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The rapid advance of DNA sequencing technologies has yielded databases of thousands
of genomes. To search and index these databases effectively, it is important that we
take advantage of the similarity between those genomes. Several authors have recently
suggested searching or indexing only one reference genome and the parts of the other
genomes where they differ. In this paper, we survey the 20-year history of this idea and
discuss its relation to kernelization in parameterized complexity.
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1. INTRODUCTION
The Human Genome Project took 13 years and three billion dol-
lars to sequence a human genome, but the latest next-generation
sequencing methods take only a few days and a few thousand dol-
lars. With these methods, initiatives such as the 1000 Genomes
Project and the 100,000 Genomes Project are now feasible.
Advances in sequencing have far outstripped advances in computer
processors and random-access memory, however, so it is increas-
ingly challenging to make use of the data available. For example,
while modern aligners can easily hold in memory the index for
approximate pattern matching on a single human genome, they
cannot handle thousands of human genomes. Schneeberger et al.
(2009) proposed that we index the common parts of the genomes
only once for them all, but we index the parts near variation sites
for each genome. Ferrada et al. (2014b) suggested indexing the
parts of all the genomes near boundaries between phrases in the
LZ77 parse of the database. This is more general and may give bet-
ter compression but requires the LZ77 parse, which is difficult to
compute when the database does not fit in memory. Wandelt et al.
(2013) proposed using a modified parse in which phrases must
occur in a reference genome, which is easier to compute. (When
papers have appeared in journals we cite those versions, although
their chronological order may differ from that of previous ver-
sions.) Danek et al. (2014) recently showed that with this general
approach we can store an index for approximate pattern matching
on the database from the 1000 Genomes Project, in the memory of
a commodity personal computer. This has so far not been possible
with competing approaches, as surveyed by Vyverman et al. (2012).

When we are not given an upper bound on the pattern length,
we can use one of the competing indexes that does not require such
a bound or we can scan, with an online pattern-matching algo-
rithm, the reference genome, and the parts of the other genomes
near phrase boundaries. Wandelt and Leser (2012) and Rahn et al.

(2014) proposed the latter idea specifically for approximate pattern
matching in genomic databases, but the general approach has a 20-
year history in the field of compressed pattern matching. In this
paper, we survey that history and relate it to current research: in
Section 2 we discuss some relevant data compression schemes and
how they have been augmented to support fast random-access
reading; in Section 3 we discuss how they have been used to speed
up pattern-matching; in Section 4 we discuss how they have been
used in compressed indexing. While writing this survey, we real-
ized that scanning or indexing only parts of the database and then
mapping the solution for those parts onto a solution for the whole
database, is like kernelization in parameterized complexity (We
note that kernels in parameterized complexity bear no relation
to operating system kernels nor to kernels in machine learning.).
We emphasize this perspective because we feel that computing a
pattern-matching kernel is an interesting problem in itself, regard-
less of how we process it later, and deserving of further study. Of
course, the nature and even the existence of the kernel depend on
the problem we are trying to solve.

2. COMPRESSION WITH RANDOM-ACCESS READING
In general, the best compression of highly repetitive datasets is
achieved with the LZ77 algorithm by Ziv and Lempel (1977).
Suppose S[1, . . ., n] is a string with S[n]= $, which is an end-
of-file symbol that does not occur elsewhere in S. LZ77 works
by parsing S into phrases such that, for each phrase S[i, . . ., j],
S[i, . . ., j − 1] occurs in S[1, . . ., j − 2] but S[i, . . ., j] does not
occur in S[1, . . ., j − 1]; that phrase is stored as a triple consist-
ing of a pointer to S[i, . . ., j]’s first occurrence in S (which is called
the phrase’s source), j − i, and S[j]. The LZ77 encoding of S takes
O (z log n) bits, where z is the number of phrases in the parse.
For example, in the following verses vertical lines indicate phrase
boundaries:

www.frontiersin.org February 2015 | Volume 3 | Article 12 | 1

http://www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://www.frontiersin.org/Bioengineering_and_Biotechnology/about
http://www.frontiersin.org/Journal/10.3389/fbioe.2015.00012/abstract
http://www.frontiersin.org/Journal/10.3389/fbioe.2015.00012/abstract
http://www.frontiersin.org/people/u/154925
http://loop.frontiersin.org/people/209487/overview
mailto:travis.gagie@cs.helsinki.fi
http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gagie and Puglisi Searching and indexing

9|9-|b|o|t|tl|e|s|-o|f|-be|er|-on|-t|h|e-|w|a|ll|-9|9-bottles-of-beer-
I|f-o|n|e-o|f-t|ho|se|-bottles-s|hou|ld|-h|ap|pe|n-to|-f|all-
98|-bottles-of-beer-on-the-wall-

98|-bottles-of-beer-on-the-wall-98-bottles-of-beer-
I|f-one-of-those-bottles-should-happen-to-fall-
97|-bottles-of-beer-on-the-wall . . .

(We have displayed the verses with linebreaks to increase read-
ability, but we have not considered them while computing the
parse.) Although these verses may be annoyingly similar by the
standards of natural language, they are far less similar than human
genomes. Indeed, most repetitive biological datasets are much too
similar (as well as much too large) for us to use them as informative
examples.

One drawback of LZ77 compression is that reading a charac-
ter in a compressed string can be very slow. Rytter (2003) and
Charikar et al. (2005) showed how we can turn that parse into a
balanced straight-line program (SLP) for S with O (z log n) rules.
An SLP for S is a context-free grammar in Chomsky normal form
that generates S and only S; it is balanced if the height of each
subtree in the parse tree is logarithmic in that subtree’s size. It
follows from Rytter’s and Charikar et al.’s results that we can store
S in O (z log2 n) bits and support random-access reading of any
substring of S with length l in O (log n+ l) time. Verbin and Yu
(2013) showed that this is nearly optimal in the worst case. Bille
et al. (2011) showed how, given even an unbalanced SLP for S with
r rules, we can store S in O (r log n) bits and support random-
access reading in O (log n+ l) time. Rytter’s, Charikar et al.’s, and
Bille et al.’s constructions are not practical, but there are practical
grammar-based compressors, such as those by Larsson and Mof-
fat (1999) and Maruyama and Tabei (2014). As far as we know,
block graphs by Gagie et al. (2011) and Gagie et al. (2014c) are the
most practical grammar-like representations for random-access
reading. The LZ78 algorithm by Ziv and Lempel (1978) does not
compress repetitive datasets as well as LZ77, but the LZ78 encoding
of S can easily be augmented to support random-access reading in
O (log log n+ l) time. LZ78 also works by parsing S into phrases
but then each phrase must extend a previous phrase plus one char-
acter. Because of this property, the LZ78 encoding of S has� (

√
n)

phrases, even when S= an.
In the example above, the first verse contains many phrase

boundaries but the second verse contains only three. Kuruppu
et al. (2010) proposed that, given a set of similar strings (or one
string that can easily be divided into similar substrings), we store
the first string in plain text as a reference and compress the others
with a version of LZ77 that restricts phrases’ sources to occur in
the reference. They called this scheme Relative Lempel–Ziv (RLZ)
and showed it compresses genomic databases very well in prac-
tice (although it too uses� (

√
n) phrases, even when S= an) and

there are several implementations of this approach, such as those
by Deorowicz and Grabowski (2011), Kuruppu et al. (2012), and
Ferrada et al. (2014a). Even when there is no obvious reference,
Kuruppu et al. (2011) showed we can often build one by sam-
pling the dataset: intuitively, if a substring is common then it is
likely to appear in our sample, and if it is not then we lose little
by not compressing it well; this can be formalized using results
about SLPs.

3. SEARCHING
Farach and Thorup (1998) observed that the first occurrence of
any pattern P[1, . . . , m] in S must cross or end at a phrase bound-
ary in the LZ77 parse. Kärkkäinen and Ukkonen (1996) showed
how, if we already know the locations of P ’s occurrences in S that
cross or end at phrase boundaries, then we can deduce the loca-
tions of all its other occurrences from the structure of the parse. By
the same arguments, LZ78 also has these properties and (Karpin-
ski et al., 1997) simultaneously proved similar results for SLPs.
Bille et al. (2009) observed that any substring of S within edit dis-
tance k of P (i.e., any of P ’s approximate matches) has length at
most m+ k, and any such substring that does not cross or end at an
LZ78 phrase boundary must be an exact copy of an earlier one that
does. They gave an algorithm for approximate pattern matching
in LZ78 strings that works by extracting the m+ k and m+ k − 1
characters before and after each LZ78 phrase boundary, respec-
tively, using a technique similar to those discussed in Section 2;
scanning the resulting substrings with any online algorithm for
approximate pattern matching in uncompressed strings; and then
deducing the locations of the other approximate matches from the
structure of the parse.

Bille et al. (2011) extended this approach to show how we can
find all P ’s approximate matches in S from an SLP for S. Recently,
Gagie et al. (2014b) extended it further to show how we can pre-
process the LZ77 parse of S in O (z log n) time such that later,
given P and k, we can find all P ’s occ approximate matches in O (z
min(mk, m+ k4)+ occ) time. Their algorithm works by extract-
ing the m+ k and m+ k − 1 characters before and after each LZ77
phrase boundary, respectively, and then continuing as with the
algorithm by Bille et al. (2009). The set of substrings we extract is
like a kernel in parameterized complexity: the total length of the
substrings can be much smaller than n, but a solution on them can
quickly be mapped to a solution on all of S. For our example from
Section 2 with m= 4 and k = 1, the kernel is:

99-bottles-of-beer-on-the-wall-99-bo
eer-If-one-of-those-bottles-should-happen-to-fall-98-bot
ll-98-bot
eer-If-on
ll-97-bot . . .

If we want a kernel consisting of only a single string, we can
concatenate the substrings with k + 1 copies of $ between each
consecutive pair. Notice that if we are careful, we can avoid scan-
ning the fourth substring “eer-If-on,” since it occurs in the second
substring.

We do not wish to leave the impression that kernelization is
the only approach used in compressed pattern matching, nor even
that the papers mentioned above are the only ones that use it.
We have focused on those papers because we feel they are the
most relevant to the practical bioinformatics papers by Wandelt
and Leser (2012) and Rahn et al. (2014) mentioned in Section 1.
Those authors were apparently unaware of the field of compressed
pattern matching and re-invented kernelization specifically for
approximate pattern matching in genomic databases, with kernels
based on RLZ instead of LZ77, LZ78, or SLPs. This may be because
the earlier researchers using kernelization for pattern matching did
not perform convincing experiments on large enough datasets,
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publicize their ideas in interdisciplinary forums or implement
their ideas in tools usable by other scientists.

4. INDEXING
Kärkkäinen and Ukkonen (1996) gave the first LZ-based index,
which supported exact pattern matching and stored S separately
and uncompressed. They used Patricia trees and range reporting to
find a set of candidate matches crossing or ending at LZ77 phrase
boundaries; verified them by checking S; and then used more range
reporting to find the other matches. We can obtain various time-
space tradeoffs by compressing S and use the methods discussed
in Section 1 to extract the characters needed to verify candidate
matches. Claude and Navarro (2012) modified Kärkkäinen and
Ukkonen’s index to use a grammar-compressed encoding of S,
and Kreft and Navarro (2013) modified it to use the encoding of S
produced by a version of LZ77 they called LZ-End, which supports
fast random-access reads starting at phrase boundaries. Arroyuelo
et al. (2012) and Do et al. (2014) gave indexes based on LZ78 and
RLZ, respectively, and Maruyama et al. (2013) and Takabatake
et al. (2014) gave indexes based on the edit-sensitive parsing by
Cormode and Muthukrishnan (2007). Gagie et al. (2014a) recently
gave a version of Kärkkäinen and Ukkonen’s index that uses a total
of O (z log2 n) bits and returns the locations of all P ’s occ occur-
rences in S in O (m log m+ occ log log n) time. These indexes
require no assumptions about the pattern.

Kärkkäinen and Sutinen (1998) gave an index based on a ver-
sion of LZ77 that allows phrases to overlap by q− 1 characters,
where q is a parameter. If P has length exactly q, then their
index returns the locations of all P ’s occurrences in S in opti-
mal O (m+ occ) time. If we are given an upper bound M on
the pattern length at construction time, then even with Kärkkäi-
nen and Ukkonen’s original version, we need keep only a kernel
of the text and can use O (z log n+ zM log σ ) bits in total,
where σ is the size of the alphabet. We suspect this escaped
investigation for so long because it seemed too obvious and
inelegant to be theoretically interesting, and the need to index
massive, highly repetitive datasets in practice has become press-
ing only since the development of next-generation sequencing
methods.

The use of kernelization for indexing was eventually inves-
tigated by Schneeberger et al. (2009), although they did not
present kernelization as a separate process because their work
was application-driven. As noted in Section 1, they proposed that,
given a database of genomes from the same species, we index the
common parts of the genomes only once for them all, but we
index the parts near variation sites for each genome. Wandelt et al.
(2013) and Danek et al. (2014) gave similar results, essentially
using a kernel based on the RLZ parse. Like Schneeberger et al.,
these authors indexed the kernels using specific methods based
on q-grams or seeds. Danek et al.’s index for the database for the
1000 Genomes Project is the first one to fit in the memory of a
commodity personal computer. Ferrada et al. (2014b) emphasized
kernelization (albeit not under that name) in terms of the LZ77
parse, which is more general and may give better compression,
and pointed out that we can use any index for approximate pat-
tern matching to store the kernel. One point they did not comment
on, and which we hope to have clarified in this paper, is that we

can consider kernels based on LZ77, LZ78, RLZ, other compres-
sion schemes, or possibly other algorithms entirely. These kernels
may be easier to compute when the database does not fit in mem-
ory, or have other useful properties that make them preferable
in some situations. One interesting problem is how we can best
maintain a dynamic kernel for an expanding database. This could
allow us to align reads against a genomic database and then add
the newly assembled genome, which could be useful when dealing
with mutating cancer genomes or changing strains of a disease
during an outbreak.
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