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Abstract

Consider a networked environment, supporting mobile agents, where there is
a black hole: a harmful host that disposes of visiting agents upon their arrival,
leaving no observable trace of such a destruction. The black hole search problem
is the one of assembling a team of asynchronous mobile agents, executing the same
protocol and communicating by means of whiteboards, to successfully identify the
location of the black hole; we are concerned with solutions that are generic (i.e.,
topology-independent). We establish tight bounds on the size of the team (i.e., the
number of agents), and the cost (i.e., the number of moves) of a size-optimal solution
protocol. These bounds depend on the a priori knowledge the agents have about
the network, and on the consistency of the local labellings. In particular, we prove
that: with topological ignorance ∆ + 1 agents are needed and suffice, and the cost
is Θ(n2), where ∆ is the maximal degree of a node and n is the number of nodes in
the network; with topological ignorance but in presence of sense of direction only
two agents suffice and the cost is Θ(n2); and with complete topological knowledge
only two agents suffice and the cost is Θ(n log n). All the upper-bound proofs are
constructive.
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1 Introduction

1.1 The problem

In networked environments that make use of mobile agents, security is a pressing concern of
difficult resolution, and even the most basic issues must still be effectively addressed (e.g., see
[13, 30, 34, 40, 46]). The causes of this situation are not lack of interest and effort; witness,
for example, the large effort to determine how to protect a network site (a host) from malicious
agents, as well as to protect agents from host attacks. Rather it is due to the difficulties found
when developing solutions; the nature of these obstacles is varied, most are technological, some
computational.

In this paper we consider the issue of host attacks; that is, the presence in a site of processes
that harm incoming agents (e.g., see [23, 32, 33, 39, 45, 48]). A first step in solving such
a problem should be to identify, if possible, the harmful host; i.e., to determine and report its
location; following this phase, a “rescue” activity would conceivably be initiated to deal with the
destructive process resident there. The task to identify the harmful host is clearly dangerous for
the searching agents and, depending on the nature of the harm, might be impossible to perform.

In this paper, we consider a highly harmful process that disposes of visiting agents upon
their arrival, leaving no observable trace of such a destruction. Due to its nature, the site where
such a process is located is called a black hole [20]. The task is to unambiguously determine and
report the location of the black hole (Black Hole Search problem). The research concern is
to determine under what conditions and at what cost mobile agents can successfully accomplish
this task. The searching agents start from the same safe site and follow the same set of rules;
the task is successfully completed if, within finite time, at least one agent survives and knows
the location of the black hole.

The setting in which we study the Black Hole Search problem is that of cooperating
asynchronous agents on an edge-labelled graph: the agents have computing capabilities and
storage, can move from node to neighboring node, obey the same set of behavioral rules (the
“protocol”), and all their actions (e.g., computation, movement, etc) take a finite but unpre-
dictable amount of time. At each node, the incident edges are distinctly labelled, and there is a
limited amount of storage, called whiteboard. Agents communicate by reading from and writing
on the whiteboards; access to a whiteboard is done in mutual exclusion.

Black Hole Search is a non trivial problem, and its difficulty is aggravated by the simul-
taneous presence of asynchrony of the agents and absence of any trace of destruction (outside
the black hole). We have investigated the problem when the network is an anonymous ring
(i.e., a loop network of identical nodes sites), characterizing the limits and presenting optimal
solutions [20]. These results are however topology-dependent, and in the solution protocols the
agents exploit the unique properties of the ring to locate the black hole.

1.2 Our Results

In this paper we are interested in the black hole search problem in general graphs, and we are
concerned with generic (i.e. topology-independent) solutions. We ask computational questions
regarding the size of these solutions (i.e., the number of agents in the team), and the conditions
for their existence.

Some answers follow from the asynchrony of the agents. For example, as we show, the
problem is unsolvable if the graph G representing the network topology is not 2-connected;
therefore, we only consider 2-connected graphs. As we prove later, also due to asynchrony, the
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problem is unsolvable if the number of nodes of G is not known; therefore, we assume n is known.
Some answers are immediate. For example, since a single agent is incapable of performing the
task, the size of a team is at least two. How realistic is this bound? How many agents suffice?
We are also interested in the cost of the minimal solutions (i.e., the number of moves performed
by the agents executing a size-optimal solution protocol).

In this paper we provide specific answers to these computational questions. We show that
the answers vary depending on the a priori knowledge the agents have about the network, and
on the consistency of the local labellings.

We consider first the situation of topological ignorance; that is when the agents have no a
priori knowledge of the topological structure of G. We show that any generic solution needs at
least ∆ + 1 agents, where ∆ is the maximal degree of G, even if the agents know ∆ and the
number n of nodes of G. We further prove that, in any minimal generic solution, the agents
must perform Ω(n2) moves in the worst case. Both these bounds are tight. In fact we present a
protocol that correctly locates the black hole in O(n2) moves using ∆ + 1 agents that know ∆

and n.
We then consider the case of topological ignorance, first in systems where there is sense of

direction (SD); informally, sense of direction is a globally consistent labelling of the ports that
allows the nodes to determine whether two paths starting from a node lead to the same node,
using only the labels of the ports along these paths. We show that, in this case, two agents
suffice to locate the black hole, regardless of the (unknown) topological structure of G. The
proof is constructive, and the proposed algorithm has a O(n2) cost. We further show that this
cost is optimal; in fact, we show the existence of types of sense of direction that, if present,
impose an Ω(n2) worst-case cost on any generic two-agent algorithm for locating a black hole
using SD.

Finally, we consider the case of complete topological knowledge of the network; that is, the
agents have a complete knowledge of the edge-labeled graph G, the correspondence between
port labels and the link labels of G, and the location of the source node (from where the agents
start the search). We show that, also in this case, two agents suffice. We then constructively
prove that the cost of a minimal protocol can be reduced in this setting to Θ(n log n), showing
a matching lower bound as well.

1.3 Related Work

This study is part of a larger investigation on the algorithmic issues arising in networked en-
vironments that support autonomous mobile agents. At an abstract level, these environments
can be described as a team of autonomous mobile entities located in a graph G. Depending
on the context, the entities are sometimes called agents or robots. The research concern is on
determining what tasks can be performed by such entities, under what conditions, and at what
cost.

In terms of topics, the investigations most closely related to the one of this paper are the
studies on collaborative graph-exploration. In these investigations, a team of autonomous agents
must explore (i.e., traverse every link and visit every node) the graph in which they reside. None
of these investigations, however, considers the presence of harmful hosts.

The investigations on exploration with multiple agents are a generalization of the extensive
earlier work on exploration by a single agent (e.g., [1, 5, 9, 15, 17, 19, 28, 38, 41, 47]); they
focus on different aspects of the problem, each result giving us some knowledge on the impact
that factors such as memory size, computation capabilities, and a priori knowledge have on the
solvability and complexity of the problem. For example, the earlier investigations, by Blum
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and Kozen [12] and Kozen [35], considered a team of agents that were finite-automata. It was
later shown by Rollik that, with those type of agents, there is no generic protocol regardless of
the (finite) number of agents employed [43], proving an earlier conjecture by Rabin [42]. More
recently the investigations have focused on collaborative exploration by Turing machines; one
of the earlier contributions was by Bender and Slonim [10]. Solution algorithms for collective
exploration were given by Frederickson et al. for arbitrary graphs [29], by Averbakh and Berman
for weighted trees [4], and more recently by Fraigniaud et al. for trees [27].

The impact of sense of direction on the exploratory power of the agents was first examined
in the work of Blum and Kozen on the power of a compass [12]. We mention only in passing
the extensive investigations on exploration and navigation in terrains other than graphs (e.g.,
[11, 14, 22, 44]), where orientation and sense of direction play an important role.

It should be pointed out that, in general, the work on graph exploration assumes synchronous
agents, and in general employs limited forms of communications between agents; whiteboards
are used only in [27]. Furthermore, none of these investigations considers the presence of harmful
nodes.

Other investigations on cooperative solutions of problems by mobile agents include the stud-
ies on rendezvous (e.g., see [2, 3, 16, 36, 49]), election (e.g., see [8, 6]), and decontamination
[7].

2 Definitions and Basic Properties

2.1 Framework and Problem

Let G = (V,E) be a simple 2-connected graph; let n = |V | be the size of G, E(x) be the links
incident on x ∈ V , d(x) = |E(x)| denote the degree of x, and ∆ denote the maximum degree in
G. If {x, y} ∈ E then x and y are said to be neighbors. The nodes of G can be anonymous (i.e.,
without unique names). At each node x there is a distinct label (called port number) associated
to each of its incident links (or ports); let λx({x, z}) denote the label associated at x to the
link {x, z} ∈ E(x), and λx denote the overall injective mapping at x. The set λ = {λx|x ∈ V }
of those mappings is called a labelling and we shall denote by (G,λ) the resulting edge-labeled
graph. Let P [x] denote the set of all paths with x as a starting point, P [x, y] denote the set of
paths starting from node x and ending in node y, and let Λ be the extension of the labelling
function λ from edges to paths.

Informally, (G,λ) has sense of direction if it is possible, for any two paths π1,π2 ∈ P [x], to
determine from the sequence of labels Λx(π1) and Λx(π2) whether or not π1 and π2 lead to the
same node. The formal definition as well as examples of sense of direction is deferred to Section
4.

Operating in (G,λ) is a set of autonomous mobile agents. The agents can move from node
to neighboring node in G, have computing capabilities and computational storage, and obey the
same set of behavioral rules (the “protocol”). The agents are asynchronous in the sense that
every action they perform (computing, moving, etc) takes a finite but otherwise unpredictable
amount of time. Initially, all agents are at the same node h, called home base.

Each node has available a limited amount of storage, called whiteboard. Agents communicate
by reading from and writing on the whiteboards; access to a whiteboard is gained fairly in mutual
exclusion. When an agent is at a node, we assume it can “see” the port numbers associated
to the incident links, as well as the information on the whiteboard. Moreover, when an agent
moves on a link {x, y}, it can “see” the labels λx({x, y}) and λy({y, x}) at the two sides of the
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link (in other words, when arriving to y, the agent can recognize that label λy({y, x}) leads back
to x).

In the following we assume the agents have distinct Ids; notice however that, since the
whiteboards are accessed in mutual exclusion and the agents start from the same homebase,
distinct Ids could be easily constructed if the agents are initially anonymous.

A black hole (shortly Bh) is a node where resides a stationary process that destroys any
agent arriving at that node; no observable trace of such a destruction is evident to the other
agents. The location of the black hole is unknown to the agents. The Black Hole Search

(shortly Bhs) problem is to find the location of the black hole. More precisely, Bhs is solved if
at least one agent survives, and all surviving agents know, for each edge, whether it leads to the
Bh 1.

A solution protocol is generic if it solves Bhs regardless of G; in this paper we only consider
generic protocols. The main measure of complexity of a solution protocol P is the size, that is
the number of agents used by P. We also consider the total number of moves performed by the
agents, and call it the cost of P.

We study generic solutions and their complexity depending on the type of topological in-
formation the agents might have a priori available; we always assume they all know n. If no
additional topological information is available, the agents operate with topological ignorance. If
the system (G,λ) has sense of direction that is known to the agents, we say the agents operate
with sense of direction. Finally, the agents have complete topological knowledge of (G,λ) if the
following information is available to all agents: (1) Knowledge of the labeled graph (G,λ); (2)
Correspondence between port labels and the link labels of (G,λ); (3) Location of the home base
in (G,λ).

2.2 Basic Tool and Limitations

2.2.1 Cautious Walk

At any moment of the execution of a protocol, the ports are classified as unexplored – no agent
has left from ar arrive to this port, explored – an agent has arrived via this port, or dangerous –
an agent has left via this port, but no agent has arrived via it. Obviously, an explored port does
not lead to a black hole; on the other hand, both unexplored and dangerous ports might lead to
it. To minimize the number of casualties (i.e., agents entering the black hole), we do not allow
any agent to leave through a dangerous port. To prevent the execution from stalling, in all our
algorithms we require any dangerous port not leading to the black hole, to be made explored as
soon as possible.

This is accomplished as follows: Whenever an agent a leaves a node u through an unexplored
port p (transforming it into dangerous), upon its arrival to node v, and before proceeding
somewhere else, a returns to u (transforming that port into explored). We call this technique
Cautious Walk.

Similarly to the classification adopted for the ports, we classify nodes as follows: at the
beginning, all nodes except for the home base h are unexplored; the first time a node is visited
by an agent, it becomes explored. Note that, by definition, the Bh never becomes explored.

1In the particular case of n − 4 < ∆ < n, as explained later, we will use a relaxed definition.
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2.2.2 Limits

The nature of the problem imposes several basic limits to any solution. As the first move of the
single agent might lead to the Bh, it follows that at least two agents are needed to locate the
Bh.

The following lemma is directly implied by the definition of Bhs and from asynchrony of the
system:

Lemma 2.1. If there are two or more unexplored nodes, the Bhs problem is not solved.

Proof. Let u and v be two such nodes. Because of the asynchrony, for any finite amount
of time, the scenario where u is the Bh and every agent travelling towards v is very slow is
indistinguishable from the scenario where v is the Bh and any agent travelling towards u is very
slow. Hence no protocol terminating with both u and v unexplored can correctly report the
location of the Bh.

By using a similar argument, it follows that it is not possible to verify whether or not there
is a black hole in the system – the agents cannot distinguish in finite time whether the last
unexplored node is the Bh or all agents moving towards it are simply too slow.

Lemma 2.2. It is not possible to verify whether there is a Bh in the system.

The following two corollaries of Lemma 2.1 complete the list of basic limitations:

Corollary 2.3. If G has a cut vertex different from the home base, then it is impossible to
determine the location of the Bh.

Proof. If the Bh is located in the cut vertex, any algorithm terminating in finite time leaves at
least two nodes unexplored. Contradiction with Lemma 2.1.

Corollary 2.4. It is impossible to determine the location of the black hole if the size of G is
not known.

Proof. Consider two scenarios: A graph G with a black hole at node v and a graph G′ with node
v replaced by two nodes v1 and v2 connected to each other, and dividing among themselves the
edges leading to v in G. With all edges leading to v1 and v2 being very slow, the algorithm
cannot distinguish between G and G′ and would terminate in G′ with both v1 and v2 unexplored;
a contradiction with Lemma 2.1.

As a consequence, we assume that there are at least two agents working in a 2-connected
network; furthermore, the existence of the black hole and the size of G are common knowledge
to the agents.

3 Searching with Topological Ignorance

3.1 Lower Bounds

3.1.1 The Adversary

The lower bounds we are going to prove are for algorithms that know n and an upper bound ∆

on the maximum degree of G, and work on all 2-connected graphs of maximal degree at most
∆.
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We follow an approach common in lower bound proofs by viewing the execution as a game
between an algorithm and an adversary. The goal of the algorithm is to locate the black hole
and to terminate. The adversary tries to either force the algorithm to behave incorrectly, or
make it costly. The adversary has the power (1) to choose the graph (with port labels), (2) to
place the black hole and (3) to set link delays. The first two powers are due to the fact that the
algorithm does not know the network nor the location of the black hole. The fact that agents
are asynchronous gives the adversary the third power. In particular, we say that the adversary
blocks a link l when it sets very high delays for that link; as a consequence, we say that an agent
traversing l is blocked; viceversa, to block an agent traversing a link l, the adversary blocks l.

Notice the adversary’s power to ’direct’ the agents leaving via unexplored ports: When the
algorithm specifies that an agent leaves a node via an unexplored port, it chooses the port based
on the port labels. Since the adversary can permute the port labels of the unexplored ports,
this means that the adversary can choose via which unexplored port the agent leaves.

Because of asynchrony, we can limit ourselves to reactive algorithms: If an algorithm uses
timeouts, the adversary can make all timeouts expire without allowing any agent to arrive to its
destination. This means that an agent at a node must either wait for the arrival of an agent, or
depart via one of the incident ports.

We further simplify matters by turning a dangerous port p into explored as soon as the agent
that departed via p arrives to its destination (provided it is not the black hole). This essentially
gives any algorithm the power of cautious walk, without requiring that an agent must return
to mark an active port as explored. Clearly, this only strengthens the algorithm and makes the
lower bound result stronger. Since every algorithm can be modified to use cautious walk2, we
can limit ourselves to algorithms that avoid sending an agent via a dangerous port.

The above discussion narrows the possible actions the algorithm can specify for available
(not in transit and not waiting) agents to: (1) departure via an unexplored port, (2) departure
via an explored port, and (3) waiting until another agent arrives, or a port status changes.

The adversary applies its power to set delays by being able to specify at any moment of the
execution which agents in transit arrive to their destination, and which continue to travel.

Since an explored link does not lead to a black hole, whenever there are some agents in
transit over such links, the adversary must eventually allow all these agents to arrive to their
destinations. Call a configuration stable if there are no agents in transit over explored links.
Then the adversary will use the following rule:

• If there are agents travelling via explored links, the adversary blocks the agents that left
through unexplored ports, until a stable configuration is reached.

Applying this rule we are allowed to focus on the behavior of the adversary in stable configura-
tions only.

At any moment of the execution the maximal information that the algorithm can have about
the underlying graph G can be described by a graph Gex induced by the explored nodes, together
with the information about their degree and the labels of the ports incident in G. We denote
this graph, together with the additional information, by G+

ex.
The power of the adversary to choose the graph and the port labelling comes into play in

stable configurations, when the adversary allows some agents to move and to arrive to their
destination. At that moment, the adversary chooses a witness graph Gwit = (V,E) (together
with its port labelling): a graph with a Bh consistent with the previous execution of the algo-
rithm. Consistency means that Gex is an induced subgraph of Gwit and for all nodes in Gex

2by increasing the time and number of moves at most three times.
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Figure 1: Example of insufficiency of conditions from Observation 3.2.

the information (degree and port labels) contained in G+
ex matches these values in Gwit. Also

note that Gwit must be 2-connected, of order n and should have maximal degree at most ∆.
In the rest of this section we restrict ourselves only to such graphs, without explicitly stating
these properties. Observe that there are usually many possible witness graphs consistent with
the current knowledge G+

ex, and the adversary’s choices of the witness graph can vary during
the execution.

The following observation and fact capture the limits of the adversary’s powers and give
additional intuition behind our choice of graphs in the lower bound proofs of this section.

Since the adversary must eventually unblock links not leading to the Bh, we get the following:

Observation 3.1. If, for a stable configuration, there is no witness graph such that all dangerous
ports lead to the Bh, then the adversary must allow at least one agent to arrive to its destination.

The following fact describes in detail some conditions under which such a witness graph does
not exist.

Observation 3.2. If any of the following conditions hold in a stable configuration, then the
adversary must allow at least one agent to arrive to its destination.

1. There is a node u with two incident dangerous ports.

2. There are at least ∆ + 1 dangerous ports.

3. There are ∆ dangerous ports, at most one open node (explored node with an unexplored
port) and at most n − 2 explored nodes.

4. There are some dangerous ports, no open node and at most n − 2 explored nodes.

Proof. For each case we prove that there is no witness graph Gwit and location of the Bh in
Gwit such that all dangerous ports lead to Bh.

1. Since Gwit does not contain multiple edges, there can be at most one link from any node
to the Bh. Therefore, not both dangerous ports of u can lead to the Bh; hence, at least
one dangerous port does not lead to the Bh.

2. Since Gwit has degree at most ∆, if there are ∆ + 1 or more dangerous port at least one
of them does not lead to the Bh.
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Figure 2: Theorem 3.4: The lower bound graphs for ∆ ≥ n − 4 (left) and ∆ ≤ n − 4
(right).

3. Suppose, by contradiction, that all dangerous ports lead to the Bh. By definition of
dangerous port, and since there are ∆ dangerous ports, it follows that there is no link
connecting the Bh and the unexplored part of Gwit. Therefore, the unexplored part of
Gwit must be directly connected to the explored part. By hypothesis, however, there is at
most one open node that can connect the unexplored and the explored part of Gwit; this
contradicts the 2-connectivity of Gwit.

4. Using an argument similar to the one adopted in Point 3., it follows that the unexplored
part can be connected only to the Bh, which again contradicts the 2-connectivity of Gwit.

If any of the conditions stated in Observation 3.2 holds, the adversary can not find a witness
graph with all dangerous ports leading to the Bh. However, avoiding those conditions is not
sufficient:

Observation 3.3. Even if none of the conditions of Observation 3.2 holds in a stable configu-
ration, it might be impossible for the adversary to connect all dangerous ports to the Bh.

Proof. Consider the following G+
ex: a) Gex contains n − 2 nodes; b) ∆ = 3; c) there are three

explored nodes v1, v2, v3 with one dangerous and zero unexplored ports each; and d) there is one
open node v4 with two unexplored links (see Figure 1). None of the conditions of Observation 3.2
is satisfied; however, it is still not possible to have all dangerous ports leading to the Bh: in
fact, in such a case, v4 has also to be connected to the Bh, violating ∆ = 3.

3.1.2 Lower bound on the number of agents

The following theorem gives us the first lower bound, binding the size of the team to the maximal
degree of the network:

Theorem 3.4. There is an n node graph G with maximum degree 3 ≤ ∆ ≤ n − 4 such that,
without topological information, any algorithm for locating the black hole in arbitrary networks
needs at least ∆ + 1 agents in G. In addition, if n − 4 < ∆ < n then any such algorithm needs
at least ∆ agents.
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Proof. We first prove the second part for ∆ = n − 1. Consider the graph shown in Figure 2(a),
with the Bh at node 0, and the home base at node 1. The first agent departing the home base
is sent via the link leading to 0 and it is blocked on this link. Therefore, there must be an agent
moving to node 2. Again, the first agent departing node 2 via unexplored link is sent to 0; the
same is applied for nodes 3, 4, . . . ,∆ − 1, resulting in ∆ − 1 agents being blocked before the
algorithm can reach node n − 1 and terminate. If ∆ = n − 2, the adversary chooses the same
graph, except that node 2 is not connected to 0. If ∆ = n − 3, also 3 is not connected to 0. It
is easy to see that the previous approach can be applied also in these cases.

The case ∆ ≤ n − 4 is played on a spoked ring graph G′ consisting of an n − 1 node ring
with each node connected to the central node – the Bh. The home base is one of the ring nodes.
The adversary applies the following rule: The first agent leaving a node via an unexplored link
is sent via the link leading to the Bh. We call a node v completed if an agent has left v towards
the Bh. At any moment, the subgraph induced by the completed nodes is a path containing the
home base. Moreover, there are at most two explored but non-completed nodes - the non-Bh

neighbours of the completed path.
Consider now the situation during the execution of an algorithm A on G′ where there are

exactly ∆ completed nodes. The graph G of maximum degree ∆ on which A needs at least ∆+1
agents is obtained from G′ by removing all edges leading to the Bh from non-complete vertices
and adding an edge connecting the two neighbours of the completed path – see Figure 2(b).
While the number of completed nodes is at most ∆, A sees only a path of degree-3 nodes and
therefore behaves the same on G and G′. Since ∆ ≤ n − 4, at the moment when there are ∆

completed nodes there are still at least two unexplored nodes and at least one more agent is
needed.

The case ∆ = 2 corresponds to the ring and has been studied in [20] (two agents are necessary
and sufficient).

3.1.3 Lower bound on the cost using optimal number of agents

In this subsection we establish a lower bound on the cost of Black Hole Search using a
team of optimal (i.e., ∆ + 1) size. Let G(∆, n) denote the set of 2-connected graphs of n nodes
of maximal degree at most 3 ≤ ∆ ≤ n − 4. We show that for every agent-optimal (using
∆ + 1 agents) algorithm A that correctly locates the Bh in all graphs in G(∆, n), there exists a
G ∈ G(∆, n) such that A spends Ω(n2) moves on G in the worst case.

Let us call basic cell the graph obtained from a mesh (∆+2)×2 by collapsing the outermost
pairs of nodes. The game is played on an 'n/(2∆ + 2)(-node ring having each node replaced by
a basic cell (see Figure 3). If n is not divisible by 2∆ + 2, an appropriate number of nodes is
connected to the basic cell opposite to the starting node to yield an n node graph G.

Note that G is of degree 3, not ∆. Still, A must work correctly on it, and we will show that
it incurs Ω(n2) cost. Interestingly, this means that the mere possibility of the graph having a
node of degree ∆ pushes the lower bound up to Ω(n2).

Overview. At any moment of an execution the explored part of the network can be divided
into three parts (see Figure 4):

E : The middle, fully explored part, consisting of fully explored basic cells.

O: Open border, containing a single partially explored basic cell.
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Figure 3: The graph G for ∆ = 3.

...

...

...

...

Open Explored Closed

Figure 4: An example of explored part of the network. The arrows correspond to agents
in transit.

C: Closed border, consisting of a single blocked bridge link leading to the next (yet unex-
plored) basic cell.

The idea is to force the agents to repeatedly migrate between the opposite ends of the
explored subgraph, crossing the ever increasing middle part. This migration is forced by the
adversary “closing” the open border part by blocking the horizontal link to the next basic cell,
and simultaneously “opening” the closed border part. Eventually, all unexplored ports in the
newly closed part will be explored and there will be no exploration work left there. If the agents
do not move to the open part (i.e. they start waiting for the blocked link to become unblocked),
the adversary chooses a witness graph in which all dangerous ports lead to the black hole. Once
all agents (except the agent blocked at the horizontal link) have migrated, the closed part is
opened, the open part is closed and the process is repeated until (almost) the whole network is
explored.

Detailed description. To reduce the number of cases we must consider, we give all algo-
rithms solving the Bhs problem the following additional power: Whenever an agent arrives to a
node with a dangerous port, all remaining unexplored ports are revealed (explored) at no cost.
Clearly, this modification only further strengthens our lower bound.

Between two stable configurations, an agent either remains blocked, or moves over explored
links until it departs via an unexplored port (becoming blocked), or starts waiting. These choices
are called “meta-actions” by the algorithm. We describe the adversary’s actions as responses
to such meta-actions of the algorithm. In particular, we specify how the adversary acts (1) at
the beginning of the execution, until a closed and open border parts are formed; (2) in an open
border part, until it is closed; and (3) in a closed border part, until it is opened. The actions of
the adversary are described as reaction to arrival of an agent to the particular part. Note that,
although there could be several available agents (e.g., at the beginning of the execution), the
adversary can handle them sequentially by allowing only one of them to move, while blocking

11



ClosedOpen

Figure 5: The initial configuration.

all others. The adversary reacts to awakening of an agent in the same way as if the agent has
just arrived.

Initialization. The adversary chooses a graph with the home base node at the right border
of a basic cell. The initialization is achieved by sending the first agent to the right and
blocking it on that link. In addition, the two left links are revealed to the algorithm
without any cost (this is done to simplify presentation, and it clearly only strengthens our
lower bound). This terminates initialization, with the right border part being closed and
the left border part being open (see Figure 5).

Open part. Whenever an agent arrives to an open part (either from the closed segment, or
being awakened) and departs from a node v via an unexplored port, the adversary directs
it to the vertical link incident to v and blocks it. This ensures that, in general, an open
part looks like in Figure 4; the only freedom the algorithm has is to choose whether to
explore from the top line or from the bottom one.

When the number of agents that are creating dangerous links in the open part reaches ∆,
the adversary switches the open and closed parts as follows.

The open part is closed by blocking the link leading to the next basic cell. Moreover, all
agents that have been blocked in this part are unblocked, and all remaining unexplored
links in this basic cell are revealed at no cost to the algorithm. The resulting fully explored
basic cell is then added to the middle (explored) part.

The closed part is opened by unblocking the bridge link and revealing the two incident
links of the neighboring unexplored basic cell.

Closed part. The adversary keeps the bridge link blocked. Since there are no unexplored ports
in this part, all agents will either start waiting or leave for the open part.

Lemma 3.5. If an open part does not switch to closed, and the number of explored nodes is at
most n − 3, then the algorithm does not locate the black hole.

Proof. We show that, in such a case, the adversary can construct a witness graph in which all
dangerous ports lead to the Bh.

First note that an open part has at most two open nodes – the last explored node in each
horizontal line. Since, by hypothesis, the open part does not switch to closed, then there are at
most ∆ − 1 dangerous ports there. However, there is at most one dangerous port in the closed
part. Since there are no dangerous ports in the middle segment, at most ∆ agents are blocked
in dangerous ports. The witness graph is constructed from Gex (the currently explored graph –
the subgraph of G the algorithm has seen so far) by adding a new node u (the Bh) connected to
all dangerous ports; in addition a loop of nodes is connected to Gex at the two open nodes of the
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Bh

Figure 6: (a) A stable configuration with three agents on dangerous links (shown by
arrows) and others waiting (not shown). Note that there are two open nodes, with one
and two unexplored links, respectively. (b) The witness graph the adversary responds
with to the configuration in (a). The explored nodes are black, the newly added nodes
are white. Note the additional edge added to maintain the proper node degrees in the
witness graph.

open part, in order to obtain a consistent graph of n nodes. It may be the case that one or both
of the open nodes have two incident unexplored links (and therefore not all unexplored links are
covered by the newly added loop). If both open nodes have such spare unexplored port, an edge
is added connecting those ports. If there is only one spare unexplored port, an edge is added
leading to a node of the newly added ring (see Figure 6.(b)). Note that since there at at least
three unexplored nodes at this moment, the newly added loop has at least two nodes and this
can be done without creating a multiple edge.

In the particular case when there is only one dangerous port, the Bh is also connected to
this loop, to ensure 2-connectivity. (Note that since ∆ ≥ 3, the degree of the Bh would not
exceed ∆.)

Therefore, in Gwit all dangerous ports lead to the Bh. Since, by hypothesis, the open part
does not switch to closed, it follows that no other agents ever reach the open part. This means
the algorithm can no longer progress nor locate the black hole among the remaining unexplored
nodes.

We remind that G(∆, n) denotes the set of 2-connected graphs of n nodes of maximal degree
at most 3 ≤ ∆ ≤ n − 4.
Based on the definitions introduced, we can finally state the following:

Theorem 3.6. Let A be an algorithm that, with topological ignorance, correctly locates the Bh

in all graphs in G(∆, n) using ∆ + 1 agents, where n ≥ 7 and 3 ≤ ∆ ≤ n− 4. Then there exists
a G ∈ G(∆, n) such that A incurs Ω(n2) moves on G in the worst case.
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Proof. During each change (or, flip) of open/closed parts, ∆−1 agents cross the middle explored
part and this part grows by one basic cell. Since ∆ + 3 moves are needed to cross a basic cell
(and the bridge connecting to the next cell), the number of moves between the i-th and i + 1-th
flip is at least (∆ − 1)(i − 1)(∆ + 3). From Lemma 3.5, it follows that the number of flips is
at least 'n/(2∆ + 2)( − 1; hence, summing until there is only the last basic cell left yields the
result of the theorem:

"n/(2∆+2)#−1∑

i=1

(∆ − 1)(i − 1)(∆ + 3) = n2/8 + o(n2)

Note that, since a graph of degree 3 was used, this lower bound does not carry for ∆ = 2.
However, only ring networks satisfy both ∆ = 2 and 2-connectivity, and for those matching
upper and lower bounds of Θ(n log n) are already known [20].

3.2 Optimal Protocol

In this section we show that the lower bounds established in the previous section are tight.
Let us refine the classification of the explored nodes as follows: (1) an explored node v whose

ports are either explored or dangerous is called expanded, (2) otherwise v is called visited.
The idea of the algorithm, called Ignorance, is to have the agents cooperatively visit the

graph by expanding all nodes until the black hole is localized. During this process, the home
base is used as the cooperation center; the agents must pass by it after finishing the expansion
of a node, and before starting a new expansion.

Since the graph is simple, two agents exploring the links incident to a node are sufficient to
eventually make that node expanded. Thus, in our algorithm, at most two agents cooperatively
expand a node; when an agent discovers that the node is expanded, it goes back to the home
base before starting to look for a new node to expand.

As we want at most two agents to expand each node, we associate an asking counter ca(v)
with each explored node v: two minus the number of agents currently expanding v. Once v
becomes expanded, ca(v) is set to 0. Thus, finding a node to expand means finding a node with
asking counter greater than zero.

There are three main problems that have to be solved for Algorithm Ignorance to work:
to ensure that (1) at least one agent survives, (2) each node is eventually expanded and (3) the
agents efficiently find a node with non-zero asking counter.
The first problem is taken care of by using Cautious Walk. The second two problems are
addressed by maintaining two counters cn (globally needed) and ce (already expanded) at the
home base. The idea is to have cn reflect the sum of all the asking counters ca’s; ce is used to
decide when to terminate. If an agent a waiting at the home base sees a non-zero cn, it knows
that somewhere there is an explored node asking for an agent. The agent a then traverses a
spanning tree T constructed during the exploration of G (when a node u is visited for the first
time, the node from which the agent came is set to be the u’s parent in T ) until it finds a node
v with ca(v) > 0. The counters cn and ca(v) are updated in such a way that at any time cn is
at most the sum of all ca’s, and if the sum of ca’s is more than 0 then eventually also cn > 0.
The last property is achieved as follows: Whenever a new node v is explored, the agent visiting
it not only sets ca(v) to two, but also travels to the home base and increments cn by two (and
then returns to the node it was expanding).
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At any time, an agent will be either expanding a node, searching for a node to expand,
waiting at the home base for an assignment, or being destroyed by the black hole.

Theorem 3.7. Algorithm Ignorance correctly locates the black hole in O(n2) moves using
∆ + 1 agents.

Proof. Correctness. Since Algorithm Ignorance uses a cautious walk, at most one agent will
enter each link incident to the black hole.

Let us denote by #s the number of agents in searching state and by #u the number of agents
that are currently travelling to the home base to update cn. By construction, it follows that at
any time cn + #s + 2#u =

∑
ca(v).

Since a searching agent always finds a node with ca(v) > 0 in at most O(n) moves, livelock
is not possible and the only possible terminal state of the system is with no agents moving. As
the number of agents is higher than the degree of the Bh, at least one agent must be waiting at
the home base. However, that means cn =

∑
ca(v) = 0, i.e. all nodes have been expanded.

Cost. A vertex v is charged (1) the cost of exploring its incident links - O(deg(v)), (2) O(n)
for updating cn when v is found for the first time and (3) the searching cost 2|T | ∈ O(n) of the
(at most two) agents that decrement ca(v) and expand v. Summing up over all vertices results
in O(n2) overall cost.

We have presented Algorithm Ignorance that locates the Bh using ∆ + 1 agents and
at a cost of O(n2) moves. By Theorems 3.4 and 3.6 this is optimal for ∆ ≤ n − 4. For
the case of n − 4 < ∆ < n, an optimal algorithm using ∆ agents can be constructed based on
Algorithm Ignorance, with a case-analysis final stage when only few nodes remain unexplored.
Its description and analysis can be found in the Appendix.

4 Searching with Sense of Direction

In this section we show that, even in a situation of topological ignorance, if there is a sense
of direction known to the agents, two agents suffice to locate the black hole, regardless of the
topology of G.

Sense of direction is a property of labeled graphs capturing global consistency of the port
labels [24]; it has been extensively studied in the context of distributed computing and has been
shown to have an impact in reducing the communication complexity of several problems (e.g.,
see [25]).

Informally, sense of direction is the ability (called coding) to decide, by looking at sequences
of labels corresponding to different paths starting from the same node, whether or not they end
up in the same node; plus the ability (called decoding) to translate from neighbor to neighbor
the coded information about paths in the system.

For some graphs (e.g., the ones used for interconnection networks), a sense of direction is
provided by very natural labellings. This is the case, for example, of the mesh consistently
labeled with North, South, East, West (compass labelling), or of the hypercube where the edges
are labeled by the corresponding dimensions (dimensional labeling). Interestingly, every graph
can be endowed with sense of direction.

Formally, sense of direction is based on the notions of coding and decoding functions for a
labelled graph (G,λ).

A coding function for λ is any function c : L+ → N where N is a finite set, such that walks
originating from the same node are mapped to the same element of N if and only if they end in
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Algorithm 1 Ignorance

There are ∆ + 1 agents, with ∆ ≤ n − 4. At the home base there are two counters: cn

(“agents-needed”) and ce (“nodes-expanded”). Furthermore, at each node u there is a
counter ca(u) (“asking”). Initially, ca(h) = cn = d(h) (the degree of the home base),
ce = 0, ca(u) = 0 for all u *= h, h is marked as visited, all agents are waiting at h. T is a
tree spanning the explored nodes; at the beginning it contains only h.

Waiting for Assignment - Agent a is waiting at h while cn = 0.

1. If cn > 0 then a sets cn ← cn − 1 and starts searching for a node to expand.

Searching - Agent a is searching for a node to expand.

1. a traverses T until a node u with ca(u) > 0 is found. A “right-hand-on-
the-wall” rule for traversing mazes is used (the ports at a node are cyclically
ordered: after arriving by port p, an agent leaves using the next port in the
tree), as it does not require additional memory at the agent and/or nodes.

2. a sets ca(u) ← ca(u) − 1.

3. a starts expanding u.

Node Expansion - Agent a is at u expanding it.

1. a leaves through an unexplored port p of u, making it dangerous. If the incident
node v had already been visited, a returns to u to continue its expansion.
Otherwise

(1) a sets ca(v) ← 2, updates T by adding v and (u, v), and returns to u

(making p explored).

(2) a goes to h where it sets cn ← cn + 2 (to register that another node has
been visited and two agents must be assigned to its expansion);

(3) It returns to u to continue its expansion. It is sufficient for a to remember
the identifier of u and traverse T until u is found. If the nodes did not
have unique identifiers at the beginning, the algorithm can be modified to
assign to each node a unique identifier when it is first visited.

2. If no port of u is unexplored (a has finished its expansion of u): if u is already
marked as expanded, a returns to h to wait; otherwise, a marks u as expanded,
returns to h, sets ca(u) ← 0 and ce ← ce + 1, and waits.

Termination - When ce = n − 1, then T includes every node except the black hole;
furthermore, at that time, every port p that is still dangerous leads to the black
hole.
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the same node. More precisely, ∀x, y, z ∈ V,∀π1 ∈ P [x, y],∀π2 ∈ P [x, z],

c(Λx(π1)) = c(Λx(π2)) ⇔ y = z.

The value of c(Λx(π1)) is also denoted by βx(y) and called the local name of y at x according
to c. Any coding function c, if it exists, is also called a weak sense of direction of (G,λ).

A decoding function for c is a function d : L×N → N which allows, for any two neighbors
x and y and every walk π from y to any z, to determine the coding of the walk π′ =< {x, y},π >
from x to z just from the coding of π and the label of the link {x, y}. More precisely, ∀x ∈
V,∀π ∈ P [x], with Λx(π) = [α1,α2, , . . . ,αk],

d(α1, c([α2, . . . ,αk])) = c([α1,α2, , . . . ,αk])

In other words, while in general to know the coding of the labels of a walk we need to know all
the labels, with the decoding function it is sufficient to know only the first label and just the
coding of the rest.

An edge-labeled graph (G,λ) has sense of direction if and only if there exists a coding
function c for (G,λ) and a decoding function d for c. We also say that the pair (c,d) is a sense
of direction for (G,λ).

Examples. Consider an arbitrary graph G = (V,E), V = {v0, . . . , vn−1}, where the edge
(vi, vj) is labeled at vi by the label j − i. With this labelling there is a simple coding function:
two paths from the same node terminate in the same node iff the sum of the corresponding
labels is the same, that is

∀x ∈ V,∀π ∈ P [x], if Λx(π) = [l0, . . . , lk] then c(Λx(π)) =
k∑

i=0

li.

The decoding function is defined as follows:

∀{x, y} ∈ E,∀π ∈ P [y],d(λx({x, y}), c(Λy(π))) = λx({x, y}) + c(Λy(π)).

It is easy to verify that λx({x, y}) + c(Λy(π)) = c(λx({x, y}) ◦Λy(π)), where ◦ denotes concate-
nation of strings of labels. This labelling (called chordal) is one of many endowed with sense of
direction that can be constructed in every graph.

Another labelling, endowed with sense of direction, that can be constructed in every non-
anonymous graph is the neighboring one defined as follows: ∀{x, z}, {y,w} ∈ E, λx({x, z}) =
λy{y,w} iff z = w. In this case the coding function is:

∀x ∈ V,∀π ∈ P [x], if Λx(π) = [l0, . . . , lk] then c(Λx(π)) = lk

and the corresponding decoding function is:

∀{x, y} ∈ E,∀π ∈ P [y],d(λx({x, y}), c(Λy(π))) = c(Λy(π)).

We now show that, even in a situation of topological ignorance, if there is a sense of direction
known to the agents, two agents suffice to locate the black hole, regardless of the topology of
G. We do so constructively, by designing a solution protocol, called Sd, that requires only two
agents. We further prove that the proposed solution is also cost-optimal.

The idea of the algorithm is similar to the one of Algorithm Ignorance: the graph is
traversed, expanding the encountered nodes and constructing a spanning tree T of G rooted at
h. Unlike the previous solution, only two agents a and b are employed.
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The two agents, a and b, cooperate to expand every node (except the black hole), starting
from the home base. Using only two agents, the crucial and difficult task is to prevent both of
them entering the Bh. In particular, let u be the node currently being expanded. To expand u,
agent a successively explores the incident unexplored ports: a leaves u via an unexplored port
p, comes to a node v (if v is not a black hole), adds the link (v, u) to the spanning tree T of
the explored subgraph if v has not been visited before, and returns back to u. This process is
repeated until a returns to u and finds that no port is unexplored; then a continues the traversal,
searching for another node to expand. However, if one port p of u is dangerous (i.e, the other
agent is currently exploring it), the node w reachable through p might be the Bh, and must be
avoided. Thus, from this moment on, until told otherwise, agent a avoids entering an unexplored
port leading to w. If a is not able to find an unexpanded node, w is the Bh and the algorithm
terminates.

Sense of direction (coding and decoding functions) is used to identify the ports leading to the
dangerous node. While still at u, the agent a computes c(λu({u,w})) = βu(w), where λu({u,w})
is the label of port p. Let z be the first node a reaches after departing u to find another node to
expand. If z has an unexplored port, a can determine whether or not it leads to the dangerous
node w as follows: It computes d(λz({z, u}),βu(w)) = βz(w); a port with label l leads to w if
and only if c(l) = βz(w). Similarly, at any node z′ in the traversal, a computes βz′(w) and uses
it to determine if an unexplored port of z′ leads to the dangerous node w.

The information that w is dangerous can be modified only by the other agent b. If w was
not the Bh, when b completes the exploration of v, it becomes a follower and tries to reach a
following it in its traversal. Once b reaches the node being expanded by a, it leaves a message
for a notifying it of its presence (and, thus, that w is no longer dangerous), and joins in the
expansion (leaving through an unexplored port, or starting traversal, if there are none left).

Thus, at any point in time, an agent is either expanding a node (Node Expansion), or
searching for a node to expand (Searching), or following the other agent (Following), or destroyed
by the black hole. In the first two cases, the agent might carry with it information, in the variable
danger, about the dangerous node to be avoided. As before, we use a spanning tree T of all
visited nodes; initially, T contains just h.

Theorem 4.1. In an arbitrary network with sense of direction, the black hole can be located by
two agents with cost O(n2).

Proof. Correctness: We start by showing that at most one agent will enter the black hole. First,
note that a Following agent never enters an unexplored port. In fact, when an agent becomes
Following (Rule 1.2.1), it follows the trace of the other agent until it reaches a node that is being
expanded by the other agent (Rule 3); in doing this, it only follows safe links until it reaches
the node that the other agent is currently expanding. Second, if both agents are expanding
the same node (Rule 1), since the graph is simple, at most one of them enters the black hole.
Finally, the only possibility for the agents to expand different nodes u and v is when one (say b)
is exploring the last unexplored port p of a node u (leading to a node w) (Rule 1.1), while a has
already left u in search of the next node v to expand (Rule 1.3). In such a case a remembers the
“name” (variable danger in Rule 2.1) of w and avoids entering any port leading to w, thanks to
the properties of sense of direction.

Thus, at least one agent survives; it eventually explores n−1 nodes and terminates, correctly
identifying the only remaining node (danger) as the black hole.

Cost: The total cost for expanding the nodes is O(m) (each link is visited at most twice).
The number of moves made by a following agent from the moment it became follower until it
caught up with the other agent is bounded by O(n) (the follower visits each node at most once).
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Algorithm 2 Sd

1. Expanding - Let a be the agent expanding node u; let w̃ be the current dangerous
node (if any) and danger = βu(w̃) be the information known to a (if there is no
dangerous node, danger = nil).

1.1 If there is an unexplored port p of u not leading to the dangerous node: a leaves
u through p making it dangerous, and returns to u (making p explored). If the
incident node v had not been previously visited, a updates T by adding v and
(u, v) to it.

1.2 If all ports are explored and none is leading to the dangerous node:

1.2.1 If there is a note from b indicating that b is searching, a removes the
note, becomes Following.

1.2.2 If there are no notes from b, a marks u as expanded and becomes Search-

ing.

1.3 If one port p, leading to node w, is dangerous and all the others are explored
(i.e., b is currently exploring link (u, w) and the dangerous node is w), a will:
set danger = βu(w) = c(λ(u, w)) = c(l), where l is the label of p; mark u as
expanded, and becomes Searching.

2. Searching - Let a be the searching agent. Agent a traverses T searching for another
node to expand, leaving a navigational instruction for b (a pebble marking the port
over which a leaves the current node is sufficient). Let w̃ be the current dangerous
node (if any); thus, danger = βu(w̃). Upon arriving at v:

2.1 a sets danger = βv(w̃) = d(λ(v, u), βu(w̃)) updating the information about the
dangerous node.

2.2 If v has been already expanded, a continues its traversal of T searching for
another node to expand, and leaves a navigational instruction for b.

2.3 If v is unexpanded, a becomes Expanding to start the expansion of v.

3. Following - Let a arrive at v while following b. If v is not expanded, a becomes
Expanding (i.e., it joins b in the expansion); otherwise a follows the navigational
command left there by b.

4. Termination - When the searching agent finds that all nodes in T are expanded, the
node identified by danger is the black hole.
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Figure 7: Theorem 4.2: (a)The lower bound graph. (b) Directing the eagerly exploring
agents to the black hole.

An agent becomes follower only when the last port of a node is explored, hence the total cost
following is O(n2). The cost of finding the next node to expand is O(n) (traversal of the tree
T ). The total cost of finding is again O(n2), as for a given node at most one agent (the first one
to not find an unexplored port leading to non-dangerous node) leaves it in a search for the next
node to expand.

We now show that the quadratic bound on the cost is tight in the worst case. More precisely,
we show that any algorithm that works with all senses of direction (i.e. does not assume a specific
sense of direction) incurs a worst case cost of Ω(n2). We prove this by showing that there exists
a type of sense of direction (the neighboring SD described earlier in this section) for which Ω(n2)
is the lower bound.

In a graph with neighboring sense of direction, the labels on all the edges leading to the
same node are identical; i.e, ∀x, y, z, w ∈ V : λx{x, z} = λy(y,w) iff z = w; we shall call such
a label the identity of node z. The lower bound is based on the observation that, although SD
reveals to an agent the identity of the node on the other side of an incident unexplored link, it
gives no information about what is deeper inside the unexplored part.

Theorem 4.2. The worst case cost for locating a black hole in arbitrary networks, independently
of the type of sense of direction available, is Ω(n2).

Proof. To prove the lemma we show that with a specific sense of direction (neighboring SD)
Ω(n2) is a lower bound. Let A be a two agents algorithm that correctly locates the black hole in
arbitrary networks with neighboring SD. We view the execution as a game between the adversary
and the algorithm, played on the graph shown in Figure 7(a): a ring with each vertex except
the home base replaced by a “triangle”. The game proceeds in rounds. At the beginning of each
round both agents are leaving the explored part in opposite directions over the “ring edges”
(the edges coming from the original ring; the edges of the triangles are called triangle edges).
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The beginning of the first round is reached by the adversary blocking both edges incident to
the home base and waiting until both agents depart in the opposite direction (they must do so,
otherwise the algorithm does not correctly handle the situation with a black hole incident to the
home base).

During a round, the adversary performs two tests: (1) If the left blocked edge is unblocked,
will the agent return to the middle node of the explored part before entering a triangle edge
of the next unexplored triangle? (2) The same test on the right side. Note that these tests
are only virtual, by examining the algorithm. A negative answer to both tests means that the
agents proceed (without communicating) to explore parts of the graph about which they have
no knowledge. In such a case, the adversary forces the algorithm to direct both agents to the
black hole (see Figure 7(b)) contradicting the correctness of the algorithm.

Hence, at most one agent enters a triangle edge without returning to the middle of the
explored part. The adversary unblocks the agent a that would return there. Then the whole
next triangle is revealed and the next unexplored ring edge is blocked (the other agent remains
blocked all the time on the ring edge on the opposite side). Eventually, the freed agent enters
the blocked ring edge and the next round starts (otherwise the algorithm would not locate the
black hole, as there will be more than one unexplored node remaining).

Note that, since during round p the explored subgraph Gp
e contains p− 1 triangles, the freed

agent performs Ω(p) moves. Because the arguments above apply for all rounds with at least one
unexplored triangle (i.e. p < n/4 − 1), summing over all such rounds results in the Ω(n2) lower
bound.

5 Searching with Complete Knowledge

In this section we consider the case of an arbitrary system where the agents have complete topo-
logical knowledge of (G,λ). In this case, not surprisingly, two agents suffice, even if there is no
sense of direction. In fact, with complete topological knowledge, each agent can unambiguously
determine the node being visited by the other agent, and thus avoid that node. In other words,
we can employ the solution strategy for systems with sense of direction, even if there is no sense
of direction. This yields, by Theorem 4.1, a two-agents solution with O(n2) cost.

We show how, using a different approach and making full use of the available knowledge,
the two agents can locate the black hole with at most O(n log n) moves, which is optimal. The
proposed algorithm, called CompleteKnowledge, does not use collaborative “expansion” of
the nodes, employed by all previous protocols. Instead, it is based on the notion of individual
“working sets” and of “safe” nodes, using an approach similar to the one for ring networks [20].
The safe nodes are those in the subgraph induced by the explored links.

Informally, the protocol works as follows. Let Gex be the explored part of the network (i.e.,
the set of safe nodes); initially it consists only of the home base h. The nodes to be explored
are partitioned, and each agents explores its part (“working set”). In particular, the two agents
a and b, partition the unexplored area into disjoint subgraphs Ga and Gb, such that for each
connected component of Ga and Gb there is a link connecting it to Gex (we show later that this
is always possible). Ga and Gb are the working sets of a and b, respectively. Let us define Ta

and Tb to be trees spanning Ga and Gb, respectively, such that Ta ∩ Gb = Tb ∩ Ga = ∅. (The
graphs Ga and Gb are not necessarily connected – the trees Ta and Tb are obtained from the
spanning forests of Ga and Gb by adding edges from Gex as necessary, but avoiding the vertices
of the opposite working set.)

Each agent then traverses its working set using cautious walk on the corresponding spanning
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Figure 8: Splitting the unexplored subgraph Guex into Ga and Gb.

tree. In this process, it transforms unexplored nodes into safe.
Let a be the first agent to terminate the exploration of its working set; when this happens,

a goes to find b. It does so by: first going to the node w where the working sets were last
computed, using an optimal path and avoiding Gb; then following the trace of b; finally reaching
the last safe node w′ reached by b.

Agent a then computes the new subgraph Guex containing all non-safe nodes. If Guex

contains a single node, that node is the black hole. Otherwise a computes the new working sets
for itself and b; it leaves a note for b at w′ indicating the new working set Gb for b, and goes
to explore its new assigned area avoiding the (new) working set of b. When (if) b returns to
w′, it finds the note and starts exploring its new working set. Note that, at any time, an agent
is either exploring its working set, or looking for the other agent to update the workload, or
destroyed by the black hole.

In the correctness proof of Algorithm CompleteKnowledge we need the following special
case of the Györi-Lovasz Theorem [31, 37]:

Lemma 5.1. Let G = (V,E) be a 2-connected graph and let x and y be any two nodes in V .
Let s < |V |. Then there exists a partition of V into V1 and V2 such that |V1| = s, x ∈ V1, y ∈ V2

and the graphs induced in G by V1 and V2 are connected.

The following lemma states that the Step 1 of Computing the Working Sets can always be
performed:

Lemma 5.2. Let G = (V,E) be a 2-connected graph and let {Vex, Vuex} be a partition of V such
that Gex (the graph induced by Vex) is connected. Let (u, v) ∈ E, where u ∈ Vex and v ∈ Vuex,
and let 1 ≤ s < |Vuex|. Then Vuex can be partitioned into V1 and V2 such that |V1| = s, v ∈ V1

and every connected component of Ga and Gb (the graphs induced in G by V1 and V2) is directly
reachable from Gex.

Proof. We prove that the sets Va and Vb computed by Algorithm PartitionC satisfy the lemma.
Let Guex be the graph induced by Vuex in G. Each connected component of Guex can

be viewed as a set of 2-connected components3 connected by the bridge edges into a tree of
2-connected components.

3or a single node
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Algorithm 3 CompleteKnowledge

Let Gex be the explored part of the network and Guex be the remaining unexplored part;
initially, Gex consists only of the home base h, and Guex = G \ Gex.

Computing the Working Sets - Let a be the agent computing the working sets, and
let u be the node where this is done (initially u = h).

1. a partitions Guex into disjoint subgraphs, Ga and Gb of (almost) equal size, such
that for each connected component of Ga and Gb there is a link connecting it
to Gex (Algorithm PartitionC). If this is not the first assignment of working
sets (i.e. u is the last safe node visited by b, and b has left u towards node v)
then Gb is the subgraph containing v.

2. a leaves a note for b informing it of the new working set Gb, and leaves to
explore its working set Ga.

Exploring the Working Set -

1. a uses the shortest possible route in Gex to reach a node in Ta.

2. a explores Ga using cautious walk on Ta.

3. During the cautious walk, if a finds at a node w a note from b informing it of
the new working sets Ga and Gb, a starts the exploration of the (new) Ga.

4. If a completes the exploration of its working set, it will search for b to recompute
the working sets.

Searching for the other agent - Let a be searching for b.

1. Let u be the last node where the working sets have been computed. a uses the
shortest path avoiding Gb to reach u.

2. Starting from u, a follows the trace of b (a shortest path in Gex to reach Tb,
and then the safe links of the Tb) until it reaches the last safe node w reached
by b.

3. a computes the new working sets.

Termination - When computing the working set, if Guex contains a single node, that
node is the black hole.
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Algorithm 4 PartitionC

1: Keep adding the connected components of Guex to Va (starting with the component
containing v), until Va contains at least s nodes.

2: If |Va| > s Then

3: Remove the last added connected component C from Va.
4: If v ∈ C Then

5: Add to Va the 2-connected component of C containing v.
6: Else

7: Add to Va any 2-connected component of C from which there is an edge
leading to a node in Vex.

8: While |Va| < s Do

9: Find a 2-connected component B of C which neighbors an already added
2-connected component of C and add B to Va.

10: If |Va| > s Then

11: Remove the last added 2-connected component B from Va.
12: Let s′ = s − |Va|.
13: Use Lemma 5.1 applied to B to choose the s′ nodes to be added to Va. (If

v ∈ B, a is set to v, otherwise a is any node of B which has a neighbor in
Va ∪Vex. b *= a is any other node of B with a neighbor in V \ (Va ∪B). Note
that since G and B are 2-connected, such b must exist.)

14: Set Vb = Vuex \ Va.

Since s < |Vuex|, by construction we get that Algorithm PartitionC eventually constructs
Va of size s. The reachability property for Va follows by construction (line 9. for 2-connected
components fully in Va) and from Lemma 5.1 (for the last 2-connected component that is only
partially in Va). Since the fact that v ∈ Va also follows from construction (lines 1. and 5.), we
have only to prove the reachability property for Vb.

By construction, we have that there is at most one connected component C of Guex shared
between Va and Vb, all other connected components are either fully in Va or fully in Vb. Therefore,
it is sufficient to prove reachability only for Vb ∩ C.

The component C can be seen as a rooted tree T of 2-connected components, with the root
being the 2-connected component of C that was first added to Va. From construction (line 5.)
we have that Va ∩ C is a connected subtree of C and at most one 2-connected component (B
from line 9.) is shared between Va and Vb. This means that Vb ∩ C is a union of connected
components, with each connected component containing a 2-connected component that is a leaf
in T . From the 2-connectivity of the original graph G it follows that each leaf 2-connected
component has an edge leading to Vex. Therefore, each such a connected component of Vb ∩ C
satisfies the reachability property. There is one possible exception – if Vb ∩ B is not connected
to another part of Vb. In such case the reachability property for Vb ∩ B follows directly from
Lemma 5.1.

The existence of a link between Vex and Va implies that a can safely reach the part (subgraph
Ga induced by Va) it has to explore. The lemma is more general than strictly needed, as only
the case s = |Vuex|/2 is used by the algorithm.
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Theorem 5.3. The black hole can be located by two agents with full topological knowledge in
arbitrary networks of vertex connectivity 2 with cost O(n log n), and this is optimal.

Proof. Correctness: Since Ga and Gb are disjoint, one agent always survives. This, together
with the fact that agents never wait for each other, ensures progress. Lemma 5.2 used with
s = |Vuex|/2 allows to halve in each round (iteration of the main loop) the size of the unexplored
area. This means after O(log n) rounds the algorithm terminates.

Cost: Note that each action an agent (say a) performs within one round is either (1) a local
computation, or (2) moving to another node of Gex, or (3) traversing Ta or (4) following the
traces of b in Tb). Clearly, the cost of each of these actions is at most O(n). Since the number
of such actions per round is constant, and there are only two agents, the total cost of one round
is O(n). As the number of rounds is O(log n), the total cost of Algorithm 3 is O(n log n).

The cost optimality follows from the Ω(n log n) lower bound for ring networks by [20].

Note that the analysis above uses very weak arguments to prove that the cost of one round
is O(n). Nevertheless, they can not be improved in general – the cost of communication (an
agent finding the other agent, and leaving a message) in the ring network is O(|Gex|), which
over all rounds sums to O(n log n).

6 Conclusions and Open Problems

We have studied conditions under which a team of autonomous asynchronous mobile agents
can identify the location of the harmful host. We have shown that the size and the cost of
an optimal solution depend on the a priori knowledge the agents have about the network, and
on the consistency of the local port labellings. In particular, we have provided tight bounds
when computing with topological ignorance, in presence of sense of direction, and with complete
topological knowledge.

Let us stress that, in the case of topological ignorance, the lower bound on the cost depends
on the smallest upper bound known to the agents on the maximal degree of the graph. In
particular, if the agents know only that it is possible for the graph to have maximal degree ∆,
then any team of ∆ + 1 might incur worst time cost of O(n2), regardless of the actual degree of
the graph; in fact, in the proof we use a graph of maximum degree 3. In other words, at play is
not only structural property (the maximal degree of the graph) but also and more predominantly
the a priori information (the upper bound ∆) the agents have about that property.

Our results provide a characterization of the impact that factors such as a priori network
knowledge and consistency of the local port labellings have on the complexity of the black hole
location problem. This characterization, far from being complete, poses many new questions
and opens many new research problems, some of them outlined below.

Topological ignorance and complete topological knowledge represent the two extreme levels
of possible knowledge. Interesting natural questions arise about the intermediate levels of topo-
logical knowledge. In particular, can two agents locate the black hole with O(n log n) cost with
less than complete knowledge?

We have shown that the presence of sense of direction allows two agents to overcome any
ignorance about the topology. Because of its computational equivalence with sense of direction,
it follows that the same result holds if the labelled graph has backward consistency4 [26]. An

4Backward consistency requires the existence of a “backward coding function” cb : L+ → N such that
walks ending in the same node are mapped to the same element of N if and only if they start from the
same node.
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immediate question is whether there are other consistency properties capable of similar results.
In our model, agents communicate by means of whiteboards. An interesting research area is

to investigate the black hole location problem using other models of inter-agent communication.
Examples of such means range from the more powerful messaging service (providing communi-
cation between agents regardless of their locations, e.g., [18]) to the weaker tokens used mostly
as markers (e.g., [9, 36]). Such an investigation would have many important objectives, e.g.
to identify the weakest type of inter-agent communication mechanism that allows black hole
location by two agents with a network map.

The graphs we have considered are simple; indeed our results do not carry over to multi-
graphs. The problem of locating the black hole in multigraphs is open.

All our protocols are deterministic. This leaves the door open to the obvious and natural
question of determining the impact, if any, of randomization.

Finally, an immediate obvious generalization of our investigation is to consider the presence
of more than one black hole. Some of the existing results generalize immediately. For example,
it is clear that the graph must be at least k + 1 connected to deal with the presence of k black
holes. However the problem in its generality is open.
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Appendix

A Case n − 4 < ∆ ≤ n − 1

By Theorem 3.4, we know that when n − 4 < ∆ ≤ n − 1 there are cases when ∆ agents are
sufficient, and thus Algorithm Ignorance is not optimal. In this section we present an optimal
protocol for the case n − 4 < ∆ ≤ n − 1: Algorithm Ignorance∆. This new protocol is based
on algorithm Ignorance: the main idea is to make sure that at most ∆ − 1 nodes are being
expanded simultaneously. Since from each node there is at most one link to the black hole, this
guarantees that at least one agent survives. However, if the black hole is of degree ∆, it may
be necessary to expand ∆ nodes simultaneously in order to complete exploration of the graph.
In such a case, algorithm Ignorance∆ carefully chooses in procedure Choose() the order in
which to expand the remaining few nodes, so that when the algorithm terminates n−1 nodes are
explored, and one agent survives. There might be however an ambiguity about three unexplored
ports: two correspond to the same link, connecting two safe nodes, while the other leads to
the black hole; in other words, two ports might be incorrectly suspected. We conjecture that
this level of ambiguity is actually inevitable when using only ∆ agents in this restricted range of
values. In the following, by correct termination we mean termination with this level of ambiguity.

In order to describe algorithm Ignorance∆ in more detail, we need to refine the classifi-
cation of the nodes in the following way. An unexplored node that is reached for the first time
by an agent turns into visited: such nodes have only one explored port and all the others are
unexplored. When a port of a visited node becomes dangerous, the node turns into partially
expanded. A node stays partially expanded until it has exactly one dangerous incident edge and
all the remaining edges are explored: it is now quasi expanded. Finally, when a node has all its
incident edges explored, it is called fully expanded. A node that is either unexplored or visited
is called unexpanded.

Algorithm Ignorance∆ makes sure that at most ∆− 1 nodes are being expanded simulta-
neously by having, at the beginning, ∆ − 1 tokens at the home base; moreover, a node is being
expanded if and only if it contains one token (except the home base, which may contain more
tokens). The modifications to Algorithm Ignorance to ensure this property are reported in
Algorithm 5.

Procedure Choose(). Line 14 of Algorithm Ignorance∆ handles the case when cn > 0,
there are no more tokens left in h, there are at most ∆−1 quasi expanded nodes and no partially
expanded node: Procedure Choose() is called (reported in Figure 9). First note that, since when
this procedure is called ∆−1 agents are already employed in expanding nodes, it cannot happen
that more than one agent concurrently execute this procedure: let c be the agent that executes
Choose(). Furthermore, at the moment Choose() is called, the number of unexpanded nodes
is at most 4, since ∆ ≥ n − 3 and ∆ − 1 nodes are quasi-expanded. Finally, at least one of the
unexpanded nodes is visited, otherwise the explored part of the network would be connected to
the unexplored part only through the Bh, and G would not be 2-connected.

This procedure uses case analysis to choose the next node to expand. In particular, the choice
depends on the number of the remaining unexpanded nodes and on the state of the links incident
to them. Once such a node has been located, say u, c expands it by calling routine Expand(u):
c first reaches u (with no token), and then starts expanding it as in the Node Expansion

of Algorithm Ignorance. If, during the expansion, c finds in u a token, it exits procedure
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Algorithm 5 Ignorance∆

1: When an agent b detects that there are nodes to expand (cn > 0 at the home base)
and starts to search for a node to expand, it first tries to take a token. (If the home
base is still being expanded, it claims its token and the agent can only take a different
token.)

2: If there is an available token Then

3: b takes the token and travels until it finds a node v to expand (with ca(v) > 0).
4: If ca(v) = 2 Then

5: b places the token at v, decrements ca(v) and starts expanding v.
6: Else

7: %ca(v) = 1, i.e. v is already being expanded by another agent. Note that v already

contains a token.%
8: b decrements ca(v), brings its token back to h and returns to v to help the

other agent in expanding v.
9: If when b returns to v from the home base, v is already at least quasi-

expanded Then

10: b returns to h, increments cn and starts again.
11: Else

12: b joins expanding v.
13: Else

14: %cn > 0 and there are no more tokens left.% Agent b still tries to find a node to
expand, but can only join in the expansion of a partially expanded node. If b

is not able to find such a node (i.e., it traversed whole T and returned back to
h) then it executes procedure Choose() to choose the next node to expand, and
before leaving h to explore this node, it leaves a note at h.

15: When an agent finishes expanding a node (so that the node is fully expanded), it
brings the token back to the home base. If it realizes that an agent is expanding a
node chosen by Choose() (by finding the note left in Line 14), it removes the note
and brings the just freed token to the node being expanded.
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Choose() and continues the expansion as if it were executing Algorithm Ignorance∆: that is,
having a token, c is now performing a legal expansion of node u. Such a token can be found in
u by c in the following scenario.

Scen When Choose() is called, not all of the ∆ − 1 quasi expanded nodes are connected to
the Bh. In this case, according to Ignorance∆, one of the ∆ − 1 quasi expanded nodes
will eventually turn into fully explored, and agent b that completed the expansion of this
node will free its token, bringing it back to h. At this point, it realizes that an agent
is expanding a node, say u, returned by Choose() (by finding the note left at h, Line
14 of Ignorance∆); therefore, it brings to u the token it just freed. When c realizes
the presence of this token in u, it exits Choose() (by routine Expand(u)) and keeps
executing Ignorance∆.

Theorem A.1. Algorithm Ignorance∆ correctly locates the black hole using ∆ agents, in
O(n2) moves.

Proof. Correctness. First of all notice that, if the black hole is not located by procedure
Choose(), the execution of algorithm Ignorance∆ can be seen as a special case of the exe-
cution of algorithm Ignorance: In algorithm Ignorance∆ the procedure Choose() chooses
the next node to explore, in algorithm Ignorance the next node is chosen arbitrarily. There-
fore, if the Bh is not located in Choose(), the correctness of algorithm Ignorance∆ follows from
correctness of algorithm Ignorance. Hence, we only need to show that procedure Choose()
correctly locates the black hole in order to prove correctness of algorithm Ignorance∆.

We analyze procedure Choose() depending on the number of unexpanded nodes at the be-
ginning of its main while loop.

1. Single unexpanded node v: The black hole must be in v and Choose() correctly identifies
it and terminates at Line 27.

2. Two unexpanded nodes u and v: Since one of these nodes must be visited, the other one
must contain the black hole. Again, Choose() handles this case correctly at Line 29.

3. Three unexpanded nodes u, v and w. There are two cases:

(a) If two of these nodes (say u and v) are visited, the black hole must be in w. Note
that at this moment, the unexplored ports in u and v can only lead either to each
other or to the black hole. Since, by hypothesis, the black hole is already connected
to ∆−1 quasi expanded nodes, it cannot be connected to both u and v. That means
that the node with the minimal number of unexplored links cannot be connected to
the black hole, and can be safely expanded in Line 9; at this point, the number of
unexpanded nodes decreased by one, and previous Case b. applies.

Of course, if such a node has no unexplored links left, it is not necessary to expand
it at all (line 11).

(b) The second case is when only one (e.g. v) of the three nodes has been visited.
Then v is not connected to the Bh and can be safely expanded in Line 4. In
fact, if by contradiction v is connected to the black hole, then the Bh cannot be
connected to the last (remaining) unexpanded node, contradicting the 2-connectivity
of G (i.e., removing v disconnects the graph). With the expansion of v, the number
of unexpanded nodes decreased by one, and previous Case 2. applies.
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Procedure Choose()

1: While the number of unexpanded nodes is at least 3 Do

2: If there are three unexpanded nodes u, v and w Then

3: If only one of them (say u) is visited Then

4: Expand(u).
5: Else

6: Let u and v be the visited nodes. Clearly, the black hole is in w.
7: If the total number of unexplored ports from u and v is at least 2 Then

8: f := node among u, v with fewer unexplored links
9: Expand(f).

10: Else

11: Terminate, the black hole is in w.
12: Else

13: %There are four unexpanded node u, v, w and t.%
14: If only one one of them (say u is visited) Then

15: Expand(u).
16: Else If two of them (say u and v) are visited Then

17: f := node among u and v with fewer unexplored incident edges, or any
of them if they have the same number of incident unexplored edges;

18: Expand(f).
19: Else

20: There are three (say u, v and w) visited nodes. Clearly, the Bh is in t.
21: If all of them have single incident unexplored link Then

22: Terminate, the black hole is in t. Declare as dangerous all remaining
unexplored links.

23: Else

24: f := node among u, v, and w with the minimal number of unex-
plored incident links;

25: Expand(f).
26: If there is a single unexpanded (and visited) node v left Then

27: Terminate, the black hole is in v and all dangerous links lead to it. (Note that
this may happen only if the degree of v is at most ∆ − 1.)

28: Else

29: There are two unexpanded nodes u and v. One of them (e.g. v) is visited.
Terminate, the black hole is in u.

Figure 9: Procedure Choose() called in Line 14 of Algorithm Ignorance∆.
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Figure 10: The only possible configurations (up to symmetries) of unexplored ports in
the remaining unexpanded nodes.

4. Four unexpanded nodes u, v, w and t. Similarly to the previous case, if there is a single
visited node among u, v, w and t then it is not connected to the black hole and can be
safely expanded. At this point, only 3 unexpanded nodes are left, and previous Case 3.
applies.

If there are three visited nodes (say u, v and w) then the black hole is located at t. If
each of u, v and w has single unexpanded port, then the algorithm declares as dangerous
all the corresponding unexplored links (only on of them leads to the black hole, but
the algorithm cannot determine which one without expending an agent), and correctly
terminates. Otherwise the node with minimal number of unexplored links is not connected
to the black hole and can be safely expanded in Line 24: If this minimal number is 0,
that node is clearly not connected to the black hole. The remaining possible cases (up
to permutation of u, v and w) are shown in Figure 10, clearly the node(s) with minimal
number of unexplored links is(are) not connected to the black hole. After the expansion
of Line 24, only 3 unexpanded nodes are left, and previous Case 3. applies.

Finally, if there are two visited nodes (w.l.o.g. assume u and v) the one with minimal
number of unexplored ports is not connected to the black hole and can be safely expanded
at Line 18: This is certainly true if the black hole is connected to the non-visited node.
Otherwise (the Bh is connected to either u or v), since the graph is 2-connected, the
non-visited node must be connected to both u and v. The claim now follows immediately,
as the only other unexplored link can be the link connecting u and v. After the expansion
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of Line 18, only 3 unexpanded nodes are left, and previous Case 3. applies.

Number of moves: The only additional moves of algorithm Ignorance∆ with respect to
algorithm Ignorance are incurred due to the token management. Since each expanded node
and each call/exit of Choose() incurs cost at most O(n), the overall overhead is bounded by
O(n2).
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