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1 Introduction and summary

The discovery of the Higgs boson at the Large Hadron Collider (LHC) completes the

Standard Model (SM) of particle physics. Since then, much research has been done to un-

derstand the Higgs potential at both low and high energies. Extrapolating the predictions

of the SM up to high energy scales, the quartic coupling of the Higgs becomes negative

around vλ=0 ∼ 1011GeV [1–12]. An epoch of primordial inflation, which would address

many issues in cosmology [13–19], could have occurred at a high energy scale and can have

a very interesting interplay with the Higgs instability [20–30]. The common lore is that a

future measurement of the scalar tensor ratio r [31] confirming high scale inflation would

suggest that there is new physics below the scale vλ=0 to stabilize the Higgs potential. In

this paper, we take the opposite approach where we assume that during inflation the Higgs
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is living at a new minimum vuv at a scale well above vλ=0. After inflation ends, the Higgs

boson returns to the standard electroweak minimum due to thermal effects. In this article,

we will explore the observational signatures associated with the Higgs living in its true

minimum during inflation.

In the SM, the Higgs potential is unbounded from below. In order to stabilize the

potential, we assume that the potential is stabilized by higher dimensional operators. In

particular, we will take the Higgs potential to be (see figure 1)

L ⊃ µ2hH†H− λh(H†H)2 − (H†H)3

Λ2
H

. (1.1)

This potential has the standard electroweak minimum as well as a true minimum at the

scale vuv ∼ ΛH. This scale ΛH can originate from high energy dynamics such as Grand

Unification [32–35], String Theory, etc. .

After inflation, the Standard Model sector can be reheated to a temperature much

larger than the scale vuv. During this stage, the Higgs boson receives a thermal correction

to its potential that gives the Higgs a large positive mass around the origin and pulls

the Higgs field back to the origin. Very quickly, the Higgs decay rate becomes larger

than Hubble and it settles around the origin. Despite being in the true minimum during

inflation, the Higgs ends up in the electroweak minimum.

Such a scenario is interesting as it provides an opportunity to directly study the Higgs

vacuum structure at extremely high energy scales using non-Gaussianities. The most pro-

nounced effect due to non-inflaton particles during inflation originates from particles whose

masses are close to the Hubble rate. The SM fermions, with masses ranging from yevuv
to ytvuv, provide a natural comb that spans more than five orders of magnitude. Some

of these fermions will have masses close to the Hubble scale during inflation, leading to

observable signatures in the cosmological collider physics program.

Cosmological collider physics provides a new window into the physics surrounding

inflation [36–46]. Measurements of the non-analytical pieces of the inflaton three point

function can provide information about new particles with masses that are close to the

Hubble scale. The signal strength depends on both the mass of the new particle as well

as its coupling to the inflaton. In this paper, we consider the lowest dimensional operator

coupling a shift symmetric inflaton with the SM,

L ⊃ −cfi∂µφ fiγ
µγ5fi

Λf
+ · · · , (1.2)

where φ is the inflaton and fi are the SM fermions.1 This coupling acts like a chemical

potential for the broken axial symmetry. Thus, it is not surprising that this term can help

with particle production [48, 49]. We will work in the framework of effective field theory

of inflation [50, 51] and we will not specify an inflaton model.

Such a coupling breaks Lorentz symmetry for non-zero φ̇, modifies the fermion dis-

persion during inflation and leads to particle production during inflation with momentum

1We will postpone discussions about the φFF̃ couplings of the inflaton as they can naturally be a loop

factor smaller than the fermion ones with their own distinct phenomenology [47].
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as large as λi =
cfi φ̇

Λf
, which can be much larger than Hubble. This greatly enhances the

number density of fermions produced during inflation and boosts the signal strength in

cosmological collider physics, leading to an fNL that can be as large as

fNL ≃ P−1/2
ζ

(
cfimfi

Λf

)3

λ̃2i exp

[
−
πm2

fi

λiH

]
. 100, (1.3)

in the squeezed limit, where Pζ ≃ 2×10−9 is the dimensionless power spectrum of curvature

perturbations and λ̃i = λi/H can be as large as O(60).

The paper is organized as follows. In section 2, we discuss in detail the Higgs dy-

namics during and after inflation. In section 3, we present both the calculation of the

non-Gaussianity and a way to estimate the size of the signal. In section 4, we discuss the

future prospect of the measurement of such a signal and the implications for physics beyond

the SM. In the appendices we collect most of the technical details and further crosschecks.

Appendix A contains a detailed exposition of the calculation for the non-Gaussian squeezed

bispectrum. Appendix B discusses some of the details of the Higgs dynamics during in-

flation as a result of direct Higgs couplings with the curvature and inflaton. Appendix C

discusses the back-reactions on the inflaton dynamics.

2 Higgs field dynamics in the early universe

It is well known that, if we extrapolate the running of the SM parameters up to high

energies, the Higgs quartic coupling turns negative around the scale vλ=0 ∼ 1011GeV, so

that the minimum we live in right now is metastable. Beyond the scale of vλ=0, new physics

can come in and save the theory from a runaway direction and create a new minimum of

the Higgs potential at some scale vuv. The recent upper limit on the tensor to scalar ratio

r < 0.06 [52] implies that

H < 6 · 1013GeV , (upper limit on r) (2.1)

so that H can still be much larger than the scale vλ=0. During inflation, the Higgs field

background undergoes a random walk with kicks ∼ H/(2π) and could possibly have reached

the true minimum at a very large vacuum expectation value (vev) vuv for the Higgs field.

The true minimum has a large negative vacuum energy, and the corresponding anti-de

Sitter region would expand at the speed of light after the end of inflation [20–30]. If

inflation occurred at high energy scales, the fact that our observable Universe lies in the

electroweak vacuum would seem a very extreme accident and would beg for an explanation.

In this section, we describe a scenario in which the Higgs field sits in the true minimum vuv
during inflation and settles back down to the electroweak minimum after reheating. We

sketch the Higgs potential during and after inflation in figure 1, and we describe in more

detail this scenario in the rest of this section.

2.1 The Higgs potential during inflation

There are a few assumptions about the Higgs potential that need to be satisfied in order

for us to observe today the signature of a high energy vacuum. For simplicity, we assume
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h

V (h)

vew
vλ=0

vuv

T = 0

T = Tmax

Figure 1. Higgs potential at zero temperature (blue line) and at high temperature during the

reheating phase (red line). The Higgs field sits in the high energy minimum vuv during inflation,

and then returns back to the electroweak vacuum during the thermal phase of reheating, when

thermal corrections to the Higgs potential lift the minimum vuv. In reality, the (free) energy of

the Higgs decreases for |h| < T , and the thermal potential can be fit by a positive quadratic times

exponential term, plus a negative offset that we did not show explicitly in this figure for better

presentation.

that the new minimum for the Higgs field is generated by higher dimensional operators in

its potential, suppressed by a cutoff scale ΛH. We write then the following Lagrangian for

the Higgs field:

LHiggs = (∂µH)†∂µH− V (H) , V (H) = −µ2hH†H+ λh(H†H)2 +
1

Λ2
H
(H†H)3 . (2.2)

Let us write the Higgs doublet in the unitary gauge as H = (0, v+h√
2
)T. The mass term

of the Higgs potential is irrelevant, being µ2h ∼ O(100)GeV and its RG flow negligible. We

assume that λh turns negative at high energies, so that the potential in eq. (2.2) has a true

vacuum of the Higgs potential at

vuv =

√
4

3
λh,uvΛH , λh,uv ≡ −λh(vuv) > 0 , (2.3)

where for the central measured values of mt and αs we have λh,uv ∼ O(0.01). The uncer-

tainties on the RG evolution of the quartic Higgs coupling mainly come from the uncertainty

on the top quark mass, and at subleading order on the strong coupling constant and the

Higgs mass [53]. In this section, we assume that the RG running of gauge, Yukawa and

Higgs quartic (λh) couplings is not affected by new physics between the weak scale and

ΛH. We postpone discussion of the effect of a Higgs coupling to curvature and the inflaton

to appendix B. These corrections can increase the Higgs field value during inflation and

can lead to interesting observable effects [54].

Depending on the Hubble rate, which we assume to be comparable to the current

bound (2.1), and the number of e-folds of inflation, the Higgs field can easily overcome the
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barrier under the effect of quantum fluctuations, and reach its true minimum vuv within

a few e-folds. We assume that 〈h〉 ∼ vuv throughout the ∼ 60 e-folds of inflation that we

can potentially observe today.

Quantum fluctuations of 〈h〉. The Higgs field can fluctuate around vuv during infla-

tion by steps of order H/2π, which can lead to a fluctuation of the fermion masses during

inflation. In this paper, we will restrict our analysis to the case where these Higgs fluc-

tuations are negligible such that the statistical errors are reduced and the predictions are

much simpler. This requires that the Higgs mass squared at vuv is greater than 9H2/4. In

this case, fluctuations are exponentially suppressed. This leads to a constraint

9

4
H2 < V ′′(vuv) =

8

3
λ2h,uvΛ

2
H ⇒ vuv >

√
9

8λh,uv
H (no fluctuations at vuv) (2.4)

If the Higgs is subject to quantum fluctuations, but the spread in field values induced during

a number N & O(10) e-folds is not larger than vuv, then the spatial variations of 〈h〉 on

the scales probed by present day experiments would still be small. The non-Gaussianity

estimates that follow are still valid, with some small quantitative differences,2 as long as

vuv & H

√
N

2π

N∼O(10)
≃ H (small fluctuations around vuv) (2.5)

No alterations of the inflationary dynamics. In order for the inflationary dynamics

not to be significantly affected by the negative Higgs energy density when 〈h〉 = vuv, the

sum of Vh(vuv) and Vφ = 3H2M2
P must be positive:

|Vh(vuv)| =
∣∣∣∣−

4

27
λ3h,uvΛ

4
H

∣∣∣∣ < 3H2M2
P ⇒ vuv <

√
6MPH

λ
1/4
h,uv

. (Vφ > |Vh|) (2.6)

This constraint, for λh,uv ∼ 0.01, turns out to be weaker than the requirement (2.9) that the

temperature is high enough to bring the Higgs vev back to the origin after inflation ends.

Lifting of the SM mass spectrum. Once the Higgs is in the UV minimum, the spec-

trum of all SM particles during inflation are solely determined by a single parameter ΛH.
In terms of the Higgs vev vuv, we collect here the masses of the SM particles:

mΨi =
1√
2
yi vuv

mh =
√

2λh,uv vuv

mW =
1

2
g2 vuv

mZ =
1

2

√
g21 + g22 vuv

(2.7)

We show in figure 2 the running of the coefficients appearing in the masses in eq. (2.7).

2This scenario could imply exciting distinctive signatures, like spatial variations of fNL.
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Figure 2. RG flow of the coefficients of the masses of the SM particles in terms of the Higgs vev.

The width of the lines in this plot is the larger than the current experimental uncertainty on the

SM parameters at the weak scale.

In figure 3 we show the lines in the parameter space corresponding to H = mf for the

SM fermions.

The wealth of massive particles due to the UV Higgs minimum spans five orders of

magnitude. Therefore, it is very likely that one or two of them will happen to have a mass

close to the Hubble scale. If we detected the signature of the presence of two or three

fermions with mass ratios resembling those of the Yukawa couplings, it would be a very

strong indication for the existence of a new Higgs minimum at high scales. We show how

to estimate and calculate the amount of non-Gaussianity that can arise due to these new

fermions in section 3.

2.2 Higgs potential during reheating

The Higgs field will need to find its way back to the symmetry preserving point h = 0 after

inflation. This happens if the universe reheats to high enough temperatures Trh & vuv,

where thermal corrections to the Higgs potential can bring the Higgs vev from vuv back

to the origin. Reheating generates a thermal bath of SM particles which contribute to the

Higgs potential with a thermal mass [55–63]

VT (h) ≃
1

2
κT 2 h2e−h/(2πT ) , κ ≃ 0.12 . (2.8)

This contribution pushes the peak of the barrier in the Higgs potential to values equal

to roughly twice the temperature. With the addition of the thermal contribution to the

potential, the Higgs field rolls back and forth in the potential during the reheating phase

and decays into SM matter.

The requirement of the rescue of the Higgs field can be converted into a bound on

the maximum temperature reached during reheating. Assuming for simplicity instan-

taneous reheating, then all the inflaton energy density is completely converted at the

end of inflation into thermal radiation fluid at a reheating temperature Trh given by

– 6 –



J
H
E
P
0
1
(
2
0
2
0
)
1
0
5

(π2/30)g∗T 4
rh = 3H2M2

P , MP being the reduced Planck mass and g∗ = 106.75 the number

of SM relativistic degrees of freedom at early times. From eq. (2.3) we get

ΛH =
vuv√
4
3λh,uv

.
Trh√
λh,uv

=

=
(6.5 · 1015GeV)√

λh,uv

(
H

6 · 1013GeV

)1/2
(Higgs thermally rescued) (2.9)

This is the condition that ensures that the Higgs is rescued by thermal corrections during

reheating. By plugging λh,uv ∼ 0.01, we get that at most ΛH . 1016GeV. Given that

the reheating temperature Trh can be larger than the typical scale ΛH of higher dimen-

sional operators, this calculation is not technically under control. However, ultraviolet

completions of the theory might not change the results significantly.

As explained in more detail in appendix B, the magnitude of the oscillations of the

Higgs field decreases rapidly and the Higgs very quickly relaxes to the origin. Therefore

the Higgs field eventually lays at the origin, provided that the initial condition (2.9) is

satisfied. We postpone more detailed discussions to appendix B.2.

2.3 Summary of the viable parameter space

We show in figure 3 the constraints in the plane (vuv, H) arising from the following con-

siderations:

1. gray line: upper bound on H from the constraint on r, see eq. (2.1);

2. blue lines, dashed : no quantum fluctuations of the Higgs at vuv, see eq. (2.4), plug-

ging the running of λh,uv for the central measured SM values; solid : small quantum

fluctuations, as in eq. (2.5);

3. green lines : presence of the instability (i. e. λ(vuv) < 0) within the SM, for the

central measured values in αs and mh and 0σ or +2σ deviations in mt (for the

reference values, see [53]);

4. red line: energy scale during inflation giving a high enough temperature to rescue

the Higgs after inflation, assuming instantaneous reheating (see eq. (2.9));

5. purple line: Higgs negative energy density never overcoming the inflaton energy den-

sity (see eq. (2.6)); this constraint is weaker than the previous one.

In order to highlight the most interesting regions for the signature we discuss, we show

with thin black lines where the Hubble rate equals the mass of a SM fermion. We also

show with a thin brown line where the inflaton energy scale Λφ during inflation, defined as

3H2M2
P = Λ4

φ, is equal to ΛH =
√
3/4λh,uv vuv.

As we will see, our signal is generically amplified for larger values of H, so that the most

promising region is the one aroundH ∼ 1013GeV and vuv ∼ 1014−1015GeV (corresponding

to ΛH ∼ 1015 − 1016GeV), for which H is close to the masses of the b and τ fermions.
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Figure 3. Viable parameter space in the plane (vuv, H). The shaded regions are excluded due

to following constraints, listed also in the text: H allowed by the bound on r (gray), negligible

quantum fluctuations at h = vuv (blue), Higgs quartic turning negative within the SM (green),

high enough Trh to rescue the Higgs (red), Higgs energy density smaller than the inflaton one

(purple). The thin black lines show where mf = H for the SM fermions. The thin dotted brown

line corresponds to the case in which the energy scale Λφ of the inflaton is equal to ΛH.

3 Cosmological collider signature

In this section, we present the calculation, together with a more physical interpretation, of

the non-Gaussianity coming from SM fermions coupled to the inflaton. We focus on the

main steps of the calculation and move most of the details to appendix A. In section 3.3,

we discuss the effect of some other operators coupling the inflaton to the SM. Readers who

are mainly interested in the implications of the effect can skip section 3.2.

3.1 How to estimate fNL

In this subsection, we briefly outline how one estimates non-Gaussianity in the context of

cosmological collider physics. As with many things, a good starting point is the definition.

Throughout this subsection, we introduce dimensionless quantities m̃ = m/H, λ̃ = λ/H.

In spatially flat gauge (R = ζ = −Hδφ/φ̇), the two point function is

〈
ζ(k)ζ(−k)

〉′
=

2π2

k3
Pζ =

H4

φ̇2
1

2k3
, (3.1)
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k1
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k3 ≪ k1′k2

f

δφ

f

δφ

f

δφ

τ = 0

τ1 τ2

τ3

Figure 4. Feynman diagram for the contribution to the 3-point function of the inflaton from a

loop of SM fermions. Two SM fermions f are produced at an early time τ3 through an interaction

with a soft inflaton fluctuation δφ, and annihilate at later times τ1, τ2 producing two hard inflaton

legs with k1, k2 ≫ k3. The time propagation of the fermions f is at the origin of the non-analytic

term in the bispectrum of the inflaton.

where we denote by a dot the derivatives with respect to cosmic time. We also denote by τ

the conformal time defined as usual by dτ = dt/a. We adopt the primed notation, defined as

〈
δφ(k1) · · · δφ(kn)

〉
= (2π)3δ

(∑

i

ki

)〈
δφ(k1) · · · δφ(kn)

〉′
. (3.2)

One of the dimensionless functions which characterizes non-Gaussianities is the dimension-

less shape S(k1, k2, k3),

〈ζ(k1)ζ(k2)ζ(k3)〉′ =
(2π)4P2

ζ

k21k
2
2k

2
3

S(k1, k2, k3). (3.3)

We will be interested in the non-analytic part of the squeezed limit (k1 ∼ k2 ≫ k3)

S = S(k1, k2, k3)
non-analytic

∣∣∣
k3≪k1∼k2

. (3.4)

We want to estimate the diagram shown in figure 4.

The first point to assess is what is the exponential suppression. Particle production

occurs when the adiabatic approximation fails. The exponential suppression associated

with adiabatic processes is

e−
ω2

ω̇ ∼ e
− ω2

τ dω/dτ . (3.5)

The time scale τ and the exponential suppression can be found by minimizing the ex-

ponential suppression. In our case, the leading terms in the dispersion relations for the

fermions are

ω2 = (kτH ± λ)2 +m2 (3.6)

Taking the large λ limit and minimizing, we get that the exponential suppression is ω2/ω̇ ∼
m̃2/λ̃ which occurs when kτ ∼ λ̃ with a width of order m̃. Our first goal is to consider the

– 9 –
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large λ̃ limit and obtain the exponential suppression in this limit. This is clearly

S ∼ e
− m̃2

λ̃

∣∣∣
1≪m̃2/λ̃≪λ̃

(3.7)

The next limit we wish to consider is the small m̃ limit. In this limit

n ∼ k2δk ∼ mλ2
∣∣∣
m̃≪1

(3.8)

The next thing to estimate is the momentum dependence of S. There is no quick trick we

know of to directly obtain the analytic pieces of the momentum dependence, so we focus on

the non-analytic contributions. The non-analytic piece comes from the propagators of the

fermions. Of the three propagators, one of them has a large momentum running through

it and thus is insensitive to the effects of Hubble and can be ignored. The two remaining

propagators each contain a factor of e±iωt ∼ τ±iω ∼ k±iω. Thus we find that the scaling of

the non-analytic piece is

S ∼ mλ2
(
k3
k1

)2iλ̃

(3.9)

We are not aware of a simple way to estimate the non-imaginary part of the exponent of

k3/k1.

The last factors associated with the non-Gaussianities are the coupling constants.

There are three insertions of the inflaton so there is a factor of 1/Λ3
f . Finally, by doing a

field redefinition, derivative interactions with the current can be shown to be proportional

to the mass. The hard propagator can be effectively integrated out giving only two mass

insertions. Thus there is an additional factor of m2 in the small m̃ limit. We arrive at our

final estimate of the non-Gaussianity

S ∼ m̃2 H

Λ3
f

m̃λ̃2
(
k3
k1

)2iλ̃
∣∣∣∣∣
λ̃≫1, m̃→0

. (3.10)

The two estimates (3.7) and (3.10) of the non-Gaussianity, valid respectively in the limits

of large m̃2/λ̃ and large λ̃, small m̃, have the scaling found in an explicit calculation.

3.2 Outline of the calculation of fNL

In this subsection, we present the main steps of the computation which leads to results

presented in figures 5, 6 and 7. The main Feynman diagram that contributes to the three

point correlation function is shown in figure 4 where the dashed lines represent the inflaton

perturbation δφ, the solid lines represent a SM fermion f and the vertex comes from the

interaction of eq. (1.2) (for detailed Feynman rules, see appendix A),

L ⊃ −cfi∂µφfiγ
µγ5fi

Λf
. (3.11)

This coupling between the inflaton and the fermions leads not only to an interaction vertex

between δφ and f but also to a correction to the dispersion relation of the SM fermions

when the inflaton slow-roll spontaneously breaks Lorentz symmetry:

ω2 = (k ∓ λi)
2 +m2

i (3.12)
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in flat space, where k = |~k|, λi =
cfi φ̇

Λf
and ± marks states with different helicity. In the

following, unless stated explicitly, we consider a single fermion with cfi = 1, λ = λi and

m = mi. The correction to the dispersion relation leads a modification of the fermion

mode functions us and vs. The solution reads (for a complete list of the mode functions,

see eq. (A.19))

u+(kτ) =
m̃eπλ̃/2√
−2kτ

Wκ̃,iµ̃(2ikτ) , (3.13)

where ± are again the helicity indices, Wκ,µ(z) is the Whittaker function, and we remind

the reader that dimensionless parameters with a tilde are defined as:

κ̃ = −1

2
− iλ̃, m̃ = m/H, λ̃ = λ/H, µ̃ =

√
m̃2 + λ̃2. (3.14)

At late times (−kτ ≪ 1), the mode function u+ has the following dependence on kτ (see

appendix A.3 for more details):

u+(kτ) ≃ e−iπ/4m̃eπλ̃/2

[
eπµ̃/2Γ(−2iµ̃)

Γ(1 + iλ̃− iµ̃)
(−2kτ)iµ̃ + (µ̃→ −µ̃)

]
. (3.15)

This is to be compared with the late-time limit of a particle with an ordinary dispersion

relation where one gets the dependence of (−2kτ)im̃ in the large mass limit instead of

(−2kτ)iµ̃. This can be understood as a result of the abnormal “redshifting” of the fermions

during inflation in our case, where as the momentum of the fermion decreases, the frequency

quickly increases from O(m) to O(
√
m2 + λ2). This oscillation frequency turns into the

frequency of oscillation of k3/k1 in the final result. Such a late time expansion is clearly

not valid around the dominant time of particle production when −kτ ∼ λ̃ ≫ 1, which

leads to a numerical difference between our result and that of [48] (see appendix A.5 for a

mathematical treatment of the discrepancy).

The physical process that happens during inflation is shown in figure 4. An inflaton

perturbation with a soft momentum k3 splits at some early time τ3 into two fermions both

with momentum k ∼ λ and frequency ω ∼ m.3 Then the fermions redshift and annihilate

back into inflaton perturbations at much later times τ1, τ2. The 3-point function of the

inflaton perturbation δφ generated by this process is

〈
δφ(~k1)δφ(~k2)δφ(~k3)

〉
=

∑

a,b,c=±1

abc

(
i

Λ

)3 ∫∫∫ 0

−∞
dτ1dτ2dτ3Fµa(~k1, τ1)Fνb(~k2, τ2)Fρc(~k3, τ3)

∫
d3q

(2π)3
T

µνρ
abc

,

(3.16)

3More precisely, the physical picture is that the fermions get produced at some time before τ3 and shortly

after annihilate at τ3, before their momentum gets significantly reshifted. For simplicity, we identify τ3 with

the time of fermion creation.
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where Fµa(~k1, τ1) (see eq. (A.9)) comes from the external leg of the inflaton perturbation

δφ(~k1). The trace T
µνρ
abc

originates from the fermion loop:

T
µνρ
abc

=− tr
[
σµα̇αD

abαβ̇(p12, τ1, τ2)σ
νβ̇βDbcβγ̇(p23, τ2, τ3)σ

ργ̇γDcaγα̇(p31, τ3, τ1)
]

− tr
[
σµα̇αDacαγ̇(−p31, τ1, τ3)σργ̇γDcbγβ̇(−p23, τ3, τ2)σ

νβ̇βDbaβα̇(−p12, τ2, τ1)
]

(3.17)

where D
abαβ̇(p, τ1, τ2) are the propagators of the fermions. The previous discussion moti-

vates us to split up the fermion propagators into the mode functions u and v, where u(k3τ3)

and v(k3τ3) can be expanded in the large λ limit while the functions u(k3τ1) and v(k3τ1)

can be expanded in the late time limit (−k3τ1 ≪ 1). This allows us to turn the trace

in eq. (3.16) into functions over which we can perform the integral over the times τ1, τ2
and τ3 (see appendix A.5 for more details). These integrals are, as physically motivated,

dominated by regions where −kiτi ∼ λ̃. This suggests that our results are only valid for

momentum ratios

k3/k1 =
k3τ1
k1τ1

. 1/λ̃. (3.18)

This momentum ratio can be understood as the ratio of energies of a physical process where

the energy of the fermions is O(m) to start with (the momentum and energy of the inflaton

leg k3 is comparable to the energy of the intermediate fermions when they are produced

ω(τ3) ∼ m), and O(
√
λ2 +m2) in the late time limit when the two fermions annihilate

(the momenta and energies of the inflaton legs k1 ∼ k2 are comparable to the energy of

the intermediate fermions when they annihilate ω(τ1,2) ∼
√
λ2 +m2).4 This requirement

matches the expectation that the result we obtained in this calculation should not have an

enhancement of λ2 in the limit where the fermion exchange can be treated as a contact

operator. To conclude, the result of the full calculation at leading order in the squeezed

limit (accounting for two chiralities) is

S(k1, k2, k3)

λ≫m
k3≪k1∼k2≃ f

(clock)
NL

(
k3
k1

)2−2iµ̃

+ · · · (3.19)

up to a phase, with

f
(clock)
NL ≈ Nc

6π
P−1/2
ζ

(
m

Λf

)3

λ̃2
eπλ̃µ̃Γ(−iµ̃)2Γ(2iµ̃)3

2πΓ(i(λ̃+ µ̃))3Γ(i(µ̃− λ̃) + 1)
(3.20)

for each SM fermion with color number Nc (we recall that we have set cfi = 1, and it can

be restored by replacing every occurrence of 1/Λf by cfi/Λf ). From now on we refer to

fNL as the amplitude of the clock signal f
(clock)
NL , defined in eq. (3.20) in agreement with

what done in [48]. In the limit where m→ 0 and λ→ ∞, the result scales as
(

m
Λf

)3
λ2 at

4These discussion should provide an estimate of the leading dependence on λ in the large λ limit. As is

clear from the detailed calculation in appendix A, the m-dependence in the H < m < λ case can be very

complicated as it can receive contributions from various sources.
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Figure 5. The signal strength due to a single Dirac fermion as a function of the fermion mass in

Hubble units. The solid, dashed and dotted blue lines show fNL for different values of φ̇/Λ2
f ≤ 1.

The signal strength increases as m3 in the small mass limit and decreases exponentially when

(m/H)2 becomes larger than φ̇
ΛfH

.

leading order, while in the limit where H ≪ m2/λ≪ λ, there is an exponential suppression

from the last factor in eq. (3.20)

exp

[
−πm

2

λH

]
, (3.21)

both as expected from section 3.1. The result of the computation is summarized in figure 5.

We highlight the dependence of the signal strength on the fermion mass in Hubble units.

As expected, the signal strength is maximized when the exponent πm2/λH is O(1), and

the size of fNL can be O(10) for perturbative coupling.

3.3 Other operators

Other operators coupling the inflaton to SM particles that can potentially lead to observable

effects during inflation are studied in [42]. Firstly, there can be operators that couple the

inflaton to spin-zero marginal operators of the SM in a shift-symmetric manner

L ⊃ f

(
(∂φ)2

Λ4
H

)
O(4)

SM , (3.22)

where f(x) is a polynomial function of x with order one coefficients. Similar couplings

between the Higgs and inflaton, in the absence of a large Higgs vev, lead to negligible

contributions to fNL, smaller than O
(
H4φ̇2

Λ8

H

)
. These effects are unlikely to be observable.

Inflaton couplings to relevant operators in the SM can potentially lead to much stronger

effect. However, as we show in more detail with the following examples, the fermion

coupling we consider is the only coupling that can lead to large observable effects. This

can be ultimately seen as a consequence of the “hierarchy problem” of the Higgs boson.
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The case of H†H. An example of such interaction considered in [42] is the operator

Oh2 =
c2(∂φ)

2

Λ2
H

H†H . (3.23)

This operator, similarly to the ξhRH†H coupling, can be generated by integrating out SM

fermions, and leads to a contribution to the Higgs mass during inflation

µ2h ∼ c2φ̇
2

Λ2
H
. (3.24)

The operator Oh2 can lead to interesting changes to the Higgs potential during inflation

(see the companion paper [54] for more details) but is hard to observe: increasing the

coupling c2 simultaneously increases the strength of the signal, as well as the Higgs mass,

which suppresses exponentially the contribution of a Higgs boson loop to the bispectrum.

Therefore, in absence of Higgs mass tuning, the signal strength is likely quite small [42].

Such a conflict is a direct consequence of the hierarchy problem of the Higgs, which is why

it does not affect the signal of the fermions.

The case of H†DH. A special case of derivative coupling is the operator

Oh1 =
c1(∂µφ)

ΛH
H†DµH, (3.25)

which couples the inflaton to the Higgs current. Such an operator introduces a mixing

between the Higgs and the time component Z0 of the Z boson in the form of

Im(c1)φ̇g2vuv/2

ΛH
hZ0, (3.26)

where the explicit dependence on Z0 is a sign of broken Lorentz symmetry. A large c1
coupling will also lead to significant changes to the UV potential of the Higgs. During

inflation, the Z0 field will acquire a vacuum expectation value of order
(
c1

φ̇2

Λ2

H

)1/2
, which

in turn leads to a mass and vev of the Higgs of the same order. As a result, also the

operator Oh1 is not likely to be observed, because the increase in the signal due to a larger

c1 is vastly overcome by a severe exponential suppression due to a larger Z mass.

The case of GG̃. The CP violating coupling between the inflaton and the gauge bosons

cG
φ

ΛG
GG̃, (3.27)

where G stands for a gauge boson of the SM gauge group SU(3)C × SU(2)L × U(1)Y ,

is secretly a derivative coupling, and can be generated if there is a gauge anomaly (see

appendix C). Particle production as a result of this coupling has been studied in depth

in the literature [47, 64, 65]. A large inflaton-gauge boson coupling leads to exponentially

growing production of the gauge boson and can strongly affect the inflaton dynamics. In

our case, if the fermion current the inflaton couples to is anomalous, an inflaton-gauge
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boson coupling can arise at loop level, with a coupling strength φ̇
ΛGH ∼ α1, 2, 3

4π
φ̇

ΛfH
. 1.

This means that, in absence of some inherited anomaly, the couplings we write down is

unlikely to lead to significant production of the gauge bosons, especially the massless gluons

and photons.5

4 Result and implications

In section 3, we discussed the non-Gaussian signature that can arise from a single SM

particle with shift-symmetric couplings with the inflaton. As discussed in section 2.1,

the SM fermions provide a natural comb to scan the Hubble scale during inflation. In

figure 6, we show the particles (b, τ, c, µ, s, d, u, e) that can contribute significantly to a

non-Gaussian bispectrum of the inflationary perturbations.

If the Hubble scale during inflation lies in the range (1011GeV ≈ vλ=0 . H ≪ vuv .

1016GeV), independently from the exact value of H, there is at least one SM particle which

can induce an fNL & 10. For much smaller Hubble scales (H . vλ=0), the first generation

of SM fermions (d, u, e) can also contribute to an observable signal. In this case, the

existence of the UV minimum vuv is not enough: if the Higgs field starts near the origin,

then it cannot go beyond the barrier during the observable O(60) e-folds of inflation. If

instead the Higgs field lies in the UV minimum vuv at the beginning of the last 60 e-folds

of inflation, we still get an observable effect.6 In a wide range of the parameter space, as

a result of the close proximity of the Yukawa couplings of the SM fermions (see figure 2),

one can potentially see the effect of more than one fermion. In particular, as a result of the

infamous b− τ unification7 in the SM, both fermions can contribute with an fNL & 100 in

some range of the parameter space.

The possibility of observing multiple fermions is very important for distinguishing our

signal from that of a generic fermion that couples with the inflaton in the same way. From

the observation of the amplitude and the frequency of the oscillatory signal, it is possible

to extract two independent quantities: the mass of the fermion in Hubble units m̃ and the

strength of coupling in Hubble units λ̃. If the fermions were to come from the SM, the

ratio of the measured m̃ should be equal to the ratio of the Yukawa couplings of the two

fermions, as both the Hubble scale and the Higgs vev vuv cancel out:

m̃i

m̃j
=
yi
yj
. (4.1)

Besides a simultaneous measurement of two fermions, one has the chance to observe

fermions in combination with a non-zero scalar-to-tensor ratio r in the case of high scale

inflation. Future measurement of r can potentially extend the sensitivity to the Hubble

scale to as low as 8× 1012GeV (assuming a sensitivity of σ(r) ∼ 10−3 with CMB-S4 [31]).

5Such an exponentially growing production is also cut off by the scattering or annihilations of gauge

bosons in the SM.
6In the case where H ≪ vλ=0 and the electroweak symmetry is unbroken at the start of the observable

O(60) e-folds of inflation, surprisingly, a unique signature can also arise. We study this case in a companion

paper [54].
7We thank Prateek for very emotional discussions.
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Figure 6. The size of fNL that can generated by the production of SM fermions (f ∈ {b, τ, c, µ,
s, d, u, e} from bottom to top) during inflation as a function of the Higgs vev vuv in Hubble units

and the strength of coupling λ̃ = φ̇/ΛfH between the inflation and the SM fermions (we recall that

we are setting cfi = 1). In the range of the parameter space where H ≪ |λh,uv|1/2 vuv ≃ 0.1vuv the

fluctuations of the Higgs field around vuv are negligible, and a large fNL . 100 can be generated by

SM fermions whenmf/H is O(1). In the region above the dashed gray line, the observable signature

requires the Higgs field to be in the UV minimum vuv at the beginning of the observable O(60) last

e-folds of inflation. In large portions of the parameter space, there is the possibility of observing

more than one fermion contributing with fNL & 10. We entertain the possibility of fNL ≈ 100 to

account for the potential suppression coming from the different shape of non-Gaussianity compared

to commonly studied templates. In particular, as a result of the infamous b − τ unification in the

SM, there is the possibility of observing both with strength fNL & 100. The couplings between the

SM fermions and the inflaton ci are chosen to be the same for all SM species (see appendix C for a

detailed discussion). The Yukawa couplings of the fermions are evaluated at a scale of 1013 GeV.
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The fermions that can possibly be simultaneously measured through their non-analytical

contribution to the bispectrum in case of an observable scalar-to-tensor ratio can only be

the bottom quark and the τ -lepton (see figure 3).8 As a result of a good measurement

of their mass ratio, we could know quite precisely the value of the scale vuv, due to the

close numerical vicinity of yb and yτ at high energies. This exciting possibility would have

extremely interesting implications for Grand Unification Theories [32–35], String Theory

and other UV dynamics.

A special case is the signature from the top quark. As summarized in appendix B.1

and thoroughly discussed in [54], if the coupling of the top quark to the inflaton field is

large enough, the Higgs potential receives corrections by integrating out SM particles at

one loop, and from the interaction of the Higgs boson with the top quark density during

inflation. If these contributions are relevant for the Higgs potential, then its vev depends

not on the detail of the UV contributions but is fixed by the coupling between the top quark

and the inflaton, and the observable signature is described in [54]. If instead the Higgs

mass at vuv is not affected by these contributions, then the top quark can generate the

strongest signal when vuv/H . 100 (see figure 7). However, as it is apparent from figure 3,

most of the signal from the top quark (when mt/H ≈ 1) lies in the range where the Higgs

field can quantum fluctuate or slow roll during inflation. The region where this fluctuation

can be important depends very strongly on the value of the Higgs mass and, as a result,

the quartic coupling of the Higgs. When λ
1/2
h,uvvuv/H & 1, the signal of the top quark is

the same as the other SM fermions. On the other hand, when λ
1/2
h,uvvuv/H . 1, the Higgs

field value and, consequently, the SM fermion masses, could have significant fluctuations

during inflation. Therefore, different patches of the universe can potentially have signals

with different amplitude. We leave a study of how to compute and extract this signal from

data to future work.

The signature that we studied in this paper has the rare features that the signal

strength is largest when k3 ∼ k1/λ̃, deep in the squeezed limit, and the oscillatory part

of the signal has a frequency that is much larger than the mass of the populated par-

ticle in Hubble units. Both properties emerge as a result of the very uncommon “red-

shifting” of the fermions during inflation in presence of the modified dispersion relation

of eq. (3.6), while when k3 ≃ k1, such enhancement disappears and the signal strength

is fNL ∼ φ̇
Λ2

f

H
Λf
/(2π)4 ≪ 1 from the UV contribution of the loop diagram in figure 8 [48].

These features imply that the search for these signatures will greatly benefit from measure-

ments of the large scale structure of the Universe [68–70], and in particular, the upcoming

program of 21cm cosmology [41]. This will provide us with potentially more modes than the

CMB, as well as a 3D map of the density perturbations in the Universe, which will be impor-

tant to uncover small signals, and to precisely measure the oscillation frequency. We post-

pone a more detailed study of the observability of our proposed signature to future work.

We would like to close with a final question for the reader. Would we take a different

view about the electroweak hierarchy problem if we were to find a new minimum in the

Higgs potential? What if we found a wealth of them?

8Simultaneously measuring bottom, τ and charm would be more interesting as it can provide insight on

some of the harder to probe scenarios [66, 67].
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Figure 7. The same plot as figure 6, specialized to the top quark, assuming that the Higgs potential

is not significantly altered by the coupling of SM particles to the inflaton. Above the dotted, dashed

and solid gray lines, the Higgs fluctuations are exponentially suppressed for Higgs quartics λh,uv
larger than the indicated value. The inset shows the running of the Higgs quartic λh,uv as a function

of the RG energy scale, and its dependence on the uncertainty of the measurement of the top quark

mass at the LHC (see [53] for the reference values for mt).). The green solid line corresponds the

central value while the blue dashed and the red dotted lines show the ±2σ contours.
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A Calculation of the squeezed non-Gaussianity

In this appendix we show in some detail our estimate of the non-Gaussianity in the squeezed

limit. The outline of the calculation and the notation closely follow ref. [48], with some

differences in the late time expansion of the fermion wavefunctions and in the final result

for fNL.

A.1 In-in formalism

The calculation of correlation functions in cosmology requires a different treatment with

respect to the familiar one of quantum field theory. The key differences are that we usu-

ally want to compute correlation functions of fields evaluated at a fixed time, and not at

asymptotically large times. Also the Hamiltonian describing the field fluctuations depends

on time, because of the time dependence of the background fields. Finally, the condition

on the fields are imposed at very early times when (in the inflationary context) the rel-

evant modes are well within the Hubble radius and we recover the standard solutions in

Minkowski space.

We refer to [71–73] for a detailed treatment of the in-in formalism and references to

the original literature. We collect here just some relevant formulæ to set the stage for the

remainder of the calculation.

The expectation value for an operator Q(τ) built out of the fields of the model evaluated

at a time τ can be computed as [71, 72]

〈Q(τ)〉 =
〈
Ω
∣∣∣
[
T exp

(
i

∫ τ

τ0

HI(τ
′)dτ ′

)]
QI(τ)

[
T exp

(
−i
∫ τ

τ0

HI(τ
′′)dτ ′′

)] ∣∣∣Ω
〉

(A.1)

where QI and HI are the operator Q and the Hamiltonian in the interaction picture, |Ω〉
is the vacuum state at an early time τ0, and T , T denote the time- and anti-time-ordering

operators.

The expectation value can be equivalently formulated in terms of a path integral. If we

denote the fields ϕ of the Lagrangian L with a subscript ⊕ and ⊖ (standing respectively

for +1 and −1, and also denoted generically by a so called in-in index ai) depending on

whether the fields should be time- or anti-time-ordered (that is, depending on which of

the two time evolution operators in eq. (A.1) the fields come from), one can rewrite the

expectation value through functional derivatives of a generating functional [73]:

Z[J⊕, J⊖] =
∫

Dϕ⊕Dϕ⊖ exp

[
i

∫ τf

τ0

dτ ′d3x (L [ϕ⊕]− L [ϕ⊖]) + J⊕ϕ⊕ − J⊖ϕ⊖

]
(A.2)

〈ϕa1(τ, ~x1) · · ·ϕan(τ, ~xn)〉 =
δ

ia1δJa1(τ, ~x1)
· · · δ

ianδJan(τ, ~xn)
Z[J⊕, J⊖]

∣∣∣
J⊕=J⊖=0

. (A.3)

Within the usual perturbative treatment, we expand the exponential of the action and we

keep the leading order terms. Each occurrence of the action leads to a vertex carrying a time

integral, which will have to be eventually performed in the calculation of the expectation

value. Any vertex is characterized by a given in-in index a, and the final answer requires us

to sum over a = +1, −1. We refer the reader to [73] for a more comprehensive exposition

of Schwinger-Keldish diagrammatic calculations.
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Figure 8. Feynman diagrams showing the main contributions to the 3-point function for the

inflaton. The inflaton and fermion lines highlighted in red (blue) highlight the hard (resp. soft)

momenta in the squeezed limit.

A.2 Fermion loop amplitude

The main contribution to 3-point function of the inflaton comes from loop diagrams with

the exchange of a SM fermion. The two contributing diagrams are shown in figure 8.

We denote with a white square the inflaton field evaluate at late times (on the τ = 0

hypersurface in figure 4), and with a hatched circle the vertices, to understand the sum

the two contributions for each value of the in-in index associated to the vertex. We denote

in-in indices by a, b = ±1 and ⊕,⊖, in order to distinguish them from the fermion helicity

indices a, b = ±1.

Vertices. The relevant terms involving the fermions fields in the Lagrangian density are

(in four-component notation)

L =
√−g

[
f̃ii /Df̃i −mf̃if̃i −

cfi
Λf

f̃i( /Dφ)γ5f̃i

]
, (A.4)

where /D = ∂µe
µ
aγa (we understand the gauge covariant derivative) and eµa is the vierbein

connection. Specialising to de Sitter metric (which corresponds to the background metric

during inflation up to corrections suppressed by the slow-roll parameters), we have
√−g =

a4, /D = a−1∂µδ
µ
aγa. After performing the redefinition fi = a3/2f̃i to factor out the dilution

of the fermion wavefunction due to the spacetime expansion, we get

L = fi iγ
µ∂µfi − (am) fifi −

cfi
Λf

∂µφ fiγ
µγ5fi . (A.5)

The interaction term, when evaluated on the inflaton background, gives 1
Λf
∂µφ = 1

Λf
∂τφ δµ0

= aλ δµ0 where λ = φ̇/Λf .

The interaction vertex appearing in the two diagrams in figure 8 is

− cfi
Λf

∂µφ fiγ
µγ5fi (A.6)

in four-component spinor notation, or cfi/Λf ∂µφ (f
†
L,iσ

µfL,i+f
†
R,iσ

µfR,i) in two-component

spinor notation where fi =

(
fL,i
f †R,i

)
. In the remainder of this appendix we work in the two-

component notation.
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For the calculation of these Feynman diagrams we incorporate the derivative into the

inflation field. Each vertex carries then a factor

(ai)

∫ 0

−∞
dτ

cfi
Λf

σµα̇α (A.7)

where a = ±1 is the in-in index related to the whether the vertex comes from the time

or anti-time ordered product. From now on, we set cfi = 1; it can be easily restored by

replacing each occurrence of 1/Λf by cfi/Λf .

External inflaton lines. The correlator of the inflaton field ∂µφ from each vertex with

the same field evaluated at late times τ = 0 is computed by taking the derivative of the so

called boundary-to-bulk correlator Ga(~k, τ) = 〈φ(∗)(τ,~k)φ(0,~k)〉, where the in-in index a

(with the evaluation of φ for a = +1 and φ∗ for a = −1) distinguishes whether the vertex

comes from the time or anti-time ordered product:

Ga(~k, τ) =
H2

2k3
(1− iakτ)eiakτ , (A.8)

where a = ±1. Then for each external leg with Lorentz index µ and in-in index a we get

the following function:

Fµa(~k, τ) =

(
∂τGa

i~kGa

)
=
H2

2k3

(
k2τ

i~k(1− iakτ)

)
eiakτ (A.9)

Fermion loop. Let us fix the notation for the fermion wavefunction, postponing a more

detailed discussion about the solution to section A.3. We switch to the two-component

notation, denoting both fL,i and fR,i by ψ, and we expand ψ into eigenfunctions of the

3-momentum,

ψα(τ, ~x) =

∫
d3k

(2π)3

∑

s=±1

[
ξα,s(τ,~k)as(~k)e

i~k·~x + χα,s(τ,~k)a
†
s(
~k)e−i~k·~x

]
, (A.10)

where α is a spinor index and s the helicity index, as and a†s are the annihilation and

creation operators satisfying [as(~k), a
†
s′(
~k′)] = (2π)3δs s′ δ

(3)(~k−~k′). We denote the positive

and negative frequency components of the fermion ψ by ξ and χ, with respective mode

functions us and vs (we define v through χ† so that both u and v have positive energy)

and helicity eigenstate spinors hα,s:

ξα,s(τ,~k) =
∑

s=±1

us(kτ)hα,s(~k) ,

χ† α̇
s (τ,~k) =

∑

s=±1

vs(kτ)h
† α̇
s (~k) .

(A.11)

The normalisation condition for the helicity eigenfunctions are

~σ · ~k hs(~k) = sk hs(~k) , h†s(~k)hs′(~k) = δs s′ ,
∑

s=±1

hs(~k)h
†
s(
~k) = 1 , (A.12)
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and are satisfied by the following expressions for hs(~k) where ~k = k(sin θ cosφ, sin θ sinφ,

cos θ):

h+(~k) =

(
cos θ

2

eiφ sin θ
2

)
, h−(~k) =

(
−e−iφ sin θ

2

cos θ
2

)
. (A.13)

We postpone to section A.3 a derivation of the fermion mode functions u±, v± and dis-

persion relations. The propagators appearing in the amplitude associated to the diagrams

in figure 8 are of the type 〈fα(τ1, ~k)f †β̇(τ2,~k)〉. We denote them by D β̇
abα (~k, τ1, τ2) and

take the following form depending on the in-in indices a, b associated to the two fermion

functions. If the two fields come both from the time or anti-time ordered product, then an

Heaviside function enforces the ordering.

D β̇
⊕⊕α (~k, τ1, τ2) = ξα(τ1, ~k)ξ

†β̇(τ2, ~k)θ(τ1 − τ2)− χ†β̇(τ2, ~k)χα(τ1,~k)θ(τ2 − τ1)

D β̇
⊕⊖α (~k, τ1, τ2) = −χ†β̇(τ2,~k)χα(τ1, ~k)

D β̇
⊖⊕α (~k, τ1, τ2) = ξα(τ1, ~k)ξ

†β̇(τ2, ~k)

D β̇
⊖⊖α (~k, τ1, τ2) = −χ†β̇(τ2,~k)χα(τ1,~k)θ(τ1 − τ2) + ξα(τ1, ~k)ξ

†β̇(τ2, ~k)θ(τ2 − τ1)

(A.14)

The two diagrams shown in figure 8 give the two following fermion traces (we include here

the Pauli matrices coming from each vertex in eq. (A.7))

T
µνρ
abc

=− tr
[
σµα̇αD

abαβ̇(~p12, τ1, τ2)σ
νβ̇βDbcβγ̇(~p23, τ2, τ3)σ

ργ̇γDcaγα̇(~p31, τ3, τ1)
]

− tr
[
σµα̇αDacαγ̇(−~p31, τ1, τ3)σργ̇γDcbγβ̇(−~p23, τ3, τ2)σ

νβ̇βDbaβα̇(−~p12, τ2, τ1)
]

(A.15)

Final amplitude. We can finally write down the full expression for the fermion loop

contribution to the three-point function:
〈
δφ(~k1)δφ(~k2)δφ(~k3)

〉
= (A.16)

∑

a,b,c=±1

abc

(
i

Λ

)3 ∫∫∫ 0

−∞
dτ1dτ2dτ3Fµa(~k1, τ1)Fνb(~k2, τ2)Fρc(~k3, τ3)

∫
d3q

(2π)3
T

µνρ
abc

,

where the external lines Fµa and the fermion trace T
µνρ
abc

are defined in eq. (A.9) and (A.15),

and ~q ≡ ~p12.

A full analytical solution to the time and momentum integrals in eq. (A.16) is not

possible, due to complicated form of the fermion wavefunctions. In the next sections we

discuss the relevant approximations that allow us to obtain an estimate of this contribution

in the squeezed limit k1, k2 ≫ k3 and λ≫ m.

A.3 Fermion mode functions and dispersion relations

We derive now the equations of motion and their solution for the fermions. Starting from

the Lagrangian density in eq. (A.5) evaluated on the inflaton background,9 and defining the

9For this section, and in particular for the derivation of the fermion mode functions, we write the

inflaton coupling to the fermions as aφ̇/Λf = aλ to highlight the time dependence, whereas for the rest of

the computation we write it in terms of the conformal time ∂τφ to directly compute the external inflaton

lines Fµa.

– 22 –



J
H
E
P
0
1
(
2
0
2
0
)
1
0
5

mode functions as in eqs. (A.10) and (A.11), we obtain the following equations of motion

for us and vs:
iu′± + (±k − aλ)u± = amv±

iv′± − (±k − aλ)v± = amu±
(A.17)

These equations can be rewritten into two separate second order differential equations for

u and v:
u′′± − aHu′± +

[
(k ∓ aλ)2 + a2m2 ± iaHk

]
u± = 0 ,

v′′± − aHv′± +
[
(k ∓ aλ)2 + a2m2 ∓ iaHk

]
v± = 0 ,

(A.18)

where ′ denotes derivatives with respect to conformal time τ , and H = a′ = ȧ/a where ˙

denotes a derivative with respect to cosmic time t. These equations of motion show explic-

itly the dispersion relation introduced and discussed in eq. (3.6) in section 3.2 (obtained in

the approximation λ,m≫ H). Their solutions are given by the Whittaker functions W :

u+(kτ) =
m̃ eπλ̃/2√
−2kτ

W− 1

2
−iλ̃,iµ̃

(2ikτ) , v+(kτ) =
i eπλ̃/2√
−2kτ

W
+ 1

2
−iλ̃,iµ̃

(2ikτ) ,

u−(kτ) =
i e−πλ̃/2

√
−2kτ

W
+ 1

2
+iλ̃,iµ̃

(2ikτ) , v−(kτ) =
m̃ e−πλ̃/2

√
−2kτ

W− 1

2
+iλ̃,iµ̃

(2ikτ) ,

(A.19)

we remind the reader that dimensionless parameters with a tilde are defined as:

m̃ = m/H, λ̃ = λ/H, µ̃ =

√
m̃2 + λ̃2. (A.20)

We collect here some useful formulæ to treat the late time expansion of the Whittaker

functions (see e. g. [74]). There is a connection formula between the Whittaker functions

W and M ,

Wκ,µ(z) =
Γ(2µ)

Γ(12 + µ− κ)
Mκ,−µ(z) + (µ↔ −µ) . (A.21)

A useful formula to expand the Whittaker functions M around z = 0 for −2µ /∈ N (which

is always the case for us) is

Mκ,µ(z) = e−
1

2
zz

1

2
+µ

∞∑

n=0

(12 + µ− κ)s

(1 + 2µ)s s!
zs = e−

1

2
zz

1

2
+µ

(
1 +

1
2 + µ− κ

1 + 2µ
z + . . .

)
, (A.22)

where (a)s = Γ(a+s)/Γ(a) is the Pochhammer symbol. We have written the first subleading

term in the expansion around z = 0 because we want to check the goodness of the late

time expansion up to −kτ . µ̃, which is the relevant range for one of the time integrals in

our calculation. Some properties of the Gamma functions will be useful:

Γ(1 + ia) = iaΓ(ia) , |Γ(±iµ)| µ→∞→ 1√
|µ|
e−π|µ|/2 . (A.23)

From these equations, we can derive the late time expansion of the fermion mode functions,

in the limit of small kτ . We keep the first subleading term in the expansion, and we

underline the terms for which the leading term is not a good approximation for −kτ . µ̃ in
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the limit λ̃≫ m̃, but just until −kτ . 1. We also highlight the terms that are exponentially

suppressed in the limit λ̃≫ m̃ which is relevant for us.

u+(kτ)= m̃e−ikτeπλ̃/2e−
iπ
4

[
e−πµ̃/2Γ(2iµ̃)

Γ(1+i(µ̃+λ̃))
(−2kτ)−iµ̃

(
1+

1−i(µ̃−λ̃)
1−2iµ̃

2ikτ

)
+(µ̃↔−µ̃)

]

u−(kτ)= e−ikτe−πλ̃/2e
iπ
4

[
e−πµ̃/2Γ(2iµ̃)

Γ(i(µ̃−λ̃))︸ ︷︷ ︸
λ̃≫m̃→ e−3πλ̃/2

(−2kτ)−iµ̃

(
1+

−i(µ̃+λ̃)
1−2iµ̃

2ikτ

)
+(µ̃↔−µ̃)

]

v+(kτ)= e−ikτeπλ̃/2e
iπ
4

[
e−πµ̃/2Γ(2iµ̃)

Γ(i(µ̃+λ̃))
(−2kτ)−iµ̃

(
1+

−i(µ̃+λ̃)
1−2iµ̃

2ikτ

)
+(µ̃↔−µ̃)

]

v−(kτ)= m̃e−ikτe−πλ̃/2e−
iπ
4

[
e−πµ̃/2Γ(2iµ̃)

Γ(1+i(µ̃−λ̃))︸ ︷︷ ︸
λ̃≫m̃→ e−3πλ̃/2

(−2kτ)−iµ̃

(
1+

1−i(µ̃+λ̃)
1−2iµ̃

2ikτ

)
+(µ̃↔−µ̃)

]

(A.24)

We’ll comment about the underlined terms in section A.5, when discussing how in our limit

λ̃ ≫ m̃ the time integral over τ3 selects only terms for which the early time expansion is

valid up to −kτ . µ̃.

A.4 Approximation for the momentum loop

A full solution to the momentum and time integrals in the amplitude of eq. (A.16) is very

hard. We now motivate an approximation for the loop momentum integrals that allow us

to perform the time integrals in the next section.

Looking at figures 4 and 8, we can see that the vertex at the early time τ3 involves a soft

inflaton leg with momentum k3, and two fermions which give the largest contribution to the

signal when they have a momentum p23τ3 ∼ p31τ3 ∼ λ̃ yielding a soft frequency of order m.

The integration over τ3 is dominated by k3τ3 ∼ λ̃ (as we will see in next section), so that the

larger contribution to the 3-point function comes from configurations where p23 ∼ p31 ∼ k3.

We draw them accordingly with the same blue color in the Feynman diagrams.

The two produced fermions are then redshifted, and due to the dispersion relation (3.6)

they quickly increase their energy to ω ∼ µ. Thus the vertices at late times involve a

hard momentum exchange (the inflaton legs have a standard dispersion relation), and the

momentum flowing along the third fermion line is of order p12 ∼ k1 ∼ k2 (shown in red

in the Feynman diagrams). We approximate therefore the corresponding propagator with

the one in flat space.

We can finally write down an explicit parametrization for the internal momenta. We

choose the following orientation for the momenta ~ki (the orientation of ~k3 is not important

for the result):

~k1 = (0, 0, k1) , ~k2 ∼ −~k1 = (0, 0,−k1) , ~k3 = (0, 0, k3) . (A.25)
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The internal momenta satisfy the conditions ~q ≡ ~p12 = ~k1+~p23 and ~p31−~p23 = ~k3, and the

most relevant regime for the fermion production is |~p23| ∼ |~p31| ∼ |~k3|, so that the three

vectors ~p31, ~p23, ~k3 approximately form an equilateral triangle and ~p12 ∼ k1:

~p12≃ (0,0,k1) , ~p23≃ k3

(√
3

2
cosφ,

√
3

2
sinφ,−1

2

)
, ~p31≃ k3

(√
3

2
cosφ,

√
3

2
sinφ,

1

2

)
.

(A.26)

This configuration is roughly obtained when ~p31 spans an annulus of radius and height of

order k3, so that we approximate the momentum integral to

∫
d3q

(2π)3
≃ k33

(2π)3

∫ 2π

0
dφ . (A.27)

A.5 Time integrals

We have now all the ingredients to perform the calculation of the amplitude (A.16). The

first step is computing the trace and the integral over φ, leaving us with the time integrals

over τ3, τ2, τ1 (where τ3 < τ2, τ1).

The integrals are dominated by times of order −kiτi ∼ µ̃, and this can be shown as

follows. Let us denote xi ≡ kiτi for i = 1, 2, 3. Each time integral includes an exponential

e±ixi from the external lines in eq. (A.9), together with a possible factor of xi. At early

times, the Whittaker functions in the fermion mode functions go to zero and the integral

does not receive a sizable contribution. We can then perform a late time expansion as in

eq. (A.24), and we get a term (−xi)±iµ̃ (and an exponential e−ixi that we leave aside for a

moment, since it does not affect this argument). The oscillating integral

∫ 0

−∞
e±ixi(−xi)±iµ̃dxi (A.28)

can be related to Γ-functions by a contour integral. When the two signs are opposite, the

integral is exponentially suppressed by e−πµ compared to when the signs are the same. We

can also see from here how the oscillating feature (k3/k1)
±2iµ̃ emerges from the calculation.

The fermion propagators for the soft lines involve fermion mode functions like u±(k3τ1,2)
which in the late time limit contain factors (k3τ1,2)

±iµ̃. When writing the integral in

dimensionless variables xi = kiτi, a term (k3/k1)
±iµ̃ is left. We obtain one such factor for

both the integrals over τ1 and τ2. The physical interpretation of this factor as related to

the propagation of the two fermions was illustrated in section 3.1.

Returning back to the exponential e−ikτ in the fermion functions (A.24), this is

negligible for the mode functions involving late times, u±(k3τ1,2), v±(k3τ1,2), because

k3τ1 =
k3
k1
(k1τ1) ∼ k3

k1
µ̃≪ µ̃. It plays a role though in the integral over τ3 for the mode

functions u±(k3τ3), v±(k3τ3), in order to have an expansion reliable up to −k3τ3 . µ̃.

This aspect was not considered in [48], and constitutes the difference between our results

(whereas we have closely followed their procedure in the rest of the calculation). When

considering the integral over τ3, the largest contributions come from the pieces containing
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either10 e−ik3τ3u+(k3τ3)v+(k3τ3) or e
+ik3τ3u∗+(k3τ3)v

∗
+(k3τ3). In both cases, the dominant

terms in the expansion (A.24) are the ones containing (−k3τ3)−iµ̃, where the sign in the

exponent agrees with the sign in the exponential e−3ik3τ3 . The mode functions u−(k3τ3),
v−(k3τ3) do not contribute, because their prefactor of (−k3τ3)−iµ̃ is exponentially sup-

pressed for large λ̃ ≫ m̃. In conclusion, we need to perform the two following integrals

over x3 = k3τ3 (together with their conjugates):

∫ 0

−∞
dx3 u+(x3)v+(x3)e

−ix3 = c3 , (A.29)

∫ 0

−∞
dx3 u+(x3)v+(x3)e

−ix3(ix3) = c3 ·
1

3
(1− 2iµ̃) , (A.30)

c3 =

[
meπ(λ̃−µ̃)Γ2(2iµ̃)

Γ(1 + i(µ̃+ λ̃))Γ(i(µ̃+ λ̃))

](
9

4

)iµ̃ i

3
eπµ̃Γ(1− 2iµ̃) . (A.31)

We notice that the factor in squared brackets in c3 tends to exp
(
−2π(µ̃−λ̃)

)
∼exp

(
−πm̃2/λ̃

)

in the limit m̃2/λ̃ → ∞. This leads to the final exponential factor in fNL in the afore-

mentioned limit, which was to be expected from the arguments exposed in section 3.1. We

also observe that the integral in eq. (A.30) has an enhancement of µ̃ with respect to the

integral in (A.29), and gives the leading contribution.

The remaining integrals in τ1, τ2 involve similar integrals as the ones collected in

eq. (A.29) and (A.30):

∫ 0

−∞
dx1 (−2x1)

−iµ̃e−ix1 = 2−iµ̃ieπµ̃/2Γ(1− iµ̃) , (A.32)

∫ 0

−∞
dx1 (−2x1)

−iµ̃e−ix1(ix1) = 2−iµ̃ieπµ̃/2Γ(1− iµ̃) · (1− iµ̃) . (A.33)

We have now all the ingredients to perform the calculation of the amplitude. In the final

expression, the dominant term in the limit λ̃→ ∞ turns out to scale as λ̃2m̃3, in agreement

with the expectations of section 3.1, and contains an oscillating phase (k3/k1)
−2iµ̃.

We can finally convert the 3-point function of the inflaton fluctuations δφ into the

observable shape S(k1, k2, k3)

〈
ζ(~k1)ζ(~k2)ζ(~k3)

〉
= (2π)3δ3

(
~k1 + ~k2 + ~k3

)〈
ζ(~k1)ζ(~k2)ζ(~k3)

〉′
, (A.34)

〈
ζ(~k1)ζ(~k2)ζ(~k3)

〉′
=

(2π)4P2
ζ

k21k
2
2k

2
3

S(k1, k2, k3) (A.35)

of the 3-point function of the curvature perturbation ζ, which in the flat gauge can be

written as ζ = −Hδφ/φ̇.
The final result that we obtain for the contribution to the squeezed shape from one

SM fermion (accounting for two chiralities, and the respective color factor Nc) is, up to a

10The enhancement of a particular helicity (in this case s = +1) is related to the sign of the inflaton

coupling to fermions λ = φ̇/Λf , which acts as a chemical coupling favouring the production of a given

helicity mode.
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constant phase,

S(k1,k2,k3)=
k41k

2
3

(2π)4P2
ζ

〈
ζ(~k1)ζ(~k2)ζ(~k3)

〉′
=

k41k
2
3

(2π)4P2
ζ

(
H

φ̇

)3〈
δφ(~k1)δφ(~k2)δφ(~k3)

〉′
=

λ≫m
k3≪k1∼k2≃ Nc

6π
P−1/2
ζ

(
m

Λf

)3

λ̃2
µ̃eπλ̃Γ(−iµ̃)2Γ(2iµ̃)3

2πΓ
(
i(µ̃+λ̃)

)3
Γ
(
1+i(µ̃−λ̃)

)
(
k3
k1

)2−2iµ

(A.36)

The second to last term in eq. (A.36) tends to exp
(
−2π(µ̃− λ̃)

)
∼ exp

(
−πm̃2/λ̃

)
in the

limit λ̃→ ∞, m̃2/λ̃→ ∞.

B Higgs potential in the early universe

In the early universe, the Higgs potential changes in several ways. The main effect is that

the Higgs mass can be changed drastically, an effect not un-related to the Electroweak Hier-

archy problem. During inflation, higher dimensional operators, particle production, and a

non-minimal coupling to gravity can all change the Higgs mass in an inflating background.

During reheating, thermal corrections are crucial in bringing the Higgs field back to the

electroweak minimum. In this appendix, we discuss in more detail some of these effects.

B.1 Higgs potential during inflation

ξRH†H coupling. The Higgs Lagrangian in eq. (2.2) should include a non minimal

coupling of the Higgs to the Ricci scalar ξRH†H. The order of magnitude of ξ, due to

its RG flow, cannot be smaller than 10−2. We choose a sign convention such that during

inflation the contribution to the Higgs potential is Vh ⊃ −6ξH2h2. By adding this term to

the Lagrangian (2.2), the vev of the Higgs field h during inflation is

vuv=

√
4

3
λh,uvΛH

(
1

2
+
1

2

√
1+

36ξH2

λ2h,uvΛ
2
H

)1/2
=

√
4

3
λh,uvΛH

(
1+

9ξH2

2λ2h,uvΛ
2
H
+O

(
ξ2H4

Λ4
H

))
.

(B.1)

The impact of the non minimal coupling is small as long as

ξ <
λ2h,uvΛ

2
H

H2

eq. (2.9)
< 102

(
λh,uv
0.01

)(
H

6 · 1013GeV

)−1

. (B.2)

If ξ < − 1
36

λ2

h,uvΛ
2

H

H2 the positive mass removes the UV minimum; using eq. (2.9), this can

be rephrased as saying that the UV minimum is removed if ξ < −3
(

H
6·1013 GeV

)−1
(
λh,uv

0.01

)
.

Another effect of a large positive mass is that if ξ < −3/16 then the positive mass term is

large enough to damp the quantum fluctuations and the Higgs field would not move from

the origin during inflation.

If |ξ| & O(10), then the ξR term during preheating (when the inflaton rolls around the

minimum) switches from positive to negative values at each oscillation, and can source a

tachyonic instability for the Higgs [75]. Due to the assumption of instantaneous reheating,

as well as the large initial field value vuv, this issue is not important in our situation.
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In summary, we can identify the following regimes of interest for ξ:

1. ξ < −3/16: the Higgs is stabilized at the origin, making it more likely that the Higgs

is sitting at the origin instead of the UV minimum during inflation.

2. −3/16 < ξ . 102
(

H
6·1013 GeV

)−1
(
λh,uv

0.01

)
: the effect of the non minimal coupling is

small.

3. ξ & 102
(

H
6·1013 GeV

)−1
(
λh,uv

0.01

)
: vuv is brought to larger values, roughly at v

(ξ)
uv ≃

2ξ1/4
√
HΛH. Given the milder dependence on ΛH than eq. (2.3), in this case the

condition for the Higgs to be rescued by thermal effects becomes ΛH < ξ−1/2 · 2 ·
1017GeV.

For definiteness, we assume that we are dealing with the second case, in which ξ is irrelevant.

The third scenario of very large and positive ξ can be more naturally described as a direct

coupling between the Higgs and the inflaton.

Higgs inflaton coupling and particle production. The observability of the direct

couplings Oh1 and Oh2 between the Higgs and the inflaton is studied in subsection 3.3.

Here, we mainly discuss the effect of these operators on the Higgs potential.

Such direct couplings between the inflaton and the Higgs can be generated by inte-

grating out fermions who couple directly to the inflaton:

Oh1 ∝ −
∑
c2i y

2
iNc, i

16π2Λ2
f

(∂φ)2H†H. (B.3)

During inflation, this coupling would generate a correction to the Higgs potential propor-

tional to λ2 ∼ 102H2 ≫ H2 for the parameter space of interest to us. If the ci couplings are

of comparable size, the top quark dominates and the correction to the Higgs mass would

be µ2h ≈ −
(
y2t λ
π

)2
.

Another important effect comes from particle production during inflation. The observ-

able effects will be discussed in more detail in a companion paper [54]. The main effect

on the Higgs potential comes from the same fermion condensate discussed in section 3.1.

Unlike thermally produced particles, which generically lead to symmetry restoration, the

fermions produced through the inflaton coupling will generate a negative squared mass

term for the Higgs in the form of11

µ2h ≈ −y
2
i λ

2
iNc, i

π2
exp

[
−π(yih)

2

λiH

]
. (B.4)

Such a mass term, in the limit where λ≫ H, will induce a Higgs vev during inflation that

is of order
√
λH & H2, which is one of the many reasons why we study predominantly

the case where vuv ≫ H. This contribution is not important when we can see the signal

from the SM fermions lighter than the top quark. The case in which this term in the Higgs

potential is important is the subject of [54].

11We did not manage to compute the full integral in de Sitter space to reproduce the coefficient in front

of (yih)
2/λiH in the exponent, but since this exponential factor arises from the same particle production

suppression as in the case of the 3-point function of the inflaton, we expect the final result to be similar.
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B.2 Higgs dynamics during reheating

In this subsection, we discuss the Higgs dynamics after the universe reaches the maximal

temperature Tmax. In absence of a concrete model for inflation, we stay agnostic about

the mechanism that produces an instantaneous reheating, though it can easily be arranged

by a waterfall field that couples strongly to the SM sector in hybrid inflation models [76].

As explained in the main text, reheating generates a thermal bath of SM particles which

contribute to the Higgs potential with a thermal mass [55–63]

VT (h) ≃
1

2
κT 2 h2e−h/(2πT ) , (B.5)

where κ = 3
16g

2
2 +

1
16g

2
1 +

1
4y

2
t +

1
2λh is approximately 0.12. For Tmax & vuv, the exponential

factor is lifted and the UV minimum vuv of the Higgs potential disappears if

Tmax &

∣∣∣∣
λh,uv
κ

∣∣∣∣
1/2

vuv. (B.6)

For the small λh,uv ∼ O(10−2) at the energy scales relevant in this paper, this is automat-

ically satisfied when Tmax & vuv. This is the condition shown in figure 3 as a constraint on

the parameter space (infering the relation between H and Tmax by assuming instantaneous

reheating).

After the temperature of the SM bath has reached Tmax, the Higgs field starts to

oscillate around h = 0 while the amplitude of the oscillations decreases due to the Hub-

ble friction and interactions with the SM thermal bath [55]. The Higgs field redshifts

like radiation both when the potential is dominated by the thermal correction, and when

the field value is small enough that the quartic coupling is positive and dominates the

Higgs potential. In both cases, the ratio between the amplitude of the Higgs oscillation

and the temperature of the thermal bath remains constant, which ensures that the Higgs

background finally lands in the electroweak minimum.

The Higgs oscillation amplitude also decreases as a result of its interaction with the SM

bath or simply the decay into lighter particles. This decay of the amplitude of the Higgs

field is dominated by its interaction with the electroweak gauge bosons in the thermal bath.

The rate Γh can be found to be [55]

Γh =
3g42T

2

256πmT
≈ 10−3T (B.7)

where m2
T = κT 2 is the thermal mass of the Higgs. This rate becomes faster than the

Hubble rate soon after reheating, so that the amplitude of the oscillations of the Higgs

background decays very quickly and the Higgs sits at the electroweak minimum soon after

reheating.

C Inflaton couplings and two point function

In this appendix, we discuss the relation between the couplings ci of the inflaton to the SM

fermions from a UV perspective, assessing the implications for the 2-point function of the
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SU(3) SU(2) U(1)Y U(1)B−L U(1)′

Q =

(
u

d

)
3 2 1

6 +1
3

1
6 cos θ +

1
3 sin θ

uc 3 1 −2
3 −1

3 −2
3 cos θ − 1

3 sin θ

dc 3 1 1
3 −1

3
1
3 cos θ − 1

3 sin θ

L =

(
ν

e

)
1 2 −1

2 −1 −1
2 cos θ − sin θ

ec 1 1 1 +1 cos θ + sin θ

Table 1. Charges of the SM fermions content under U(1)′ ≡ (cos θU(1)Y + sin θU(1)B−L) in two

component spinor notation.

inflaton. We also summarize some other consistency conditions that the parameters need

to satisfy.

In principle, the inflaton can couple to each individual SM fermion independently, in

the form of

L ⊃ ∂µφJ
µ
φ = ∂µφ

∑

Fi

cFi

Λf
F †
i σ

µFi , (C.1)

where Fi = Q, uc, dc, L, ec are the SM fermions in two component notation with charges

under the SM gauge group collected in table 1. However, if the current Jµ
φ corresponds to

a U(1) symmetry that is anomalous, either the SM gauge group is broken, or the inflaton

φ would receive a UV sensitive correction to its kinetic term from the 3-loop diagram

c2Fi

16π2

(
g2j

16π2

)(
g2k

16π2

)(
Λ∗
Λf

)2

(∂φ)2 , (C.2)

where gj and gk are SM gauge couplings. This is analogous to the minimal mass gauge

bosons receive if the symmetry is anomalous [77]. Such a contribution can change the

dynamics of the inflaton if the ratio between the cutoff Λ∗ and the scale Λf is significant.12

The absence of an anomaly also ensures that there is no significant production of gauge

bosons through the coupling φ
ΛG
GG̃.

The only universal (i. e. flavour independent) anomaly-free U(1) extensions of the

Standard Model are U(1)Y and U(1)B−L and their linear combinations U(1)′. The charges
of the SM fermions under U(1)′ are given in table 1, while the corresponding coefficients

of the vector and axial vector currents for the fermions are reported in table 2. The choice

we made in the main text of the paper where all ci’s are identical up to a sign for each

individual family, is, as a result, a point that is preferred by UV considerations.

In the end, let us comment on the effect of the fermion density on the motion of

the inflaton. The fermion density induces a correction to the equation of motion for the

12In reality, this might simply mean that there cannot be too much axion monodromy [78] or clock-

working [79], which is not necessarily a requirement.
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SM fermion f Vector current Axial current

up quarks 5
12 cos θ +

1
3 sin θ

1
4 cos θ

down quarks − 1
12 cos θ +

1
3 sin θ −1

4 cos θ

leptons −3
4 cos θ − sin θ −1

4 cos θ

Table 2. Coefficients of the vector and axial vector bilinear currents for the SM fermions f

(in four component notation). The coefficients cV (vector) and cA (axial) are obtained from the

coefficients of the left handed (cL) and right handed (cR) fermions in the SM via cLPL + cRPR =
cL+cR

2
+ −cL+cR

2
γ5 ⇒ cV = cL+cR

2
, cA = −cL+cR

2
.

inflaton [49]:

φ̈+ 3Hφ̇ = −V ′(φ) +
cfimfi

Λf
fγ5f (C.3)

In order for the fermions to not significantly affect the dynamics of the inflaton, the fol-

lowing requirement needs to be satisfied

Hφ̇ &
cfimfi

Λf
fγ5f ≈

cfim
2
fi
λ2i

Λf
exp[−πm2

fi
/λiH], (C.4)

which is equivalent to the requirement

c2fi

(
cfi φ̇

Λ2
f

)2(
m2

fi

λiH
exp[−πm2

fi
/λiH]

)
. 1 (C.5)

This is easily satisfied as both terms in brackets are smaller than 1.

One additional worry regarding the fermion density is the annihilation of the fermions

into massless gauge bosons or lighter fermions right when they are produced. Annihi-

lations into massless gauge bosons or fermions with a normal dispersion relation can

only happen between fermions whose spatial momenta are nearly opposite with modu-

lus |~k| ≈ λ ≫ m. Therefore, the annihilation rate is O(g4im/4π), much smaller than the

Hubble expansion rate.

Similarly, annihilations into lighter SM fermions with a dispersion similar to the one

of the annihilating fermions has a cross section

σ ∼ g4i

4π(~k1 − ~k2)2
≈ g4i

4πλ2
(C.6)

if the fermions were not exactly back to back. This suggest an annihilation rate into light

fermions similar to the one into gauge bosons, and therefore should also be negligible. In re-

ality, since the lighter fermions that the heavy fermions can annihilate to are likely also pro-

duced with a high density, Fermi-blocking can forbid this annihilation entirely, for the same

reason why the t-channel scattering of fermions cannot thermalize a Fermi-degenerate gas.
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