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Abstract 
 

A cross-disciplinary examination of the user behaviors involved in seeking and evaluating data is 
surprisingly absent from the research data discussion. This review explores the data retrieval 
literature to identify commonalities in how users search for and evaluate observational research data 
in selected disciplines. Two analytical frameworks, rooted in information retrieval and science and 
technology studies, are used to identify key similarities in practices as a first step toward developing a 
model describing data retrieval.  
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Introduction 
 
Open research data is touted as having the potential to transform science and fast-track the 
development of new knowledge (Gray, 2009). In order for data to fulfil this potential, users must first 
be able to find the data that they need. This is not a simple task. Facilitating data discovery relies on 
developing underlying infrastructures, support systems, and data supplies (Borgman, 2015). It is 
equally important to understand the behaviors involved in data retrieval, but a user-focused, cross-
disciplinary analysis of data retrieval practices is lacking. This review explores the existing data 
retrieval literature and identifies commonalities in documented practices among users of observational 
data as a first step towards creating a model describing how users search for and evaluate research 
data. 
 
Although information retrieval (IR) has been extensively studied for over sixty years (Sanderson & 
Croft, 2012), data retrieval is a nascent field. Recent studies surrounding the issue examine how data 
are made available via data sharing (Tenopir et al., 2011, 2015), how researchers reuse data (Faniel, 
Kriesberg, & Yakel, 2016; Pasquetto, Randles, & Borgman, 2017), and how systems are designed to 
optimize data discoverability and retrieval (Pallickara, Pallickara, & Zupanski, 2012). Information 
documenting data retrieval behaviors is buried throughout other disciplinary and data-related literature 
and is not easy to identify (Gregory et al, 2018).  
 
We draw on work in information retrieval and science and technology studies (STS) to guide the 
identification of this buried literature and to develop our analysis frameworks. The first framework is 
based on established models of interactive information retrieval; the second framework builds on 
STS-inflected work examining data practices and communities. We begin by discussing the 
frameworks in more detail before using them to present and synthesize the data retrieval behaviors 
documented in the collected literature. We end with a discussion of commonalities across disciplinary 
communities and identify gaps in the literature and areas for future work.   
 

Framework #1: A Broad View of Interactive Information Retrieval 
 
Information retrieval is an interactive process, involving a dynamic interplay between users and IR 
systems (Xie, 2008). Numerous models describe user-oriented interactive IR. Three of the most 
pivotal are Ingwersen’s cognitive model (Ingwersen, 1992, 1996), Belkin’s episode model (Belkin, 
1993, 1996), and Saracevic’s stratified interaction model (Saracevic, 1996, 1997).  Detailed 
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characterizations of the strategies (e.g. Bates, 1990) and cognitive and affective stages in user-
oriented information seeking (Kuhlthau, 1991) have also been proposed. Despite their differences, 
established models assume that users are actively involved in the search process and that context 
influences search behaviors (Rieh & Xie, 2006; Xie, 2008).  
 
Interactive IR models share a few key stages1 (Wolfram, 2015) that are used to structure the first 
framework and to provide the main divisions of this paper: 

● Users and Needs: describes user contexts and data needs  
● User Actions: describes the sources and search strategies used to locate research data  
● Evaluation: describes criteria and processes used when evaluating data for reuse  

 
The term data retrieval is used in this review to refer to this entire complement of needs, actions, and 
evaluation behaviors. 
 

Framework #2: A Broad View of Data Communities 
 
Data practices can define communities in different ways (Birnholtz & Bietz, 2003). Data communities 
form around disciplinary domains, (Faniel, Kansa, Kansa, Barrera-Gomez, & Yakel, 2013; Palmer, 
Cragin, & Hogan, 2004), research approaches and data collection methodologies (Birnholtz & Bietz, 
2003; Weller & Monroe-Gulick, 2014), and particular data sources (Brown, 2003; Sands, Borgman, 
Wynholds, & Traweek, 2012). Both macro-level characteristics, such as using quantitative vs 
qualitative data (Birnholtz & Bietz, 2003) and micro-level characteristics, such as participation in a 
specific research project, (Borgman, Wallis, & Enyedy, 2007) can define community membership. A 
researcher may belong to multiple data communities simultaneously, or she may choose to define her 
community in unique ways (Birnholtz & Bietz, 2003).  
 
Here, we embrace a broad approach to conceptualizing data communities. The overarching data 
community used in this framework is based on accepted classifications of research data. While 
classifying data is a notoriously difficult task (Borgman, 2015), broad categories that have proven to 
be useful are observational, experimental, or computational data (National Science Board, 2005; 
National Science Foundation, 2007). As a first step in testing the validity of this conception of data 
communities, we focus on a community bounded by the use of a particular data type: observational 
data. 
 
Observational data result from recognizing, recording, or noting occurrences. They are often 
produced with the help of instruments, and include weather observations, polling data, photographs, 
maps, and economic indicators (Borgman, 2015; National Science Board, 2005). Observational data 
are used across disciplines; we therefore introduce disciplinary communities into the second 
framework to provide another level of analysis.  
 
Science and technology studies research explores the role of disciplinary norms and behaviors in 
data practices (e.g. Leonelli, 2016). Subdisciplines and individual research groups may have unique 
data practices, different than those of the broader disciplinary community (Gregory et al, 2018); while 
these differences are important, we suggest that commonalities are also important. In order to identify 
possible commonalities, we group the disciplines represented in the retrieved literature into five broad 
domains: astronomy, earth and environmental sciences (EES), biomedicine, field archaeology and 
social sciences.  
 
This review centers on the role of the researcher as data user. While the discussion of data 
communities often takes the perspective of data producers, researchers play multiple roles, often 
mixing data production and consumption (Borgman, Van de Sompel, Scharnhorst, van den Berg, & 
Treloar, 2015). We focus on consumers/users of observational data who use data they did not create 
either for new purposes and/or to support existing projects. 
 

Purpose of the Frameworks 
 
Many studies employ case studies, interviews and ethnographic research to depict particular data 
practices in fine detail (Cragin, Chao, & Palmer, 2011; Weber, Baker, Thomer, Chao, & Palmer, 2012) 
and are spread across disciplinary domains. While these studies provide great depth, it is challenging 
to bring them together in meaningful ways to identify similarities (Faniel, Barrera-Gomez, Kriesberg, & 
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Yakel, 2013). The primary goal of this review is to use the macroscopic perspectives of the 
frameworks introduced above to identify commonalities in reported practices. Such a broad approach 
comes with two drawbacks: the loss of some of the complexity and detail of the original studies and a 
bias in the disciplinary scope.  
 
Each section begins with a table synthesizing the reviewed literature through the lens of both 
frameworks. We then present the literature used to create these syntheses, structuring the findings by 
disciplinary community. In the discussion, we summarize and discuss the key findings from each 
section and identify common themes. 
 

Methodology 
 
Our literature collection methodology was informed by the first framework. We performed keyword 
searches related to information retrieval (e.g. user behavior, information seeking) and data practices 
(e.g. data sharing, data reuse, research practices) across all fields, primarily in the Scopus database. 
We also performed searches related to data search and data discovery and used bibliometric 
techniques such as citation chaining and related records.2 
 
We closely read the nearly 400 retrieved documents to identify papers referring to observational data. 
As we read, we again applied the first framework, seeking descriptions of data users and their needs, 
sources and strategies used to locate data, and the criteria used to evaluate data for potential reuse. 
Few studies examine data retrieval practices directly; much of the information is buried within 
investigations of data sharing and data reuse or found in user studies of particular repositories. 

 
Users and Needs 

 
In this section we analyze the diversity of users' data needs within the context of disciplinary 
communities. We adopt the characterization of background uses of data which support research and 
foreground uses which drive new research (Wynholds et al., 2012). 
 

  Needs 
Users in this 
community… 

need this type of data for these purposes  
(italicized=foreground, 
normal=background) 

Astronomy Data from sky surveys, telescopes, 
archives, repositories, data catalogs, 
virtual observatory systems 

New questions of old data, baselines, 
instrument calibration, physical 
properties, model inputs, data integration  

Earth & 
Environmental 
Sciences 

Plant, animal, water, weather, solar 
observations; soil analyses, rock thin-
section and satellite images; maps, 
geographic, demographic and census 
data; continuously collected and 
transmitted data, data at 
temporal/spatial scales, raw and 
summarized data  

New questions of old data, meta-
analyses, calibration, context, baselines, 
reference, model inputs, verification, 
comparison, environmental planning, 
policy- and decision making, education, 
instrument monitoring; data integration   

Biomedicine Images, complete fMRI studies, 
pathology results, patient observations 
and demographics; population-level 
disease data, behavioral data 

Disease/disorder research, new 
visualizations, evaluations, 3-D 
anatomical pictures, preparing research 
outputs, education, patient care 

Field 
Archaeology 

Field notebooks, photographs, 
artefacts, stratigraphic baselines; data 
at temporal/spatial scales  

New insights from data aggregation, 
comparison, triangulation; training, 
dissertations, assignments, preparing 
tours, inventories of local excavations  

Social 
Sciences 

Survey data (often only one question 
is of interest), long-running 
datasets/surveys, interviews, archival 
documents, images, videos 

Re-interpret datasets; new questions, 
comparative research, comparison, 
preparations, training, dissertations 
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Table 1: Users’ observational data needs by disciplinary community.  
 
Astronomy 
Much astronomical research can be classified as big science, involving large international projects 
supported by extensive knowledge sharing infrastructures (Borgman et al., 2007). Big science is not 
the only approach, as astronomers also conduct research falling within the long tail of science 
(Wynholds et al., 2011). Access to the vast amount of available research data is remarkably open, 
and data sharing is generally encouraged (Hoeppe, 2014; Pepe, Goodman, Muench, Crosas, & 
Erdmann, 2014). 
 
 Data needed. Data from large-scale sky surveys, such as the Sloan Digital Sky Survey 
(SDSS), form the foundation for many research projects (Pepe et al., 2014). Similarly, the data 
practices of researchers working with the SDSS are the cornerstone of the data retrieval literature in 
astronomy (Borgman et al., 2016; Borgman, Darch, Sands, & Golshan, 2016; Sands et al., 2012; 
Wynholds et al., 2011). 
 
Sky survey data fuel studies involving further data processing; derived data are then used as the 
basis for publications (Pepe et al., 2014). Direct data from ground- and space-based telescopes, data 
located in data repositories and catalogs, and data found through federated queries of virtual 
observatory systems are important sources (Sands et al., 2012; Wynholds, Wallis, Borgman, Sands, 
& Traweek, 2012). Theoretical researchers also use observational data from established archives as 
model inputs (Sands et al., 2012). 
 
 Data uses. Astronomers combine multiple datasets, often from multiple archives or telescope 
types, during a single project (Sands et al., 2012; Wynholds et al., 2011). Merging data about the 
same target from different instruments poses a significant challenge (Hoeppe, 2014; Zinzi at al., 
2016).   
 
Astronomers use external data for foreground purposes driving new scientific inquiries and leading to 
new discoveries (Wynholds et al., 2012; Wynholds et al., 2011), and for background purposes 
supporting research, such as study baselines, calibrating instruments, and searching for specific 
physical properties (Wynholds et al., 2012). 
 
Earth and Environmental Sciences  
A variety of disciplines and subdisciplines are represented in the literature at differing levels of 
granularity. Data retrieval practices are sparsely documented in fields such as volcanology, but 
discussions are increasing in other disciplines, i.e. the water sciences (e.g. Dow, Dow, Fitzsimmons, 
& Materise, 2015). This is partly due to a change in data collection techniques. As researchers 
transition from primarily manual field work to using sensors enabling continuous collection, they must 
find new ways to manage their data (Maier et al., 2012). The ecologists involved in the 
multidisciplinary Center for Embedded Networked Sensing (CENS) are an example of researchers 
caught in this transition (see Borgman et al., 2007; Wallis, Rolando, & Borgman, 2013). 
 
 Data needed. Biodiversity researchers require an incredible multiplicity of data. Potentially 
any information about life on earth, from satellite photos to forest inventories, could be important 
(Bowker, 2000b). Scientists need information about species distribution and occurrence, population 
trends, and geographic raw data (Davis, Tenopir, Allar, & Frame, 2014). The needs of CENS 
researchers exemplify what Bowker terms “data diversity,” as they use weather, solar, and river 
observations, as well as remote sensing and demographic data (Bowker, 2000a; Wallis, et al., 2013). 
Data diversity is also the norm in the geo- and water sciences. Volcanologists rely on images of thin 
rock sections, chemical analyses and characterizations of the earth’s crust. Additionally, 
stratigraphers use astronomical observations and numerical data extracted from graphs to study 
geologic history (Weber et al., 2012). Geographers need data spanning the physical and social 
sciences, requiring topographic, geologic and demographic maps, satellite images and drawings, and 
census data (Borgman et al., 2005). Water scientists need streamflow, evaporation, groundwater 
level, and water quality measurements (Beran, Cox, Valentine, Zaslavsky, & McGee, 2009). Although 
they do not exist for every condition, continuously collected data that can be analyzed by location and 
time are expected (Dow et al., 2015). 
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This need for data at different geographic and temporal scales connects the disciplines. Atmospheric 
scientists need large amounts of observational data from specific regions and times for their models 
(Pallickara et al., 2012). Data collected at local levels can be more important than data collected at 
national or state levels, as shown by a user survey from (Davis et al., 2014). 
 
The Davis et al. survey is one of the few that differentiates between the data needs of different types 
of users; another example is a study at the Center for Coastal Margin Observation and Prediction 
(CMOP) (Maier et al., 2012). Internal and external researchers using CMOP data want succinct data 
overviews. Policy and decision makers need thematic collections summarized on one page, with 
salient data clearly marked; users in education sectors are also interested in CMOP data, although 
their specific needs have not yet been studied (Maier et al., 2012).  
 
Like researchers, environmental policy and decision makers need information from different locations 
and times, but they have difficulties accessing the information (McNie, 2007) or finding the right type. 
Data produced by scientists are not automatically useful for policy makers (Cash et al., 2003). 
Environmental planners, i.e., may not need the same depth of information as researchers (Van 
House, Butler, & Schiff, 1998); reflecting this, differentiated data products for diverse users are being 
explored (see Baker, Duerr, & Parsons, 2015). 
 
 Data uses. CENS researchers use external data solely for background purposes, such as 
contextualizing their own data and calibrating instruments (Wallis et al., 2013; Wynholds et al., 2012). 
Other background uses include benchmarking and as references (Bowker, 2000b). Some ecologists 
do reuse external data to answer new questions (Zimmerman, 2007) or to create meta-analyses 
(Michener, 2015). 
 
Integrating diverse data is problematic across the environmental sciences. Data collected at different 
scales and using different nomenclatures are difficult to merge (Dow et al., 2015; Maier, et al., 2014; 
Bowker, 2000b). Natural variances in systems and populations further complicate fitting biodiversity 
data together (Bowker, 2000b; Zimmerman, 2007). Stratigraphers use one dataset to calibrate 
another as they construct geologic timelines used as baseline data by other researchers (Weber et 
al., 2012). Atmospheric scientists and climatologists grapple with problems stemming from metadata 
variation (Pallickara et al., 2012) and differences in community data practices (Edwards, Mayernik, 
Batcheller, Bowker, & Borgman, 2011).  
 
Modelers use external data at specific points in the research process. After reformatting and 
regridding data to fit model specifications, earth scientists use observational data to initially force 
models and for parameterization; data availability limits the types of studies undertaken (Parsons, 
2011).  Coastal modelers engage in similar behavior, continually calibrating and benchmarking their 
models, and comparing outputs to external observational data (Maier et al., 2012; Weber et al., 2012). 
 
Environmental planners use data not only to make decisions, but also to defend their viewpoints, to 
persuade, and in education. (Van House et al., 1998). Although detailed studies of non-scientists’ 
data needs are lacking (Faniel & Zimmerman, 2011), reported “background uses” of oceanographic 
data include preparation for triathlons, search and rescue operations or fishing expeditions (Weber et 
al., 2012) 
 
Biomedicine 
The biomedical literature focuses on fields centering on imaging, such as neuroscience and radiology.  
 
 Data needed. As neuroscience embraces big science methodologies, the field is struggling 
with how to make data available, discoverable, and usable (Choudhury, Fishman, McGowan, & 
Juengst, 2014). Researchers rely on visualizations of normal and abnormal brains, although they also 
consult brain bank samples (Beaulieu, 2004). Sometimes researchers need raw fMRI studies, 
including detailed metadata; sometimes images and scans suffice (Key Perspectives, 2010; Van Horn 
& Gazzaniga, 2013). Neuroimaging data are complex, consisting of numerous brain section slices, 
time-points, and other variables (Honor, Haselgrove, Frazier, & Kennedy, 2016). Neuroscientists 
incorporate more than just imaging into their work, using demographic, genetic, and behavioral data 
(Williams et al., 2009). 
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Clinicians and medical researchers also use a mixture of images and other observational data, such 
as pathology results, clinical data (e.g. progression of tumor grades), patient demographics, and 
population-level disease data (Kim & Gilbertson, 2007). Medical images are an essential part of 
workflows in fields such as radiology (Markonis et al., 2012), where health care professionals tend to 
search for two types of images: general medical images (e.g. images of anatomic organs) and 
specific medical images, which are used for clinical or comparison purposes (Sedghi, Sanderson, & 
Clough, 2011). Users need images collected with different modalities (X-rays, CT scans, and MRIs) 
(Kim & Gilbertson, 2007); medical students need images corresponding to their current courses 
(Müller et al., 2006).  All reusable medical data must be provided in a way protecting patient privacy 
(Erinjeri, Picus, Prior, Rubin, & Koppel, 2009). 
 
 Data uses. Neuroscientists use imaging data for comparisons, evaluations, and creating 
three-dimensional pictures of brain anatomy (Beaulieu, 2004). A single scan is of little value unless 
incorporated into a larger database of scans. Aggregating individual scans creates complete virtual 
brains that can be manipulated to facilitate new discoveries (Beaulieu, 2004), as in the case of 
combining fMRI scans from different populations to yield insights about Alzheimer’s biomarkers. (Van 
Horn & Gazzaniga, 2013).  
 
In a study of clinicians, researchers, educators, librarians, and students, users incorporate images in 
research, patient care and education (Hersh, Müller, Gorman, & Jensen, 2005). A follow-up study 
further characterizes these needs, showing that images are used for self-education; educating 
medical students, patient education, making difficult diagnoses, and developing research ideas, grant 
proposals, and publications (Kalpathy-Cramer et al., 2015).  
 
Field Archaeology 
Archaeology is another field in transition. Methodologies and data practices are changing, as data 
move away from being published in analog-only formats to being made available in digital repositories 
(e.g. Arbuckle et al., 2014); this facilitates data aggregation to study phenomena such as domestic 
livestock expansion (Arbuckle et al., 2014; Atici et al., 2017). Interdisciplinarity and data diversity are 
thriving in archaeology, as research projects can involve soil scientists, zooarchaeologists, and 
material scientists (Faniel, Kansa, et al., 2013) 
 
Metadata and documentation of methods and site conditions are extremely important in archaeology, 
as original sites are often “decomposed” during the research process (Faniel, Kansa, et al., 2013).  
Data recording and metadata standards do not exist (Faniel & Yakel, 2017); making integration 
across contexts and collection methodologies challenging (Niccolucci & Richards, 2013; Faniel & 
Yakel, 2017). 
 
Field archaeologists need field notes, photographs, and artefacts in museum collections (Faniel, 
Kansa, et al., 2013). Geographic, stratigraphic and chronological baseline data are also vital (Atici, 
Kansa, Lev-Tov, & Kansa, 2013). Archaeologists compare finds from the field to museum collections, 
often triangulating data from multiple sources (Faniel, Kansa, et al., 2013). Researchers are not the 
only “consumers” of archaeological data; students, hobbyists, and employees of museums and 
companies use data for diverse background and fewer foreground purposes, e.g. aggregating 
discrete units of “raw data” (Borgman, Scharnhorst, & Golshan, 2018).  
 
Social Sciences 
Reusing quantitative data in the social sciences is well-established (Kriesberg et al., 2013; Faniel & 
Yakel, 2017); the reuse of qualitative data is complicated by issues of participant confidentiality and 
the embeddedness of the researcher in data creation (Broom, Cheshire, & Emmison, 2009).  
 
Social scientists need data from surveys and long-running datasets (Shen, 2007). Researchers are 
often interested in only one data point or survey question. Details about the operationalized variables 
or measured constructs usually are not present when examining individual questions in isolation 
(Dulisch, Kempf, & Schaer, 2015). Social scientists also need archival documents, images, videos, 
and interview data (Karcher, Kirilova, & Weber, 2016).  
 
Data can be reused for comparative research or to ask new questions, reinterpret datasets, or verify 
findings (Corti, 2007). Background uses, i.e. preparing for data collection, are common (Parry & 
Mauthner, 2005).  
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Kriesberg and colleagues examine the needs of early career researchers (ECRs) in quantitative social 
sciences, archaeology and zoology. External data are used in training and dissertations; young 
researchers may reuse data more often, due to difficulties collecting their own data (2013).  
 

User Actions 
 
This section examines the resources and strategies used within different communities to locate data. 
 

  Actions 
Users in this 
community… 

use these resources in this way 

Astronomy NASA archives, journals, personal 
exchanges, personal websites, 
general search engines 

Querying archives, extracting data from 
articles into new tables, informal personal 
requests  

Earth & 
Environmental 
Sciences 

Journals, personal exchanges, 
repositories, databases, natural 
history collections, general search 
engines, industry 

Extracting data from articles, email/ 
telephone/letters, metadata searches, 
faceted searching, filtering, aggregating 
data to create new datasets, “bounded” 
strategies (by journal, location, time) 

Biomedicine Online image repositories, local 
image and patient information 
systems, personal image collections, 
Google Images, journals 

local systems - patient name/identifier; 
Online sources - keyword and hierarchical 
searches, short queries for images  

Field 
Archaeology 

Personal connections – museum 
staff  and data producers, natural 
history collections, museums, 
repositories/archives, publications 

Searching by location (keywords, 
browsing), collaborations to gain additional 
data 

Social Sciences Survey banks, data catalogs (i.e. 
DBK), repositories, governmental/ 
statistical offices, databases, 
commercial providers, personal 
connections, publications 

Following publication references; 
survey banks - short queries, mismatch 
between strategies and database design, 
DBK - more time spent than in literature 
searching, keyword searching followed by 
browsing, filters and author names not 
used,  

Table 2: Actions taken to locate data  
 
Astronomy  
Astronomers are generally efficient information seekers, in part due to strong disciplinary 
infrastructures and tools (Meyer et al., 2011). SDSS users download data directly from NASA 
archives or obtain them from public data releases (Sands et al., 2012). Discovering and tracking down 
smaller datasets is challenging; SDSS users sometimes browse personal websites or use general 
search engines. They then contact research groups directly with their data requests. Despite well-
developed infrastructures, personal networks remain an important means for identifying and obtaining 
data (Sands et al., 2012).  
 
Journal articles are another important data source. Astronomers copy and paste or transcribe data 
from articles into new tables for further manipulation (Pepe et al., 2014). Direct citation of archival 
accession numbers facilitates data discovery from journals (Swan & Brown, 2008).  
 
Earth and Environmental Sciences 
Finding and accessing biodiversity data can be challenging, although academics have an easier time 
than government employees and program managers. A lack of training, time, and knowing where to 
look hinders effective data search among these groups (Davis et al., 2014). Knowing where to search 
can be especially problematic in areas outside of a researcher’s primary expertise (Devarakonda, 
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Palanisamy, Green, & Wilson, 2011) and is contingent on knowing that data even exist (Zimmerman, 
2003). Personal experiences with data collection and a familiarity with research trends help 
researchers estimate whether data are extant and findable (Zimmerman, 2007). 
 
Compounding this problem, data are distributed across numerous repositories (Dow et al., 2015). 
Users must first discover the repository, and then invest significant time and energy becoming familiar 
with each search environment (Ames et al., 2012; Beran et al., 2009). Given the diversity of 
interfaces, it is not surprising that water scientists desire a “Google for data” (Megler & Maier, 2012). 
 
In a global survey of the environmental research community, the majority of respondents discover 
data through journal articles, search engines, and disciplinary repositories; 40% request data directly 
from data providers (Schmidt, Gemeinholzer, & Treloar, 2016). Although some environmental 
planners are interested in using journals and primary sources, they find it too time-consuming (Miller 
et al., 2009), and may instead turn to colleagues for biodiversity information (Janse, 2006; Pullin, 
Knight, Stone, & Charman, 2004). 
 
Stratigraphers extract data from journals, laboriously re-creating tables from published graphs. They 
are willing to spend money as well as time obtaining data, sometimes purchasing expensive high-
resolution data from drilling companies (Weber et al., 2012). Geographers utilize journals and search 
engines to locate maps, images, and repositories, but poor indexing and metadata derail their efforts 
(Borgman et al., 2005). Ecologists in Zimmerman’s studies gather single data points from multiple 
sources and then aggregate them to create new datasets (2007; 2008), an approach that is 
increasingly common in biodiversity research (Davis et al., 2014). 
 
Personal exchanges are valuable, if complex, sources of external data. Requesting data from CENS, 
for example, is a multistep process. Data seekers identify CENS as a potential source, contact the 
CENS researcher, and discuss the availability and suitability of the data. The CENS researcher then 
gathers, processes, and delivers the requested data (Wallis et al., 2013). Ecologists employ a variety 
of tactics (emails, letters, and telephone calls) to obtain data mentioned in articles.  As organizations 
grow and such requests increase, personal exchanges cease to be an effective way to obtain data 
(Wallis et al., 2007). 
  
Ecologists reusing data employ “bounding” strategies, limiting searches to particular journals, times or 
locations to collect representative samples (Zimmerman, 2007). As data seeking is data collection, 
these researchers use strategies that minimize error, can be publicly defended, and increase the 
likelihood of accessing data (Zimmerman, 2007). They have specific search criteria; the general 
information in databases usually does not meet their detailed needs (Zimmerman, 2007). Before 
building specific search tools, CMOP researchers struggled with similar problems, retrieving either 
zero or thousands of hits. If researchers found searching too frustrating, they would simply stop 
searching (Maier et al., 2012; Megler & Maier, 2012). 
 
Large atmospheric datasets, encoded in binary formats to facilitate storage and transfer, cannot 
effectively be searched with text-based search engines. Rather, users must browse collections using 
metadata schemas (Pallickara, Pallickara, Zupanski, & Sullivan, 2010). For other data, i.e. datasets in 
the DataONE platform, users prefer keyword searches, followed by filtering (Murillo, 2014).  
 
Biomedicine 
While it has become easier to locate data, for example in neuroscience (Beaulieu, 2004), access 
restrictions still frustrate researchers (Honor et al., 2016) 
 
Medical image retrieval studies show that users search both local restricted-access systems and free 
internet sources. Local systems, including Picture Archiving and Communication Systems (PACS), 
electronic patient records, hospital archives, and teaching files, house images and patient data (Müller 
et al., 2006). Radiologists also curate their own collections of images stored on personal computers 
(Markonis et al., 2012).  
 
Despite access to specialized collections, internet searches, particularly with Google Images, are 
common (Markonis et al., 2012; Müller et al., 2006). Limitations of such searches include sifting 
through irrelevant results and a dearth of highly-specialized images. Nevertheless, online image 
repositories are unpopular among health care professionals, perhaps because of their limited scope 
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(Sedghi et al., 2011). Academic journals, however, facilitate locating specialized, cutting-edge images 
with contextual information that are difficult to locate on the web (Sedghi et al., 2011). 
 
Search strategies vary depending on the searcher’s professional role, although commonalities do 
exist. Users often search by patient names or identifier in PACS for diagnostic purposes; brief 
keyword or hierarchical searching is typical in non-diagnostic searching (De-Arteaga et al., 2015; 
Markonis et al., 2012; Müller et al., 2006).  
 
Success is not assured when searching for images. In a study of radiologists, users fail to find desired 
images in almost 25% of cases. Users believe these images exist, but that they simply cannot be 
found (Markonis et al., 2012). Possible search difficulties stem from a lack of time and available 
relevant papers, the newness of certain topics, and a lack of domain-specific search tools (Sedghi et 
al., 2011). 
  
Field Archaeology 
Data discovery is a significant problem in field archaeology. Data are scattered among collections or 
sometimes are only in unpublished field reports (Niccolucci & Richards, 2013). Although publications 
are used in data discovery (Faniel & Yakel, 2017), they do not consistently include data; a significant 
delay between data collection and publication exacerbates the problem (Kriesberg et al., 2013). 
Researchers often do not know what data are available (Aloia et al., 2017). ECRs circumnavigate 
difficulties by collaborating with supervisors to locate data (Kriesberg et al., 2013). Other 
archaeologists turn to personal networks, museums, and, as the shift toward digital data continues, 
data archives (Faniel, Kansa, et al., 2013; Faniel & Yakel, 2017). Details about how users search 
archives are sparse (Borgman et al., 2015), although searching and browsing by location are 
important strategies often complicated by differences in geographic terminology (Borgman et al., 
2018). 
 
Social Sciences 
Social scientists use data from governmental/statistical offices and specialized databases (Shen, 
2007). Economists also obtain data from statistical offices but may purchase data directly from 
commercial providers (Bahls & Tochtermann, 2013). Researchers easily locate data from national, 
publicly funded datasets, but struggle to locate smaller datasets and video data for reuse (Key 
Perspectives, 2010). Researchers tap publications or make direct requests to find this more 
specialized data (Swan & Brown, 2008).  
 
Personal networks, including advisors, co-workers of advisors or former employers, are key sources 
of qualitative data (Yoon, 2014b), especially for ECRs, who rely on journal recommendations from 
advisors and observations of their colleagues (Kriesberg et al., 2013; Faniel & Yakel, 2017). Not 
knowing who to contact or where to begin searching makes locating relevant data difficult (Curty, 
2016).  
 
Searchers of the DBK, the primary catalog for social science data in Germany, expend more time and 
effort when seeking datasets than they do for publications. These researchers do not frequently use 
author names; rather, keyword searching, followed by browsing long results lists, are more frequent 
strategies. Researchers complain about a lack of filtering options, but do not use available filters 
(Kern & Mathiak, 2015). Social scientists search a survey bank by short keyword queries or social 
construct, even though these strategies do not match the database’s structure (Dulisch et al., 2015). 
 

Evaluation  
 

We identify major frames used in the literature to discuss data evaluation criteria, including trust, 
quality, necessary contextual information, and relevance. The frames overlap, as the characteristics 
composing these frames vary from paper to paper, both within and across disciplines. In the table 
below, we present the evaluation criteria and associated frames as they are discussed in the 
literature.  
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  Evaluation 
Users in this 
community… 

use these criteria to evaluate data 

Astronomy 1. Contextual Information: instrumentation, observational conditions, data 
processing, original research questions 
2. Trust: author reputation, source reputation 

Earth & 
Environmental 
Sciences 

1. Contextual Information: instrumentation, observational conditions, data 
collection procedures, data processing, provenance, original research 
questions 
2. Quality: meet community standards, comprehensiveness/continuity over 
time, estimations and uncertainties, resolution 
3. Trust: source, knowledge of object and data collector, author 
reputation/affiliation, funder, community membership 
4. Understandability: familiarity with practices, data type, subject; consult 
experienced researchers, first decode data 
5. Ease of access 

Biomedicine 1. Quality: noise, resolution, anatomical coverage, image acquisition details  
2. Trust: supporting documentation, social networks 
3. Relevance: experience, combination of textual/visual/medical criteria, visual 
relevancy, background information, understandability, image quality, modality, 
source 

Field Archaeology 1. Contextual information: collection methods, instrumentation, observational 
conditions, provenance, original research goals, baseline 
geographic/stratigraphic/chronological data 
2. Suitability for analysis: consistent data recording practices  
3. Trust: reputation/affiliation/skill of authors, repository features, language in 
supporting documentation 

Social Sciences 1. Contextual Information: collection methods, instrumentation, other 
analyses, definition/measurement of variables, data handling/processing 
2. Quality: completeness, accessibility, ease of use, credibility, reputation of 
repository, reputation of author/journal not important 
3. Relevance: time frame of study, keywords, citing literature, title and 
publication year not as important 
4. Trust: prior reuse, reputation of data repository, reputation of data producer 

Table 3: Evaluation criteria with frames used in the literature 
 

Astronomy 
Astronomers rely on detailed documentation of instrumentation, collection methods and conditions, 
data processing, and original research questions (Borgman et al., 2016; Wynholds et al., 2011). They 
know which authors to trust and believe data in NASA archives and established projects are valid, 
accurate, and trustworthy. Researchers must completely understand data and the creation processes; 
they would rather recreate data before using poorly documented secondary data products (Wynholds 
et al., 2011). 
 
Earth and Environmental Sciences  
When evaluating data for reuse, researchers use contextual information about data provenance (Dow 
et al., 2015; Murillo, 2014), technical instrumentation (Wallis et al., 2007), and original research 
questions (Zimmerman, 2008). Researchers reuse data they understand, seeking data collected via 
practices they have used themselves (Zimmerman, 2007; Zimmerman, 2008) and with familiar data 
types (Murillo, 2014). Contextual details are found in field notebooks (Weber et al., 2012) and articles 
(Carlson & Stowel-Bracke, 2013), but additional metadata attached to datasets are the preferred 
method of conveying context (Bowker, 2000b). Formal metadata has limitations, though, as they 
cannot always contain enough detail or inspire the confidence needed for reuse. Researchers may 
instead base decisions on the word-of-mouth reputation of the dataset (Weber et al., 2012) or rely on 
more experienced researchers to develop understanding or alternative evaluation strategies 
(Zimmerman, 2008)  
 
Data must have sufficient quality, often defined by community standards, to be reused (Zimmerman, 
2007). Water researchers and earth science modelers consider comprehensiveness and continuity 
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over time and space (Dow et al., 2015; Parsons, 2011) as well as uncertainties and error estimates 
(Larsen, Hamilton, Lucido, Garner, & Young, 2016; Parsons, 2011) when determining data quality. 
Volcanologists use image resolution as a quality indicator (Weber et al., 2012). 
 
Ecologists trust data from well-known sources, such as databases and literature (Zimmerman, 2007), 
and make decisions based on authors’ reputations and affiliations (Murillo, 2014; Weber et al., 2012). 
Initial evaluations are based on the reputation of the source where the data were discovered, even if 
researchers eventually obtain them through other means (Zimmerman, 2007). Standardized collection 
practices are not enough to establish trust, as practices themselves say nothing about the data 
collector’s skill (Zimmerman, 2008). The sponsor of research (McNie, 2007) and membership in the 
same community of practice (Van House et al., 1998) facilitate trust among environmental planners 
and policy makers.  
 
Both ecologists and modelers reuse data that are easy to access (Zimmerman, 2007; Parsons, 2011). 
Modelers, however, face an extra step in the evaluation process, needing first to decode numerically 
encoded datasets before deciding if they are appropriate (Pallickara et al., 2010).  
 
Biomedicine 
Visual, medical, and textual criteria are used to evaluate biomedical images. Health care workers rank 
visual relevance, background information, and image quality as being most important, although they 
also mention image modality and understandability (Clough, Sedghi, & Sanderson, 2008). 
Radiologists rely on a mixture of image properties, image quality, supporting documentation, and 
information about the source to determine suitability (Markonis et al., 2012).  
 
Evaluation criteria vary depending on users’ professional specialties and particular situations (Clough 
et al., 2008). Users rely on visual attributes when evaluating general medical images but incorporate 
textual information and credibility criteria for specific images used for background purposes (Sedghi, 
Sanderson, & Clough, 2011). 
 
Definitions of quality also vary by user. A neurosurgeon, for example, uses noise levels, resolution, 
and anatomical coverage, while a radiologist focuses mostly on motion artefacts to determine image 
quality (Heckel, Arlt, Geisler, Zidowitz, & Neumuth, 2016). Resolution and acquisition details (e.g. 
slice thickness in tomographic images) are other proxies for quality (Müller et al., 2006). 
 
Healthcare professionals determine relevance through a combination of textual background 
information, visual inspection, and mental comparison to imagined ideals (Sedghi, Sanderson, & 
Clough, 2012). Personal experience trumps other criteria, however, when determining image 
relevance (Markonis et al., 2012; Müller et al., 2006). 
 
Clinicians build trust in images through supporting documentation, such as attached exams or 
biopsies. Systems allowing researchers to comment on images online can also build trust normally 
created through informal “hallway” communications (Jirotka et al., 2005; Markonis et al., 2012).  
 
Field Archaeology 
Archaeologists require contextual information about collection methods, instrumentation, 
observational conditions, and artefact provenance (Faniel, Barrera-Gomez, et al., 2013). Other 
fundamental metadata include information about original research goals and baseline geographic, 
stratigraphic, and chronological data (Atici et al., 2013). Current metadata schemas are not rich 
enough to provide this level of contextual description. Archaeologists either make do with the 
available information or seek other ways to further develop context (Faniel, Kansa, et al., 2013). 
 
Consistent data recording practices (e.g. an absence of misspellings or translational errors) (Atici et 
al., 2013), and detailed language in supporting documentation (Faniel, Kansa, et al., 2013) help to 
establish credibility and trustworthiness.  Author reputation and affiliation and repository features, 
such as metadata type and level of transparency, help to establish trust (Faniel, Kansa, et al., 2013) 
 
Social Sciences  
DBK users spend more time evaluating data results compared to literature results, consulting 
additional documentation when needed. Researchers appear to think this is normal, perhaps because 
choosing the correct dataset is more important than selecting the correct article (Kern & Mathiak, 
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2015). Title and publication year are not as important as study time frame and keywords in 
evaluations. Users would like access to literature citing a dataset to determine if a research question 
has already been answered (Kern & Mathiak, 2015); prior reuse of data is also an important way of 
developing trust (Faniel & Yakel, 2017).  
 
Data seekers rank accessibility as the most important factor determining satisfaction with data reuse 
in the ICPSR repository. Data completeness (ranked 2nd), credibility (4th) and ease of use (5th) are 
also contributing factors; in this study, journal/author reputation do not appear to impact satisfaction 
(Faniel et al., 2016). Other work suggests that the repository reputation is an important signal of data 
quality and credibility (Curty, 2016) and is used to develop trust in data (Faniel & Yakel, 2017). Data 
re-users tend to either make do with available data or adapt their research projects to use data that 
they can find. The more researchers have to “reshape” their projects, the less satisfied they are 
(Faniel et al., 2016). 
 
Users need contextual information about collection methods, instrumentation, other analyses, and 
how variables are defined and measured (Curty, 2016; Faniel, Kansa, et al., 2013; Kern & Mathiak, 
2015; Yoon, 2014a). When necessary, researchers turn to other sources to develop the necessary 
context (Fielding & Fielding, 2008), consulting colleagues, codebooks (Faniel & Yakel, 2017) or 
bibliographies (Faniel, Barrera-Gomez, et al., 2013). Ideally, specialized metadata schemas would 
provide enhanced context (Kern & Mathiak, 2015). Debate remains, however, if documentation can 
build the context needed to reuse qualitative social science data (Broom et al., 2009; Parry & 
Mauthner, 2005). 
 
Novice researchers especially need supporting contextual information. They want details about 
coding procedures, collection methods and dataset merging and matching (Faniel, Kriesberg, & 
Yakel, 2012).  More experienced researchers can make do more easily with limited documentation 
(Yoon, 2016). 

 
Discussion 

 
Having presented the documented practices of observational data users, we use the frameworks to 
synthesize our key findings and to identify commonalities and themes spanning the reviewed 
disciplinary communities. 
 
Users and Needs  
Researchers across and within the reviewed disciplines need a diversity of observational data, 
requiring data of different types from different sources and disciplines, collected at different scales 
using different instruments. Users have very specific requirements, needing data from particular 
locations (geographic, anatomical, or astronomical), at particular resolutions or collected using 
particular mechanical or survey instruments. 
 
Integrating diverse data is necessary but challenging. Astronomers struggle to bring together data 
from different telescopes, neuroscientists try to combine neuroimages with clinical data, and 
archaeologists need to integrate data collected in different contexts with different methodologies. 
Some of these challenges may be augmented by changes in research practices, such as automated 
data collection in EES (Borgman et al., 2007), or by shifts in community data practices, such as 
increased data sharing, as in archaeology (Arbuckle et al., 2014) or neuroscience (Choudhurry et al., 
2014). 
 
Background and foreground uses are reported across disciplines, although background uses are 
better documented. These include making comparisons, benchmarking, preparing research projects, 
calibrating instruments, and as model inputs. Reported foreground uses are vaguer, often limited to 
reports of “asking new questions of data.” This does not mean that foreground uses do not occur; 
examples of new research fueled by data reuse could likely be found in all of the reviewed disciplines 
(e.g. Atici et al., 2017). This could indicate a mismatch between what studies of data practices report 
and actual practices, or it could be a sign of changing practices. Even with a broad analysis, we see 
that data use varies within disciplines. One group of biodiversity researchers uses secondary data 
only to support projects, for example, while another study only examines cases of foreground use. 
Other possible data uses, i.e. in teaching, clinical practice, or environmental planning, are hinted at, 
although rarely explored in detail. 
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A generic view of the user is also common. Similar to our approach, disciplines are often broadly 
represented; the social sciences in particular tend to be treated as a homogenous group. Few studies 
document the needs and behaviors of specific user groups, such as early career researchers 
(Kriesberg et. al,  2013; Faniel et al. 2012), policy makers (Janse, 2006; McNie, 2007; Cash et. al, 
2003) or students (Carlson & Stowel-Bracke, 2013). Understanding the data practices of ECRs sheds 
light on processes of acculturation (Kriesberg et al, 2013) and is important, as large-scale data reuse 
depends on adoption by ECRs (Faniel et al, 2012). Understanding the practices of specific user 
groups is also critical in designing user-oriented data discovery systems. 
 
User Actions  
Across communities, users find data in repositories, journals, on websites, and through personal 
networks. This variety could be due to differing infrastructures available within disciplines; however, 
even in fields with established data repositories, i.e. astronomy and quantitative social science, 
researchers seek data outside of these systems (Sands et al., 2012; Faniel & Yakel, 2017).  
 
Personal exchanges are valuable sources of external data. While locating large, well-known datasets 
is straightforward, tracking down smaller, specialized datasets is challenging and often requires 
personal communication (Sands et al., 2012). Existing repository search functionalities may not meet 
the specific needs of researchers, or users may not develop appropriate search strategies in these 
resources (Sedghi et al., 2011). Users may also simply not be aware of the existence of data or 
databases; this may be especially true for researchers seeking data outside of their primary 
disciplines.  
 
The distributed nature of observational data compounds these problems. A variety of data repositories 
exist within these disciplines (e.g. Dow et. al, 2015); within each new resource, users must start from 
scratch - first discovering the resource, then investing significant time and energy becoming familiar 
with it and the available data. A lack of time and accessible data also complicates the search process.  
 
Evaluation 
Researchers across disciplines need as much contextual information as possible, requiring 
documentation about instruments, methodologies, research questions, and observational conditions. 
This information is combined with the reputation of the repository and often that of the data author to 
establish trust, data quality, and relevance. Although much of the reviewed literature uses frames 
such as trust and quality to discuss evaluation, the characteristics used to develop these frames 
varies. This variation may result from disciplinary or individual differences or from how the papers’ 
authors define these frames. One commonality that we can identify is the association of more social 
criteria - such as the reputation of authors and data sources - in developing trust.  
 
Enriched metadata are often the desired, although imperfect, method of conveying contextual 
information. Perhaps because of limitations in metadata, researchers build the needed information by 
combining a variety of sources, from codebooks and academic literature to unpublished reports and 
museum records (Faniel & Yakel, 2017). Researchers across communities also use social 
connections and personal exchanges to evaluate data. The discussion about how researchers 
evaluate data is still developing, although the process seems to differ from how researchers evaluate 
academic literature.  
 
The following themes bridging both frameworks emerge from this synthesis: 
 

o A tension between breadth and specificity  
o The social aspects of data retrieval 
o Absent practices and communities  

  
When developing the frameworks for this paper, we presented the tension involved in applying broad 
perspectives to understand individual practices. This tension between breadth and specificity is also 
present in the reviewed data retrieval practices. Even within disciplines, researchers need a diversity 
of observational data and employ a wide variety of search and evaluation strategies. At the same 
time, users seek data with very precise characteristics. They appear to balance breadth and 
specificity as they work to integrate datasets from diverse sources to meet specific needs or to piece 
together a variety of evaluation criteria to make decisions about reuse. 
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Social connections and personal exchanges permeate observational data retrieval. Users rely on 
personal connections and their own networks to locate, obtain, and evaluate data, even in disciplines 
with extensive infrastructures. This suggests that it is not enough to understand data retrieval as a 
series of interactions between users and search systems; rather, data retrieval is in fact a complex 
socio-technical process.  
 
The absence of many communities and practices in the literature is also apparent. A relatively small 
number of disciplines are represented in our literature corpus. Among the broad disciplinary 
categories that we employ, certain subdisciplines are well represented; others are briefly mentioned, 
and others are treated homogeneously. Building a robust picture of observational data retrieval 
requires a deeper understanding of practices in other disciplines and of understudied user groups 
such as non-scientists or early career researchers. Deeper studies of how data retrieval practices 
change when seeking data for foreground purposes, or when seeking data from different disciplines, 
are also absent. Although Faniel & Yakel have recently identified five “trust markers” important in data 
reuse in archeology, social sciences and zoology (2017), common frameworks for discussing 
evaluation criteria across the observational data community are lacking.  
 

Conclusion: Towards a Model for Data Retrieval 
 
Through our analysis we have achieved the following: 
 

● Shown that a framework based on interactive information retrieval is applicable to 
understanding the data retrieval literature  

● Tested the boundaries of defining data communities, using broad classifications to identify 
commonalities in practices 

● Revealed absent practices and highlighted areas where more research is necessary  
● Suggested that a framework based on IR alone is insufficient for completely understanding 

the complexity of data retrieval practices. 
 
The literature also points to ways that information retrieval and data retrieval differ. Data needs are 
specific, requiring high precision in IR systems (Stempfhuber & Zapilko, 2009). Textual queries and 
ranking algorithms do not work well for retrieving numeric or encoded data (Pallickara et al., 2010). 
Users employ different search strategies when seeking data than literature (Kern & Mathiak, 2015) 
and take different roles when interacting with data repositories (e.g. as consumers and creators), 
which can impact system design (Borgman et al., 2015). Researchers also spend more time 
evaluating datasets (Kern & Mathiak, 2015), perhaps because lists of data cannot be efficiently 
evaluated in the same way as document lists (Kunze & Auer, 2013).  
 
These differences, in conjunction with the themes identified in the discussion, suggest that current 
information retrieval models may not completely describe data retrieval practices. Identifying 
commonalities in observational data retrieval practices is a first step in exploring possible 
characteristics of a new model for data information retrieval. Further studies of different data 
communities, such as users of experimental and computational data, big and long-tail data seekers, 
and members of underrepresented user groups are needed. A model describing data retrieval would 
provide insight into the needs and practices of users that could be applied to both systems design and 
policy developments for facilitating data discovery.  
 

Footnotes 
 

1. IR systems are also an important part of these models. The first version of the article preprint 
(arXiv:1707.06937) includes an additional review of data retrieval systems. 
 
2. For a detailed methodology and machine-readable bibliography, including references regarding 
data retrieval systems, see: https://doi.org/10.17026/dans-zgu-qfpj 
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