majorana properties [120, 121], though

the amount of lepton number violation (LNV) in practice

depends on the underlying model [121, 122]. Dirac neutrinos

can only participate in processes that conserve lepton number.

Therefore, differences between Dirac and Majorana N are closely

related to differences between lepton number conservation

(LNC) and LNV. The availability of LNV decay modes, for

instance, leads to a Majorana N having a width (ΓN) that is

twice as large as a Dirac N. This implies that a Majorana N has a

mean lifetime (τN), or mean displacement (dN), that is half as

long as that of a Dirac N.

FIGURE 1
Allowed range for the relative magnitude of the HNL couplings to individual SM flavors in the model (27) with ns =2, plot taken from [5]. (A): The
range of relative flavor mixings (∑i|Vℓi|

2)/(∑i,ℓ|Vℓi|
2) consistent with the current neutrino oscillation data, cf. e.g., [68, 69, 76]. The contours correspond

to the allowed Δχ2 range taken from [77] for the case of normal (red) and inverted (blue) light neutrino mass ordering. (B): The projected 90% CL
contours for the relative mixings after 14 years of data taking at DUNE [78], assuming maximal CP violation δ = −π/2 and two benchmark values
of the PMNS angle θ23, taken from the DUNE TDR [71], as indicated in the legend. FCC-ee can measure these ratios to the percent level in displaced
HNL decays [44].

FIGURE 2
90% CL exclusion limits for a Heavy Neutral Lepton mixed with the electron neutrino, as presented in the European Strategy for Particle Physics
Briefing Book [80]. The FCC-ee curves are in (overlined) dark purple—for FCC-ee, this is equivalent to a plot as function of the sumofmatrix elements
squared |UN|

2. The curve below the Z boson mass corresponds to the combined LLP and prompt analysis performed with 1012Z in Ref. [79]. The
horizontal limit at highmasses results from the effect of light-heavy neutrino mixing on the EW precision observables and remains valid up to O
(1000 TeV).
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Section 3.2.3 assumes a simple phenomenological model

(1) with ns = 1, i.e., only one mass eigenstate N that is either a

Dirac or a Majorana fermion. Though this phenomenological

model cannot completely reproduce the light neutrino

oscillation data, it is sufficient to capture the collider

phenomenology of the pure Dirac and Majorana HNLs

benchmarks experimentally. Nature may be somewhere in

the middle of these two cases. Therefore, observables that

quantify differences between LNV and LNC processes, such as

Rll as defined in [34] or A as defined in [123, 124], can be used

to interpolate between the benchmarks.

There is a rich phenomenology that connects Rll, A, and the

decay rates of HNLs into different SM flavors to the mechanism

that generates light neutrino masses. This connection can be

accurately probed by studying the HNL properties at FCC [37,

48, 125] or other colliders [34, 123, 124, 126].

2.1.2 Probing cosmological questions
In addition to generating light neutrino masses, HNLs can,

depending on their mass, affect the history of the Universe in

different ways [114, 127, 128]. From a cosmological viewpoint,

the most important motivation for HNL searches may be their

potential connection to the origins of baryonic matter and DM.

Leptogenesis: Leptogenesis [129] provides an explanation

for the matter-antimatter asymmetry in the observable Universe

[112] and relates it to the properties of neutrinos. In the most

popular scenario (based on the Type I Seesaw), HNLs generate

the BAU via their CP-violating interactions with the thermal

plasma.While it was originally believed that this mechanism only

operates for HNL masses far above the EW scale [130], it is now

established that sub-TeV HNLs can produce the observed BAU

during their production [113, 114, 127] or freeze-out and decay

[115, 131]. This implies that direct experimental searches have

the potential to probe the origin of matter [132]. If any HNLs

with masses at or below the EW scale are discovered in the near

future, FCC-ee would provide a powerful tool to study their

properties and test their connection to the BAU. A simple

construction that supports low-scale leptogenesis is the

Neutrino Minimal Standard Model (]MSM) [127]. Here, two

HNLs simultaneously explain the neutrino masses and the BAU

[114] for a wide range of experimentally accessible masses, cf.

FIGURE 3
Bold green line: Sensitivity of displaced vertex searches at
FCC-ee. The parameter region inside the curves corresponds to
more than four observed HNL decays with |VℓN|2 � δℓμU

2
μ from 5 ×

1012 Z bosons, assuming no background events and 95%
reconstructed HNL decays (i.e., all decays except the invisible
decay) inside the main detectors based on the IDEA or CLD design
with a displacement of over 400 μm. Based on Tables 7.2 and 7.3 in
[3] with 1 m of instrumentation required for detection, we assume
a cylinder of length l = 8.6 m and radius r = 5 m (CLD) or l = 11 m
and r = 4.5 m (IDEA) as fiducial volumes. The resulting curves for
the CLD and IDEA detectors are visually indistinguishable. For
comparison, we show what CEPC can achieve with 4.2 × 1012 Z
bosons [81] for an IDEA-type detector [82]. Bold turquoise line:
Gain in sensitivity if the maximal observable displacement is
increased with HECATE-like detectors [83] with l = 60 m, r = 15 m
at two IPs. Medium gray: Constraints on the mixing of HNLs from
past experiments [84–94]. Colorful lines: Estimated sensitivities of
the main HL-LHC detectors [95–97] and NA62 [69], compared to
the sensitivities of selected planned or proposed experiments
(DUNE [98], FASER2 [99], SHiP [100, 101], MATHUSLA [102],
CODEX-b [103], cf [10]. for a more complete list), prompt searches
at FCC-ee or CEPC [50, 104], and searches at selected other
proposed future colliders (FCC-hh [79, 97, 105, 106], ILC [43, 107]
LHeC and FCC-he [108], and muon colliders [109], with DV
indicating displaced vertex searches). The curves from [50, 95, 104]
were re-scaled for a consistent integrated luminosity with [96, 97].
The sensitivity of FCC-ee and other future colliders can be further
improved with dedicated long-lived particle detectors [83, 106,
110, 111]. Brown band: Indicative lower bound on the total HNL
mixing U2

e + U2
μ + U2

τ from the requirement to explain the light
neutrino oscillation data [77]. The band width corresponds to
varying the light neutrino mass ordering and the lightest neutrino
mass. The matter-antimatter asymmetry of the universe [112] can
be explained by low scale leptogenesis [113–115] together with the
light neutrino properties inside the mustard (violet) hashed
contours with three [116] (two [117]) HNL flavours; solid and dashed
contours indicate vanishing and thermal initial conditions in the
early universe, respectively. Light gray: Lower bound on U2

μ from
BBN [118, 119]. Plot adapted from [5].

FIGURE 4
Comparison of the parameter regions in which four events
(bold lines) and one event (non-bold lines) are expected in the
IDEA/CLD detector or HECATE, with the same conventions and
assumptions as in Figure 3.
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Figure 3. Due to its minimality, the model is highly testable [67,

68]. In particular, leptogenesis constrains the flavor mixing

pattern beyond the experimental fits shown in Figure 1, which

can be tested by comparing flavored branching ratios in displaced

decays. Finally, if accessible, HNL oscillations in the detectors are

sensitive to the HNL mass splitting [44], which is a crucial

parameter for leptogenesis.

Dark matter: HNLs with sufficiently small masses and

mixing angles could be viable DM candidates [133].

Constraints on the HNL lifetime and from indirect searches

restrict the range of masses and mixings to values that are

inaccessible to direct searches at colliders, cf [134, 135]. for

reviews. However, FCC-ee can indirectly probe sterile

neutrino SM scenarios by searching for signatures of other

particles that were involved in the DM production.

HNLs can be resonantly produced in the early Universe
through their mixing-suppressed weak interactions if the
lepton asymmetry at temperatures around the quantum
chromodynamics (QCD) crossover greatly exceeded the
BAU [136–139]. In the ]MSM, this large lepton asymmetry
can be generated by heavier HNLs that are also responsible for
the BAU and neutrino masses [140]. The first parameter space
studies [141–143] suggest that this is possible only for
comparably small mixing angles, possibly making FCC-ee
or a similar machine the only facility at which these HNLs
could be discovered. If the HNLs have additional gauge
interactions (cf. e.g., [144–149]), the extended gauge sector
can be probed directly or indirectly at FCC-ee. If the DM is
produced via the decay of a singlet [150–152] or charged [153,
154] scalar during freeze-out or freeze-in [155, 156], precision
studies of the SM Higgs and of the portal can shed light on the
mechanism. Most of these possibilities have not been studied
in detail to date.

2.2 Axion-like particles

Many models that address open, fundamental problems of

the SM are governed by global symmetries. If an approximate

global symmetry is spontaneously broken, a pseudo Nambu-

Goldstone boson appears in the theory that is light compared to

the symmetry breaking scale. If this pseudo Nambu-Goldstone

boson is a pseudoscalar, it is often referred to as an axion-like

particle or ALP. The ALP’s lightness singles it out as a uniquely

promising experimental target that could open a first window

onto high-scale new physics beyond the SM.

ALPs appear in many models that address open,

fundamental problems in the SM. The most prominent

example is the QCD axion, which was introduced in the

1980s to solve the strong CP problem [157–160] and found

to simultaneously account for the observed DM relic

abundance [161, 162]. QCD axions are typically very

light, and these models are plagued by the “axion quality”

problem, in which quantum gravity corrections destabilize

the minimum of the axion potential, thereby reintroducing

the strong CP problem [163–166]. Heavy-axion solutions

to the strong CP problem circumvent this issue and so

motivate ALPs with MeV-to-TeV scale masses [167–175].

ALPs in this mass range could also result from the

breaking of global symmetries in low scale supersymmetric

[176–178] or composite Higgs models [179–182].

Phenomenologically, they can also lead to successful EW

baryogenesis [183].

An ALP dominantly couples to SM particles via dimension-5

operators,

Leff � 1
2

zμa( ) zμa( ) − m2
a,0

2
a2 +∑

ψ

cff
2

zμa

f
�ψγμγ5ψ

+cGG αs
4π

a

f
Ga

μ]
~G
μ],a + cγγ

α

4π
a

f
Fμ] ~F

μ]

+cγZ α

2πsw cw

a

f
Fμ] ~Z

μ] + cZZ
α

4πs2w c2w

a

f
Zμ] ~Z

μ]

+cWW
α

2πs2w

a

f
W+

μ]
~W

−μ]
,

(2)

where Ga
μ] is the field-strength tensor of SU(3)c, while Fμ], Zμ]

and W+
μ] describe the photon, Z, and W boson in the broken

phase of EW symmetry. The dual field-strength tensors are

denoted by ~F
μ] � 1

2ϵμ]αβFαβ, etc., (with ϵ0123 = 1); αs and α are

the QCD coupling and fine-structure constants, respectively;

sw and cw denote the sine and cosine of the weak mixing angle;

and the sum runs over all fermion mass eigenstates ψ. The

suppression scale f is related to the new physics scale Λ via Λ =

4πf, and to the axion decay constant fa by fa = −f/(2cGG). The

ALP dominantly interacts with the Higgs boson via

dimension-6 and -7 operators,

LH
eff �

cah
f2

zμa( ) zμa( )H†H + cZh
f3

zμa( ) H† iDμ H + h.c.( )H†H.

(3)
At FCC-ee, ALPs are predominantly produced in association

with a photon, Z boson, or Higgs boson, as shown in the

Feynman diagrams in Figure 5, or via exotic Z and Higgs

decays. Resonant production of an ALP, e.g., e+e− → a, is

possible but suppressed by m2
e /(4πf)2. ALP production in

vector boson fusion has been considered in Ref. [184] and

detection prospects in light-by-light scattering in Refs. [185, 186].

The differential cross sections for associated γa/Za/ha

production are given by [187, 188].

dσ e+e− → γa( )
dΩ � αα2 s( )

128π3

s2

f2
1 − m2

a

s
( )3

1 + cos2 θ( )
× |Vγ s( )|2 + |Aγ s( )|2( ), (4)

dσ e+e− → Za( )
dΩ � αα2 s( )

128π3

s2

f2
λ
3
2 xa, xZ( ) 1 + cos2 θ( )

× |VZ s( )|2 + |AZ s( )|2( ), (5)
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dσ e+e− → ha( )
dΩ � 2π3α

c2ws
2
w

|cZh|2
f2

sm2
Z

s −m2
Z( )2 λ

3
2 xa, xh( )sin2 θ g2

V + g2
A( ),
(6)

where λ(x, y) = (1 − x − y)2 − 4xy, xi � (m2
i /s),

�
s

√
is the center-

of-mass energy, and θ describes the scattering angle of the

photon, Z, or Higgs boson relative to the beam axis. The

vector and axial-vector form factors are given by.

Vγ s( ) � cγγ
s
+ gV

2c2ws
2
w

cγZ
s −m2

Z + imZΓZ
,

Aγ s( ) � gA

2c2ws
2
w

cγZ
s −m2

Z + imZΓZ
,

(7)

VZ s( ) � 1
cwsw

cγZ
s

+ gV

2c3ws
3
w

cZZ
s −m2

Z + imZΓZ
,

AZ s( ) � gA

2c3ws
3
w

cZZ
s −m2

Z + imZΓZ
,

(8)

with gV � 2s2w − 1/2, gA = −1/2, and ΓZ is the total width of the Z

boson. The process where an ALP is radiated off an initial-state

electron exhibits an additional suppression of (m2
e/s).

The integrated cross section of e+e− → γa below the Z pole is

dominated by the photon contribution, which is proportional to

cγγ, while above the Z pole the process proportional to cγZ also

contributes. Combining these measurements at low and high

energies therefore enables us to access these couplings

separately. At the Z pole, the cross section becomes

σ e+e− → γa( ) ≈ α

24π2
α2 m2

Z( ) 1 − m2
a

m2
Z

( )3 |cγγ|2
f2

+ m2
Z

Γ2Z
|cγZ|2

16s4wc
4
w f

2
[ ].

(9)

The contribution from the Z boson propagator is enhanced by

(m2
Z/Γ2Z) ~ 1336, which allows one to directly access the coupling

cγZ (as long as cγγ is not much bigger than cγZ). ALPs can also be

produced in exotic decays of Z and Higgs bosons [187–189]. The

exotic decay rates are given by.

Γ Z → γa( ) � α α mZ( )m3
Z

96π3s2wc
2
wf

2
cγZ
∣∣∣∣ ∣∣∣∣2 1 − m2

a

m2
Z

( )3

, (10)

Γ h → Za( ) � m3
hv

2

64π f6
|cZh|2λ3/2 m2

Z

m2
h

,
m2

a

m2
h

( ) , (11)

Γ h → aa( ) � m3
h v

2

32π f4
|cah|2 1 − 2m2

a

m2
h

( )2
�������
1 − 4m2

a

m2
h

√
. (12)

Once produced, ALPs lead to a variety of signatures

inside the detector. Very long-lived ALPs, for example,

escape the detector and lead to a signature with

missing momentum. ALPs with somewhat shorter

lifetimes may decay into gauge bosons, leptons, and quarks

inside the detector. The photon and lepton decay channels are

shown in Figure 6. Their corresponding decay widths are

given by.

Γ a → γγ( ) � α2 m3
a

64π3f2
c2γγ, (13)

Γ a → ℓ
+
ℓ
−( ) � ma m2

ℓ

8πf2
c2
ℓℓ

�������
1 − 4m2

ℓ

m2
a

√
. (14)

An ALP decay into hadrons can be computed perturbatively for

relatively large ALP masses, i.e., ma ≫ΛQCD. The decay width

into bottom quarks specifically is given by

Γ a → b�b( ) � 3ma m2
b ma( )

8πf2
c2bb

�������
1 − 4m2

b

m2
a

√
, (15)

and similarly for Γ(a → c�c). The decay rate into light quarks (u,

d, s) can be computed using quark-hadron duality and is given by

[187, 190].

FIGURE 5
ALP production processes in electron-positron collisions.

FIGURE 6
ALP decay processes at FCC-ee.
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Γ a → light hadrons( ) � α2
s ma( ) m3

a

8π3f2
1 + 83

4
αs ma( )

π
[ ] Ceff

GG ma( )∣∣∣∣ ∣∣∣∣2,
(16)

where the ALP couplings to both gluons and quarks

contribute via

Ceff
GG ma( ) � cGG + 1

2
∑
q≠t

cqq B1

4m2
q

m2
a

( ). (17)

The function B1 behaves as B1(4m2
q/m

2
a) ≈ 1 for mq ≪ ma and

B1(4m2
q/m

2
a) ≈ −m2

a/(12m2
q) for mq ≫ma. The explicit form of

B1 is given in e.g., [187]. For light ALPs, ma ≪ΛQCD, the decay

into three pions may be kinematically accessible, with a decay

rate which is given in [187, 191]. However, it is worth noting

that the FCC-ee program as currently envisioned will not be

able to produce significant numbers of ALPs that are heavy

enough to decay in two top quarks, due to the high center of

mass energy that would be required. Depending on their

lifetime, ALPs can decay promptly at the interaction point

or they may decay after having travelled a certain distance

inside the detector.

At FCC-ee, all combinations of ALP production modes

with visible and invisible decay modes can be investigated

[188, 192]. While many processes, in particular exotic Higgs

decays, depend on two independent couplings, under certain

assumptions a few processes only depend on a single coupling

parameter. For example, the e+e− → γa→ 3γ and e+e− → Za→
Zγγ processes only depend on the ALP-photon coupling

cγγ when it is assumed that both the ALP-photon and

the ALP-photon-Z couplings originate from the ALP

coupling to either SU(2)L or U(1) gauge bosons before EW

symmetry breaking. If the ALP only couples to U(1) gauge

bosons, then cγZ � −s2wcγγ. In this case, Figure 7A shows the

projected sensitivity of FCC-ee to cγγ using the e+e− → γa →
3γ channel [188]. This analysis assumes at least four signal

events and combines the Z-pole run with runs at
�
s

√ � 2mW

and
�
s

√ � 250 GeV. Further details are provided in [188].

Another process that depends only on a single coupling is e+e−

→ γa → γℓ+ℓ− when the ALP-photon and the ALP-photon-Z

couplings are induced via a loop of leptons. In this case,

cγγ � ∑
ℓ�e,μ,τ

cℓℓB1 4m2
ℓ
/m2

a( ) and cγZ � s2w − 1/4( )cγγ. (18)

Figure 7B shows the projected sensitivity of FCC-ee to cℓℓ using

the process e+e− → γa → γℓ+ℓ− [188].

FIGURE 7
Projected sensitivity of FCC-ee in (A) e+e− → γa →3γ and (B) e+e− → γa → γℓ+ℓ− in purple. Figure adapted from Figure [188].

FIGURE 8
Example production of LLPs through exotic decays of the
Higgs boson h. The Higgs decays to a pair of scalars s,
pseudoscalars ŝ, or vectors v. At least one of these decays within
the detector volume to SM particles. The other may or may
not decay within the detector and may decay to visible or invisible
states.
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The e+e− → γa → 3γ and e+e− → γa → γℓ+ℓ− searches are

sensitive to ALP decay lengths of up to 1.5 m and 2 cm,

respectively. The search for long-lived ALPs may be

significantly improved with the installation of a dedicated far

detector that could probe decay lengths of up to 100 m [193, 194].

For FCC-ee reach on the relaxion, see Ref. [195]. In addition to

direct measurements, FCC-ee will be able to significantly

constrain the ALP contribution to the oblique parameters

[187, 188], whose determination is expected to improve by an

order of magnitude [196].

2.3 Exotic Higgs boson decays

The Higgs boson has a unique role within the SM. It is the

only apparently elementary scalar particle that has been

discovered. In particular, whatever new physics is responsible

for the cosmological DM, the apparent asymmetry between

matter and antimatter, or small neutrino masses may well

have some coupling to the Higgs boson. In short, the Higgs

boson is a likely gateway to what lies beyond the SM.

The two-body decays of the Higgs boson to SM particles are

controlled by small Yukawa couplings or loop suppression making

its decay width much smaller than its mass. Consequently, current

bounds on the Higgs width leave plenty of room for “exotic” decays,

that is, decays not predicted by the SM. However, future colliders,

like FCC-ee, will be able to measure the Higgs width much more

precisely than at the LHC [197]. The products of these exotic Higgs

boson decays can decay promptly themselves or be completely

stable, each of which present their own experimental challenges

and advantages. However, searches for particles whose lifetimes are

more intermediate, i.e., that decay within the experimental detector

but at a measurable distance from the interaction point, can have

very low backgrounds in comparison to prompt searches. This gives

Higgs boson decays to LLPs remarkable power to probe particles

and sectors whose couplings to theHiggs are small but nonzero. The

e+e− to Zh processes shown in Figure 8 illustrate the utility of the

FCC-ee collider. Because the initial state and the Z decays are well

understood, invisible, partially invisible, and displaced decays of the

Higgs boson can be probed with confidence. For a review, see Ref.

[102] and the recent work in Ref. [198].

The characteristics of LLPs vary considerably. Exotic Higgs

decays to spin-zero particles are considered first. Such decays at

future lepton colliders were considered in Ref. [199]. Long-lived

scalars may result from simple constructions, such as adding a

single scalar field to the SM:

Vscalar � VH + VS + c1S|H|2 + c2S
2|H|2 . (19)

They may also arise in rich, hidden sectors such as Hidden Valley

models [200–202]. Of particular interest are hidden sectors

motivated by Neutral Naturalness [203–206]. These models

address the little hierarchy problem through new symmetries,

but the symmetry partners of the SM quarks do not carry SM

color. Instead they are charged under a hidden, QCD-like

confining force.

In manymodels with the long-lived scalar s or pseudoscalar ŝ,

the Higgs boson decay products inherit much of the Higgs’

coupling structure. While the actual size of the couplings are

reduced by a common small mixing angle θ, the branching

fractions are those of a SM Higgs boson with the mass of the

LLP. In the scalar case, one often finds

Γ s → XSMXSM( ) � sin2 θ Γ h ms( ) → XSMXSM( ) . (20)

The pseudoscalar case is slightly modified [207–209] and can also

include the h → ŝ Z decay channel, see for instance the ALP

results given in Eqs 11, 12. Since the masses of the LLPs must be

less than half the Higgs boson mass, the dominant decays modes

are into the heaviest kinetically accessible SM quarks. Thus, for

Higgs boson decays into spin-zero LLPs, hadronic final states,

and b-jets especially, are particularly motivated.

Rather than scalars, the LLPs may be spin-half fermions.

These can be related to the BAU [210] or to Seesaw explanations

of the neutrino masses [11–17]. The heavy neutrinos N in these

models have been shown to have a wide range of possible decay

lengths, including within the volume of an FCC-ee detector

[211–213]. The N mainly decay into a SM lepton and an off-

shell weak gauge boson. This leads to three-body final states

which may be composed of both quarks (jets) and leptons.

The Higgs boson can also decay to long-lived vectors v. A

simple framework is the Hidden Abelian Higgs model [214]. In

this case, a new U(1)′ gauge symmetry is broken by a hidden

Higgs field hD that generates a vacuum expectation value (VEV).

The hidden photon Aμ′ of the new gauge symmetry gets a mass

proportional to the hidden Higgs VEV and can also have kinetic

mixing with the SM through

− ϵ
2 cos θW

Fμ]′ Fμ]
Y , (21)

where θW is the weak mixing angle and Fμ]
Y is the field strength

for SM hypercharge. The parameter ϵ can vary over a huge range,

and controls the degree to which SM fermions couple to Aμ′ . For
sufficiently small ϵ, the massive hidden photon is a LLP.

The hidden photon’s coupling to SM fields is proportional to

their hypercharge. This means that, when and if they are

kinematically accessible, quark final states make up most of its

branching fraction, though decay rates to leptons are non-

negligible. A small ϵ also means that the direct coupling of

the hidden photon to the SM Higgs boson is small. However,

the mixing between SMHiggs and the hidden Higgs can be larger

than ϵ. This allows the Higgs boson to decay to two hidden

photons at a larger rate.

In summary, the Higgs boson may have appreciable decay

widths into LLPs of various spin. The decay modes of the LLPs

can vary, but it has been shown that hadronic final states play a

significant role in all the decay types outlined above. Decays to
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long-lived fermions stand out as different, in that their leading

decays are three-body. Pseudoscalars may also lead to h → ŝ Z

decays, but in general, the h → XX process captures most of the

interesting possibilities. Assuming the X particle has significant

branching into SM quarks (and possibly into b quarks in

particular) appears to be the most motivated benchmark. Of

course, the variety of other decays can be leveraged in more

model-specific analyses.

Figure 9 displays an illustration, taken from Ref. [199], of

how sensitive FCC-ee can be to Higgs boson decays to long-lived

X particles. The 95% limit on the exotic branching fraction to

these particles is plotted as a function of the X’s decay length.

Two mass benchmarks, mX = 10 (blue) and 50 (tan) GeV, are

shown (additional benchmarks are considered in Ref. [199]) for

two search strategies. The solid line corresponds to using an

invariant mass cut to retain sensitivity to shorter decay lengths.

In contrast, the dashed line depends on longer decay lengths to

reduce SM backgrounds.

3 Experimental outlook

This section presents new studies produced for this paper

that follow up on the theoretical landscape presented in

Section 2.

3.1 Simulation details

For all signal and background processes, the event generator

MadGraph5_aMC@NLO v3.2.0 [215, 216] is used to simulate at

leading order unpolarized, parton-level e+e− collisions at
�
s

√ �
91 GeV. For all processes, parton-level events are passed to

Pythia [217] v8.303 to simulate parton showering and

hadronization. For each signal benchmark point, 50 × 103

unscaled events were generated, and for each background

process, 107–109 unscaled events were generated, depending

on the process.

The detector response is simulated with Delphes

v3.4.2 [218], using the latest Innovative Detector for

Electron–positron Accelerators (IDEA) FCC-ee detector

concept [219] card. The IDEA detector comprises of a silicon

pixel vertex detector; a large-volume, light short-drift wire

chamber surrounded by a layer of silicon micro-strip

detectors; a thin, low-mass superconducting solenoid coil; a

pre-shower detector; a dual-readout calorimeter; and muon

chambers within the magnet return yoke.

The k4SimDelphes project [220] converts Delphes objects

to the EDM4HEP format [221], which is the common data

format used for the simulation of future colliders. A

sophisticated analysis framework has been developed for all

FCC analyses using the EDM4hep format. It is based on

RDataFrames [222], where C++ code is compiled in a

ROOT [223] dictionary as “analysers.” These are

subsequently called in Python. Several external packages,

such as ACTS [224], FastJet [225], and awkward [226],

are included.

3.1.1 Heavy neutral leptons
To study Dirac and Majorana HNLs at FCC-ee, the

processes.

Majorana N: e+e− → Z → N]e +N]e, with N → e+e−]e
+ e+e−]e,

(22a)

DiracN: e+e− →Z→N]e + �N]e, with N �N( )→ e+e−]e ]e( ),
(22b)

are simulated using the HeavyN [227, 228] and

HeavyN_Dirac [97, 228] universal FeynRules Object

[229–231] libraries in conjunction with MadGraph5_aMC@

NLO. These libraries implement the interaction Lagrangian

described in Section 2.1 for Majorana and Dirac N,

respectively. A representative subset of Feynman diagrams

common to both the Dirac and Majorana case is shown in

Figure 11. For the Majorana case, both LNC and LNV

channels are included. The Dirac case only permits LNC

channels. The preservation of spin correlation in the

production and decay of N with this setup was checked in

Ref. [124]. When unspecified, the results consider the

Majorana case. As a further benchmark, the assumption that

N couples only to the electron-flavor sector is made, i.e., |VeN| is

kept nonzero and set |VμN|, |VτN| = 0. Only one heavy neutrino

FIGURE 9
Plot of data recorded in [199] to illustrate the potential
sensitivity of FCC-ee to exotic Higgs boson decays to LLPs,
denoted X. Two LLP mass benchmarks are shown: 10 GeV (blue)
and 50 GeV (tan). For each benchmark two search strategies
are presented. The solid line employs an invariant mass cut to
improve sensitivity at shorter decay lengths, the dashed line relies
on longer decay lengths to reduce SM backgrounds.
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mass eigenstate is considered. SM inputs are fixed according to

the values in Ref. [228].

3.1.2 Axion-like particles
To study the production ALPs a from Z decays at FCC-ee, the

process

ALP: e+e− → Z → aγ, with a → γγ, (23)
is simulated using the model libraries of Ref. [188] in conjunction

with MadGraph5_aMC@NLO. These libraries implement the

Lagrangian described in Section 2.2.

3.1.3 Exotic Higgs boson decays
A simulation study of exotic Higgs decays into LLPs is left for

a future paper, as well as additional detector concepts, namely the

CLIC-like detector (CLD) design [232].

3.2 Heavy neutral leptons

Although the most promising Seesaw models feature two or

three HNL states in the same mass range, and possibly almost

degenerate, a reasonable experimental approach is to begin by

considering the production and decay of a single HNL particle.

The branching fraction of a Z boson decay into any light

neutrino or antineutrino and a heavy neutrino N, which mixes

with the three families of neutrinos is given by [97, 233]:

BR Z → ]N( ) � 2
3
|UN|2 BR Z → invisible( ) 1 + mN

2

2mZ
2

( )
× 1 − mN

2

mZ
2

( ), (24)

where |UN|
2 ≡∑ℓ=e,μ,τ|UℓN|

2 is the sum of the mixing matrix

elements of the HNL N with the three active neutrinos ]ℓ. As the
HNL masses considered here are much heavier than the tau

lepton, the total charged current decay rate of the HNL N →
ℓλWp is also proportional to the same combination of mixing

angles.

ΓN � 1
cτN

≃ C0CMD|UN|2 mN

50GeV
( )5

×
3.109

1 cm
( ) (25)

Here, C0 is a numerical coefficient ofO(1) that takes into account
the open charged- and neutral-current decays of the heavy

neutrino, and CMD is a coefficient that depends on the Dirac

(CMD = 1) or Majorana (CMD = 2) nature of the particle, since

twice as many decay channels are open for the Majorana particle

decay. Potentially, with sufficient statistics, the direct comparison

of the event rate with the lifetime for an HNL of a known mass

would allow a discrimination between a Dirac and a Majorana

particle.

The corresponding decay length is then of the order of a

meter for a 50 GeV HNL. In those conditions, a HNL would

decay in the volume of an FCC-ee detector, leading to the

observable signature of a displaced vertex, with a significant

time delay (several nanoseconds) with respect to ultra relativistic

particles. This leads to a particularly clean signature, for which a

first analysis [39] argued that it could be a background-free

search, at least for the dominant charged current decay N→ ℓW*

→ ℓ+ hadrons. Figure 10 shows what such a possible decay of the

N at a future FCC-ee experiment would look like, in this case for a

semileptonic final state.

Furthermore, for Z → N]ℓ decays, the two-body Z decay

kinematics results in a mono-chromatic HNL.

Therefore, even in cases where a full, final-state

reconstruction is not possible, a simultaneous measurement of

FIGURE 10
Representation of an event display at an FCC-ee detector of a
HNL decay into an electron and a virtual W decaying hadronically.
Courtesy of the FCC collaboration.

TABLE 1 The cross section and expected number of events at 150 ab−1,
for an HNL with a mass of 50 GeV and for several choices of |VeN|.

Active-sterile
mixing |VeN|

Cross
Section [pb]

Expected events at
150 ab-1

1 × 10–1 2.29 343,200,000

1 × 10–2 2.29 × 10–2 3,432,000

1 × 10–3 2.29 × 10–4 34,320

1 × 10–4 2.29 × 10–6 343

1 × 10–5 2.29 × 10–8 3

1 × 10–6 2.29 × 10–10 0

No event selection is applied.
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FIGURE 11
Representative diagrams depicting the e+e−→ Z→ N]ℓ process at leading order, with N decaying via (A) charged current and (B) neutral current
channels to the two-neutrino, two-charged lepton final state.

FIGURE 12
For the processes e+e− → N]e + N]e withN → e+e−]e + e+e−]e at

�
s

√ � 91GeV, the generator-level distributions of (A) the invariantmass ofN, (B)
the magnitude of N’s three-momentum in the lab frame, and (C) the polar angle of N with respect to the beam axis in the lab frame are shown, for
representative HNL masses and representative active-sterile mixing |VeN| = 1.41 × 10–6. The distributions are normalized to unit area.
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the decay path and of the time-of-flight provides a determination

of both the mass and proper decay time on an event-by-event

basis. A detailed simulation of the process is thus of great interest

to understanding how much statistics are required, first to

establish the existence of the new particle, and then to

establish the possible existence of a lepton number violating

process (Majorana vs. Dirac nature). This also leads to the

identification of specific detector requirements to optimize the

discovery potential.

3.2.1 Production and kinematics of electroweak-
scale HNLs

As a first step to exploring the sensitivity of FCC-ee to

EW-scale HNLs, Table 1 shows the cross section (center

column) and the expected number of events (right column)

for an HNL with a mass of mN = 50 GeV when produced and

decayed through the process described in Eq. 22 and shown in

Figure 11.

Results are shown for several choices of active-sterile

mixing |VeN|, and assume that an integrated luminosity of

150 ab−1 is collected during the Tera-Z run of FCC-ee [3]. No

event selection is applied at this stage.

The kinematics of HNLs in the mN = 20–90 GeV mass range

at FCC-ee can also be studied. Figure 12 shows the baseline

kinematics distributions of N when no event selection is applied

at this stage. Here and below, active-sterile mixing of |VeN| =

1.41 × 10–6 for representative masses of mN = 30 (50) [70] {90}

GeV is assumed.

Figure 12A shows the generator-level invariant mass of the

HNL, which aligns with the pole mass of N. In Figure 12B, the

magnitude of the normalized, generator-level three-

momentum | �pN| in the lab frame is presented. From

elementary kinematics, | �pN| is given analytically for a

massless electron by the formula

| �pN| �
MZ

2
1 − m2

N

M2
Z

( ). (26)

This corresponds to | �pN|≈ 40.7 (31.9) [18.7] {1.2} GeV for the

representative mN under consideration and is in good agreement

with the values | �pN|≈ 41 (32) [19] {1.2} GeV shown in

Figure 12B. Finally, the generator-level polar angle θ of N

with respect to the beam axis in the lab frame is presented in

Figure 12C. The distribution shows that a bulk of events feature

central (0.5 < θ < 2.5) HNLs, as one would expect from a high-pT
process.

To explore the potential impact of finite detector resolution,

limited geometric coverage, and detector mismeasurements,

Figure 13 shows the distributions with respect to the invariant

mass of the (e+e−) system, which is given for massless electrons by

the formula

mee �
����������
pe+ + pe−( )2√

≈
��������
2pe+ · pe−

√ � ����������������
2Ee+Ee− 1 − cos θee( )√

,

(27)
at (a) the generator level (Gen) and (b) the reconstruction

level (Reco). In both cases, no selection criteria have been

applied and the same representative inputs as above are

assumed.

Consider first the generator-level case in Figure 13A. As

both charged leptons in the final state originate from the N →

FIGURE 13
For the same processes and benchmarkmass and |VeN| choices as in Figure 12, the differential distributions with respect to the invariant mass of
the (e+e−) systemmee at (A) the generator level and (B) after reconstruction. No selection criteria have been applied. The distributions are normalized
to unit area.
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e+e+X decay, the distribution of mee is dictated by the

properties of N itself. For instance: for each of the mass

benchmarks, the value of the observable mee does not

exceed mN itself, i.e., max(mee) < mN. This can be

understood from momentum conservation:

m2
N � pe+ + pe− + p]( )2
� p2

] + 2 p] · pe+( ) + 2 p] · pe−( ) +m2
ee ≳m

2
ee . (28)

When mee is close to mN, one can infer that the final-state

neutrino carries little-to-no energy. For mN = 90 GeV,

kinematic peculiarities arise due to threshold effects. More

specifically, since
�
s

√ � 91 GeV, one can consider N to be

essentially at rest when mN = 90 GeV. For such masses, the

two-body decay N → e±W∓ becomes kinematically favored. The

energy of this first electron and W are given approximately by

formulae similar to Eq. 26, and come out to be E1 ≈ 9.4 GeV and

EW ≈ 80.6 GeV.

Assuming that the decay products of the W boson are

configured in the lab frame such that the second electron

carries away all the energy ofW, i.e., E2 ≈ EW, then the formula

for mee shows that the maximum invariant mass for mN =

90 GeV is about max(mee) ≈
�������������������
4(9.4 GeV)(80.6 GeV)√

≈ 55

GeV. This is in agreement with Figure 13A.

FIGURE 14
For the same processes and benchmark mass and |VeN| choices as in Figure 12, the differential distributions with respect to (A) the generator-
level lifetime of N in the lab frame; (B) the reconstruction-level three-dimensional decay length of the N; and (C) the χ2 of the reconstructed decay
vertex of the HNL are shown. No selection criteria have been applied. The distributions are normalized to unit area.
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Comparing Figures 13A,B demonstrates some impact of

the event reconstruction. Importantly, many of the kinematic

features found at the generator level survive at the

reconstruction level. In particular, the endpoints of mee are

preserved. Likewise, the means of each distribution, which

span about mmean
ee ≈ 14 − 28 GeV, remain unaltered at the

reconstruction level. The relatively small impact of

reconstruction effects can be tied to the high requirements

of the FCC sub-detector systems.

In the absence of additional new physics, HNLs with masses

below the EW scale and active-sterile mixing much smaller than

unity are generically long-lived. To explore this at FCC-ee,

Figure 14 shows (a) the generator-level lifetime (s) of N, given

by τ = γNτN, where γN = EN/mN is the Lorentz boost of N in the

lab frame, and τN is the proper lifetime; (b) the reconstructed

three-dimensional decay length (mm) of the HNL (Lxyz); and

(c) the χ2 of the reconstructed displaced vertex.

For a fixed width of |VeN| = 1.41 × 10–6, different

qualitative features can be observed for the representative

mN. For instance, at mN = 30 GeV, characteristic generator-

level lifetimes readily exceed several seconds. This implies

displaced vertices can be well beyond one or more meters, and

therefore outside the fiducial coverage of the IDEA detector.

In these instances, a large region of the event’s phase space

corresponds to long-lived HNLs that ostensibly appear as

missing momentum.

For heavier N, lifetimes are drastically smaller, with most

HNL events exhibiting a lifetime of less than 1–2 s for mN ≳
50 GeV. For mN = 50 (70) GeV, such lifetimes correspond to

reconstructed displacements that are mostly within Lxyz = 50

(100) mm. Finally, in Figure 14C, the χ2 curves indicate that

the displaced vertices are well-reconstructed, with small χ2

values.

FIGURE 15
The normalized, reconstructed-level total missing
momentum, for representative HNL signal benchmark mass and
|VeN| choices, as well as background processes. Exactly two
reconstructed electrons are required, as well as that there are
no reconstructed muons, jets or photons in each event.

FIGURE 16
The normalized, reconstructed-level absolute value of the transverse impact parameter |d0|, for representative HNL signal benchmarkmass and
|VeN| choices, as well as background processes, for (A) 0–1 mm in |d0| and (B) 0–2000 mm in |d0|. Exactly two reconstructed electrons are required,
as well as that there are no reconstructed muons, jets or photons in each event. The total missing momentum must be greater than 10 GeV.
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3.2.2 Backgrounds and event selection
Several backgrounds to the HNL processes described in

Eq. 22a, Eq. 22bare considered, namely, Z bosons that decay

to electron-positron pairs, to tau pairs, to light quarks, to

charm quark pairs, and to b quark pairs. These background

processes were simulated with the conditions described

above.

Figures 15, 16 show distributions of variables that

distinguish the HNL signal from these background

processes. Figure 15 shows the total missing momentum p̸in

each event. Unlike in a hadron collider, where only the

missing momentum in the transverse direction can be

considered, the three-dimensional missing momentum can

be used at FCC-ee. As can be seen from this figure, requiring p̸>
10 GeV significantly reduces the background contributions

while maintaining a high efficiency for the HNL signal.

Figure 16 shows the electron-track transverse impact

parameter |d0| for each event. The transverse impact

parameter is the distance of closest approach in the

transverse plane of the helical trajectory of the track with

respect to the beam axis; it is a measurement of the

reconstructed electron’s displacement. Requiring that both

electron tracks have |d0| > 0.5 mm removes the vast majority

of the background.

Taking these and other distributions into account, a

simple event selection is developed, using reconstructed-

level variables. Events must have exactly two electrons,

and no photons, jets, or muons. These requirements

substantially reduce the background from light and heavy

quarks. We next require p̸> 10 GeV, which is particularly

effective at reducing Z → ee events with spurious missing

momentum associated with finite detector resolution.

Finally, we require that both electrons are displaced with |

d0| > 0.5 mm to remove the vast majority of the remaining

(prompt) backgrounds.

Table 2 shows the expected number of background events

for each cumulative selection criterion, and Table 3 shows the

same for representative HNL signal benchmark masses and |

VeN| choices, assuming an integrated luminosity of 150 ab−1.

Within these limitations, these tables show that after all the

selection criteria are applied, the background can be

substantially reduced while the majority of the signal

events are retained. After all the selection criteria are

applied, we can expect about 1 event for an HNL with a

mass of 50 GeV and |VeN| = 6 × 10–6, with an integrated

luminosity of 150 ab−1. This benchmark point is illustrative of

the maximum sensitivity to long-lived HNLs that can be

achieved at FCC-ee, with the current study.

3.2.3 Majorana and Dirac nature of the HNL
If HNLs exist in nature, a chief goal is to ascertain whether

they are Dirac or Majorana fermions. As discussed in Section

2.1 and elsewhere [33, 120–122], determining this is

tantamount to observing processes that are mediated by N

and exhibit LNV. However, at FCC-ee, the net lepton numbers

of the processes e+e− → N]ℓ +N]ℓ with N → (anything) are

TABLE 2 The expected number of events at an integrated luminosity of 150 ab−1 is shown for the background processes, for each selection criterion.

Before selection Exactly 2 reco e Vetoes p/ > 10 GeV |d0| > 0.5 mm

Z → ee 2.19 × 1011 ± 6.94 × 107 1.75 × 1011 ± 6.19 × 107 1.53 × 1011 ± 5.80 × 107 7.07 × 108 ± 3.94 × 106 ≤ 3.94 × 106

Z → bb 9.97 × 1011 ± 4.14 × 107 5.64 × 108 ± 9.85 × 105 3.25 × 105 ± 2.36 × 104 1.22 × 105 ± 1.45 × 104 1.72 × 103 ± 1.72 × 103

Z → ττ 2.21 × 1011 ± 7.00 × 107 5.49 × 109 ± 1.10 × 107 5.10 × 109 ± 1.06 × 107 2.52 × 109 ± 7.47 × 106 6.64 × 104 ± 3.84 × 104

Z → cc 7.82 × 1011 ± 2.61 × 107 1.69 × 107 ± 1.21 × 105 5.22 × 103 ± 2.13 × 103 1.74 × 103 ± 1.23 × 103 ≤ 1.23 × 103

Z → uds 2.79 × 1012 ± 8.83 × 107 2.30 × 107 ± 2.54 × 105 2.79 × 103 ± 2.79 × 103 ≤ 2.79 × 103 ≤ 2.79 × 103

The cumulative number of events is shown. Only statistical uncertainty is taken into account.

TABLE 3 The expected number of events at an integrated luminosity of 150 ab−1 is shown for representative HNL signal benchmark masses and |VeN|
choices, for each selection criterion.

Before selection Exactly 2 reco e Vetoes p/ > 10 GeV |d0| > 0.5 mm

mN = 10 GeV, |VeN| = 2 × 10–4 2534 ± 11 1006 ± 7 996 ± 7 951 ± 7 907 ± 7

mN = 20 GeV, |VeN| = 9 × 10–5 458 ± 2 313 ± 2 308 ± 2 293 ± 2 230 ± 1

mN = 20 GeV, |VeN| = 3 × 10–5 51.0 ± 0.2 34.7 ± 0.2 34.2 ± 0.2 32.6 ± 0.2 31.2 ± 0.2

mN = 30 GeV, |VeN| = 1 × 10–5 5.01 ± 0.02 3.85 ± 0.02 3.76 ± 0.02 3.54 ± 0.02 3.39 ± 0.02

mN = 50 GeV, |VeN| = 6 × 10–6 1.23 ± 0.01 0.99 ± 0.01 0.96 ± 0.01 0.92 ± 0.01 0.729 ± 0.004

The cumulative number of events is shown. Only statistical uncertainty is taken into account.
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hidden because light neutrinos are not detected. This implies

other metrics, such as angular distributions, are needed to

disentangle the situation when lepton number violating states

cannot be unambiguously identified.

To demonstrate the ability of FCC-ee to potentially

disentangle the Dirac or Majorana nature of HNLs, the

cleanest fully-leptonic decay channels are studied; the

semileptonic decay channels have about twice as large a

branching ratio and will be considered in future studies.

Figure 17 shows the comparison of generator- and

reconstruction-level observables for the two processes

defined in Eq. 22. An important distinction to reiterate is

that the Majorana HNL channel (solid line) includes final

states that are both lepton number-conserving (e+e−]e]e) as
well as final states that are lepton number-violating

(e+e−]e]e, e+e−]e]e). On the other hand, the Dirac HNL

channel (dashed line) consists only of final states that are

lepton number-conserving (e+e−]e]e). Therefore,

kinematical differences amount to differences between LNV

and LNC.

Figure 17A shows the normalized distribution of lifetimes

of Dirac and Majorana HNLs for representative masses and

FIGURE 17
(A) The normalized distribution of lifetimes of Dirac (dashed) and Majorana (solid) HNLs in the processes defined in Eq. 22, for representative
masses and assuming |VeN| = 10–3. (B) The generator-level angular separation cos θee for Dirac and Majorana HNLs under the same scenario. (C)
Same as (B) but at the reconstruction level.
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assuming |VeN| = 10–3. Systematically, the lifetimes for Dirac

N are twice as large as for the Majorana case. For mN =

20–70 GeV, the lifetimes are roughly τ ~ O(10−11) −
O(10−15) s. As shown in Eqs 24, 25, the lifetime

measurement can be used together with the total cross

section to distinguish between the Dirac or Majorana

nature of the observed HNL, because the combination of

mixing angles that appears in both quantities is the same. For

this to be done correctly, two more conditions must be met.

First, the mass of the HNL must be known; this can be done

by direct reconstruction, possibly combined with a kinematic

fit if the HNL decays within the good quality tracker and

calorimeter volumes. For longer lifetimes, a combination of

decay length and laboratory decay time should be sufficient.

Second, the event selection must have similar and well

understood efficiencies for the three lepton flavors e, μ, τ,

so that the differences can be corrected.

For the same scenario, Figure 17B shows the angular

separation cos θee of the e+e− pair at the generator level.

Here, several features can be observed. First, for small

(large) mN, the e+e− pair are largely collimated (back-to-

back). This behavior can be understood from the

kinematics: a heavier N is produced with less three-

momentum, leading to three-body decays that are more

isotropically distributed, whereas a lighter N is produced

with more energy, which leads to more collimated decay

products. The second feature that can be observed is that

differences between the Majorana channel (LNC + LNV) and

the Dirac channel (LNC) can reach O(± 30%). Differences

are largest when the e+e− pair are collimated (cos θee ≈ 1) or

back-to-back (cos θee ≈ − 1), and are smallest when they are

orthogonal (cos θee ≈ 0).

Finally, Figure 17C shows the same angular separation at

the reconstruction level. Again, several features can be

observed. First is that reconstruction requirements

markedly impact the cos θee. In particular, isolation

requirements significantly reduce cases where the e+e− pair

are collimated (cos θee ≈ 1). Overall, the distribution for mN =

50 GeV and mN = 70 GeV become essentially

indistinguishable. Moreover, differences between the

Majorana channel (LNC + LNV) and the Dirac channel

(LNC) can reduce to the O(± 20%) level.

3.3 Axion-like particles

Figure 18 shows the generated ALP kinematics for mALP =

1 GeV and several benchmark choices of the hypercharge

coupling cYY. Figure 19 shows the generated ALP mass

(mALP) and the invariant mass of the two-photon system

(mγγ), and Figure 20 shows the generated three-dimensional

lifetime τxyz and decay length Lxyz for the ALP signal. These

variables are useful in distinguishing the ALP signal from

background, and also for different values of the ALP mass and

couplings. In addition, calorimeter and precision timing

variables will be extremely helpful to include in this study

FIGURE 18
(A) Generated ALP momentum and (B) θ formALP = 1 GeV and several benchmark choices of cYY. The distributions are normalized to unit area.
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of ALPs that decay to photons. We leave these studies to a

later date.

3.4 Exotic Higgs boson decays

Exotic decays of Higgs bosons to LLPs are also an interesting

experimental case study at FCC-ee. As was pointed out in Section

2.3, hadronic final states play a significant role, and so we plan to

simulate this physics benchmark in a future paper.

3.5 Additional detectors for long-lived
particles

It is possible to envisage up to four FCC-ee detectors, two

of which sitting in the very large caverns foreseen from the

start for the subsequent hadron collider detectors. The caverns

are foreseen to be deep (200–300 m) underground,

considerably reducing the cosmic ray backgrounds. A

detector fully optimized for this important discovery

possibility can thus be considered [83, 110, 194].

FIGURE 19
(A)GeneratedmALP, (B) generatedmγγ, and (C) reconstructedmγγ formALP = 1 GeV and several benchmark choices of cYY. The distributions are
normalized to unit area.
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4 Summary and conclusion

In this paper, we discuss three key BSM cases at the future

FCC-ee that experimentally can display long-lived signatures:

heavy neutral leptons, axion-like particles, and exotic Higgs

boson decays. While FCC-ee is primarily envisioned as a

precision collider, the discussed scenarios are examples of

direct searches that could be performed and could answer

central questions of particle physics.

The three cases are carefully discussed from a theoretical

perspective, representing the state-of-the-art and current best

expected limits. Simulation studies are then presented for

HNLs and ALPs. These two BSM cases can present

displaced signatures: a displaced vertex for the former, and

a displaced photon pair in the latter.

Different HNL signals—as well as a limited collection of

background processes—are generated, kinematic variables

are explored, and a first possible set of requirements is

presented to isolate the signal from the SM backgrounds.

Possible kinematic variables that could characterize an HNL

as Dirac or Majorana are also explored experimentally.

For ALPs, signals are generated and validated and some key

distributions are presented.

The work presented here can be expanded into more

detailed studies, such as also including exotic Higgs boson

decays, additional HNL decay channels, larger simulated

samples, the use of timing information, and alternative

detector designs. The simulation work presented here

represents the first step towards a comprehensive

evaluation of the experimental potential of FCC-ee in direct

searches for BSM. Possible limitations could be solved by

innovative experimental solutions that could boost the reach

of FCC-ee for other non-standard signals.
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