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Abstract. Cosmic-ray interactions with the solar atmosphere are expected to produce par-
ticle showers which in turn produce neutrinos from weak decays of mesons. These solar
atmospheric neutrinos (SAνs) have never been observed experimentally. A detection would
be an important step in understanding cosmic-ray propagation in the inner solar system and
the dynamics of solar magnetic fields. SAνs also represent an irreducible background to solar
dark matter searches and a detection would allow precise characterization of this background.
Here, we present the first experimental search based on seven years of data collected from May
2010 to May 2017 in the austral winter with the IceCube Neutrino Observatory. An unbinned
likelihood analysis is performed for events reconstructed within 5 degrees of the center of the
Sun. No evidence for a SAν flux is observed. After inclusion of systematic uncertainties, we
set a 90% upper limit of 1.02+0.20

−0.18 · 10
−13 GeV−1cm−2s−1 at 1 TeV.
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1 Introduction

Neutrinos can be produced as a result of cosmic-ray interactions in the solar atmosphere.
Cosmic rays interact with nuclei in the solar atmosphere, producing particle showers including
pions and kaons. The decays of these mesons produce so called “Solar Atmospheric Neutrinos”
(SAνs). Theoretical flux predictions of SAνs and detailed process discussions have been given
in [1–8]. The neutrino production process in the solar atmosphere is similar to that of the
terrestrial atmospheric neutrinos, with the notable difference that mesons generated in the
solar atmosphere tend to decay before they can re-interact or lose a significant fraction of their
energy, due to the larger and thinner atmosphere. As a result, the neutrino spectrum from
the solar atmosphere is expected to be harder compared to that from the Earth, where the
spectrum is steepened due to interactions of the secondary mesons, see e.g. [9]. This difference
makes the spectra distinguishable and is used as a main criteria in our search for the SAν
flux. A search for solar atmospheric neutrinos has never been experimentally performed and
this work is the first of its kind.

The production process of SAνs is closely connected to that of gamma-rays through the
decays of neutral pions and other mesons. Evidence for solar gamma rays was first reported
in a re-analysis of EGRET data [10]. Recently, the Fermi-LAT Collaboration reported the ob-
servation of a steady gamma-ray emission from the solar disk with energies up to 10 GeV [11].
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In addition to the solar disk emission predominantly due to neutral pion decays from
cosmic-ray interactions in the solar atmosphere, an extended inverse Compton signal from
cosmic-ray electron interactions with the solar photon field was also observed. A follow-
up analysis on the solar disk emission based on six years of public Fermi-LAT data has
shown that the energy spectrum extends beyond 100 GeV and anticorrelates with the solar
activity [12]. This was confirmed with an extended nine year analysis [13]. The magnetic field
near the Sun is complex and strongly time-dependent. Gamma-ray production is expected to
be significantly enhanced above 10 GeV in case of a more intense magnetic field. However,
the effects on the neutrino production are found to be negligible [14]. Further, the observed
gamma-ray spectrum shows a potential dip [15] and points to an inhomogeneous emission
between the equatorial plane and the polar region of the Sun [13]. Unexpectedly, the observed
gamma-ray flux is about six times higher [12, 13] than theoretical predictions [1]. The High
Altitude Water Cherenkov (HAWC) gamma-ray observatory has searched for gamma rays
beyond the energies accessible by Fermi-LAT. HAWC reported no evidence of TeV gamma-
ray emission in three years data and has set flux bounds [16]. The recent observation of
gamma-ray emission from the Sun makes the search for solar atmospheric neutrinos very
timely. The combined gamma-ray and neutrino data are expected to be vital to understand
the solar atmospheric processes and cosmic-ray transport in the inner solar system [1, 17].

IceCube is the world’s largest neutrino telescope and is optimized to detect high-energy
(TeV) neutrinos. IceCube’s acceptance to high-energy neutrinos and sub-degree-scale angular
resolution to muon neutrinos makes it ideally suited to search for SAνs at TeV scales where
the flux of SAνs is expected to dominate over that from terrestrial atmospheric neutrino
backgrounds. In our analysis we rely on well established event selection criteria [18, 19] and
a data set that has previously been used to study distant neutrino sources [18, 20, 21].

This paper is structured as follows: Section 2 describes the IceCube detector. Predictions
for signal energy spectra and backgrounds to this analysis are given in Section 3. The data
samples and the simulations are described in Section 4. Analysis method to search for SAνs
and systematic uncertainties are given in Section 5. The results are presented in Section 6.
Finally, Section 7 presents our conclusions and we discuss the prospects for future analysis
and its applications.

2 The IceCube Neutrino Observatory

The IceCube Neutrino Observatory consists of the IceTop surface array [22] and the in-
ice array [23] to detect Cherenkov light from relativistic charged particles, e.g. muons and
electrons produced by high-energy neutrino interactions. The in-ice array is installed in
the Antarctic ice at depths between 1450 m to 2450 m with 5160 Digital Optical Modules
(DOMs) [23]. The in-ice array is comprised of 86 vertical strings (IC86) arranged in an
approximately hexagonal geometry, instrumenting a volume of 1 km3. Each DOM is made of
a downward-pointing 10-inch photomultiplier tube (PMT) [24] to detect Cherenkov photons.
The DOM includes readout electronics and a high-voltage power supply [25]. The PMT and
its electronics are protected by a spherical glass vessel. The optical properties of the ice have
been studied and are used to build a detailed response model of the detector [26]. This model
includes depth-dependent scattering and absorption, optical anisotropy and tilt. This analysis
uses data from the full array as well as one year of data from before IceCube construction was
complete, when it consisted of 79 strings (IC79). Since 2010, IceCube has run stably with an
average detector uptime greater than 99% [27].
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3 Signal and background predictions

3.1 Signal predictions

The first theoretical calculations for SAνs date back to 1991 [1, 2]. The authors modeled
gamma-ray, neutrino, antiproton, neutron, and antineutron fluxes that are initiated by the
interactions of cosmic rays with the solar atmosphere. The flux originates from the solar
disk as cosmic rays that are mirrored in the solar atmosphere are expected to contribute
significantly to the flux [1]. While these early predictions were based on semi-analytical
calculations, full numerical simulations of the interactions based on the Monte Carlo method
have been performed in Ref. [4]. In more recent publications [7, 8], uncertainties in the
predicted neutrino energy spectra from the choice of the primary cosmic-ray flux models,
particle interaction models, solar density models, and neutrino oscillation parameters are
discussed. Neutrinos generated in the atmosphere of a non-magnetic Sun are propagating
through the Sun and their attenuation due to absorption is included. The impact of mirroring
of charged particles in solar magnetic flux tubes anchored at the bottom of the photosphere
is not considered as it is expected to be sub-dominant at energies above 100 GeV [1]. We will
discuss the energy dependent spatial distribution of the solar disk flux in Sec. 5.3.1.

Solar atmospheric neutrino fluxes have been implemented in the simulation framework,
WIMPSim [28], which we used for our signal prediction. We obtained neutrino fluxes for all
neutrino flavor channels. However, for our analysis we only consider the νµ + ν̄µ channel to
benefit from IceCube’s excellent angular resolution O(1°). The impact of additional flavor
contributions are discussed as part of our systematic uncertainty studies (see Sec. 4 and 5.3).

In Fig. 1, the νµ+ ν̄µ neutrino flux predictions as well as their uncertainties are shown as
the shaded regions. The range of the shaded gray area spans the energy spectra of the results
published in [8, 30]. The red region represents the simulation results obtained by running the
built-in codes in WIMPSim [7, 28]. Neutrino oscillations are fully taken into account when
propagating the neutrinos from the Sun to the Earth and appear as wiggles in the theoretical
flux predictions. The oscillations of these high-energy neutrinos, however, cannot be resolved
due to the limited energy resolution of IceCube. In Fig. 1 we compare the energy spectra from
a set of representative models [7, 8]. For the visualization, we sample the flux predictions with
coarse energy bins, that were chosen to reflect IceCube’s energy response function. Only the
parametrized energy flux from Ref. [4] (IT1996) did not include neutrino oscillations. Ref. [6]
has shown that if the primary flavor ratio of SAνs (νe : νµ : ντ ) is (1 : 2 : 0), it would be
roughly close to (1 : 1 : 1) at Earth. The flavor ratio of the IT1996 fluxes integrated in the
range (102.0, 107.0) GeV is (0.92, 2.08, 0). For simplicity, IT1996 fluxes for νµ + ν̄µ + νe + ν̄e
are divided by a factor of 3 to apply neutrino oscillation effect, shown in Fig. 1 as the black
line. Newer reference fluxes [7, 8] already include the effect of the oscillations.

We measure the flux normalization of the SAνs in this analysis. A comparison of signal
predictions [4, 7, 8] shows that the SAν spectral shapes are similar enough that we are
not expected to be sensitive to individual models. We therefore choose one representative
baseline energy spectrum (shown as the blue line in Fig. 1). The baseline energy spectrum is
chosen from [7] and uses the Hillas-Gaisser 3-generation model [31] for the primary cosmic-ray
spectrum, a combination of the Serenelli [32] and the Stein et al. [33] models for the solar
density profile, and the normal mass ordering.

Finally, we note that the current leading models neglect solar magnetic field effects.
These effects influence cosmic-ray propagation and the cascade development, which in turn
influence the neutrino signal. The effect of magnetic fields on cosmic-ray propagation can be
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Figure 1. Predicted energy spectra of νµ + ν̄µ at Earth. The energy spectra are integrated over the
solid angle of the solar disk. The fluxes of SAνs are averaged along energy bins to smear out the
effects of neutrino oscillation. The blue line is the baseline energy spectrum for systematic studies.
The shaded areas cover the range of predictions from each reference (red for [7] and gray for [8]). The
black line is the result of [4] divided by a factor of three for neutrino oscillations. The green line is
the Honda 2006 flux prediction [29] for terrestrial atmospheric neutrinos, which is time-averaged for
the period when the Sun is below the horizon. It is added to demonstrate that the SAν spectrum
could be harder than that of neutrinos from the cosmic-ray interactions in the Earth’s atmosphere.

indirectly measured through the absorption of cosmic rays in the Sun, which in turn makes
a corresponding deficit of cosmic rays in the direction of the Sun. The so-called cosmic-ray
Sun shadow has been observed by the Tibet air shower array, including a variation of the
intensity correlated with the solar cycle [34]. IceCube also observed the Sun shadow and
found a correlation with the sunspot number with a likelihood of 96% [35]. The Sun shadow
is sensitive to magnetic field models [36–39] and recent works with numerically computed
trajectories of charged cosmic rays confirm the observationally established correlation between
the magnitude of the shadowing effect and both the mean sunspot number and the polarity
of the magnetic field during a solar cycle [17]. In general, however, high-energy cosmic rays
are expected to be energetic enough not to be influenced by magnetic fields. Therefore,
only for neutrino production below 200 GeV [1] or 1 TeV [40] is it expected to become
significant. Theoretical works using HAWC’s Sun shadow observation predict a factor of
about two difference in SAν flux between solar minimum and maximum at 200 GeV [40].

3.2 Background predictions and competing signals

Most events in IceCube are downward-going atmospheric muons from cosmic-ray air show-
ers in the Earth atmosphere. These muons can be efficiently rejected by selecting events
reconstructed upward, i.e. with declination δ > −5°. The well-established event selec-
tion for the upward-going neutrino events has achieved a purity of 99.7% [19]. In the
remaining sample, the main background arises from terrestrial atmospheric neutrinos pro-
duced by decays of mesons within cosmic-rays air showers. Another irreducible, but sub-

– 4 –



R
a

te
 [

H
z
]

0.02

0.04

0.06

0.08

0.1

0.12
3−

10×

 Simulations

 Data

cos( Reconstructed Zenith )
1− 0.8− 0.6− 0.4− 0.2− 0

D
if
fe

re
n
c
e
 (

%
)

4−
2−
0

2

4

R
a

te
 [

H
z
]

6−10

5−10

4−10

3−10

 Simulations

 Data

 ( Reconstructed Energy [GeV] )
10

log
2 2.5 3 3.5 4 4.5

D
if
fe

re
n
c
e
 (

%
)

4−
2−
0

2

4

Figure 2. Reconstructed zenith angle and energy distributions for simulations (blue histogram)
and data (black crosses, only statistical uncertainties shown). The difference is defined by (Data
- Simulations) / Simulations as a percentage. The calculated rates are averaged over the analysis
livetime.

dominant background is due to isotropic astrophysical neutrinos. They can be described
by an unbroken power-law with a spectral index of 2.19 ± 0.1 and a flux normalization,
Φ100 TeV = 1.01+0.26

−0.23 ·10
−18GeV−1cm−2s−1sr−1 at 100 TeV, obtained from fits to the data [19].

The astrophysical neutrinos are included as a background in this analysis, but the uncer-
tainties of the best-fit parameter values are negligible due to it’s small contribution to the
background rate.

Neutrinos from dark matter annihilations in the Sun could result in a competing signal
that has been extensively searched for at neutrino telescopes [41–46]. The expected neutrino
spectra from solar dark matter strongly depend on the dark matter mass and annihilation
channels. As dark matter annihilations are expected to occur in the center of the Sun,
neutrino absorption becomes important for energies above 100 GeV and fluxes are significantly
attenuated above that energy. As a result, spectra are expected to be significantly different
from that of SAνs [47]. Purely based on event rate expectations at neutrino detectors, one can
compute a sensitivity floor for indirect dark matter searches from the Sun [7, 8, 40, 47]. Past
dark matter searches were not sensitive enough to have significant backgrounds from solar
atmospheric neutrinos. However, in the near future they are expected to reach the neutrino
floor from SAνs.

Another competing signal may arise from the interactions of cosmic rays with thermal
solar photons. These can interact to form ∆+ baryons which quickly decay, producing muons
and neutrinos from subsequent pion decays [48]. The expected flux from ∆+ is small and
few events are expected in IceCube, so we assume no contributions from the process in this
analysis. Larger active volumes, like those proposed for IceCube-Gen2 [49, 50], may be needed
to observe events from these interactions.

4 Data sample and simulations

4.1 Data sample

A good angular resolution is necessary to search for SAνs because the angular size of the
Sun is θ⊙ ∼ 0.27°. Muons traversing the entire detector are reconstructed with good angular
resolution as kilometer-long tracks, so-called “through-going muons.” We restrict ourselves
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Figure 3. Reconstructed angular distributions from the baseline simulation assuming a filled disk
(see Sec. 5.3.1). The left and right plots show the expected signal and background, respectively. Axes
are differences between the center of the Sun (ΨSun, θSun) and the reconstructed directions (Ψν , θν).
The x-axis is the difference in azimuthal angle, Ψ, and the y-axis is the difference in zenith angle, θ,
while the z-axis is the event rate averaged for the total analysis livetime. The red circle represents the
angular extent of the Sun. Note that the coordinate system does not directly project to the angular
separation. The signal from the Sun is not fully symmetric in Θ and Ψ due to the detector geometry
and reconstruction uncertainties.

to IceCube’s neutrino sample of predominantly through-going muons [21] providing 1.0° and
0.6° median angular resolutions at 1 TeV and 10 TeV neutrino energy, respectively. As the
events are not fully contained in the detector volume, the energy resolutions are limited to
∆ log10(E/1GeV) ∼ 0.3 and ∼ 0.5 at 1 TeV and 10 TeV, respectively.

The data samples consist of three sub-samples covering a total of seven years. There
are three time periods: IC79-2010, IC86-2011, and IC86-(2012-2016). An optimized event
selection has been used for each configuration. The ranges of the reconstructed energies are
(102.2, 107.2) GeV and (102.0, 107.0) GeV for IC79-2010 and IC86-(2011,2012-2016). Events
below the horizon (declination, δ > −5°) are selected to exclude atmospheric muon events.
Unlike Ref. [21], we only consider events where the Sun is below the horizon, resulting in a
total analysis livetime of 1406.62 days.

Angular separation (θ⊙) is defined as an angular distance between the reconstructed
position and the center of the Sun at the event trigger time. We use an IceCube internal
software implementation that relies on the Positional Astronomy Library (PAL) [51] to obtain
the position of the Sun based on the Modified Julian Date and the IceCube detector location.
The tracking of the Sun was cross checked with data from NOAA to verify that it agrees
within 0.01 degrees. We define a Region of Interest (RoI) as a 5° window around the center
of the Sun. The size of the RoI was optimized taking into account the signal sensitivity and
the computational time. The sensitivity only marginally improves for larger windows as the
RoI contains 96% of the reconstructed signal events.
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4.2 Simulations

Simulations are used to obtain probability density functions (PDFs) of the signal and back-
ground in the muon neutrino and muon anti-neutrino channels. Simulations samples are taken
from the well established and tested IceCube point source analysis [21]. We reuse these sim-
ulations but apply selection criteria on the angular separations within the RoI and reweight
them with the effective analysis livetime. The background expectations are constructed us-
ing simulation, weighted to best-fit parameters for atmospheric and astrophysical neutrino
backgrounds found from previous fits to data [19]. In Fig. 2, the comparisons between the
simulations for terrestrial atmospheric neutrinos and the total data samples are shown for the
reconstructed zenith angle and energy distributions. The simulation samples and the data
samples are well-matched within 4% differences.

Signal simulations are obtained by re-weighting the simulated events with the given SAν
energy spectrum for muon neutrinos (see Sec. 3.1). The angular separations between the cen-
ter of the Sun and the events are calculated. The azimuthal directions of the signal events are
uniformly scrambled. Events are also randomized in zenith using the probability distribution
as a function of angular distance from the center of the Sun for the given source hypothesis.
We account for the movement of the Sun in zenith by weighting events using the fraction of
livetime spent by the Sun in 30 zenith bins from 85° to 113.4°. In Fig. 3, two-dimensional
angular distributions are shown for the baseline signal and background assumptions.

5 Analysis

5.1 Unbinned likelihood analysis

An unbinned likelihood method [52] is applied to find evidence of SAνs in seven years of the
data sample. The likelihood function, Lj , for each sub-sample, j, is defined by

Lj(ns, j ;Msig) =

ntot, j
∏

i

{
ns, j

ntot, j

· psig, j(θi, Ei;Msig) + (1−
ns, j

ntot, j

) · pbkg, j(θi, Ei)}, (5.1)

where j is the index of the sub-sample, i is the event index, ntot, j is the total number of
events and ns, j is a number of signal events. For each event, θi is the angular separation
to the Sun and Ei is the reconstructed muon energy [53]. The function of psig, j and pbkg, j

are the signal and background PDFs evaluated at the location of each event, respectively. In
Fig. 4, PDFs of the IC86-(2012-2016) sub-sample are shown. The PDFs are obtained from
the simulations and the corresponding likelihood functions are used to study a particular
energy spectrum Msig. We combine different sub-samples with a uniform signal emission and
use the maximum likelihood estimator to estimate the signal strength. The total likelihood
function, L, is a multiplication of the likelihood functions, Lj , for the three sub-samples
mentioned in Sec. 4.1. The fractions (fj) of the total expected signal events for each sub-
sample are calculated: fj = n̄s, j/Σkn̄s, k where n̄s, j is an expected number of signal events
from the simulations. The total likelihood function is redefined as a function of the total
signal strength µ with converting ns, j to µfj :

L(µ) =
∏

j

ntot, j
∏

i

{
µfj
ntot, j

· psig, j(θi, Ei|Msig) + (1−
µfj
ntot, j

) · pbkg, j(θi, Ei)}. (5.2)
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Figure 4. Examples of PDFs in the likelihood functions. The left plot is a signal PDF, while the
right plot shows the background PDF for IC86-2011. The probability densities are normalized to 1
in the RoI of the angular separation and energy proxy range. The energy proxy range is all ranges of
the reconstructed muon energies in the simulation samples. The binning of the energy proxy is in 0.2
in the log of the reconstructed energy.

The theoretical distribution of flux across the solar disk is expected to depend on neutrino
energy via the energy dependence of IceCube reconstructions. To include this correlation, two
dimensional PDFs, shown in Fig. 4, are used to model the signal and background distributions
in the likelihood functions.

We define the test statistic (TS )

TS = 2 lnL(µ̂)/L(0) for µ̂ ≥ 0

= −2 lnL(µ̂)/L(0) for µ̂ < 0,
(5.3)

as the likelihood ratio between the best-fit value and the null hypothesis. The range of µ̂ is
not restricted to positive values. Therefore, we can track the sign of µ̂ to separately determine
sensitivities for a positive or negative signal strength. The negative signs of µ̂ can appear
when the alternate hypothesis represents an under-fluctuation relative to the background
prediction, especially that the under-fluctuation can be enhanced by the Sun shadow, see
Sec. 5.3.3.

5.2 Sensitivity calculations

Pseudo-experiments are conducted to obtain the TS distribution for a given hypothesis. Each
pseudo-experiment consists of mock samples generated by random sampling based on each
PDF of a certain hypothesis. The number of signal and background events are random
variables that are Poisson distributed. The mean of the Poisson distribution for the number
of background events is given by the expected number of events from the simulations, n̄bkg =
1147.4 in the RoI. Depending on the hypotheses, the mean for the signal µ̄ is scaled, e.g. µ̄=0
for the null hypothesis and µ̄ = Cs · n̄sig, where Cs is a scale factor to test Cs times larger
signal hypotheses. n̄sig is the expected number of signal events determined by combining a
given signal model with the simulated detector response. The expected number of background
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Figure 5. The blue histogram is the TS distribution for the background only hypothesis, nor-
malized to 1. The TS is negative when the mock sample of the pseudo-experiment contains an
under-fluctuation relative to the expected background rate. The blue dashed line is the median of the
histogram. The red dashed line is the observed TS value from the experimental data.

events, n̄bkg, and signal events, n̄sig, also change with the PDFs according to the hypotheses
chosen.

In Fig. 5, the blue histogram is the TS distribution for the background-only hypothesis.
Negative TS values appear when the likelihood function is maximized with a negative signal
strength, due to under-fluctuations in the background rate. The median of the histogram,
indicated by the vertical dashed blue line in Fig. 5, is close to zero. The 90% confidence interval
(C.I.) is obtained with the Feldman-Cousins method [54] for each alternate hypothesis. µ90

is defined by µ̄ of the Poisson mean when the minimum of the 90% C.I. is larger than the
median of the TS distribution for the null hypothesis. The 90% confidence level (C.L.) upper
sensitivities are set with µ90 = Cs,90 · n̄sig for each SAν flux model given by Refs. [4, 7, 8].
PDFs are used in the likelihood functions and the random sampling for the mock samples
of the pseudo-experiments. The sensitivities to each flux model are calculated with the
corresponding PDFs. The sensitivity to the baseline signal spectrum is shown as part of
our final result, see the red solid line in Fig. 8. It is 12.8 times larger than the theoretical
expectation from the baseline model flux [7].

5.3 Systematic uncertainties

We investigate how the sensitivity of our analysis depends on different choices for flux distribu-
tions on the solar disk, oscillation parameters, the effect of the Sun shadow on the backgrounds
and detector uncertainties. The differences between the sensitivities are quantified relative to
the baseline model as systematic uncertainties.

5.3.1 Flux distribution on the solar disk

High-energy neutrinos above 1 TeV will be strongly suppressed when they propagate through
the center of the Sun (θ⊙ = 0°), while the attenuation is much weaker at the edge of the
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Figure 6. Schematic diagrams for the extreme cases of the distribution of the neutrino flux on the
solar disk. The red ring represents the scale of the Sun as θ⊙ = 0.266°. The orange regions represent
the distributions of the signal. Left: the signal is uniformly distributed in the solar disk (Filled disk,
used as baseline). Middle: the signal is emitted at the edge of the Sun (Ring). Right: the signal only
emanates from the center of the Sun (Point source).

Sun (θ⊙ ≃ 0.27°). For instance, the survival probability is larger than ∼ 90% for neutrino
energies below 100 TeV [7] at the edge. On the other hand, ∼ 20% (∼ 35%) of 100 GeV
neutrinos (anti-neutrinos) survive when they traverse the entire Sun at the center and they
are almost completely absorbed above 1 TeV. Therefore, the high-energy events mostly arise
from the edge of the Sun. The low-energy signal events emanate relatively uniformly over
the solar disk while the high-energy neutrino signal is expected to have a dip in the central
region. If we consider magnetic field effects, however, these could act differently due to cosmic-
ray mirroring, providing additional contributions in particular toward the center of the disk.
This would presumably lead to a more uniform distribution for low energies. As a model-
independent method, we consider three extreme cases for the spatial distribution on the disk,
shown in Fig. 6. Our baseline model is Filled Disk where the signals are uniformly distributed
on the solar disk. The simplest assumption is that all neutrinos are coming from the center
of the Sun, named Point Source. This leads to the best sensitivity with 3% improvement
compared to the baseline model. In contrast, Ring assumes that the signals are only located
at the edge of the Sun. For high-energy neutrinos, the distribution is expected close to Ring

due to absorption across the solar core. The fluxes are equally normalized for all cases. The
true spatial distribution depends on the neutrino energy. We adopt the Filled Disk as our
baseline and use the two other extreme cases to evaluate the systematic uncertainty due to
the choice of the source distribution.

5.3.2 Neutrino oscillation parameters

After SAνs are produced in the Sun, the neutrinos oscillate while propagating to the Earth.
The uncertainties on the oscillation parameters can alter the energy spectrum. The oscillation
parameters used for the baseline energy spectrum are listed in the column denoted as baseline
in Tab. 1. We checked the effect of varying the parameters by 1σ on the energy spectrum.
Also, the best-fit values for θ23 in the both octants are considered. The uncertainties on
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Baseline 1σ Octant

∆m2
32/10

−3 (eV2) 2.51 ±0.05 −2.56± 0.04

∆m2
21/10

−5 (eV2) 7.53 ±0.18

sin2 θ12/10
−1 3.07 ±0.13

sin2 θ13/10
−2 2.12 ±0.08

sin2 θ23/10
−1

4.17
+0.25 4.21 + 0.33

Octant 1
−0.28 −0.25

6.21 5.92 + 0.23
Octant 2

5.67 −0.30

Mass Ordering Normal Inverted

Table 1. The neutrino oscillation parameters for the flux calculation in WIMPSim. The values are
the best-fit results of Ref. [55]. The second column named “Baseline” lists the parameters for the
baseline energy spectrum. The energy spectra for the signal are obtained by WIMPSim, where we
independently vary a parameter in 1 σ region and allow sin2 θ23 to lie in either octants.

neutrino oscillation parameters are treated as systematic uncertainties but the sensitivities
for each mass ordering are calculated separately for the energy spectra given by Ref. [7].

5.3.3 Sun shadow effect on the backgrounds

The cosmic-ray flux coming from the direction of the Sun is expected to be less than that from
other directions because cosmic rays are absorbed by the Sun itself, creating what is referred
to as the Sun shadow. The Sun shadow effect has been observed as a deficit of atmospheric
muons [35, 56]. The angular extent of the deficit can be approximated with one-sided Gaussian
functions for each season. While we use the case without the Sun shadow as the baseline, the
Sun shadow should also reduce the terrestrial atmospheric neutrinos which are the dominant
background in this analysis. However, the deficit of the terrestrial atmospheric neutrinos by
the Sun shadow has not been studied before. To take this into account, we assume that
the neutrino rate decreases with the same fractional strength and angular dependence as the
muons studied in Ref. [35]. In simulations, the terrestrial atmospheric neutrino events are
re-weighted with the one-sided Gaussian functions of Eq. 5.4:

∆Nν/Nν = −A · exp (−θ2⊙/2σ
2)











A = 0.11 , σ = 0.53° for IC79-2010

A = 0.08 , σ = 0.49° for IC86-2011

A = 0.07 , σ = 0.57° for IC86-(2012-2016),

(5.4)

where A and σ are the best-fit parameters for the observed muon deficits by IceCube [35]. The
parameters for IC86-(2012-2016) are averaged values to match time period of the sub-sample
(see Sec. 4). The parameters are time-dependent because they are correlated with solar
activities [17, 35]. Uncertainties on the best-fit parameters A and σ are ∼ 10%. Although
the deficit of the terrestrial atmospheric neutrinos is expected, we choose to set the baseline
background predictions without the Sun shadow effect. Thereby, we have taken a conservative
approach in the analysis, which requires a larger signal for a discovery. The Sun shadow effect
is included as a systematic uncertainty.
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Sources
Systematic

Uncertainties
Comments

Detection efficiency of DOM (-15%, + 11%)

Absorption and
scattering efficiency of ice

(-5%, +12%)

Photo-nuclear interaction (-3%, +4%) Uncertainties for high-energy muons

Morphology (-3%, +3%) Filled disk → Ring, Point source

Sun shadow -11% w/o Sun shadow → w/ Sun shadow

ντ ,ν̄τ contribution 4% νµ,ν̄µ → νµ,ν̄µ,ντ ,ν̄τ

ν oscillation parameters <1%

Total (-19.7%, +17.8%) Assumes uncorrelated uncertainties

Table 2. Summary of impact on sensitivity. A plus sign corresponds to an improved sensitivity.

5.3.4 Uncertainty calculations

The uncertainties of the sensitivities for the source distributions, neutrino oscillation param-
eters in the signal prediction and the Sun shadow effect in the background prediction are
calculated with the same simulation samples. We randomize the positions of each signal
event from the distribution of locations allowed by each Sun model. The same simulations
are used for the oscillation parameters and the Sun shadow effect, but the weights in the simu-
lations are modified with the corresponding energy spectra and the deficit rates, respectively.
Another main systematic uncertainty arises from standard detector uncertainties including
the optical efficiency of DOMs for the Cherenkov light detection [24], the optical absorption
and scattering properties of the ice [57], and the uncertainties on photo-nuclear interaction
cross sections of high-energy muons [58–64]. The same simulations and detector uncertainties
are used as in Ref. [21].

We calculate the sensitivities for the systematic uncertainties as alternate hypotheses.
The signal and background PDFs for the baseline are tested against events sampled from PDFs
generated from variations of the systematic uncertainties. The uncertainties of the sensitivities
are quantified as the differences of the scale factor Cs,90 when the energy spectrum of the signal
is identical to the baseline. The uncertainties of the neutrino oscillation parameters change
the shape of the SAν spectra. To quantify the systematic uncertainties, the differences of the
µ90 are used for the uncertainties of the neutrino oscillation parameters.

Detector uncertainties give the largest systematic uncertainties in this analysis. When
we vary the efficiency of DOMs by ±10%, the sensitivity changes in the range of (−15,+11)%,
with positive values indicating improved sensitivity. Simulation data sets with different op-
tical absorption and scattering lengths of the ice are available for the values of (+10, 0)%,
(0,+10)% and (−7.1,−7.1)%. We used those simulations to estimate the uncertainties due
to ice properties and they affect the sensitivity by −5% to 12%. The same simulation samples
in Ref. [21] are used for studying photo-nuclear interaction models of high energy muons [58–
64]. This leads to uncertainties on the sensitivity ranging from −3% to 4%. We consider this
estimate to be conservative as the models represent extreme cases which are outdated [21].

The neutrino oscillation parameters introduce less than 1% uncertainty. Tests of the
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Figure 7. Event distribution in the angular separation (θ⊙) within the RoI. Black crosses represent
the experimental data, the green histogram shows the background prediction without the Sun shadow
effect. The blue histogram shows the baseline signal prediction scaled by a factor of 100. The
simulation and data are shown for the winter season. The difference is defined as (Data - Simulations)
/ Simulations. This figure is only used for visualization of the data. A binned representation of it is
shown here, however, the analysis uses an unbinned likelihood method.

Ring and Point source emission distributions yield an uncertainty of ±3%. As an uncertainty
of the background predictions, the Sun shadow effect has been studied. Compared to the
baseline background prediction, the number of background events decreases near the Sun due
to the shadow effect. As a result, the likelihood function is maximized with a negative signal
strength as the under-fluctuation of the null hypothesis. With the Sun shadow included in
the background prediction, a larger µ̄ is necessary to obtain the same sensitivity level with
the baseline prediction, hence it increases by 11%.

The simulations assume only muon neutrino and muon anti-neutrino interactions. The
fluxes of ντ + ν̄τ for SAνs can be calculated with WIMPSim for the baseline energy spectrum.
Similar amplitudes of ντ + ν̄τ and νµ + ν̄µ fluxes are expected through neutrino oscillations
from the Sun to the Earth. However, the detection efficiency for ντ + ν̄τ is much smaller.
When we add the additional contribution on the signal by ντ + ν̄τ using the simulations used
in Ref. [21], the sensitivities improves by 4%. The contribution from νe + ν̄e is negligible due
to the event selection strongly favoring track-like events.

Assuming fully uncorrelated uncertainties, the total uncertainty on the median sensitiv-
ity is −19.7% to +17.8% and is dominated by detector uncertainties. Table 2 summarizes the
systematic studies. The systematic uncertainties on sensitivities are shown as the red region
as part of the final result in Fig. 8. The systematic uncertainties are similar to those in a
previous study with the same samples [21] but the results are slightly distinct because we
track the Sun rather than point sources at specific zenith angles.
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6 Results

For visualization we show the observed data in the RoI and compare it to the background
expectations in a binned representation, however, the analysis uses an unbinned likelihood
method. In the top panel of Fig. 7, the angular distribution of the experimental data in the
RoI is shown by the black crosses. The observed data are within 10% of the background
prediction (green histogram), and the number of events in the RoI is statistically compatible
with the background expectation at 1.75σ. The best-fit values µ̂ for all energy spectra are
shown in Tab. 3 and are always negative, indicating an under-fluctuation in the data relative
to the expected background. No evidence of SAνs is found in seven years of IceCube data.
The observed TS for the baseline signal prediction is the red dashed line in Fig. 5. It is very
close to the median of the TS distribution for the null hypothesis, with an observed p-value
of 0.55. Here, the p-value is defined as the area of the TS distribution above the observed
TS value.

The observed p-value being larger than 0.5 indicates that there is a slight under--
fluctuation in the background expectation. We place a 90% C.L. upper limit for µ90, when
the lower edge of the 90% C.I. is larger than the observed TS value. In Fig. 8, the black
dashed line represents this limit. The values obtained for µ90 (Cs,90) are 36.5 (13.0). At
1 TeV, the limit on the flux normalization is 1.02+0.20

−0.18 · 10
−13 GeV−1cm−2s−1 including the

systematic uncertainties. Table 3 contains the full analysis results with limits on all SAν flux
models. The limits calculated on the basis of Ref. [7] and Ref. [8] turn out to rather similar.
The strictest limit is obtained for the parametrized energy spectrum of Ref. [4] as it predicts
the hardest spectrum at high energy (see Fig. 1).

7 Conclusion and discussion

We have performed the first experimental search for SAν using data collected by the IceCube
Neutrino Observatory during a 7 year period for the austral winter season when the declination
of the Sun is above -5°. An unbinned likelihood analysis was performed with a total analysis
livetime of 1406.62 days but no evidence for SAνs was found in the experimental data. The
experimental data show an under-fluctuation relative to the background prediction and are
consistent with a statistical fluctuation in the data. After inclusion of systematic uncertainties
on the background prediction and signal efficiency, a 90% confidence level upper limit is placed
on the SAν flux at 1 TeV of 1.02+0.20

−0.18 ·10
−13 GeV−1cm−2s−1 for the benchmark signal energy

spectrum from Ref. [7]. At present, our limit is about a factor of 13 larger than the baseline
signal expectation. The results presented in this paper do not allow us to distinguish between
various model predictions. In the future several improvements can be expected that will result
in a better sensitivity to solar atmospheric neutrinos. The IceCube Upgrade will increase the
acceptance of neutrinos down to a few GeV and a comprehensive calibration campaign is
expected to reduce uncertainties related to ice properties, which will reduce reconstruction
uncertainties in energy and arrival direction. Next-generation neutrino observatories, such
as IceCube-Gen2 [50] or KM3NeT [66], will significantly increase acceptance of multi-TeV
events, which are expected to have low atmospheric neutrino backgrounds. They could provide
sufficient sensitivity to find evidence of SAνs.

The SAν production mechanism is closely related to that of gamma rays from the solar
disk. Based on public Fermi data it has been shown that the gamma-ray flux from the
solar disk is about one order of magnitude higher than predicted [1] and that the flux shows
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a significant time variation that anti-correlates with solar activity [12, 13, 15]. We point
out that our IceCube dataset, which consists of all available data at the time of the analysis,
covers the period from May 2010 till May 2017 and hence does not include the solar minimum.
Similar to the observed flux increase in gamma rays, the SAν flux is expected to be enhanced
during the solar minimum [40]. Based on the current data and models predictions, we point
out that there is a considerable uncertainty in the flux expectations of solar gamma-rays
and neutrinos. In addition, energetic gamma-ray events are observed primarily during the
solar minimum. A continuation of this analysis during the solar minimum of 2019-2020 is in
progress.

An observation of solar atmospheric neutrinos would be important to understand solar
atmospheric magnetic fields, cosmic ray interactions in the solar atmosphere, and cosmic ray
propagation in the inner solar system. Furthermore, a measurement of the SAν flux is also
essential for solar dark matter searches to characterize the SAν sensitivity floor [7, 8, 47]. If
the SAν flux is experimentally measured, it will provide the normalization of this irreducible
background for solar dark matter searches.

Given the expected sensitivity of this analysis we decided to only test one signal hypoth-
esis, namely our baseline model. In future analyses with improved sensitivity, differential flux
limits could be produced and a more model independent approach could be taken to probe
different energy ranges.

Lastly, an observation of the SAνs can be exploited as a calibration source for neutrino
telescopes in the future. An observation of a high-energy neutrino signal from the Sun would

– 15 –



only be the second of its kind, following the recent evidence of a high-energy neutrino signal
from the blazar TXS 0506+056 [67, 68].

Acknowledgments

The IceCube collaboration acknowledges the significant contributions to this manuscript from
Seongjin In and Carsten Rott. The authors gratefully acknowledge the support from the
following agencies and institutions: USA – U.S. National Science Foundation-Office of Po-
lar Programs, U.S. National Science Foundation-Physics Division, Wisconsin Alumni Re-
search Foundation, Center for High Throughput Computing (CHTC) at the University of
Wisconsin-Madison, Open Science Grid (OSG), Extreme Science and Engineering Discov-
ery Environment (XSEDE), U.S. Department of Energy-National Energy Research Scien-
tific Computing Center, Particle astrophysics research computing center at the University of
Maryland, Institute for Cyber-Enabled Research at Michigan State University, and Astropar-
ticle physics computational facility at Marquette University; Belgium – Funds for Scientific
Research (FRS-FNRS and FWO), FWO Odysseus and Big Science programmes, and Bel-
gian Federal Science Policy Office (Belspo); Germany – Bundesministerium für Bildung und
Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for As-
troparticle Physics (HAP), Initiative and Networking Fund of the Helmholtz Association,
Deutsches Elektronen Synchrotron (DESY), and High Performance Computing cluster of the
RWTH Aachen; Sweden – Swedish Research Council, Swedish Polar Research Secretariat,
Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg
Foundation; Australia – Australian Research Council; Canada – Natural Sciences and Engi-
neering Research Council of Canada, Calcul Québec, Compute Ontario, Canada Foundation
for Innovation, WestGrid, and Compute Canada; Denmark – Villum Fonden, Danish National
Research Foundation (DNRF), Carlsberg Foundation; New Zealand – Marsden Fund; Japan
– Japan Society for Promotion of Science (JSPS) and Institute for Global Prominent Re-
search (IGPR) of Chiba University; Korea – National Research Foundation of Korea (NRF);
Switzerland – Swiss National Science Foundation (SNSF); United Kingdom – Department of
Physics, University of Oxford.

References

[1] D. Seckel, T. Stanev, and T. K. Gaisser, Signatures of cosmic-ray interactions on the solar
surface, Astrophys. J. 382 (1991) 652–666.

[2] I. V. Moskalenko, S. Karakula, and W. Tkaczyk, The Sun as the source of VHE neutrinos,
Astron. Astrophys. 248 (1991) L5–L6.

[3] I. V. Moskalenko and S. Karakula, Very high-energy neutrinos from the sun, J. Phys. G19
(1993) 1399–1406.

[4] G. Ingelman and M. Thunman, High-energy neutrino production by cosmic ray interactions in
the sun, Phys. Rev. D54 (1996) 4385–4392, [hep-ph/9604288].

[5] C. Hettlage, K. Mannheim, and J. G. Learned, The Sun as a high-energy neutrino source,
Astropart. Phys. 13 (2000) 45–50, [astro-ph/9910208].

[6] G. L. Fogli, E. Lisi, A. Mirizzi, D. Montanino, and P. D. Serpico, Oscillations of solar
atmosphere neutrinos, Phys. Rev. D74 (2006) 093004, [hep-ph/0608321].

[7] J. Edsjö, J. Elevant, R. Enberg, and C. Niblaeus, Neutrinos from cosmic ray interactions in the
Sun, JCAP 1706 (2017), no. 06 033, [arXiv:1704.0289].

– 16 –

http://xxx.lanl.gov/abs/hep-ph/9604288
http://xxx.lanl.gov/abs/astro-ph/9910208
http://xxx.lanl.gov/abs/hep-ph/0608321
http://xxx.lanl.gov/abs/1704.0289


[8] C. A. Argüelles, G. de Wasseige, A. Fedynitch, and B. J. P. Jones, Solar Atmospheric
Neutrinos and the Sensitivity Floor for Solar Dark Matter Annihilation Searches, JCAP 1707
(2017), no. 07 024, [arXiv:1703.0779].

[9] A. Fedynitch, J. Becker Tjus, and P. Desiati, Influence of hadronic interaction models and the
cosmic ray spectrum on the high energy atmospheric muon and neutrino flux, Phys. Rev. D86
(2012) 114024, [arXiv:1206.6710].

[10] E. Orlando and A. W. Strong, Gamma-ray emission from the solar halo and disk: a study with
EGRET data, Astron. Astrophys. 480 (2008) 847, [arXiv:0801.2178].

[11] Fermi-LAT Collaboration, A. A. Abdo et. al., Fermi-LAT Observations of Two Gamma-Ray
Emission Components from the Quiescent Sun, Astrophys. J. 734 (2011) 116,
[arXiv:1104.2093].

[12] K. C. Y. Ng, J. F. Beacom, A. H. G. Peter, and C. Rott, First Observation of Time Variation
in the Solar-Disk Gamma-Ray Flux with Fermi, Phys. Rev. D94 (2016), no. 2 023004,
[arXiv:1508.0627].

[13] T. Linden, B. Zhou, J. F. Beacom, A. H. G. Peter, K. C. Y. Ng, and Q.-W. Tang, Evidence for
a New Component of High-Energy Solar Gamma-Ray Production, Phys. Rev. Lett. 121 (2018),
no. 13 131103, [arXiv:1803.0543].

[14] M. N. Mazziotta, P. De La Torre Luque, L. Di Venere, A. Fassò, A. Ferrari, F. Loparco, P. R.
Sala, and D. Serini, Cosmic-ray interactions with the Sun using the FLUKA code, Phys. Rev.
D101 (2020), no. 8 083011, [arXiv:2001.0993].

[15] Q.-W. Tang, K. C. Y. Ng, T. Linden, B. Zhou, J. F. Beacom, and A. H. G. Peter, Unexpected
dip in the solar gamma-ray spectrum, Phys. Rev. D98 (2018), no. 6 063019,
[arXiv:1804.0684].

[16] HAWC Collaboration, A. Albert et. al., First HAWC Observations of the Sun Constrain
Steady TeV Gamma-Ray Emission, Phys. Rev. D98 (2018), no. 12 123011, [arXiv:1808.0562].

[17] J. Becker Tjus, P. Desiati, N. Döpper, H. Fichtner, J. Kleimann, M. Kroll, and F. Tenholt,
Cosmic-Ray Propagation Around the Sun - Investigating the Influence of the Solar Magnetic
Field on the Cosmic-Ray Sun Shadow, Astron. Astrophys. 633 (2020) A83, [arXiv:1903.1263].

[18] IceCube Collaboration, M. G. Aartsen et. al., Observation and Characterization of a Cosmic
Muon Neutrino Flux from the Northern Hemisphere using six years of IceCube data, Astrophys.
J. 833 (2016), no. 1 3, [arXiv:1607.0800].

[19] IceCube Collaboration, C. Haack and C. Wiebusch, A measurement of the diffuse
astrophysical muon neutrino flux using eight years of IceCube data., PoS ICRC2017 (2018)
1005.

[20] IceCube Collaboration, M. G. Aartsen et. al., Evidence for Astrophysical Muon Neutrinos
from the Northern Sky with IceCube, Phys. Rev. Lett. 115 (2015), no. 8 081102,
[arXiv:1507.0400].

[21] IceCube Collaboration, M. G. Aartsen et. al., Search for steady point-like sources in the
astrophysical muon neutrino flux with 8 years of IceCube data, Eur. Phys. J. C79 (2019), no. 3
234, [arXiv:1811.0797].

[22] IceCube Collaboration, R. Abbasi et. al., IceTop: The surface component of IceCube, Nucl.
Instrum. Meth. A700 (2013) 188–220, [arXiv:1207.6326].

[23] IceCube Collaboration, A. Achterberg et. al., First Year Performance of The IceCube
Neutrino Telescope, Astropart. Phys. 26 (2006) 155–173, [astro-ph/0604450].

[24] IceCube Collaboration, R. Abbasi et. al., Calibration and Characterization of the IceCube
Photomultiplier Tube, Nucl. Instrum. Meth. A618 (2010) 139–152, [arXiv:1002.2442].

– 17 –

http://xxx.lanl.gov/abs/1703.0779
http://xxx.lanl.gov/abs/1206.6710
http://xxx.lanl.gov/abs/0801.2178
http://xxx.lanl.gov/abs/1104.2093
http://xxx.lanl.gov/abs/1508.0627
http://xxx.lanl.gov/abs/1803.0543
http://xxx.lanl.gov/abs/2001.0993
http://xxx.lanl.gov/abs/1804.0684
http://xxx.lanl.gov/abs/1808.0562
http://xxx.lanl.gov/abs/1903.1263
http://xxx.lanl.gov/abs/1607.0800
http://xxx.lanl.gov/abs/1507.0400
http://xxx.lanl.gov/abs/1811.0797
http://xxx.lanl.gov/abs/1207.6326
http://xxx.lanl.gov/abs/astro-ph/0604450
http://xxx.lanl.gov/abs/1002.2442


[25] IceCube Collaboration, R. Abbasi et. al., The IceCube Data Acquisition System: Signal
Capture, Digitization, and Timestamping, Nucl. Instrum. Meth. A601 (2009) 294–316,
[arXiv:0810.4930].

[26] IceCube Collaboration, M. G. Aartsen et. al., Measurement of South Pole ice transparency
with the IceCube LED calibration system, Nucl. Instrum. Meth. A711 (2013) 73–89,
[arXiv:1301.5361].

[27] IceCube Collaboration, M. G. Aartsen et. al., The IceCube Neutrino Observatory:
Instrumentation and Online Systems, JINST 12 (2017), no. 03 P03012, [arXiv:1612.0509].

[28] J. Edsjö, J. Elevant, and C. Niblaeus, “WimpSim Neutrino Monte Carlo.”
http://wimpsim.astroparticle.se/, last accessed on 11/25/19.

[29] M. Honda, T. Kajita, K. Kasahara, S. Midorikawa, and T. Sanuki, Calculation of atmospheric
neutrino flux using the interaction model calibrated with atmospheric muon data, Phys. Rev.
D75 (2007) 043006, [astro-ph/0611418].

[30] C. A. Argüelles, G. de Wasseige, A. Fedynitch, and B. J. P. Jones, “FJAWs solar atmopsheric
neutrino fluxes.” http://www-hep.uta.edu/~bjones/FJAWs/index.html, last accessed on
11/25/19.

[31] T. K. Gaisser, Spectrum of cosmic-ray nucleons, kaon production, and the atmospheric muon
charge ratio, Astropart. Phys. 35 (2012) 801–806, [arXiv:1111.6675].

[32] A. Serenelli, S. Basu, J. W. Ferguson, and M. Asplund, New Solar Composition: The Problem
With Solar Models Revisited, Astrophys. J. 705 (2009) L123–L127, [arXiv:0909.2668].

[33] R. F. Stein and Å. Nordlund, Simulations of Solar Granulation. I. General Properties,
Astrophys. J. 499 (May, 1998) 914–933.

[34] Tibet AS-gamma Collaboration, M. Amenomori et. al., Probe of the Solar Magnetic Field
Using the Cosmic-Ray Shadow of the Sun, Phys. Rev. Lett. 111 (2013), no. 1 011101,
[arXiv:1306.3009].

[35] IceCube Collaboration, M. G. Aartsen et. al., Detection of the Temporal Variation of the
Sun’s Cosmic Ray Shadow with the IceCube Detector, Astrophys. J. 872 (2019), no. 2 133,
[arXiv:1811.0201].

[36] K. H. Schatten, J. M. Wilcox, and N. F. Ness, A model of interplanetary and coronal magnetic
fields, Sol. Phys. 6 (Mar., 1969) 442–455.

[37] K. Hakamada, A simple method to compute spherical harmonic coefficients for the potential
model of the coronal magnetic field, Solar Physics 159 (Jun, 1995) 89–96.

[38] T. J. Bogdan and B. C. Low, The three-dimensional structure of magnetostatic atmospheres. II
- Modeling the large-scale corona, The Astrophysical Journal 306 (July, 1986) 271–283.

[39] X. Zhao and J. T. Hoeksema, Prediction of the interplanetary magnetic field strength, Journal
of Geophysical Research: Space Physics 100 (1995), no. A1 19–33.

[40] M. Masip, High energy neutrinos from the Sun, Astropart. Phys. 97 (2018) 63–68,
[arXiv:1706.0129].

[41] M. Danninger and C. Rott, Solar WIMPs unravelled: Experiments, astrophysical uncertainties,
and interactive tools, Phys. Dark Univ. 5-6 (2014) 35–44, [arXiv:1509.0823].

[42] IceCube Collaboration, M. G. Aartsen et. al., Search for dark matter annihilations in the Sun
with the 79-string IceCube detector, Phys. Rev. Lett. 110 (2013), no. 13 131302,
[arXiv:1212.4097].

[43] IceCube Collaboration, M. G. Aartsen et. al., Search for annihilating dark matter in the Sun
with 3 years of IceCube data, Eur. Phys. J. C77 (2017), no. 3 146, [arXiv:1612.0594].
[Erratum: Eur. Phys. J.C79,no.3,214(2019)].

– 18 –

http://xxx.lanl.gov/abs/0810.4930
http://xxx.lanl.gov/abs/1301.5361
http://xxx.lanl.gov/abs/1612.0509
http://xxx.lanl.gov/abs/astro-ph/0611418
http://xxx.lanl.gov/abs/1111.6675
http://xxx.lanl.gov/abs/0909.2668
http://xxx.lanl.gov/abs/1306.3009
http://xxx.lanl.gov/abs/1811.0201
http://xxx.lanl.gov/abs/1706.0129
http://xxx.lanl.gov/abs/1509.0823
http://xxx.lanl.gov/abs/1212.4097
http://xxx.lanl.gov/abs/1612.0594


[44] Super-Kamiokande Collaboration, K. Choi et. al., Search for neutrinos from annihilation of
captured low-mass dark matter particles in the Sun by Super-Kamiokande, Phys. Rev. Lett. 114
(2015), no. 14 141301, [arXiv:1503.0485].

[45] ANTARES Collaboration, S. Adrian-Martinez et. al., Limits on Dark Matter Annihilation in
the Sun using the ANTARES Neutrino Telescope, Phys. Lett. B759 (2016) 69–74,
[arXiv:1603.0222].

[46] IceCube Collaboration, S. In and K. Wiebe, Latest results and sensitivities for solar dark
matter searches with IceCube, PoS ICRC2017 (2018) 912.

[47] K. C. Y. Ng, J. F. Beacom, A. H. G. Peter, and C. Rott, Solar Atmospheric Neutrinos: A New
Neutrino Floor for Dark Matter Searches, Phys. Rev. D96 (2017), no. 10 103006,
[arXiv:1703.1028].

[48] K. K. Andersen and S. R. Klein, High energy cosmic-ray interactions with particles from the
Sun, Phys. Rev. D83 (2011) 103519, [arXiv:1103.5090].

[49] IceCube Collaboration, M. G. Aartsen et. al., IceCube-Gen2: A Vision for the Future of
Neutrino Astronomy in Antarctica, arXiv:1412.5106.

[50] IceCube-Gen2 Collaboration, M. Aartsen et. al., IceCube-Gen2: The Window to the Extreme
Universe, arXiv:2008.0432.

[51] T. Jenness and D. S. Berry, PAL: A Positional Astronomy Library, in Astronomical Data
Analysis Software and Systems XXII (D. N. Friedel, ed.), vol. 475 of Astronomical Society of
the Pacific Conference Series, p. 307, Oct., 2013.

[52] J. Braun, J. Dumm, F. De Palma, C. Finley, A. Karle, and T. Montaruli, Methods for point
source analysis in high energy neutrino telescopes, Astropart. Phys. 29 (2008) 299–305,
[arXiv:0801.1604].

[53] IceCube Collaboration, R. Abbasi et. al., An improved method for measuring muon energy
using the truncated mean of dE/dx, Nucl. Instrum. Meth. A 703 (2013) 190–198,
[arXiv:1208.3430].

[54] G. J. Feldman and R. D. Cousins, A Unified approach to the classical statistical analysis of
small signals, Phys. Rev. D57 (1998) 3873–3889, [physics/9711021].

[55] Particle Data Group Collaboration, M. Tanabashi et. al., Review of Particle Physics, Phys.
Rev. D98 (2018), no. 3 030001.

[56] IceCube Collaboration, M. Aartsen et. al., Measurements of the Time-Dependent Cosmic-Ray
Sun Shadow with Seven Years of IceCube Data – Comparison with the Solar Cycle and
Magnetic Field Models, arXiv:2006.1629.

[57] IceCube Collaboration, M. G. Aartsen et. al., Energy Reconstruction Methods in the IceCube
Neutrino Telescope, JINST 9 (2014) P03009, [arXiv:1311.4767].

[58] L. B. Bezrukov and E. V. Bugaev, Nucleon Shadowing Effects in Photon Nucleus Interaction.
(In Russian), Yad. Fiz. 33 (1981) 1195–1207. [Sov. J. Nucl. Phys.33,635(1981)].

[59] E. V. Bugaev and Yu. V. Shlepin, Photonuclear interactions of super-high energy muons and
tau-leptons, Nucl. Phys. Proc. Suppl. 122 (2003) 341–344.

[60] E. V. Bugaev and Yu. V. Shlepin, Photonuclear interaction of high-energy muons and tau
leptons, Phys. Rev. D67 (2003) 034027, [hep-ph/0203096].

[61] E. Bugaev, T. Montaruli, Y. Shlepin, and I. A. Sokalski, Propagation of tau neutrinos and tau
leptons through the earth and their detection in underwater / ice neutrino telescopes, Astropart.
Phys. 21 (2004) 491–509, [hep-ph/0312295].

[62] H. Abramowicz, E. M. Levin, A. Levy, and U. Maor, A Parametrization of σT (γ* p) above the
resonance region Q2 >= 0, Phys. Lett. B269 (1991) 465–476.

– 19 –

http://xxx.lanl.gov/abs/1503.0485
http://xxx.lanl.gov/abs/1603.0222
http://xxx.lanl.gov/abs/1703.1028
http://xxx.lanl.gov/abs/1103.5090
http://xxx.lanl.gov/abs/1412.5106
http://xxx.lanl.gov/abs/2008.0432
http://xxx.lanl.gov/abs/0801.1604
http://xxx.lanl.gov/abs/1208.3430
http://xxx.lanl.gov/abs/physics/9711021
http://xxx.lanl.gov/abs/2006.1629
http://xxx.lanl.gov/abs/1311.4767
http://xxx.lanl.gov/abs/hep-ph/0203096
http://xxx.lanl.gov/abs/hep-ph/0312295


[63] H. Abramowicz and A. Levy, The ALLM parameterization of σ(tot)(γ* p): An Update,
hep-ph/9712415.

[64] J. H. Koehne, K. Frantzen, M. Schmitz, T. Fuchs, W. Rhode, D. Chirkin, and J. Becker Tjus,
PROPOSAL: A tool for propagation of charged leptons, Comput. Phys. Commun. 184 (2013)
2070–2090.

[65] B. Zhou, K. C. Y. Ng, J. F. Beacom, and A. H. G. Peter, TeV Solar Gamma Rays From
Cosmic-Ray Interactions, Phys. Rev. D96 (2017), no. 2 023015, [arXiv:1612.0242].

[66] KM3Net Collaboration, S. Adrian-Martinez et. al., Letter of intent for KM3NeT 2.0, J. Phys.
G 43 (2016), no. 8 084001, [arXiv:1601.0745].

[67] IceCube Collaboration, M. G. Aartsen et. al., Neutrino emission from the direction of the
blazar TXS 0506+056 prior to the IceCube-170922A alert, Science 361 (2018), no. 6398
147–151, [arXiv:1807.0879].

[68] IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S., INTEGRAL,
Kanata, Kiso, Kapteyn, Liverpool Telescope, Subaru, Swift NuSTAR, VERITAS,
VLA/17B-403 Collaboration, M. G. Aartsen et. al., Multimessenger observations of a flaring
blazar coincident with high-energy neutrino IceCube-170922A, Science 361 (2018), no. 6398
eaat1378, [arXiv:1807.0881].

[69] N. Grevesse and A. J. Sauval, Standard Solar Composition, Space Sci. Rev. 85 (1998) 161–174.

[70] T. K. Gaisser, T. Stanev, and S. Tilav, Cosmic Ray Energy Spectrum from Measurements of
Air Showers, Front. Phys.(Beijing) 8 (2013) 748–758, [arXiv:1303.3565].

[71] F. Riehn, R. Engel, A. Fedynitch, T. K. Gaisser, and T. Stanev, Charm production in SIBYLL,
EPJ Web Conf. 99 (2015) 12001, [arXiv:1502.0635].

[72] F. Riehn, R. Engel, A. Fedynitch, T. K. Gaisser, and T. Stanev, A new version of the event
generator Sibyll, PoS ICRC2015 (2016) 558, [arXiv:1510.0056].

[73] T. K. Gaisser and M. Honda, Flux of atmospheric neutrinos, Ann. Rev. Nucl. Part. Sci. 52
(2002) 153–199, [hep-ph/0203272].

[74] J. R. Hoerandel, On the knee in the energy spectrum of cosmic rays, Astropart. Phys. 19 (2003)
193–220, [astro-ph/0210453].

[75] P. Gondolo, G. Ingelman, and M. Thunman, Charm production and high-energy atmospheric
muon and neutrino fluxes, Astropart. Phys. 5 (1996) 309–332, [hep-ph/9505417].

[76] V. I. Zatsepin and N. V. Sokolskaya, Three component model of cosmic ray spectra from
100-GeV up to 100-PeV, Astron. Astrophys. 458 (2006) 1–5, [astro-ph/0601475].

[77] A. D. Martin, M. G. Ryskin, and A. M. Stasto, Prompt neutrinos from atmospheric cc̄ and bb̄
production and the gluon at very small x, Acta Phys. Polon. B34 (2003) 3273–3304,
[hep-ph/0302140].

– 20 –

http://xxx.lanl.gov/abs/hep-ph/9712415
http://xxx.lanl.gov/abs/1612.0242
http://xxx.lanl.gov/abs/1601.0745
http://xxx.lanl.gov/abs/1807.0879
http://xxx.lanl.gov/abs/1807.0881
http://xxx.lanl.gov/abs/1303.3565
http://xxx.lanl.gov/abs/1502.0635
http://xxx.lanl.gov/abs/1510.0056
http://xxx.lanl.gov/abs/hep-ph/0203272
http://xxx.lanl.gov/abs/astro-ph/0210453
http://xxx.lanl.gov/abs/hep-ph/9505417
http://xxx.lanl.gov/abs/astro-ph/0601475
http://xxx.lanl.gov/abs/hep-ph/0302140


E
n
er

gy
sp

ec
tr

u
m

(R
oI

,
14

06
.6

2
d
ay

s)
n̄

si
g

µ
9
0

µ̂
(D

at
a)

T
S

(D
at

a)
p
-v

al
u
e

Φ
9
0
%
(1

T
eV

)
[G

eV
−
1
cm

−
2
s−

1
]

B
as

el
in

e
m

o
d
el

:
In

ge
lm

an
&

T
h
u
n
m

an
(1

99
6)

[4
]

IT
F
lu

x
(1

99
6)

2.
83

35
.0

9
-2

.2
8

-0
.0

5
0.

56
8.
57

·
10

−
1
4

R
ef

er
en

ce
m

o
d
el

1:
E

d
sj

ö
et

al
.

(2
01

7)
[7

]

S
er

en
el

li
[3

2]
-G

S
98

[6
9]

-H
3a

[3
1]

-N
or

m
al

2.
85

36
.5

6
-1

.9
5

-0
.0

3
0.

55
1.
01

·
10

−
1
3

S
er

en
el

li
-S

te
in

[3
3]

-H
3a

-N
or

m
al

(B
as

el
in

e)
2.

80
36

.5
2

-1
.9

6
-0

.0
3

0.
55

1.
02

·
10

−
1
3

S
er

en
el

li
-G

S
98

[6
9]

-H
3a

-I
n
ve

rt
ed

2.
95

36
.2

6
-1

.9
3

-0
.0

3
0.

55
9.
65

·
10

−
1
4

S
er

en
el

li
-S

te
in

-H
3a

-I
n
ve

rt
ed

2.
89

36
.3

9
-1

.9
6

-0
.0

3
0.

55
9.
89

·
10

−
1
4

S
er

en
el

li
-G

S
98

-4
G

en
[7

0]
-N

or
m

al
2.

70
37

.2
1

-1
.9

3
-0

.0
3

0.
55

1.
08

·
10

−
1
3

S
er

en
el

li
-S

te
in

-4
G

en
-N

or
m

al
2.

65
37

.3
0

-2
.0

0
-0

.0
3

0.
55

1.
10

·
10

−
1
3

S
er

en
el

li
-G

S
98

-4
G

en
-I

n
ve

rt
ed

2.
79

36
.9

8
-1

.9
6

-0
.0

3
0.

55
1.
04

·
10

−
1
3

S
er

en
el

li
-S

te
in

-4
G

en
-I

n
ve

rt
ed

2.
73

37
.0

6
-1

.9
5

-0
.0

3
0.

55
1.
06

·
10

−
1
3

R
ef

er
en

ce
m

o
d
el

2:
F
J
A
W

s
(2

01
7)

[8
]

S
IB

Y
L
L
2.

3-
p
p

[7
1,

72
]-
C

om
b
in

ed
G

H
-H

4a
[9

]
2.

16
38

.4
0

-2
.0

8
-0

.0
3

0.
56

1.
37

·
10

−
1
3

S
IB

Y
L
L
2.

3-
p
p
-G

ai
ss

er
H

on
d
a

[7
3]

1.
82

38
.4

0
-2

.3
4

-0
.0

4
0.

56
1.
66

·
10

−
1
3

S
IB

Y
L
L
2.

3-
p
p
-H

il
la

sG
ai

ss
er

-H
4a

[3
1]

2.
17

37
.5

1
-2

.0
7

-0
.0

3
0.

56
1.
36

·
10

−
1
3

S
IB

Y
L
L
2.

3-
p
p
-P

ol
y
G

on
at

o
[7

4]
1.

74
38

.3
2

-2
.1

9
-0

.0
3

0.
56

1.
73

·
10

−
1
3

S
IB

Y
L
L
2.

3-
p
p
-T

h
u
n
m

an
[7

5]
1.

95
38

.3
3

-2
.2

8
-0

.0
4

0.
56

1.
55

·
10

−
1
3

S
IB

Y
L
L
2.

3-
p
p
-Z

at
se

p
in

S
ok

ol
sk

ay
a

[7
6]

1.
71

37
.4

5
-2

.1
8

-0
.0

4
0.

56
1.
72

·
10

−
1
3

S
IB

Y
L
L
2.

3-
p
p
M

R
S

[7
7]

-C
om

b
in

ed
G

H
-H

4a
2.

17
37

.5
3

-2
.0

9
-0

.0
3

0.
56

1.
36

·
10

−
1
3

S
IB

Y
L
L
2.

3-
p
p
M

R
S
-G

ai
ss

er
H

on
d
a

1.
82

38
.3

9
-2

.3
4

-0
.0

4
0.

56
1.
65

·
10

−
1
3

S
IB

Y
L
L
2.

3-
p
p
M

R
S
-H

il
la

sG
ai

ss
er

-H
4a

2.
17

37
.4

4
-2

.0
8

-0
.0

3
0.

56
1.
35

·
10

−
1
3

S
IB

Y
L
L
2.

3-
p
p
M

R
S
-P

ol
y
G

on
at

o
1.

75
38

.2
2

-2
.2

2
-0

.0
4

0.
56

1.
72

·
10

−
1
3

S
IB

Y
L
L
2.

3-
p
p
M

R
S
-T

h
u
n
m

an
1.

95
38

.2
4

-2
.2

9
-0

.0
4

0.
56

1.
54

·
10

−
1
3

S
IB

Y
L
L
2.

3-
p
p
M

R
S
-Z

at
se

p
in

S
ok

ol
sk

ay
a

1.
71

37
.5

0
-2

.2
1

-0
.0

4
0.

56
1.
72

·
10

−
1
3

T
a
b
le

3
.

Su
m

m
ar

y
ta

bl
e

of
th

e
an

al
ys

is
re

su
lt

s
fo

r
co

rr
es

p
on

di
ng

m
od

el
s
of

th
e

en
er

gy
sp

ec
tr

a
fr

om
ea

ch
re

fe
re

nc
e

in
th

e
fir

st
co

lu
m

n.
“N

or
m

al
”

an
d

“I
nv

er
te

d”
in

th
e

ro
w

s
of

R
ef

.
[ 7

]
re

fe
r

to
th

e
ne

ut
ri

no
m

as
s

or
de

ri
ng

.
C

ol
um

ns
2-

7
re

pr
es

en
t

th
e

ex
p
ec

te
d

nu
m

b
er

of
si

gn
al

ev
en

ts
,
n̄

si
g
,
th

e
P
oi

ss
on

m
ea

n
fo

r
th

e
90

%
C

.L
.
lim

it
,
µ
9
0
,
th

e
m

ax
im

um
lik

el
ih

oo
d

es
ti

m
at

or
,
µ̂
,
th

e
ob

se
rv

ed
T

S
va

lu
e,

p-
va

lu
e

an
d

th
e

flu
x

lim
it

at
1

T
eV

,
Φ

9
0
%
(1

T
eV

).

– 21 –


	1 Introduction
	2 The IceCube Neutrino Observatory
	3 Signal and background predictions
	3.1 Signal predictions
	3.2 Background predictions and competing signals

	4 Data sample and simulations
	4.1 Data sample
	4.2 Simulations

	5 Analysis
	5.1 Unbinned likelihood analysis
	5.2 Sensitivity calculations
	5.3 Systematic uncertainties
	5.3.1 Flux distribution on the solar disk
	5.3.2 Neutrino oscillation parameters
	5.3.3 Sun shadow effect on the backgrounds
	5.3.4 Uncertainty calculations


	6 Results
	7 Conclusion and discussion

